1
|
Ranalli AJ, Swayze GA. Alunite in Cross Crater, Mars: Evidence for a Possible Site of Ancient Life. ASTROBIOLOGY 2024; 24:1096-1109. [PMID: 39453418 DOI: 10.1089/ast.2024.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Cross Crater is a 65-km impact crater located in the Noachian highlands of the Terra Sirenum region of Mars. Geochemical modeling has indicated that alunite detected on the southwest wall of Cross Crater could have been formed by a fumarole upwelling into Cross Crater Lake and could indicate that an environment favorable to the development of life may have existed several billion years ago. Alunite did not form when Noachian precipitation reacted with basalt nor when the sediments and groundwater resulting from this reaction were reacted with a fumarole. Only when Cross Crater Lake water was equilibrated with sulfuric acid, thought to be a major component of the atmosphere in the Hesperian, following reaction with fumarole groundwater, did alunite precipitate from solution. Kaolinite, silica, or an Al-smectite such as montmorillonite also formed. The proximity of Cross Crater to the Tharsis volcanic region relative to Columbus crater, where alunite has also been detected, may have resulted in larger amounts of magmatic water input to the lake from sources along fractures that extend westward from Tharsis. This could explain the more extensive deposit of alunite at Cross Crater relative to Columbus crater.
Collapse
|
2
|
Pozarycki C, Seaton KM, C Vincent E, Novak Sanders C, Nuñez N, Castillo M, Ingall E, Klempay B, Pontefract A, Fisher LA, Paris ER, Buessecker S, Alansson NB, Carr CE, Doran PT, Bowman JS, Schmidt BE, Stockton AM. Biosignature Molecules Accumulate and Persist in Evaporitic Brines: Implications for Planetary Exploration. ASTROBIOLOGY 2024; 24:795-812. [PMID: 39159437 DOI: 10.1089/ast.2023.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The abundance of potentially habitable hypersaline environments in our solar system compels us to understand the impacts of high-salt matrices and brine dynamics on biosignature detection efforts. We identified and quantified organic compounds in brines from South Bay Salt Works (SBSW), where evapoconcentration of ocean water enables exploration of the impact of NaCl- and MgCl2-dominated brines on the detection of potential biosignature molecules. In SBSW, organic biosignature abundance and distribution are likely influenced by evapoconcentration, osmolyte accumulation, and preservation effects. Bioluminescence assays show that adenosine triphosphate (ATP) concentrations are higher in NaCl-rich, low water activity (aw) samples (<0.85) from SBSW. This is consistent with the accumulation and preservation of ATP at low aw as described in past laboratory studies. The water-soluble small organic molecule inventory was determined by using microchip capillary electrophoresis paired with high-resolution mass spectrometry (µCE-HRMS). We analyzed the relative distribution of proteinogenic amino acids with a recently developed quantitative method using CE-separation and laser-induced fluorescence (LIF) detection of amino acids in hypersaline brines. Salinity trends for dissolved free amino acids were consistent with amino acid residue abundance determined from the proteome of the microbial community predicted from metagenomic data. This highlights a tangible connection up and down the "-omics" ladder across changing geochemical conditions. The detection of water-soluble organic compounds, specifically proteinogenic amino acids at high abundance (>7 mM) in concentrated brines, demonstrates that potential organic biomarkers accumulate at hypersaline sites and suggests the possibility of long-term preservation. The detection of such molecules in high abundance when using diverse analytical tools appropriate for spacecraft suggests that life detection within hypersaline environments, such as evaporates on Mars and the surface or subsurface brines of ocean world Europa, is plausible and argues such environments should be a high priority for future exploration. Key Words: Salts-Analytical chemistry-Amino acids-Biosignatures-Capillary electrophoresis-Preservation. Astrobiology 24, 795-812.
Collapse
Affiliation(s)
- Chad Pozarycki
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kenneth M Seaton
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Emily C Vincent
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Carlie Novak Sanders
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nickie Nuñez
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Mariah Castillo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Ellery Ingall
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Benjamin Klempay
- Scripps Institution of Oceanography, University of California San Diego, San Diego, California, USA
| | | | - Luke A Fisher
- Scripps Institution of Oceanography, University of California San Diego, San Diego, California, USA
| | - Emily R Paris
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Steffen Buessecker
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Nikolas B Alansson
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Christopher E Carr
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Peter T Doran
- Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Jeff S Bowman
- Scripps Institution of Oceanography, University of California San Diego, San Diego, California, USA
| | - Britney E Schmidt
- Departments of Astronomy and Earth & Atmospheric Sciences, Cornell University, Ithaca, New York, USA
| | - Amanda M Stockton
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Buffo JJ, Brown EK, Pontefract A, Schmidt BE, Klempay B, Lawrence J, Bowman J, Grantham M, Glass JB, Plattner T, Chivers C, Doran P. The Bioburden and Ionic Composition of Hypersaline Lake Ices: Novel Habitats on Earth and Their Astrobiological Implications. ASTROBIOLOGY 2022; 22:962-980. [PMID: 35671513 DOI: 10.1089/ast.2021.0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We present thermophysical, biological, and chemical observations of ice and brine samples from five compositionally diverse hypersaline lakes in British Columbia's interior plateau. Possessing a spectrum of magnesium, sodium, sulfate, carbonate, and chloride salts, these low-temperature high-salinity lakes are analogs for planetary ice-brine environments, including the ice shells of Europa and Enceladus and ice-brine systems on Mars. As such, understanding the thermodynamics and biogeochemistry of these systems can provide insights into the evolution, habitability, and detectability of high-priority astrobiology targets. We show that biomass is typically concentrated in a layer near the base of the ice cover, but that chemical and biological impurities are present throughout the ice. Coupling bioburden, ionic concentration, and seasonal temperature measurements, we demonstrate that impurity entrainment in the ice is directly correlated to ice formation rate and parent fluid composition. We highlight unique phenomena, including brine supercooling, salt hydrate precipitation, and internal brine layers in the ice cover, important processes to be considered for planetary ice-brine environments. These systems can be leveraged to constrain the distribution, longevity, and habitability of low-temperature solar system brines-relevant to interpreting spacecraft data and planning future missions in the lens of both planetary exploration and planetary protection.
Collapse
Affiliation(s)
- Jacob J Buffo
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Emma K Brown
- School of Earth and Space Exploration, Arizona State University, Pheonix, AZ, USA
| | | | | | | | - Justin Lawrence
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jeff Bowman
- Scripps Institution of Oceanography, La Jolla, CA, USA
| | - Meg Grantham
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jennifer B Glass
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Taylor Plattner
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Chase Chivers
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peter Doran
- Department of Geology and Geophysics, Louisiung State University, Baton Rouge, LA, USA
| |
Collapse
|
4
|
Abstract
Many discoveries of active surface processes on Mars have been made due to the availability of repeat high-resolution images from the High Resolution Imaging Science Experiment (HiRISE) onboard the Mars Reconnaissance Orbiter. HiRISE stereo images are used to make digital terrain models (DTMs) and orthorectified images (orthoimages). HiRISE DTMs and orthoimage time series have been crucial for advancing the study of active processes such as recurring slope lineae, dune migration, gully activity, and polar processes. We describe the process of making HiRISE DTMs, orthoimage time series, DTM mosaics, and the difference of DTMs, specifically using the ISIS/SOCET Set workflow. HiRISE DTMs are produced at a 1 and 2 m ground sample distance, with a corresponding estimated vertical precision of tens of cm and ∼1 m, respectively. To date, more than 6000 stereo pairs have been acquired by HiRISE and, of these, more than 800 DTMs and 2700 orthoimages have been produced and made available to the public via the Planetary Data System. The intended audiences of this paper are producers, as well as users, of HiRISE DTMs and orthoimages. We discuss the factors that determine the effective resolution, as well as the quality, precision, and accuracy of HiRISE DTMs, and provide examples of their use in time series analyses of active surface processes on Mars.
Collapse
|
5
|
Singh D, Sinha RK, Singh P, Roy N, Mukherjee S. Astrobiological Potential of Fe/Mg Smectites with Special Emphasis on Jezero Crater, Mars 2020 Landing Site. ASTROBIOLOGY 2022; 22:579-597. [PMID: 35171004 DOI: 10.1089/ast.2021.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Life is known to adapt in accordance with its surrounding environment and sustainable resources available to it. Since harsh conditions would have precluded any possible aerobic evolution of life at the martian surface, it is plausible that martian life, should it exist, would have evolved in such a way as to derive energy from more optimum resources. Iron is one of the most abundant elements present in the martian crust and occurs at about twice the amount present on Earth. Clay minerals contribute to about half the iron found in soils and sediments. On Earth, clay acts as an electron donor as well as an acceptor in the carbon cycles and thereby supports a wide variety of metabolic reactions. In this context, we consider the potential of Fe/Mg smectites, one of the most widely reported hydrated minerals on Mars, for preservation of macro- and microscopic biosignatures. We proceed by understanding the environmental conditions during the formation of smectites and various microbes and metabolic processes associated with them as indicated in Earth-based studies. We also explore the possibility of biosignatures and their identification within the Mars 2020 landing site (Jezero Crater) by using the astrobiological payloads on board the Perseverance rover.
Collapse
Affiliation(s)
- Deepali Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Priyadarshini Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nidhi Roy
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Saumitra Mukherjee
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
6
|
Chirality in Organic and Mineral Systems: A Review of Reactivity and Alteration Processes Relevant to Prebiotic Chemistry and Life Detection Missions. Symmetry (Basel) 2022. [DOI: 10.3390/sym14030460] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chirality is a central feature in the evolution of biological systems, but the reason for biology’s strong preference for specific chiralities of amino acids, sugars, and other molecules remains a controversial and unanswered question in origins of life research. Biological polymers tend toward homochiral systems, which favor the incorporation of a single enantiomer (molecules with a specific chiral configuration) over the other. There have been numerous investigations into the processes that preferentially enrich one enantiomer to understand the evolution of an early, racemic, prebiotic organic world. Chirality can also be a property of minerals; their interaction with chiral organics is important for assessing how post-depositional alteration processes could affect the stereochemical configuration of simple and complex organic molecules. In this paper, we review the properties of organic compounds and minerals as well as the physical, chemical, and geological processes that affect organic and mineral chirality during the preservation and detection of organic compounds. We provide perspectives and discussions on the reactions and analytical techniques that can be performed in the laboratory, and comment on the state of knowledge of flight-capable technologies in current and future planetary missions, with a focus on organics analysis and life detection.
Collapse
|
7
|
Carrier B, Beaty D, Meyer M, Blank J, Chou L, DasSarma S, Des Marais D, Eigenbrode J, Grefenstette N, Lanza N, Schuerger A, Schwendner P, Smith H, Stoker C, Tarnas J, Webster K, Bakermans C, Baxter B, Bell M, Benner S, Bolivar Torres H, Boston P, Bruner R, Clark B, DasSarma P, Engelhart A, Gallegos Z, Garvin Z, Gasda P, Green J, Harris R, Hoffman M, Kieft T, Koeppel A, Lee P, Li X, Lynch K, Mackelprang R, Mahaffy P, Matthies L, Nellessen M, Newsom H, Northup D, O'Connor B, Perl S, Quinn R, Rowe L, Sauterey B, Schneegurt M, Schulze-Makuch D, Scuderi L, Spilde M, Stamenković V, Torres Celis J, Viola D, Wade B, Walker C, Wiens R, Williams A, Williams J, Xu J. Mars Extant Life: What's Next? Conference Report. ASTROBIOLOGY 2020; 20:785-814. [PMID: 32466662 PMCID: PMC7307687 DOI: 10.1089/ast.2020.2237] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/24/2020] [Indexed: 05/19/2023]
Abstract
On November 5-8, 2019, the "Mars Extant Life: What's Next?" conference was convened in Carlsbad, New Mexico. The conference gathered a community of actively publishing experts in disciplines related to habitability and astrobiology. Primary conclusions are as follows: A significant subset of conference attendees concluded that there is a realistic possibility that Mars hosts indigenous microbial life. A powerful theme that permeated the conference is that the key to the search for martian extant life lies in identifying and exploring refugia ("oases"), where conditions are either permanently or episodically significantly more hospitable than average. Based on our existing knowledge of Mars, conference participants highlighted four potential martian refugium (not listed in priority order): Caves, Deep Subsurface, Ices, and Salts. The conference group did not attempt to reach a consensus prioritization of these candidate environments, but instead felt that a defensible prioritization would require a future competitive process. Within the context of these candidate environments, we identified a variety of geological search strategies that could narrow the search space. Additionally, we summarized a number of measurement techniques that could be used to detect evidence of extant life (if present). Again, it was not within the scope of the conference to prioritize these measurement techniques-that is best left for the competitive process. We specifically note that the number and sensitivity of detection methods that could be implemented if samples were returned to Earth greatly exceed the methodologies that could be used at Mars. Finally, important lessons to guide extant life search processes can be derived both from experiments carried out in terrestrial laboratories and analog field sites and from theoretical modeling.
Collapse
Affiliation(s)
- B.L. Carrier
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - D.W. Beaty
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - J.G. Blank
- NASA Ames Research Center, Moffett Field, California, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - L. Chou
- Georgetown University, Washington, DC, USA
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - S. DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | - N.L. Lanza
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - A.C. Schuerger
- University of Florida/Space Life Sciences Laboratory, Kennedy Space Center, Florida, USA
| | - P. Schwendner
- University of Florida/Space Life Sciences Laboratory, Kennedy Space Center, Florida, USA
| | - H.D. Smith
- NASA Ames Research Center, Moffett Field, California, USA
| | - C.R. Stoker
- NASA Ames Research Center, Moffett Field, California, USA
| | - J.D. Tarnas
- Brown University, Providence, Rhode Island, USA
| | - K.D. Webster
- Planetary Science Institute, Tucson, Arizona, USA
| | - C. Bakermans
- Pennsylvania State University, Altoona, Pennsylvania, USA
| | - B.K. Baxter
- Westminster College, Salt Lake City, Utah, USA
| | - M.S. Bell
- NASA Johnson Space Center, Houston, Texas, USA
| | - S.A. Benner
- Foundation for Applied Molecular Evolution, Alachua, Florida, USA
| | - H.H. Bolivar Torres
- Universidad Nacional Autonoma de Mexico, Coyoacan, Distrito Federal Mexico, Mexico
| | - P.J. Boston
- NASA Astrobiology Institute, NASA Ames Research Center, Moffett Field, California, USA
| | - R. Bruner
- Denver Museum of Nature and Science, Denver, Colorado, USA
| | - B.C. Clark
- Space Science Institute, Littleton, Colorado, USA
| | - P. DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Z.E. Gallegos
- University of New Mexico, Albuquerque, New Mexico, USA
| | - Z.K. Garvin
- Princeton University, Princeton, New Jersey, USA
| | - P.J. Gasda
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - J.H. Green
- Texas Tech University, Lubbock, Texas, USA
| | - R.L. Harris
- Princeton University, Princeton, New Jersey, USA
| | - M.E. Hoffman
- University of New Mexico, Albuquerque, New Mexico, USA
| | - T. Kieft
- New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA
| | | | - P.A. Lee
- College of Charleston, Charleston, South Carolina, USA
| | - X. Li
- University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - K.L. Lynch
- Lunar and Planetary Institute/USRA, Houston, Texas, USA
| | - R. Mackelprang
- California State University Northridge, Northridge, California, USA
| | - P.R. Mahaffy
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - L.H. Matthies
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - H.E. Newsom
- University of New Mexico, Albuquerque, New Mexico, USA
| | - D.E. Northup
- University of New Mexico, Albuquerque, New Mexico, USA
| | | | - S.M. Perl
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - R.C. Quinn
- NASA Ames Research Center, Moffett Field, California, USA
| | - L.A. Rowe
- Valparaiso University, Valparaiso, Indiana, USA
| | | | | | | | - L.A. Scuderi
- University of New Mexico, Albuquerque, New Mexico, USA
| | - M.N. Spilde
- University of New Mexico, Albuquerque, New Mexico, USA
| | - V. Stamenković
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - J.A. Torres Celis
- Universidad Nacional Autonoma de Mexico, Coyoacan, Distrito Federal Mexico, Mexico
| | - D. Viola
- NASA Ames Research Center, Moffett Field, California, USA
| | - B.D. Wade
- Michigan State University, East Lansing, Michigan, USA
| | - C.J. Walker
- Delaware State University, Dover, Delaware, USA
| | - R.C. Wiens
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | - J.M. Williams
- University of New Mexico, Albuquerque, New Mexico, USA
| | - J. Xu
- University of Texas, El Paso, Texas, USA
| |
Collapse
|
8
|
Sun VZ, Milliken RE. Characterizing the Mineral Assemblages of Hot Spring Environments and Applications to Mars Orbital Data. ASTROBIOLOGY 2020; 20:453-474. [PMID: 31545076 DOI: 10.1089/ast.2018.2003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Certain martian hydrated silica deposits have been hypothesized to represent ancient hot spring environments, but many environments can produce hydrated silica on Earth. This study compares the mineral assemblages produced in terrestrial hot springs to those observed in silica-producing volcanic fumarolic environments to determine which diagnostic features of hot springs could be remotely sensed on Mars. We find that hot spring environments are more likely to produce geochemically mature silica (i.e., opal-CT and microcrystalline quartz) in addition to opal-A, whereas volcanic fumarolic environments tend to produce only opal-A, potentially reflecting differences in water-to-rock ratios. Neutral/alkaline hot springs contain few accessory minerals (typically calcite and Fe/Mg clays), while acidic hot springs commonly contain accessory kaolinite. By comparison, mineral assemblages at volcanic fumaroles contain protolith igneous minerals and a diversity of alteration minerals indicative of acidic conditions. Based on these terrestrial observations, the presence of opal-CT and/or microcrystalline quartz could be more diagnostic of a hot spring origin rather than a fumarolic origin, and accessory mineralogy could provide information on formation pH. On Mars, we observe that most orbital opal detections in outcrop are opal-A, sometimes accompanied by Fe/Mg clays, suggestive of neutral/alkaline conditions. However, these observations do not uniquely distinguish between hot springs and fumarolic environments, as opal-A can occur in both environments. Many martian silica detections occur in regionally extensive units, and sometimes in association with fluvial landforms suggesting a detrital or lower temperature authigenic origin. Thus, only a few martian opal detections may be mineralogically, spatially, and morphologically consistent with a hot spring origin. However, although it is difficult to unambiguously identify martian hot spring environments from orbital data sets, the orbital data are still valuable for identifying siliceous sites that are consistent with higher biosignature preservation potential, that is, sites with opal-A (not opal-CT), for future in situ investigations.
Collapse
Affiliation(s)
- Vivian Z Sun
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, Rhode Island
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Ralph E Milliken
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, Rhode Island
| |
Collapse
|
9
|
Onstott T, Ehlmann B, Sapers H, Coleman M, Ivarsson M, Marlow J, Neubeck A, Niles P. Paleo-Rock-Hosted Life on Earth and the Search on Mars: A Review and Strategy for Exploration. ASTROBIOLOGY 2019; 19:1230-1262. [PMID: 31237436 PMCID: PMC6786346 DOI: 10.1089/ast.2018.1960] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 04/25/2019] [Indexed: 05/19/2023]
Abstract
Here we review published studies on the abundance and diversity of terrestrial rock-hosted life, the environments it inhabits, the evolution of its metabolisms, and its fossil biomarkers to provide guidance in the search for life on Mars. Key findings are (1) much terrestrial deep subsurface metabolic activity relies on abiotic energy-yielding fluxes and in situ abiotic and biotic recycling of metabolic waste products rather than on buried organic products of photosynthesis; (2) subsurface microbial cell concentrations are highest at interfaces with pronounced chemical redox gradients or permeability variations and do not correlate with bulk host rock organic carbon; (3) metabolic pathways for chemolithoautotrophic microorganisms evolved earlier in Earth's history than those of surface-dwelling phototrophic microorganisms; (4) the emergence of the former occurred at a time when Mars was habitable, whereas the emergence of the latter occurred at a time when the martian surface was not continually habitable; (5) the terrestrial rock record has biomarkers of subsurface life at least back hundreds of millions of years and likely to 3.45 Ga with several examples of excellent preservation in rock types that are quite different from those preserving the photosphere-supported biosphere. These findings suggest that rock-hosted life would have been more likely to emerge and be preserved in a martian context. Consequently, we outline a Mars exploration strategy that targets subsurface life and scales spatially, focusing initially on identifying rocks with evidence for groundwater flow and low-temperature mineralization, then identifying redox and permeability interfaces preserved within rock outcrops, and finally focusing on finding minerals associated with redox reactions and associated traces of carbon and diagnostic chemical and isotopic biosignatures. Using this strategy on Earth yields ancient rock-hosted life, preserved in the fossil record and confirmable via a suite of morphologic, organic, mineralogical, and isotopic fingerprints at micrometer scale. We expect an emphasis on rock-hosted life and this scale-dependent strategy to be crucial in the search for life on Mars.
Collapse
Affiliation(s)
- T.C. Onstott
- Department of Geosciences, Princeton University, Princeton, New Jersey, USA
- Address correspondence to: T.C. Onstott, Department of Geosciences, Princeton University,, Princeton, NJ 008544
| | - B.L. Ehlmann
- Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- B.L. Ehlmann, Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - H. Sapers
- Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - M. Coleman
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- NASA Astrobiology Institute, Pasadena, California, USA
| | - M. Ivarsson
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - J.J. Marlow
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - A. Neubeck
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| | - P. Niles
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, Texas, USA
| |
Collapse
|
10
|
Chan MA, Bowen BB, Corsetti FA, Farrand WH, Law ES, Newsom HE, Perl SM, Spear JR, Thompson DR. Exploring, Mapping, and Data Management Integration of Habitable Environments in Astrobiology. Front Microbiol 2019; 10:147. [PMID: 30891006 PMCID: PMC6412026 DOI: 10.3389/fmicb.2019.00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/21/2019] [Indexed: 11/17/2022] Open
Abstract
New approaches to blending geoscience, planetary science, microbiology-geobiology/ecology, geoinformatics and cyberinfrastructure technology disciplines in a holistic effort can be transformative to astrobiology explorations. Over the last two decades, overwhelming orbital evidence has confirmed the abundance of authigenic (in situ, formed in place) minerals on Mars. On Earth, environments where authigenic minerals form provide a substrate for the preservation of microbial life. Similarly, extraterrestrial life is likely to be preserved where crustal minerals can record and preserve the biochemical mechanisms (i.e., biosignatures). The search for astrobiological evidence on Mars has focused on identifying past or present habitable environments - places that could support some semblance of life. Thus, authigenic minerals represent a promising habitable environment where extraterrestrial life could be recorded and potentially preserved over geologic time scales. Astrobiology research necessarily takes place over vastly different scales; from molecules to viruses and microbes to those of satellites and solar system exploration, but the differing scales of analyses are rarely connected quantitatively. The mismatch between the scales of these observations- from the macro- satellite mineralogical observations to the micro- microbial observations- limits the applicability of our astrobiological understanding as we search for records of life beyond Earth. Each-scale observation requires knowledge of the geologic context and the environmental parameters important for assessing habitability. Exploration efforts to search for extraterrestrial life should attempt to quantify both the geospatial context and the temporal/spatial relationships between microbial abundance and diversity within authigenic minerals at multiple scales, while assimilating resolutions from satellite observations to field measurements to microscopic analyses. Statistical measures, computer vision, and the geospatial synergy of Geographic Information Systems (GIS), can allow analyses of objective data-driven methods to locate, map, and predict where the "sweet spots" of habitable environments occur at multiple scales. This approach of science information architecture or an "Astrobiology Information System" can provide the necessary maps to guide researchers to discoveries via testing, visualizing, documenting, and collaborating on significant data relationships that will advance explorations for evidence of life in our solar system and beyond.
Collapse
Affiliation(s)
- Marjorie A. Chan
- Department of Geology and Geophysics, The University of Utah, Salt Lake City, UT, United States
| | - Brenda B. Bowen
- Department of Geology and Geophysics, The University of Utah, Salt Lake City, UT, United States
| | - Frank A. Corsetti
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | | | - Emily S. Law
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Horton E. Newsom
- Department Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Scott M. Perl
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - David R. Thompson
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
11
|
Salese F, Pondrelli M, Neeseman A, Schmidt G, Ori GG. Geological Evidence of Planet-Wide Groundwater System on Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2019; 124:374-395. [PMID: 31007995 PMCID: PMC6472477 DOI: 10.1029/2018je005802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/12/2019] [Accepted: 01/15/2019] [Indexed: 05/20/2023]
Abstract
The scale of groundwater upwelling on Mars, as well as its relation to sedimentary systems, remains an ongoing debate. Several deep craters (basins) in the northern equatorial regions show compelling signs that large amounts of water once existed on Mars at a planet-wide scale. The presence of water-formed features, including fluvial Gilbert and sapping deltas fed by sapping valleys, constitute strong evidence of groundwater upwelling resulting in long term standing bodies of water inside the basins. Terrestrial field evidence shows that sapping valleys can occur in basalt bedrock and not only in unconsolidated sediments. A hypothesis that considers the elevation differences between the observed morphologies and the assumed basal groundwater level is presented and described as the "dike-confined water" model, already present on Earth and introduced for the first time in the Martian geological literature. Only the deepest basins considered in this study, those with bases deeper than -4000 m in elevation below the Mars datum, intercepted the water-saturated zone and exhibit evidence of groundwater fluctuations. The discovery of these groundwater discharge sites on a planet-wide scale strongly suggests a link between the putative Martian ocean and various configurations of sedimentary deposits that were formed as a result of groundwater fluctuations during the Hesperian period. This newly recognized evidence of water-formed features significantly increases the chance that biosignatures could be buried in the sediment. These deep basins (groundwater-fed lakes) will be of interest to future exploration missions as they might provide evidence of geological conditions suitable for life.
Collapse
Affiliation(s)
- Francesco Salese
- Faculty of GeosciencesUtrecht UniversityUtrechtThe Netherlands
- International Research School of Planetary SciencesUniversità Gabriele D'AnnunzioPescaraItaly
| | - Monica Pondrelli
- International Research School of Planetary SciencesUniversità Gabriele D'AnnunzioPescaraItaly
| | - Alicia Neeseman
- Institute of Geological Sciences, Planetary Sciences and Remote Sensing GroupFreie Universität BerlinBerlinGermany
| | - Gene Schmidt
- International Research School of Planetary SciencesUniversità Gabriele D'AnnunzioPescaraItaly
| | - Gian Gabriele Ori
- International Research School of Planetary SciencesUniversità Gabriele D'AnnunzioPescaraItaly
- Ibn Battuta CentreUniversité Cadi AyyadMarrakeshMorocco
| |
Collapse
|
12
|
Olsson-Francis K, Billi D, Teske A, de Vera JPP. Editorial: Habitability Beyond Earth. Front Microbiol 2018; 9:2645. [PMID: 30519217 PMCID: PMC6251383 DOI: 10.3389/fmicb.2018.02645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/17/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Karen Olsson-Francis
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, United Kingdom
| | - Daniela Billi
- Deparment of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Andreas Teske
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jean-Pierre P de Vera
- Astrobiological Laboratories, German Aerospace Center (DLR), Institute of Planetary Research, Management and Infrastructure, Berlin, Germany
| |
Collapse
|
13
|
Hargitai HI, Gulick VC, Glines NH. Paleolakes of Northeast Hellas: Precipitation, Groundwater-Fed, and Fluvial Lakes in the Navua-Hadriacus-Ausonia Region, Mars. ASTROBIOLOGY 2018; 18:1435-1459. [PMID: 30289279 DOI: 10.1089/ast.2018.1816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The slopes of northeastern Hellas Basin, Mars exhibit a wide variety of fluvial landforms. In addition to the Dao-Niger-Harmakhis-Reull Valles outflow channels, many smaller channels and valleys cut into this terrain, several of which include discontinuous sections. We have mapped these channels and channel-associated depressions to investigate potential paleolakes from the Navua Valles in the West, through the Hadriacus Mons volcano in the center, to the Ausonia Montes in the East. We have identified three groups of candidate paleolakes at the source regions of major drainages and a fourth paleolake type scattered along the lower reaches of these drainages. Each paleolake group has a distinct character, determined by different formative processes, including precipitation and groundwater for lakes at the channel sources, and fluvially transported water at the lower channel reaches. Only one of these 34 basins had been cataloged previously in paleolake basin databases. Several of these sites are at proximity to the Hadriacus volcanic center, where active dikes during the Hesperian could have produced hydrothermal systems and habitable environments. Deposits within these paleolake depressions and at the termini of channels connected to these candidate paleolakes contain the geological and potentially biological record of these environments.
Collapse
Affiliation(s)
- Henrik I Hargitai
- 1 NASA Ames Research Center, Space Science Division, Moffett Field, California
- 2 Department of Media and Communication, Eötvös Loránd University , Budapest, Hungary
| | - Virginia C Gulick
- 1 NASA Ames Research Center, Space Science Division, Moffett Field, California
- 3 SETI Institute , Mountain View, California
| | - Natalie H Glines
- 1 NASA Ames Research Center, Space Science Division, Moffett Field, California
- 3 SETI Institute , Mountain View, California
| |
Collapse
|
14
|
Wang A, Sobron P, Kong F, Zheng M, Zhao YYS. Dalangtan Saline Playa in a Hyperarid Region on Tibet Plateau: II. Preservation of Salts with High Hydration Degrees in Subsurface. ASTROBIOLOGY 2018; 18:1254-1276. [PMID: 30152704 DOI: 10.1089/ast.2018.1829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Based on a field expedition to the Dalangtan (DLT) saline playa located in a hyperarid region (Qaidam Basin) on the Tibet Plateau and follow-up investigations, we report the mineralogy and geochemistry of the salt layers in two vertical stratigraphic cross sections in the DLT playa. Na-, Ca-, Mg-, KCaMg-sulfates; Na-, K-, KMg-chlorides; mixed (K, Mg)-chloride-sulfate; and chlorate and perchlorate were identified in the collected samples. This mineral assemblage represents the last-stage precipitation products from Na-K-Mg-Ca-Cl-SO4 brine and the oxychlorine formation from photochemistry reaction similar to other hyperarid regions on Earth. The spatial distributions of these salts in both stratigraphic cross sections suggest very limited brine volumes during the precipitation episodes in the Holocene era. More importantly, sulfates and chlorides with a high degree of hydrations were found preserved within the subsurface salt-rich layers of DLT saline playa, where the environmental conditions at the surface are controlled by the hyperaridity in the Qaidam Basin on the Tibet Plateau. Our findings suggest a very different temperature and relative humidity environment maintained by the hydrous salts in a subsurface salty layer, where the climatic conditions at surface have very little or no influence. This observation bears some similarities with four observations on Mars, which implies not only a large humidity reservoir in midlatitude and equatorial regions on Mars but also habitability potential that warrants further investigation.
Collapse
Affiliation(s)
- Alian Wang
- 1 Department of Earth and Planetary Sciences, McDonnell Center for Space Sciences, Washington University in St. Louis , St. Louis, Missouri
| | - Pablo Sobron
- 2 SETI Institute , Mountain View, California
- 3 Impossible Sensing , St. Louis, Missouri
| | - Fanjing Kong
- 4 MLR Key Laboratory of Saline Lake Environments and Resources, Institute of Mineral Resources , Chinese Academy of Geological Sciences, Beijing, China
| | - Mianping Zheng
- 4 MLR Key Laboratory of Saline Lake Environments and Resources, Institute of Mineral Resources , Chinese Academy of Geological Sciences, Beijing, China
| | - Yu-Yan Sara Zhao
- 5 Institute of Geochemistry , Chinese Academy of Sciences, Guiyang, China
| |
Collapse
|
15
|
Jarosite and Alunite in Ancient Terrestrial Sedimentary Rocks: Reinterpreting Martian Depositional and Diagenetic Environmental Conditions. Life (Basel) 2018; 8:life8030032. [PMID: 30081459 PMCID: PMC6160914 DOI: 10.3390/life8030032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/01/2022] Open
Abstract
Members of the alunite group are precipitated at low pH (<1 to ~4) in oxidizing environments, are unstable in circumneutral conditions, and are widespread on Mars. At Mollies Nipple in Kane County, Utah, USA, jarosite and alunite are abundant as diagenetic cements in Jurassic sandstones. This research characterizes the jarosite and alunite cements with the goal of determining their origin, and tests the hypothesis that jarosite and alunite may be more stable than the current understanding indicates is possible. Previous studies have placed the jarosite- and alunite-bearing caprock at Mollies Nipple in the Navajo Sandstone, but the presence of water-lain deposits, volcanic ash, volcanic clasts, and peloids show that it is one of the overlying Middle Jurassic units that records sea level transgressions and regressions. A paragenetic timing, established from petrographic methods, shows that much of the cement was precipitated early in a marginal marine to coastal dune depositional environment with a fluctuating groundwater table that drove ferrolysis and evolved the groundwater to a low pH. Microbial interaction was likely a large contributor to the evolution of this acidity. Jarosite and alunite are clearly more stable in natural environments than is predicted by laboratory experiments, and therefore, the Martian environments that have been interpreted as largely acidic and/or dry over geologic time may have been more habitable than previously thought.
Collapse
|
16
|
McMahon S, Bosak T, Grotzinger JP, Milliken RE, Summons RE, Daye M, Newman SA, Fraeman A, Williford KH, Briggs DEG. A Field Guide to Finding Fossils on Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2018; 123:1012-1040. [PMID: 30034979 PMCID: PMC6049883 DOI: 10.1029/2017je005478] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/28/2018] [Accepted: 04/23/2018] [Indexed: 05/05/2023]
Abstract
The Martian surface is cold, dry, exposed to biologically harmful radiation and apparently barren today. Nevertheless, there is clear geological evidence for warmer, wetter intervals in the past that could have supported life at or near the surface. This evidence has motivated National Aeronautics and Space Administration and European Space Agency to prioritize the search for any remains or traces of organisms from early Mars in forthcoming missions. Informed by (1) stratigraphic, mineralogical and geochemical data collected by previous and current missions, (2) Earth's fossil record, and (3) experimental studies of organic decay and preservation, we here consider whether, how, and where fossils and isotopic biosignatures could have been preserved in the depositional environments and mineralizing media thought to have been present in habitable settings on early Mars. We conclude that Noachian-Hesperian Fe-bearing clay-rich fluvio-lacustrine siliciclastic deposits, especially where enriched in silica, currently represent the most promising and best understood astropaleontological targets. Siliceous sinters would also be an excellent target, but their presence on Mars awaits confirmation. More work is needed to improve our understanding of fossil preservation in the context of other environments specific to Mars, particularly within evaporative salts and pore/fracture-filling subsurface minerals.
Collapse
Affiliation(s)
- S. McMahon
- Department of Geology and GeophysicsYale UniversityNew HavenCTUSA
- UK Centre for Astrobiology, School of Physics and AstronomyUniversity of EdinburghEdinburghUK
| | - T. Bosak
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| | - J. P. Grotzinger
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - R. E. Milliken
- Department of Earth, Environmental and Planetary SciencesBrown UniversityProvidenceRIUSA
| | - R. E. Summons
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| | - M. Daye
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| | - S. A. Newman
- Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeMAUSA
| | - A. Fraeman
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - K. H. Williford
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - D. E. G. Briggs
- Department of Geology and GeophysicsYale UniversityNew HavenCTUSA
| |
Collapse
|
17
|
Peretyazhko TS, Niles PB, Sutter B, Morris RV, Agresti DG, Le L, Ming DW. Smectite formation in the presence of sulfuric acid: Implications for acidic smectite formation on early Mars. GEOCHIMICA ET COSMOCHIMICA ACTA 2018; 220:248-260. [PMID: 32801388 PMCID: PMC7427815 DOI: 10.1016/j.gca.2017.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The excess of orbital detection of smectite deposits compared to carbonate deposits on the martian surface presents an enigma because smectite and carbonate formations are both favored alteration products of basalt under neutral to alkaline conditions. We propose that Mars experienced acidic events caused by sulfuric acid (H2SO4) that permitted phyllosilicate, but inhibited carbonate, formation. To experimentally verify this hypothesis, we report the first synthesis of smectite from Mars-analogue glass-rich basalt simulant (66 wt% glass, 32 wt% olivine, 2 wt% chromite) in the presence of H2SO4 under hydrothermal conditions (~200 °C). Smectites were analyzed by X-ray diffraction, Mossbauer spectroscopy, visible and near-infrared reflectance spectroscopy and electron microprobe to characterize mineralogy and chemical composition. Solution chemistry was determined by Inductively Coupled Plasma Mass Spectrometry. Basalt simulant suspensions in 11-42 mM H2SO4 were acidic with pH ≤ 2 at the beginning of incubation and varied from acidic (pH 1.8) to mildly alkaline (pH 8.4) at the end of incubation. Alteration of glass phase during reaction of the basalt simulant with H2SO4 led to formation of the dioctahedral smectite at final pH ~3 and trioctahedral smectite saponite at final pH ~4 and higher. Anhydrite and hematite formed in the final pH range from 1.8 to 8.4 while natroalunite was detected at pH 1.8. Hematite was precipitated as a result of oxidative dissolution of olivine present in Adirondack basalt simulant. Formation of secondary phases, including smectite, resulted in release of variable amounts of Si, Mg, Na and Ca while solubilization of Al and Fe was low. Comparison of mineralogical and solution chemistry data indicated that the type of smectite (i.e., dioctahedral vs trioctahedral) was likely controlled by Mg leaching from altering basalt and substantial Mg loss created favorable conditions for formation of dioctahedral smectite. We present a model for global-scale smectite formation on Mars via acid-sulfate conditions created by the volcanic outgassing of SO2 in the Noachian and early Hesperian.
Collapse
Affiliation(s)
| | - P B Niles
- NASA Johnson Space Center, Houston, TX 77058
| | - B Sutter
- Jacobs, NASA Johnson Space Center, Houston, TX 77058
| | - R V Morris
- NASA Johnson Space Center, Houston, TX 77058
| | - D G Agresti
- University of Alabama at Birmingham, Birmingham, AL 35294
| | - L Le
- Jacobs, NASA Johnson Space Center, Houston, TX 77058
| | - D W Ming
- NASA Johnson Space Center, Houston, TX 77058
| |
Collapse
|
18
|
Pontefract A, Zhu TF, Walker VK, Hepburn H, Lui C, Zuber MT, Ruvkun G, Carr CE. Microbial Diversity in a Hypersaline Sulfate Lake: A Terrestrial Analog of Ancient Mars. Front Microbiol 2017; 8:1819. [PMID: 29018418 PMCID: PMC5623196 DOI: 10.3389/fmicb.2017.01819] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/06/2017] [Indexed: 11/13/2022] Open
Abstract
Life can persist under severe osmotic stress and low water activity in hypersaline environments. On Mars, evidence for the past presence of saline bodies of water is prevalent and resulted in the widespread deposition of sulfate and chloride salts. Here we investigate Spotted Lake (British Columbia, Canada), a hypersaline lake with extreme (>3 M) levels of sulfate salts as an exemplar of the conditions thought to be associated with ancient Mars. We provide the first characterization of microbial structure in Spotted Lake sediments through metagenomic sequencing, and report a bacteria-dominated community with abundant Proteobacteria, Firmicutes, and Bacteroidetes, as well as diverse extremophiles. Microbial abundance and functional comparisons reveal similarities to Ace Lake, a meromictic Antarctic lake with anoxic and sulfidic bottom waters. Our analysis suggests that hypersaline-associated species occupy niches characterized foremost by differential abundance of Archaea, uncharacterized Bacteria, and Cyanobacteria. Potential biosignatures in this environment are discussed, specifically the likelihood of a strong sulfur isotopic fractionation record within the sediments due to the presence of sulfate reducing bacteria. With its high sulfate levels and seasonal freeze-thaw cycles, Spotted Lake is an analog for ancient paleolakes on Mars in which sulfate salt deposits may have offered periodically habitable environments, and could have concentrated and preserved organic materials or their biomarkers over geologic time.
Collapse
Affiliation(s)
- Alexandra Pontefract
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, United States
| | - Ting F Zhu
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | | - Holli Hepburn
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, United States
| | - Clarissa Lui
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Maria T Zuber
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Christopher E Carr
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
19
|
Sklute EC, Jensen HB, Rogers AD, Reeder RJ. Morphological, structural, and spectral characteristics of amorphous iron sulfates. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2015; 120:809-830. [PMID: 29675340 PMCID: PMC5903680 DOI: 10.1002/2014je004784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Current or past brine hydrologic activity on Mars may provide suitable conditions for the formation of amorphous ferric sulfates. Once formed, these phases would likely be stable under current Martian conditions, particularly at low- to mid-latitudes. Therefore, we consider amorphous iron sulfates (AIS) as possible components of Martian surface materials. Laboratory AIS were created through multiple synthesis routes and characterized with total X-ray scattering, thermogravimetric analysis, scanning electron microscopy, visible/near-infrared (VNIR), thermal infrared (TIR), and Mössbauer techniques. We synthesized amorphous ferric sulfates (Fe(III)2(SO4)3 · ~ 6-8H2O) from sulfate-saturated fluids via vacuum dehydration or exposure to low relative humidity (<11%). Amorphous ferrous sulfate (Fe(II)SO4 · ~1H2O) was synthesized via vacuum dehydration of melanterite. All AIS lack structural order beyond 11 Å. The short-range (<5 Å) structural characteristics of amorphous ferric sulfates resemble all crystalline reference compounds; structural characteristics for the amorphous ferrous sulfate are similar to but distinct from both rozenite and szomolnokite. VNIR and TIR spectral data for all AIS display broad, muted features consistent with structural disorder and are spectrally distinct from all crystalline sulfates considered for comparison. Mössbauer spectra are also distinct from crystalline phase spectra available for comparison. AIS should be distinguishable from crystalline sulfates based on the position of their Fe-related absorptions in the visible range and their spectral characteristics in the TIR. In the NIR, bands associated with hydration at ~1.4 and 1.9 μm are significantly broadened, which greatly reduces their detectability in soil mixtures. AIS may contribute to the amorphous fraction of soils measured by the Curiosity rover.
Collapse
Affiliation(s)
- E. C. Sklute
- Department of Geosciences, State University of New York at Stony Brook, Stony Brook, New York, USA
- Now at Department of Astronomy, Mount Holyoke College, South Hadley, Massachusetts, USA
| | - H. B. Jensen
- Department of Geosciences, State University of New York at Stony Brook, Stony Brook, New York, USA
| | - A. D. Rogers
- Department of Geosciences, State University of New York at Stony Brook, Stony Brook, New York, USA
| | - R. J. Reeder
- Department of Geosciences, State University of New York at Stony Brook, Stony Brook, New York, USA
| |
Collapse
|
20
|
An Alternative Approach to Mapping Thermophysical Units from Martian Thermal Inertia and Albedo Data Using a Combination of Unsupervised Classification Techniques. REMOTE SENSING 2014. [DOI: 10.3390/rs6065184] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Marlow JJ, Larowe DE, Ehlmann BL, Amend JP, Orphan VJ. The potential for biologically catalyzed anaerobic methane oxidation on ancient Mars. ASTROBIOLOGY 2014; 14:292-307. [PMID: 24684241 DOI: 10.1089/ast.2013.1078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
This study examines the potential for the biologically mediated anaerobic oxidation of methane (AOM) coupled to sulfate reduction on ancient Mars. Seven distinct fluids representative of putative martian groundwater were used to calculate Gibbs energy values in the presence of dissolved methane under a range of atmospheric CO2 partial pressures. In all scenarios, AOM is exergonic, ranging from -31 to -135 kJ/mol CH4. A reaction transport model was constructed to examine how environmentally relevant parameters such as advection velocity, reactant concentrations, and biomass production rate affect the spatial and temporal dependences of AOM reaction rates. Two geologically supported models for ancient martian AOM are presented: a sulfate-rich groundwater with methane produced from serpentinization by-products, and acid-sulfate fluids with methane from basalt alteration. The simulations presented in this study indicate that AOM could have been a feasible metabolism on ancient Mars, and fossil or isotopic evidence of this metabolic pathway may persist beneath the surface and in surface exposures of eroded ancient terrains.
Collapse
Affiliation(s)
- Jeffrey J Marlow
- 1 Division of Geological and Planetary Sciences, California Institute of Technology , Pasadena, California
| | | | | | | | | |
Collapse
|
22
|
Ruesch O, Poulet F, Vincendon M, Bibring JP, Carter J, Erkeling G, Gondet B, Hiesinger H, Ody A, Reiss D. Compositional investigation of the proposed chloride-bearing materials on Mars using near-infrared orbital data from OMEGA/MEx. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012je004108] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Thollot P, Mangold N, Ansan V, Le Mouélic S, Milliken RE, Bishop JL, Weitz CM, Roach LH, Mustard JF, Murchie SL. Most Mars minerals in a nutshell: Various alteration phases formed in a single environment in Noctis Labyrinthus. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011je004028] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Andrews-Hanna JC, Lewis KW. Early Mars hydrology: 2. Hydrological evolution in the Noachian and Hesperian epochs. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010je003709] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|