1
|
Cho Y, Kim H, Park RJ, Kim SW. Unprecedented East Siberian wildfires intensify Arctic snow darkening through enhanced poleward transport of black carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 961:178423. [PMID: 39798456 DOI: 10.1016/j.scitotenv.2025.178423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Summer Arctic black carbon (BC) predominantly originates from boreal wildfires, significantly contributing to Arctic warming. This study examined the impact of MODIS-detected extensive East Siberian wildfires from 2019 to 2021 on Arctic BC and the associated radiative effects using GEOS-Chem and SNICAR simulations. During these years, Arctic surface BC aerosol concentrations rose to 46 ng m-3, 43 ng m-3, and 59 ng m-3, nearly doubling levels from the low-fire year of 2022. East Siberian wildfires accounted for 62 %, 75 %, and 79 % of elevated BC levels in 2019, 2020, and 2021, respectively. These wildfires also increased BC deposition on snow and sea ice, particularly in the Laptev and East Siberian Seas. The resulting snow contamination (30.6 ± 5.15 ng g-1, 15.4 ± 1.29 ng g-1, and 33.8 ± 5.24 ng g-1) reduced surface snow albedo, increasing summer Arctic radiative forcing over snow and sea ice by +1.38 ± 0.65 W m-2, +0.70 ± 0.20 W m-2, and + 1.46 ± 0.73 W m-2 in 2019, 2020, and 2021, respectively. As climate warming intensifies, more frequent extreme wildfires in East Siberia could further amplify Arctic snow darkening, potentially accelerating Arctic warming.
Collapse
Affiliation(s)
- Yeonsoo Cho
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeonmin Kim
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Rokjin J Park
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Woo Kim
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Zhu H, Martin RV, van Donkelaar A, Hammer MS, Li C, Meng J, Oxford CR, Liu X, Li Y, Zhang D, Singh I, Lyapustin A. Importance of aerosol composition and aerosol vertical profiles in global spatial variation in the relationship between PM 2.5 and aerosol optical depth. ATMOSPHERIC CHEMISTRY AND PHYSICS 2024; 24:11565-11584. [DOI: 10.5194/acp-24-11565-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Abstract. Ambient fine particulate matter (PM2.5) is the leading global environmental determinant of mortality. However, large gaps exist in ground-based PM2.5 monitoring. Satellite remote sensing of aerosol optical depth (AOD) offers information to help fill these gaps worldwide when augmented with a modeled PM2.5–AOD relationship. This study aims to understand the spatial pattern and driving factors of this relationship by examining η (PM2.5AOD) using both observations and modeling. A global observational estimate of η for the year 2019 is inferred from 6870 ground-based PM2.5 measurement sites and satellite-retrieved AOD. The global chemical transport model GEOS-Chem, in its high-performance configuration (GCHP), is used to interpret the observed spatial pattern of annual mean η. Measurements and the GCHP simulation consistently identify a global population-weighted mean η value of 96–98 µg m−3, with regional values ranging from 59.8 µg m−3 in North America to more than 190 µg m−3 in Africa. The highest η value is found in arid regions, where aerosols are less hygroscopic due to mineral dust, followed by regions strongly influenced by surface aerosol sources. Relatively low η values are found over regions distant from strong aerosol sources. The spatial correlation of observed η values with meteorological fields, aerosol vertical profiles, and aerosol chemical composition reveals that spatial variation in η is strongly influenced by aerosol composition and aerosol vertical profiles. Sensitivity tests with globally uniform parameters quantify the effects of aerosol composition and aerosol vertical profiles on spatial variability in η, exhibiting a population-weighted mean difference in aerosol composition of 12.3 µg m−3, which reflects the determinant effects of composition on aerosol hygroscopicity and aerosol optical properties, and a population-weighted mean difference in the aerosol vertical profile of 8.4 µg m−3, which reflects spatial variation in the column–surface relationship.
Collapse
|
3
|
Wang Y, Liu L, Qiao X, Sun M, Guo J, Zhao B, Zhang J. Atmospheric fate and impacts of HFO-1234yf from mobile air conditioners in East Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170137. [PMID: 38242457 DOI: 10.1016/j.scitotenv.2024.170137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
HFO-1234yf (2,3,3,3-tetrafluoropropene) is being used as refrigerant to replace HFC-134a (1,1,1,2-tetrafluoroethane), a potent greenhouse gas, in mobile air conditioners. However, the environmental impacts of HFO-1234yf, which is quickly and almost completely transformed to the persistent and phytotoxic trifluoroacetic acid (TFA), is of great concern. Here, we used the nested-grid chemical transport model, GEOS-Chem, to assess the fate and environmental impacts of HFO-1234yf emissions from mobile air conditioners in East Asia. With total emissions of 30.3 Gg yr-1, the annual mean concentrations of HFO-1234yf in China, Japan, and South Korea were 4.00, 3.23, and 5.54 pptv (parts per trillion volume), respectively, and the annual deposition fluxes (dry plus wet) of TFA in these regions were 0.35, 0.48, and 0.53 kg km-2 yr-1, dominated by wet deposition. About 14 %, 13 % and 11 % of HFO-1234yf emissions were deposited as TFA in China, Japan and South Korea, respectively, i.e. a large portion of TFA was deposited in areas outside of the emission boundary regions. The TFA characteristics in Japan and South Korea was significantly influenced by emission from China, which contributions ranged from 43 % to 94 % for the TFA concentrations and 44 % to 98 % for the TFA depositions across the four seasons. This suggests that the influence of neighboring emission sources cannot be ignored when assessing the impact of HFO-1234yf emissions in individual countries.
Collapse
Affiliation(s)
- Yifei Wang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Lu Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xueqi Qiao
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mei Sun
- Beijing Ecological Environment Assessment and Complaints Center, Beijing 100161, China
| | - Junyu Guo
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Bu Zhao
- School for Environment and Sustainability and Michigan Institute for Computational Discovery & Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Jianbo Zhang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
4
|
Feinberg A, Jiskra M, Borrelli P, Biswakarma J, Selin NE. Deforestation as an Anthropogenic Driver of Mercury Pollution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38328901 DOI: 10.1021/acs.est.3c07851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Deforestation reduces the capacity of the terrestrial biosphere to take up toxic pollutant mercury (Hg) and enhances the release of secondary Hg from soils. The consequences of deforestation for Hg cycling are not currently considered by anthropogenic emission inventories or specifically addressed under the global Minamata Convention on Mercury. Using global Hg modeling constrained by field observations, we estimate that net Hg fluxes to the atmosphere due to deforestation are 217 Mg year-1 (95% confidence interval (CI): 134-1650 Mg year-1) for 2015, approximately 10% of global primary anthropogenic emissions. If deforestation of the Amazon rainforest continues at business-as-usual rates, net Hg emissions from the region will increase by 153 Mg year-1 by 2050 (CI: 97-418 Mg year-1), enhancing the transport and subsequent deposition of Hg to aquatic ecosystems. Substantial Hg emissions reductions are found for two potential cases of land use policies: conservation of the Amazon rainforest (92 Mg year-1, 95% CI: 59-234 Mg year-1) and global reforestation (98 Mg year-1, 95% CI: 64-449 Mg year-1). We conclude that deforestation-related emissions should be incorporated as an anthropogenic source in Hg inventories and that land use policy could be leveraged to address global Hg pollution.
Collapse
Affiliation(s)
- Aryeh Feinberg
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Martin Jiskra
- Environmental Geosciences, University of Basel, Basel 4056, Switzerland
| | | | - Jagannath Biswakarma
- Environmental Geosciences, University of Basel, Basel 4056, Switzerland
- Department of Water Resources and Drinking Water, Eawag, Dübendorf 8600, Switzerland
| | - Noelle E Selin
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Hu W, Zhao Y, Lu N, Wang X, Zheng B, Henze DK, Zhang L, Fu TM, Zhai S. Changing Responses of PM 2.5 and Ozone to Source Emissions in the Yangtze River Delta Using the Adjoint Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:628-638. [PMID: 38153406 DOI: 10.1021/acs.est.3c05049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
China's industrial restructuring and pollution controls have altered the contributions of individual sources to varying air quality over the past decade. We used the GEOS-Chem adjoint model and investigated the changing sensitivities of PM2.5 and ozone (O3) to multiple species and sources from 2010 to 2020 in the central Yangtze River Delta (YRDC), the largest economic region in China. Controlling primary particles and SO2 from industrial and residential sectors dominated PM2.5 decline, and reducing CO from multiple sources and ≥C3 alkenes from vehicles restrained O3. The chemical regime of O3 formation became less VOC-limited, attributable to continuous NOX abatement for specific sources, including power plants, industrial combustion, cement production, and off-road traffic. Regional transport was found to be increasingly influential on PM2.5. To further improve air quality, management of agricultural activities to reduce NH3 is essential for alleviating PM2.5 pollution, while controlling aromatics, alkenes, and alkanes from industry and gasoline vehicles is effective for O3. Reducing the level of NOX from nearby industrial combustion and transportation is helpful for both species. Our findings reveal the complexity of coordinating control of PM2.5 and O3 pollution in a fast-developing region and support science-based policymaking for other regions with similar air pollution problems.
Collapse
Affiliation(s)
- Weiyang Hu
- State Key Laboratory of Pollution Control and Resource Reuse and School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse and School of the Environment, Nanjing University, 163 Xianlin Road, Nanjing, Jiangsu 210023, China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science and Technology, Jiangsu 210044, China
| | - Ni Lu
- Laboratory for Climate and Ocean-Atmosphere Sciences, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Xiaolin Wang
- Laboratory for Climate and Ocean-Atmosphere Sciences, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Bo Zheng
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, China
| | - Daven K Henze
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Lin Zhang
- Laboratory for Climate and Ocean-Atmosphere Sciences, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Tzung-May Fu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Shixian Zhai
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Division of Environment and Sustainability, HKUST Jockey Club Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
6
|
Wang Y, Xi S, Zhao F, Huey LG, Zhu T. Decreasing Production and Potential Urban Explosion of Nighttime Nitrate Radicals amid Emission Reduction Efforts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21306-21312. [PMID: 38064653 PMCID: PMC10734213 DOI: 10.1021/acs.est.3c09259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/20/2023]
Abstract
Nighttime oxidation by nitrate (NO3) radicals has important ramifications on nocturnal aerosol formation and hence the climate and human health. Nitrate radicals are produced by the reaction of NO2 and O3. Despite large decreases in anthropogenic emissions of nitrogen oxides (NOx = NO + NO2), a previous study found significant increases in NO3 production (PNO3) from 2014 to 2019 in China, in contrast to decreasing trends in the U.S. and Europe. Using the summer observations from 2014 to 2022, we analyze the interannual variability of nocturnal PNO3 using a systematic framework, in which PNO3 is diagnosed as a function of odd oxygen (Ox = O3 + NO2) and the NO2/O3 ratio. We did not find an increase of PNO3 from 2014 to 2022 in China due to a continuous decrease in the NO2/O3 ratio, although PNO3 is modulated by the variation in Ox. Using in situ observations obtained in Beijing in 2007, we demonstrate the potential for an upsurge resembling an "explosion" in urban nighttime NO3 radicals amid emission reduction efforts.
Collapse
Affiliation(s)
- Yuhang Wang
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Shengjun Xi
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Fanghe Zhao
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Lewis Gregory Huey
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Tong Zhu
- State
Key Joint Laboratory of Environmental Simulation and Pollution Control,
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Clifton OE, Schwede D, Hogrefe C, Bash JO, Bland S, Cheung P, Coyle M, Emberson L, Flemming J, Fredj E, Galmarini S, Ganzeveld L, Gazetas O, Goded I, Holmes CD, Horváth L, Huijnen V, Li Q, Makar PA, Mammarella I, Manca G, Munger JW, Pérez-Camanyo JL, Pleim J, Ran L, Jose RS, Silva SJ, Staebler R, Sun S, Tai APK, Tas E, Vesala T, Weidinger T, Wu Z, Zhang L. A single-point modeling approach for the intercomparison and evaluation of ozone dry deposition across chemical transport models (Activity 2 of AQMEII4). ATMOSPHERIC CHEMISTRY AND PHYSICS 2023; 23:9911-9961. [PMID: 37990693 PMCID: PMC10659075 DOI: 10.5194/acp-23-9911-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
A primary sink of air pollutants and their precursors is dry deposition. Dry deposition estimates differ across chemical transport models, yet an understanding of the model spread is incomplete. Here, we introduce Activity 2 of the Air Quality Model Evaluation International Initiative Phase 4 (AQMEII4). We examine 18 dry deposition schemes from regional and global chemical transport models as well as standalone models used for impact assessments or process understanding. We configure the schemes as single-point models at eight Northern Hemisphere locations with observed ozone fluxes. Single-point models are driven by a common set of site-specific meteorological and environmental conditions. Five of eight sites have at least 3 years and up to 12 years of ozone fluxes. The interquartile range across models in multiyear mean ozone deposition velocities ranges from a factor of 1.2 to 1.9 annually across sites and tends to be highest during winter compared with summer. No model is within 50 % of observed multiyear averages across all sites and seasons, but some models perform well for some sites and seasons. For the first time, we demonstrate how contributions from depositional pathways vary across models. Models can disagree with respect to relative contributions from the pathways, even when they predict similar deposition velocities, or agree with respect to the relative contributions but predict different deposition velocities. Both stomatal and nonstomatal uptake contribute to the large model spread across sites. Our findings are the beginning of results from AQMEII4 Activity 2, which brings scientists who model air quality and dry deposition together with scientists who measure ozone fluxes to evaluate and improve dry deposition schemes in the chemical transport models used for research, planning, and regulatory purposes.
Collapse
Affiliation(s)
- Olivia E. Clifton
- NASA Goddard Institute for Space Studies, New York, NY, USA
- Center for Climate Systems Research, Columbia Climate School, Columbia University in the City of New York, New York, NY, USA
| | - Donna Schwede
- Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Christian Hogrefe
- Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jesse O. Bash
- Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Sam Bland
- Stockholm Environment Institute, Environment and Geography Department, University of York, York, UK
| | - Philip Cheung
- Air Quality Research Division, Atmospheric Science and Technology Directorate, Environment and Climate Change Canada, Toronto, Canada
| | - Mhairi Coyle
- United Kingdom Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian, UK
- The James Hutton Institute, Craigiebuckler, Aberdeen, UK
| | - Lisa Emberson
- Environment and Geography Department, University of York, York, UK
| | | | - Erick Fredj
- Department of Computer Science, The Jerusalem College of Technology, Jerusalem, Israel
| | | | - Laurens Ganzeveld
- Meteorology and Air Quality Section, Wageningen University, Wageningen, the Netherlands
| | - Orestis Gazetas
- Joint Research Centre (JRC), European Commission, Ispra, Italy
| | - Ignacio Goded
- Joint Research Centre (JRC), European Commission, Ispra, Italy
| | - Christopher D. Holmes
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, USA
| | - László Horváth
- ELKH-SZTE Photoacoustic Research Group, Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Vincent Huijnen
- Royal Netherlands Meteorological Institute, De Bilt, the Netherlands
| | - Qian Li
- The Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Paul A. Makar
- Air Quality Research Division, Atmospheric Science and Technology Directorate, Environment and Climate Change Canada, Toronto, Canada
| | - Ivan Mammarella
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Giovanni Manca
- Joint Research Centre (JRC), European Commission, Ispra, Italy
| | - J. William Munger
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | | | - Jonathan Pleim
- Center for Environmental Measurement and Modeling, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Limei Ran
- Natural Resources Conservation Service, United States Department of Agriculture, Greensboro, NC, USA
| | - Roberto San Jose
- Computer Science School, Technical University of Madrid (UPM), Madrid, Spain
| | - Sam J. Silva
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| | - Ralf Staebler
- Air Quality Research Division, Atmospheric Science and Technology Directorate, Environment and Climate Change Canada, Toronto, Canada
| | - Shihan Sun
- Earth and Environmental Sciences Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Amos P. K. Tai
- Earth and Environmental Sciences Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China
| | - Eran Tas
- The Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Timo Vesala
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Tamás Weidinger
- Department of Meteorology, Institute of Geography and Earth Sciences, Eötvös Loránd University, Budapest, Hungary
| | - Zhiyong Wu
- ORISE Fellow at Center for Environmental Measurement and Modeling, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Leiming Zhang
- Air Quality Research Division, Atmospheric Science and Technology Directorate, Environment and Climate Change Canada, Toronto, Canada
| |
Collapse
|
8
|
Tan W, Wang H, Su J, Sun R, He C, Lu X, Lin J, Xue C, Wang H, Liu Y, Liu L, Zhang L, Wu D, Mu Y, Fan S. Soil Emissions of Reactive Nitrogen Accelerate Summertime Surface Ozone Increases in the North China Plain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12782-12793. [PMID: 37596963 DOI: 10.1021/acs.est.3c01823] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Summertime surface ozone in China has been increasing since 2013 despite the policy-driven reduction in fuel combustion emissions of nitrogen oxides (NOx). Here we examine the role of soil reactive nitrogen (Nr, including NOx and nitrous acid (HONO)) emissions in the 2013-2019 ozone increase over the North China Plain (NCP), using GEOS-Chem chemical transport model simulations. We update soil NOx emissions and add soil HONO emissions in GEOS-Chem based on observation-constrained parametrization schemes. The model estimates significant daily maximum 8 h average (MDA8) ozone enhancement from soil Nr emissions of 8.0 ppbv over the NCP and 5.5 ppbv over China in June-July 2019. We identify a strong competing effect between combustion and soil Nr sources on ozone production in the NCP region. We find that soil Nr emissions accelerate the 2013-2019 June-July ozone increase over the NCP by 3.0 ppbv. The increase in soil Nr ozone contribution, however, is not primarily driven by weather-induced increases in soil Nr emissions, but by the concurrent decreases in fuel combustion NOx emissions, which enhance ozone production efficiency from soil by pushing ozone production toward a more NOx-sensitive regime. Our results reveal an important indirect effect from fuel combustion NOx emission reduction on ozone trends by increasing ozone production from soil Nr emissions, highlighting the necessity to consider the interaction between anthropogenic and biogenic sources in ozone mitigation in the North China Plain.
Collapse
Affiliation(s)
- Wanshan Tan
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, People's Republic of China
- Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Zhuhai, Guangdong 519082, People's Republic of China
- Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China, Zhuhai, Guangdong 519082, People's Republic of China
| | - Haolin Wang
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, People's Republic of China
- Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Zhuhai, Guangdong 519082, People's Republic of China
- Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China, Zhuhai, Guangdong 519082, People's Republic of China
| | - Jiayin Su
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, People's Republic of China
- Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Zhuhai, Guangdong 519082, People's Republic of China
- Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China, Zhuhai, Guangdong 519082, People's Republic of China
| | - Ruize Sun
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, People's Republic of China
- Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Zhuhai, Guangdong 519082, People's Republic of China
- Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China, Zhuhai, Guangdong 519082, People's Republic of China
| | - Cheng He
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, People's Republic of China
- Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Zhuhai, Guangdong 519082, People's Republic of China
- Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China, Zhuhai, Guangdong 519082, People's Republic of China
| | - Xiao Lu
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, People's Republic of China
- Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Zhuhai, Guangdong 519082, People's Republic of China
- Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China, Zhuhai, Guangdong 519082, People's Republic of China
| | - Jintai Lin
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Chaoyang Xue
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), CNRS-Université Orléans-CNES, CEDEX 2 Orléans 45071, France
| | - Haichao Wang
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, People's Republic of China
- Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Zhuhai, Guangdong 519082, People's Republic of China
- Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China, Zhuhai, Guangdong 519082, People's Republic of China
| | - Yiming Liu
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, People's Republic of China
- Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Zhuhai, Guangdong 519082, People's Republic of China
- Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China, Zhuhai, Guangdong 519082, People's Republic of China
| | - Lei Liu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Lin Zhang
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Dianming Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, People's Republic of China
- Institute of Eco-Chongming (IEC), Shanghai 202162, People's Republic of China
| | - Yujing Mu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shaojia Fan
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, People's Republic of China
- Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Zhuhai, Guangdong 519082, People's Republic of China
- Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, China, Zhuhai, Guangdong 519082, People's Republic of China
| |
Collapse
|
9
|
Feinberg A, Dlamini T, Jiskra M, Shah V, Selin NE. Evaluating atmospheric mercury (Hg) uptake by vegetation in a chemistry-transport model. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1303-1318. [PMID: 35485923 PMCID: PMC9491292 DOI: 10.1039/d2em00032f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Mercury (Hg), a neurotoxic heavy metal, is transferred to marine and terrestrial ecosystems through atmospheric transport. Recent studies have highlighted the role of vegetation uptake as a sink for atmospheric elemental mercury (Hg0) and a source of Hg to soils. However, the global magnitude of the Hg0 vegetation uptake flux is highly uncertain, with estimates ranging 1000-4000 Mg per year. To constrain this sink, we compare simulations in the chemical transport model GEOS-Chem with a compiled database of litterfall, throughfall, and flux tower measurements from 93 forested sites. The prior version of GEOS-Chem predicts median Hg0 dry deposition velocities similar to litterfall measurements from Northern hemisphere temperate and boreal forests (∼0.03 cm s-1), yet it underestimates measurements from a flux tower study (0.04 cm s-1vs. 0.07 cm s-1) and Amazon litterfall (0.05 cm s-1vs. 0.17 cm s-1). After revising the Hg0 reactivity within the dry deposition parametrization to match flux tower and Amazon measurements, GEOS-Chem displays improved agreement with the seasonality of atmospheric Hg0 observations in the Northern midlatitudes. Additionally, the modelled bias in Hg0 concentrations in South America decreases from +0.21 ng m-3 to +0.05 ng m-3. We calculate a global flux of Hg0 dry deposition to land of 2276 Mg per year, approximately double previous model estimates. The Amazon rainforest contributes 29% of the total Hg0 land sink, yet continued deforestation and climate change threatens the rainforest's stability and thus its role as an important Hg sink. In an illustrative worst-case scenario where the Amazon is completely converted to savannah, GEOS-Chem predicts that an additional 283 Mg Hg per year would deposit to the ocean, where it can bioaccumulate in the marine food chain. Biosphere-atmosphere interactions thus play a crucial role in global Hg cycling and should be considered in assessments of future Hg pollution.
Collapse
Affiliation(s)
- Aryeh Feinberg
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Thandolwethu Dlamini
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Martin Jiskra
- Environmental Geosciences, University of Basel, Basel, Switzerland
| | - Viral Shah
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Noelle E Selin
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
10
|
Shen L, Liu J, Zhao T, Xu X, Han H, Wang H, Shu Z. Atmospheric transport drives regional interactions of ozone pollution in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154634. [PMID: 35307436 DOI: 10.1016/j.scitotenv.2022.154634] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/13/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
In recent years, ozone pollution becomes a serious environmental issue in China. A good understanding of source-receptor relationships of ozone transport from aboard and inside China is beneficial to mitigating ozone pollution there. To date, these issues have not been comprehensively assessed, especially for highly polluted regions in the central and eastern China (CEC), including the North China Plain (NCP), Twain-Hu region (THR), Yangtze River Delta (YRD), Pearl River Delta (PRD), and Sichuan Basin (SCB). Here, based on simulations over 2013-2020 from a well-validated chemical transport model, GEOS-Chem, we show that foreign ozone accounts for a large portion of surface ozone over CEC, ranging from 25.0% in THR to 39.4% in NCP. Focusing on transport of domestic ozone between the five regions in CEC, we find that atmospheric transport can largely modulate regional interactions of ozone pollution in China. At the surface, THR receives the largest amount of ozone from the other four regions (54.2% of domestic ozone in the receptor region, the same in below), followed by PRD (32.3%), SCB (26.7%), YRD (21.1%), and NCP (18.0%). Meanwhile, YRD exports largest amount of ozone to the other regions, ranging from 8.9% in SCB to 28.4% in THR. Although SCB is relatively isolated and thus impacts NCP, YRD, and PRD weakly (< 2.2%), export of SCB ozone to THR reaches 9.3%. The regional ozone transport over CEC, occurring mostly in the lower troposphere, is mainly modulated by the East Asian monsoon circulations, proximity between source and receptor regions, seasonal changes of ozone production, and topography.
Collapse
Affiliation(s)
- Lijuan Shen
- Key Laboratory for Aerosol-Cloud-Precipitation of the China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China; Department of Geography and Planning, University of Toronto, Toronto, Ontario M5S3G3, Canada
| | - Jane Liu
- Department of Geography and Planning, University of Toronto, Toronto, Ontario M5S3G3, Canada.
| | - Tianliang Zhao
- Key Laboratory for Aerosol-Cloud-Precipitation of the China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Xiangde Xu
- State Key Laboratory of Disastrous Weather, China Academy of Meteorological Sciences, Beijing 100081, China
| | - Han Han
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Honglei Wang
- Key Laboratory for Aerosol-Cloud-Precipitation of the China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China; Department of Geography and Planning, University of Toronto, Toronto, Ontario M5S3G3, Canada
| | - Zhuozhi Shu
- Key Laboratory for Aerosol-Cloud-Precipitation of the China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
11
|
Cao H, Henze DK, Zhu L, Shephard MW, Cady‐Pereira K, Dammers E, Sitwell M, Heath N, Lonsdale C, Bash JO, Miyazaki K, Flechard C, Fauvel Y, Kruit RW, Feigenspan S, Brümmer C, Schrader F, Twigg MM, Leeson S, Tang YS, Stephens ACM, Braban C, Vincent K, Meier M, Seitler E, Geels C, Ellermann T, Sanocka A, Capps SL. 4D-Var Inversion of European NH 3 Emissions Using CrIS NH 3 Measurements and GEOS-Chem Adjoint With Bi-Directional and Uni-Directional Flux Schemes. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2022; 127:e2021JD035687. [PMID: 35865809 PMCID: PMC9286853 DOI: 10.1029/2021jd035687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/31/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
We conduct the first 4D-Var inversion of NH3 accounting for NH3 bi-directional flux, using CrIS satellite NH3 observations over Europe in 2016. We find posterior NH3 emissions peak more in springtime than prior emissions at continental to national scales, and annually they are generally smaller than the prior emissions over central Europe, but larger over most of the rest of Europe. Annual posterior anthropogenic NH3 emissions for 25 European Union members (EU25) are 25% higher than the prior emissions and very close (<2% difference) to other inventories. Our posterior annual anthropogenic emissions for EU25, the UK, the Netherlands, and Switzerland are generally 10%-20% smaller than when treating NH3 fluxes as uni-directional emissions, while the monthly regional difference can be up to 34% (Switzerland in July). Compared to monthly mean in-situ observations, our posterior NH3 emissions from both schemes generally improve the magnitude and seasonality of simulated surface NH3 and bulk NH x wet deposition throughout most of Europe, whereas evaluation against hourly measurements at a background site shows the bi-directional scheme better captures observed diurnal variability of surface NH3. This contrast highlights the need for accurately simulating diurnal variability of NH3 in assimilation of sun-synchronous observations and also the potential value of future geostationary satellite observations. Overall, our top-down ammonia emissions can help to examine the effectiveness of air pollution control policies to facilitate future air pollution management, as well as helping us understand the uncertainty in top-down NH3 emissions estimates associated with treatment of NH3 surface exchange.
Collapse
Affiliation(s)
| | | | - Liye Zhu
- Sun Yat‐sen UniversityZhuhaiChina
| | | | | | - Enrico Dammers
- Netherlands Organisation for Applied Scientific Research (TNO)Climate Air and Sustainability (CAS)UtrechtThe Netherlands
| | | | - Nicholas Heath
- Atmospheric and Environmental Research Inc.LexingtonMAUSA
| | - Chantelle Lonsdale
- Department of Civil, Structural and Environmental EngineeringUniversity at BuffaloBuffaloNYUSA
| | | | - Kazuyuki Miyazaki
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Christophe Flechard
- INRAE (National Research Institute for Agriculture, Food and Environment)UMR SASAgrocampus OuestRennesFrance
| | - Yannick Fauvel
- INRAE (National Research Institute for Agriculture, Food and Environment)UMR SASAgrocampus OuestRennesFrance
| | - Roy Wichink Kruit
- National Institute for Public Health and the EnvironmentBilthovenThe Netherlands
| | | | | | | | | | | | | | | | | | | | - Mario Meier
- Forschungsstelle für UmweltbeobachtungSankt GallenSwitzerland
| | - Eva Seitler
- Forschungsstelle für UmweltbeobachtungSankt GallenSwitzerland
| | - Camilla Geels
- Department of Environmental ScienceAarhus UniversityAarhusDenmark
| | - Thomas Ellermann
- Department of Environmental ScienceAarhus UniversityAarhusDenmark
| | | | - Shannon L. Capps
- Civil, Architectural, and Environmental Engineering DepartmentDrexel UniversityPhiladelphiaPAUSAmailto:
| |
Collapse
|
12
|
Qu Z, Henze DK, Worden HM, Jiang Z, Gaubert B, Theys N, Wang W. Sector-Based Top-Down Estimates of NO x , SO 2, and CO Emissions in East Asia. GEOPHYSICAL RESEARCH LETTERS 2022; 49:e2021GL096009. [PMID: 35865332 PMCID: PMC9286828 DOI: 10.1029/2021gl096009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/02/2021] [Accepted: 12/23/2021] [Indexed: 05/15/2023]
Abstract
Top-down estimates using satellite data provide important information on the sources of air pollutants. We develop a sector-based 4D-Var framework based on the GEOS-Chem adjoint model to address the impacts of co-emissions and chemical interactions on top-down emission estimates. We apply OMI NO2, OMI SO2, and MOPITT CO observations to estimate NO x , SO2, and CO emissions in East Asia during 2005-2012. Posterior evaluations with surface measurements show reduced normalized mean bias (NMB) by 7% (NO2)-15% (SO2) and normalized mean square error (NMSE) by 8% (SO2)-9% (NO2) compared to a species-based inversion. This new inversion captures the peak years of Chinese SO2 (2007) and NO x (2011) emissions and attributes their drivers to industry and energy activities. The CO peak in 2007 in China is driven by residential and industry emissions. In India, the inversion attributes NO x and SO2 trends mostly to energy and CO trend to residential emissions.
Collapse
Affiliation(s)
- Zhen Qu
- Department of Mechanical EngineeringUniversity of Colorado BoulderBoulderCOUSA
- School of Engineering and Applied ScienceHarvard UniversityCambridgeMAUSA
| | - Daven K. Henze
- Department of Mechanical EngineeringUniversity of Colorado BoulderBoulderCOUSA
| | - Helen M. Worden
- Atmospheric Chemistry Observations and ModelingNational Center for Atmospheric ResearchBoulderCOUSA
| | - Zhe Jiang
- School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiChina
| | - Benjamin Gaubert
- Atmospheric Chemistry Observations and ModelingNational Center for Atmospheric ResearchBoulderCOUSA
| | - Nicolas Theys
- Belgian Institute for Space Aeronomy (BIRA‐IASB)BrusselsBelgium
| | - Wei Wang
- China National Environmental Monitoring CenterBeijingChina
| |
Collapse
|
13
|
Wang Y, Wang Z, Sun M, Guo J, Zhang J. Emissions, degradation and impact of HFO-1234ze from China PU foam industry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146631. [PMID: 34030310 DOI: 10.1016/j.scitotenv.2021.146631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/26/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Currently used foam agent HCFC-141b was undergoing phased out worldwide with the implementation of the Montreal Protocol. HFO-1234ze was proposed as replacement in polyurethane (PU) foam industry with shorter atmospheric lifetime. This paper calculated historical and future emissions of HCFC-141b and HFO-1234ze till 2050, used GEOS-Chem under two HFO-1234ze emission scenarios to track its atmospheric process and distribution, and to assess its potential environmental effects. Results showed that annual HCFC-141b emissions for 2015, 2019 and 2050 were 12.6 Gg/yr, 21.0 Gg/yr and 7.6 Gg/yr, respectively and emissions of HFO-1234ze would reach 124.4 Gg/yr by 2050. Under Scenario I with HFO-1234ze emissions of 12.6 Gg/yr as input, annual mixing ratios of HFO-1234ze and its products CF3CHO and HCOF were 10.47, 2.68 and 1.74 pptv for China, and were 0.55, 0.18 and 0.1 pptv globally, respectively, suggesting the regional aggregation of these substances in emission areas. HCOF were removed from atmosphere by depositions, with total deposition rates of 22.06 g km-1 y-1 in CH, and 1.15 g km-1 y-1 in globe. Under Scenario II with HFO-1234ze emissions of 124.4 Gg/yr as input, annual mixing ratios of HFO-1234ze, CF3CHO and HCOF, along with HCOF total deposition rates were 102.98 26.36 and 17.17 pptv and 217 g km-1 y-1 in China, respectively, increased linearly to HFO-1234ze emissions change. The mixing ratios of HFO-1234ze and HCOF were too small to exert significant effects on current atmosphere burden and circulation, while CF3CHO might potentially involve in aminolysis reaction under future emissions of HFO-1234ze.
Collapse
Affiliation(s)
- Yifei Wang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ziyuan Wang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mei Sun
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Junyu Guo
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Jianbo Zhang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
14
|
Xu JW, Martin RV, Evans GJ, Umbrio D, Traub A, Meng J, van Donkelaar A, You H, Kulka R, Burnett RT, Godri Pollitt KJ, Weichenthal S. Predicting Spatial Variations in Multiple Measures of Oxidative Burden for Outdoor Fine Particulate Air Pollution across Canada. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9750-9760. [PMID: 34241996 DOI: 10.1021/acs.est.1c01210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fine particulate air pollution (PM2.5) is a leading contributor to the overall global burden of disease. Traditionally, outdoor PM2.5 has been characterized using mass concentrations which treat all particles as equally harmful. Oxidative potential (OP) (per μg) and oxidative burden (OB) (per m3) are complementary metrics that estimate the ability of PM2.5 to cause oxidative stress, which is an important mechanism in air pollution health effects. Here, we provide the first national estimates of spatial variations in multiple measures (glutathione, ascorbate, and dithiothreitol depletion) of annual median outdoor PM2.5 OB across Canada. To do this, we combined a large database of ground-level OB measurements collected monthly prospectively across Canada for 2 years (2016-2018) with PM2.5 components estimated using a chemical transport model (GEOS-Chem) and satellite aerosol observations. Our predicted ground-level OB values of all three methods were consistent with ground-level observations (cross-validation R2 = 0.63-0.74). We found that forested regions and urban areas had the highest OB, predicted primarily by black carbon and organic carbon from wildfires and transportation sources. Importantly, the dominant components associated with OB were different than those contributing to PM2.5 mass concentrations (secondary inorganic aerosol); thus, OB metrics may better indicate harmful components and sources on health than the bulk PM2.5 mass, reinforcing that OB estimates can complement the existing PM2.5 data in future national-level epidemiological studies.
Collapse
Affiliation(s)
- Jun-Wei Xu
- Department of Physics and Atmospheric Science, Dalhousie University, 6310 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | - Randall V Martin
- Department of Physics and Atmospheric Science, Dalhousie University, 6310 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, United States
- Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, United States
| | - Greg J Evans
- Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Dalla Lana School of Public Health, University of Toronto, 480 University Avenue, Toronto, Ontario M5G 1V2, Canada
| | - Dana Umbrio
- Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Alison Traub
- Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Jun Meng
- Department of Physics and Atmospheric Science, Dalhousie University, 6310 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | - Aaron van Donkelaar
- Department of Physics and Atmospheric Science, Dalhousie University, 6310 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Hongyu You
- Air Health Science Division, Health Canada, 269 Laurier Avenue West, Ottawa, Ontario K1A 0K0, Canada
| | - Ryan Kulka
- Air Health Science Division, Health Canada, 269 Laurier Avenue West, Ottawa, Ontario K1A 0K0, Canada
| | - Richard T Burnett
- Population Studies Division, Health Canada, 101 Tunney's Pasture Dr., Ottawa, Ontario K1A 0K9, Canada
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, Connecticut 06520, United States
| | - Scott Weichenthal
- Air Health Science Division, Health Canada, 269 Laurier Avenue West, Ottawa, Ontario K1A 0K0, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 1020 Pine Avenue West, Montreal, Quebec H3A 1A2, Canada
| |
Collapse
|
15
|
Chen X, Millet DB, Neuman JA, Veres PR, Ray EA, Commane R, Daube BC, McKain K, Schwarz JP, Katich JM, Froyd KD, Schill GP, Kim MJ, Crounse JD, Allen HM, Apel EC, Hornbrook RS, Blake DR, Nault BA, Campuzano-Jost P, Jimenez JL, Dibb JE. HCOOH in the remote atmosphere: Constraints from Atmospheric Tomography (ATom) airborne observations. ACS EARTH & SPACE CHEMISTRY 2021; 5:1436-1454. [PMID: 34164590 PMCID: PMC8216292 DOI: 10.1021/acsearthspacechem.1c00049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Formic acid (HCOOH) is an important component of atmospheric acidity but its budget is poorly understood, with prior observations implying substantial missing sources. Here we combine pole-to-pole airborne observations from the Atmospheric Tomography Mission (ATom) with chemical transport model (GEOS-Chem CTM) and back trajectory analyses to provide the first global in-situ characterization of HCOOH in the remote atmosphere. ATom reveals sub-100 ppt HCOOH concentrations over most of the remote oceans, punctuated by large enhancements associated with continental outflow. Enhancements correlate with known combustion tracers and trajectory-based fire influences. The GEOS-Chem model underpredicts these in-plume HCOOH enhancements, but elsewhere we find no broad indication of a missing HCOOH source in the background free troposphere. We conclude that missing non-fire HCOOH precursors inferred previously are predominantly short-lived. We find indications of a wet scavenging underestimate in the model consistent with a positive HCOOH bias in the tropical upper troposphere. Observations reveal episodic evidence of ocean HCOOH uptake, which is well-captured by GEOS-Chem; however, despite its strong seawater undersaturation HCOOH is not consistently depleted in the remote marine boundary layer. Over fifty fire and mixed plumes were intercepted during ATom with widely varying transit times and source regions. HCOOH:CO normalized excess mixing ratios in these plumes range from 3.4 to >50 ppt/ppb CO and are often over an order of magnitude higher than expected primary emission ratios. HCOOH is thus a major reactive organic carbon reservoir in the aged plumes sampled during ATom, implying important missing pathways for in-plume HCOOH production.
Collapse
Affiliation(s)
- Xin Chen
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN 55108
| | - Dylan B. Millet
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN 55108
| | - J. Andrew Neuman
- NOAA Chemical Sciences Laboratory, Boulder, CO 80305
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
| | | | - Eric A. Ray
- NOAA Chemical Sciences Laboratory, Boulder, CO 80305
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
| | - Róisín Commane
- Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, New York, NY 10964
| | - Bruce C. Daube
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138
| | - Kathryn McKain
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
- NOAA Global Monitoring Laboratory, Boulder, CO 80305
| | | | - Joseph M. Katich
- NOAA Chemical Sciences Laboratory, Boulder, CO 80305
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
| | - Karl D. Froyd
- NOAA Chemical Sciences Laboratory, Boulder, CO 80305
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
| | - Gregory P. Schill
- NOAA Chemical Sciences Laboratory, Boulder, CO 80305
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
| | - Michelle J. Kim
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - John D. Crounse
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - Hannah M. Allen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Eric C. Apel
- Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80307
| | - Rebecca S. Hornbrook
- Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80307
| | - Donald R. Blake
- Department of Chemistry, University of California, Irvine, CA 92697
| | - Benjamin A. Nault
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309
| | - Pedro Campuzano-Jost
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309
| | - Jose L. Jimenez
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309
| | - Jack E. Dibb
- Earth Systems Research Center/EOS, University of New Hampshire, Durham, NH 03824
| |
Collapse
|
16
|
Dang R, Liao H, Fu Y. Quantifying the anthropogenic and meteorological influences on summertime surface ozone in China over 2012-2017. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142394. [PMID: 33254879 DOI: 10.1016/j.scitotenv.2020.142394] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 05/16/2023]
Abstract
We applied the global 3-D chemical transport model GEOS-Chem to examine the anthropogenic and meteorological contributions in driving summertime (JJA) surface ozone (O3) trend in China during the Clean Air Action period 2012-2017. The model captures the observed spatial distribution of summertime O3 concentrations in China (R = 0.78) and reproduces the observed increasing trends in two most populated city clusters: North China Plain (NCP) and Yangtze River Delta (YRD). Trend of simulated maximum daily 8-h average (MDA8) O3 concentration is 0.58 ppbv yr-1 in NCP and 1.74 ppbv yr-1 in YRD in JJA 2012-2017. Sensitivity studies show that both changes in anthropogenic emissions and meteorology favored the MDA8 O3 increases in these two regions with respective contributions of 39% and 49% in NCP, and 13% and 84% in YRD. In NCP, the 49% meteorology impact includes a considerable contribution from natural emissions (19%). Changes in biogenic VOCs, soil NOx, and lightning NOx emissions are estimated to enhance MDA8 O3 in NCP with a rate of 0.14, 0.10, and 0.14 ppbv yr-1, respectively. In YRD, natural emissions made small contributions to the MDA8 O3 trend. Statistical analysis shows that higher temperatures and anomalous southerlies at 850 hPa in 2017 relative to 2012 are the two major meteorological drivers in NCP that favored the O3 increases, while weaker wind speed and lower relative humidity are those for YRD. We further examined the trend of fourth highest daily maximum 8-h average (4MDA8) O3 among a specific month that linked with extreme pollution episodes. Trends of simulated 4MDA8 O3 in NCP and YRD are 34-46% higher than those of MDA8 O3 and are found more meteorology-induced. Our results suggest an important role of meteorology in driving summertime O3 increases in China in recent years.
Collapse
Affiliation(s)
- Ruijun Dang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Hong Liao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Yu Fu
- Climate Change Research Center, Chinese Academy of sciences, Beijing 100029, China
| |
Collapse
|
17
|
Atmospheric Aerosol Distribution in 2016–2017 over the Eastern European Region Based on the GEOS-Chem Model. ATMOSPHERE 2020. [DOI: 10.3390/atmos11070722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The spatial and temporal distributions of atmospheric aerosols have been simulated using the GEOS-Chem model over the sparsely investigated Eastern European region. The spatial distribution of the particulate matter (PM2.5) concentration, mineral dust, black carbon, organic aerosols, sea salt, as well as nitrate, sulfate, and ammonium aerosols during 2016–2017 were considered. The aerosols’ concentration, seasonality and spatial features were determined for the region. Particulate matter (PM2.5) contamination prevails in Poland in late autumn and winter. The monthly mean PM2.5 concentration reached 55 µg m−3 over the Moscow region in the early spring of both years. The mineral dust concentration varied significantly, reaching 40 µg m−3 over the southwestern part of Eastern Europe in March 2016. The areas most polluted by black carbon aerosols were the central and southern parts of Poland in the winter. The organic aerosols’ concentration was the largest in March and April, reaching 10 µg m−3 over East Belarus. The sea salt aerosol concentration increased in the coastal regions in winter due to the wind strength. Mineral dust aerosols in Eastern Europe are mainly composed of dust, partially transported from the Ukrainian steppe and partially from the Saharan Desert.
Collapse
|
18
|
Weng H, Lin J, Martin R, Millet DB, Jaeglé L, Ridley D, Keller C, Li C, Du M, Meng J. Global high-resolution emissions of soil NO x, sea salt aerosols, and biogenic volatile organic compounds. Sci Data 2020; 7:148. [PMID: 32433468 PMCID: PMC7239948 DOI: 10.1038/s41597-020-0488-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/16/2020] [Indexed: 11/09/2022] Open
Abstract
Natural emissions of air pollutants from the surface play major roles in air quality and climate change. In particular, nitrogen oxides (NOx) emitted from soils contribute ~15% of global NOx emissions, sea salt aerosols are a major player in the climate and chemistry of the marine atmosphere, and biogenic emissions are the dominant source of non-methane volatile organic compounds at the global scale. These natural emissions are often estimated using nonlinear parameterizations, which are sensitive to the horizontal resolutions of inputted meteorological and ancillary data. Here we use the HEMCO model to compute these emissions worldwide at horizontal resolutions of 0.5° lat. × 0.625° lon. for 1980-2017 and 0.25° lat. × 0.3125° lon. for 2014-2017. We further offer the respective emissions at lower resolutions, which can be used to evaluate the impacts of resolution on estimated global and regional emissions. Our long-term high-resolution emission datasets offer useful information to study natural pollution sources and their impacts on air quality, climate, and the carbon cycle.
Collapse
Affiliation(s)
- Hongjian Weng
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, 100871, China
| | - Jintai Lin
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, 100871, China.
| | - Randall Martin
- Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, 63130, MO, USA
| | - Dylan B Millet
- Department of Soil, Water, and Climate, University of Minnesota Twin Cities, St Paul, MN, 55455, USA
| | - Lyatt Jaeglé
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, 98195, USA
| | - David Ridley
- Department of Civil and Environmental, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Christoph Keller
- Goddard Space Flight Center, NASA Global Modeling and Assimilation Office, Greenbelt, MD, 20771, USA
| | - Chi Li
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Mingxi Du
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, 100871, China
| | - Jun Meng
- Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, 63130, MO, USA
| |
Collapse
|
19
|
Horowitz HM, Holmes C, Wright A, Sherwen T, Wang X, Evans M, Huang J, Jaeglé L, Chen Q, Zhai S, Alexander B. Effects of Sea Salt Aerosol Emissions for Marine Cloud Brightening on Atmospheric Chemistry: Implications for Radiative Forcing. GEOPHYSICAL RESEARCH LETTERS 2020; 47:e2019GL085838. [PMID: 32713977 PMCID: PMC7375039 DOI: 10.1029/2019gl085838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 06/11/2023]
Abstract
Marine cloud brightening (MCB) is proposed to offset global warming by emitting sea salt aerosols to the tropical marine boundary layer, which increases aerosol and cloud albedo. Sea salt aerosol is the main source of tropospheric reactive chlorine (Cl y ) and bromine (Br y ). The effects of additional sea salt on atmospheric chemistry have not been explored. We simulate sea salt aerosol injections for MCB under two scenarios (212-569 Tg/a) in the GEOS-Chem global chemical transport model, only considering their impacts as a halogen source. Globally, tropospheric Cl y and Br y increase (20-40%), leading to decreased ozone (-3 to -6%). Consequently, OH decreases (-3 to -5%), which increases the methane lifetime (3-6%). Our results suggest that the chemistry of the additional sea salt leads to minor total radiative forcing compared to that of the sea salt aerosol itself (~2%) but may have potential implications for surface ozone pollution in tropical coastal regions.
Collapse
Affiliation(s)
- Hannah M. Horowitz
- JISAOUniversity of WashingtonSeattleWAUSA
- Department of Atmospheric SciencesUniversity of WashingtonSeattleWAUSA
- Department of Civil and Environmental EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Christopher Holmes
- Department of Earth, Ocean and Atmospheric ScienceFlorida State UniversityTallahasseeFLUSA
| | - Alicia Wright
- Department of Atmospheric SciencesUniversity of WashingtonSeattleWAUSA
| | - Tomás Sherwen
- Department of ChemistryUniversity of YorkYorkUK
- Wolfson Atmospheric Chemistry Laboratories, Department of ChemistryUniversity of YorkYorkUK
| | - Xuan Wang
- School of Energy and EnvironmentCity University of Hong KongHong Kong
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMAUSA
| | - Mat Evans
- Department of ChemistryUniversity of YorkYorkUK
- Wolfson Atmospheric Chemistry Laboratories, Department of ChemistryUniversity of YorkYorkUK
| | - Jiayue Huang
- Department of Atmospheric SciencesUniversity of WashingtonSeattleWAUSA
| | - Lyatt Jaeglé
- Department of Atmospheric SciencesUniversity of WashingtonSeattleWAUSA
| | - Qianjie Chen
- Department of Atmospheric SciencesUniversity of WashingtonSeattleWAUSA
- Department of ChemistryUniversity of MichiganAnn ArborMIUSA
| | - Shuting Zhai
- Department of Atmospheric SciencesUniversity of WashingtonSeattleWAUSA
| | - Becky Alexander
- Department of Atmospheric SciencesUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
20
|
Thackray CP, Selin NE, Young CJ. A global atmospheric chemistry model for the fate and transport of PFCAs and their precursors. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:285-293. [PMID: 31942888 PMCID: PMC7050637 DOI: 10.1039/c9em00326f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Perfluorocarboxylic acids (PFCAs) are environmental contaminants that are highly persistent, and many are bio-accumulative and have been detected along with their atmospheric precursors far from emission sources. The overall importance of precursor emissions as an indirect source of PFCAs to the environment is uncertain. Previous studies have estimated the atmospheric source of PFCAs using models and degradation pathways of differing complexities, leading to quantitatively different results. We present results from simulations of atmospheric PFCA formation and fate using the chemical transport model GEOS-Chem. We simulate the most up-to-date chemistry available to our knowledge for the degradation of the precursors fluorotelomer alcohol (FTOH), fluorotelomer olefin (FTO), and fluorotelomer iodide (FTI), as well as the deposition and transport of the precursors, intermediates and end-products of the formation chemistry. We calculate yields of C3-C13 PFCAs formed from 4 : 2 to 12 : 2 fluorotelomer precursors and their deposition to the surface. We find that the ratio of long-chain to short-chain PFCAs increases strongly with distance from source regions. We compare our model results to remote deposition measurements and mid-latitude rainwater measurements. The model captures the observed relationship between rainwater abundance and PFCA chain length, as well as the average deposition rates at mid-latitude and Arctic sites, but underestimates the deposition of PFDoA, PFDA, and TFA at mid-latitudes and PFNA at the Devon Ice Cap. We provide estimates of cumulative PFCA deposition globally. We find that given the most recent emission inventory, the atmospheric source of PFCAs is 6-185 tonnes per year globally and 0.1-2.1 tonnes per year to the Arctic.
Collapse
Affiliation(s)
- Colin P Thackray
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, USA.
| | - Noelle E Selin
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, USA.
| | - Cora J Young
- Department of Chemistry, York University, Toronto, Canada
| |
Collapse
|
21
|
Lin J, Du M, Chen L, Feng K, Liu Y, V Martin R, Wang J, Ni R, Zhao Y, Kong H, Weng H, Liu M, van Donkelaar A, Liu Q, Hubacek K. Carbon and health implications of trade restrictions. Nat Commun 2019; 10:4947. [PMID: 31666528 PMCID: PMC6821914 DOI: 10.1038/s41467-019-12890-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/30/2019] [Indexed: 12/03/2022] Open
Abstract
In a globalized economy, production of goods can be disrupted by trade disputes. Yet the resulting impacts on carbon dioxide emissions and ambient particulate matter (PM2.5) related premature mortality are unclear. Here we show that in contrast to a free trade world, with the emission intensity in each sector unchanged, an extremely anti-trade scenario with current tariffs plus an additional 25% tariff on each traded product would reduce the global export volume by 32.5%, gross domestic product by 9.0%, carbon dioxide by 6.3%, and PM2.5-related mortality by 4.1%. The respective impacts would be substantial for the United States, Western Europe and China. A freer trade scenario would increase global carbon dioxide emission and air pollution due to higher levels of production, especially in developing regions with relatively high emission intensities. Global collaborative actions to reduce emission intensities in developing regions could help achieve an economic-environmental win-win state through globalization.
Collapse
Affiliation(s)
- Jintai Lin
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, 100871, China.
| | - Mingxi Du
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, 100871, China
| | - Lulu Chen
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, 100871, China
| | - Kuishuang Feng
- Institute of Blue and Green Development, Shandong University, Weihai, 264209, China.
- Department of Geographical Sciences, University of Maryland, College Park, MD, 20742, USA.
| | - Yu Liu
- Institutes of Science and Development, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Public Policy and Management, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Randall V Martin
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Smithsonian Astrophysical Observatory, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, 02138, USA
| | - Jingxu Wang
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, 100871, China
| | - Ruijing Ni
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, 100871, China
| | - Yu Zhao
- School of the Environment, Nanjing University, 163 Xianlin Ave, Nanjing, 210046, China
| | - Hao Kong
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, 100871, China
| | - Hongjian Weng
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, 100871, China
| | - Mengyao Liu
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, 100871, China
| | - Aaron van Donkelaar
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Qiuyu Liu
- Department of Biological Sciences, University of Quebec at Montreal, Montreal, H3C 3P8, Canada
| | - Klaus Hubacek
- Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Nijenborg 6, 9747 AG, Groningen, The Netherlands
- International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361, Laxenburg, Austria
- Department of Environmental Studies, Masaryk University, Jostova 10, 602 00, Brno, Czech Republic
| |
Collapse
|
22
|
Xu JW, Martin RV, Henderson BH, Meng J, Oztaner B, Hand JL, Hakami A, Strum M, Phillips SB. Simulation of airborne trace metals in fine particulate matter over North America. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2019; 214:10.1016/j.atmosenv.2019.116883. [PMID: 32665763 PMCID: PMC7359884 DOI: 10.1016/j.atmosenv.2019.116883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Trace metal distributions are of relevance to understand sources of fine particulate matter (PM2.5), PM2.5-related health effects, and atmospheric chemistry. However, knowledge of trace metal distributions is lacking due to limited ground-based measurements and model simulations. This study develops a simulation of 12 trace metal concentrations (Si, Ca, Al, Fe, Ti, Mn, K, Mg, As, Cd, Ni and Pb) over continental North America for 2013 using the GEOS-Chem chemical transport model. Evaluation of modeled trace metal concentrations with observations indicates a spatial consistency within a factor of 2, an improvement over previous studies that were within a factor of 3-6. The spatial distribution of trace metal concentrations reflects their primary emission sources. Crustal element (Si, Ca, Al, Fe, Ti, Mn, K) concentrations are enhanced over the central US from anthropogenic fugitive dust and over the southwestern U.S. due to natural mineral dust. Heavy metal (As, Cd, Ni and Pb) concentrations are high over the eastern U.S. from industry. K is abundance in the southeast from biomass burning and high concentrations of Mg is observed along the coast from sea spray. The spatial pattern of PM2.5 mass is most strongly correlated with Pb, Ni, As and K due to their signature emission sources. Challenges remain in accurately simulating observed trace metal concentrations. Halving anthropogenic fugitive dust emissions in the 2011 National Air Toxic Assessment (NATA) inventory and doubling natural dust emissions in the default GEOS-Chem simulation was necessary to reduce biases in crustal element concentrations. A fivefold increase of anthropogenic emissions of As and Pb was necessary in the NATA inventory to reduce the national-scale bias versus observations by more than 80 %, potentially reflecting missing sources.
Collapse
Affiliation(s)
- Jun-Wei Xu
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada
| | - Randall V Martin
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States
- Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
| | | | - Jun Meng
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada
| | - Burak Oztaner
- Department of Civil and Environmental Engineering, Carleton University, Ottawa, ON, Canada
| | - Jenny L Hand
- Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA
| | - Amir Hakami
- Department of Civil and Environmental Engineering, Carleton University, Ottawa, ON, Canada
| | - Madeleine Strum
- Environmental Protection Agency, Research Triangle Park, NC, USA
| | | |
Collapse
|
23
|
Fu D, Millet DB, Wells KC, Payne VH, Yu S, Guenther A, Eldering A. Direct retrieval of isoprene from satellite-based infrared measurements. Nat Commun 2019; 10:3811. [PMID: 31444348 PMCID: PMC6707292 DOI: 10.1038/s41467-019-11835-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/07/2019] [Indexed: 11/08/2022] Open
Abstract
Isoprene is the atmosphere's most important non-methane organic compound, with key impacts on atmospheric oxidation, ozone, and organic aerosols. In-situ isoprene measurements are sparse, and satellite-based constraints have employed an indirect approach using its oxidation product formaldehyde, which is affected by non-isoprene sources plus uncertainty and spatial smearing in the isoprene-formaldehyde relationship. Direct global isoprene measurements are therefore needed to better understand its sources, sinks, and atmospheric impacts. Here we show that the isoprene spectral signatures are detectable from space using the satellite-borne Cross-track Infrared Sounder (CrIS), develop a full-physics retrieval methodology for quantifying isoprene abundances from these spectral features, and apply the algorithm to CrIS measurements over Amazonia. The results are consistent with model output and in-situ data, and establish the feasibility of direct global space-based isoprene measurements. Finally, we demonstrate the potential for combining space-based measurements of isoprene and formaldehyde to constrain atmospheric oxidation over isoprene source regions.
Collapse
Affiliation(s)
- Dejian Fu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA.
| | | | | | - Vivienne H Payne
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Shanshan Yu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | | | - Annmarie Eldering
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| |
Collapse
|
24
|
Qu Z, Henze DK, Theys N, Wang J, Wang W. Hybrid Mass Balance/4D-Var Joint Inversion of NO x and SO 2 Emissions in East Asia. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2019; 124:8203-8224. [PMID: 31763108 PMCID: PMC6853212 DOI: 10.1029/2018jd030240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 05/27/2023]
Abstract
Accurate estimates of NO x and SO2 emissions are important for air quality modeling and management. To incorporate chemical interactions of the two species in emission estimates, we develop a joint hybrid inversion framework to estimate their emissions in China and India (2005-2012). Pseudo observation tests and posterior evaluation with surface measurements demonstrate that joint assimilation of SO2 and NO2 can provide more accurate constraints on emissions than single-species inversions. This occurs through synergistic change of O3 and OH concentrations, particularly in conditions where satellite retrievals of the species being optimized have large uncertainties. The percentage changes of joint posterior emissions from the single-species posterior emissions go up to 242% at grid scales, although the national average of monthly emissions, seasonality, and interannual variations are similar. In China and India, the annual budget of joint posterior SO2 emissions is lower, but joint NO x posterior emissions are higher, because NO x emissions increase to increase SO2 concentration and better match Ozone Monitoring Instrument SO2 observations in high-NO x regions. Joint SO2 posterior emissions decrease by 16.5% from 2008 to 2012, while NO x posterior emissions increase by 24.9% from 2005 to 2011 in China-trends which are consistent with the MEIC inventory. Joint NO x and SO2 posterior emissions in India increase by 15.9% and 19.2% from 2005 to 2012, smaller than the 59.9% and 76.2% growth rate using anthropogenic emissions from EDGARv4.3.2. This work shows the benefit and limitation of joint assimilation in emission estimates and provides an efficient framework to perform the inversion.
Collapse
Affiliation(s)
- Zhen Qu
- Department of Mechanical EngineeringUniversity of Colorado BoulderBoulderCOUSA
| | - Daven K. Henze
- Department of Mechanical EngineeringUniversity of Colorado BoulderBoulderCOUSA
| | - Nicolas Theys
- Belgian Institute for Space Aeronomy (BIRA‐IASB)BrusselsBelgium
| | - Jun Wang
- Center for Global and Regional Environmental Research, Department of Chemical and Biochemical EngineeringUniversity of IowaIowa CityIAUSA
| | - Wei Wang
- China National Environmental Monitoring CenterBeijingChina
| |
Collapse
|
25
|
Qu Z, Henze DK, Li C, Theys N, Wang Y, Wang J, Wang W, Han J, Shim C, Dickerson RR, Ren X. SO 2 Emission Estimates Using OMI SO 2 Retrievals for 2005-2017. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2019; 124:8336-8359. [PMID: 31763109 PMCID: PMC6853235 DOI: 10.1029/2019jd030243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/22/2019] [Accepted: 07/02/2019] [Indexed: 05/15/2023]
Abstract
SO2 column densities from Ozone Monitoring Instrument provide important information on emission trends and missing sources, but there are discrepancies between different retrieval products. We employ three Ozone Monitoring Instrument SO2 retrieval products (National Aeronautics and Space Administration (NASA) standard (SP), NASA prototype, and BIRA) to study the magnitude and trend of SO2 emissions. SO2 column densities from these retrievals are most consistent when viewing angles and solar zenith angles are small, suggesting more robust emission estimates in summer and at low latitudes. We then apply a hybrid 4D-Var/mass balance emission inversion to derive monthly SO2 emissions from the NASA SP and BIRA products. Compared to HTAPv2 emissions in 2010, both posterior emission estimates are lower in United States, India, and Southeast China, but show different changes of emissions in North China Plain. The discrepancies between monthly NASA and BIRA posterior emissions in 2010 are less than or equal to 17% in China and 34% in India. SO2 emissions increase from 2005 to 2016 by 35% (NASA)-48% (BIRA) in India, but decrease in China by 23% (NASA)-33% (BIRA) since 2008. Compared to in situ measurements, the posterior GEOS-Chem surface SO2 concentrations have reduced NMB in China, the United States, and India but not in South Korea in 2010. BIRA posteriors have better consistency with the annual growth rate of surface SO2 measurement in China and spatial variability of SO2 concentration in China, South Korea, and India, whereas NASA SP posteriors have better seasonality. These evaluations demonstrate the capability to recover SO2 emissions using Ozone Monitoring Instrument observations.
Collapse
Affiliation(s)
- Zhen Qu
- Department of Mechanical EngineeringUniversity of Colorado BoulderBoulderCOUSA
| | - Daven K. Henze
- Department of Mechanical EngineeringUniversity of Colorado BoulderBoulderCOUSA
| | - Can Li
- NASA Goddard Space Flight CenterGreenbeltMDUSA
- Earth System Science Interdisciplinary CenterUniversity of MarylandCollege ParkMDUSA
| | - Nicolas Theys
- Belgian Institute for Space Aeronomy (BIRA‐IASB)BrusselsBelgium
| | - Yi Wang
- Center for Global and Regional Environmental Research, Department of Chemical and Biochemical EngineeringUniversity of IowaIowa CityIAUSA
| | - Jun Wang
- Center for Global and Regional Environmental Research, Department of Chemical and Biochemical EngineeringUniversity of IowaIowa CityIAUSA
| | - Wei Wang
- China National Environmental Monitoring CenterBeijingChina
| | - Jihyun Han
- Korea Environment InstituteSejongSouth Korea
| | | | - Russell R. Dickerson
- Department of Atmospheric and Oceanic ScienceUniversity of MarylandCollege ParkMDUSA
| | - Xinrong Ren
- Department of Atmospheric and Oceanic ScienceUniversity of MarylandCollege ParkMDUSA
- Air Resources Laboratory, National Oceanic and Atmospheric AdministrationCollege ParkMDUSA
| |
Collapse
|
26
|
Chen X, Millet DB, Singh HB, Wisthaler A, Apel EC, Atlas EL, Blake DR, Bourgeois I, Brown SS, Crounse JD, de Gouw JA, Flocke FM, Fried A, Heikes BG, Hornbrook RS, Mikoviny T, Min KE, Müller M, Neuman JA, O'Sullivan DW, Peischl J, Pfister GG, Richter D, Roberts JM, Ryerson TB, Shertz SR, Thompson CR, Treadaway V, Veres PR, Walega J, Warneke C, Washenfelder RA, Weibring P, Yuan B. On the sources and sinks of atmospheric VOCs: an integrated analysis of recent aircraft campaigns over North America. ATMOSPHERIC CHEMISTRY AND PHYSICS 2019; 19:9097-9123. [PMID: 33688334 PMCID: PMC7939023 DOI: 10.5194/acp-19-9097-2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We apply a high-resolution chemical transport model (GEOS-Chem CTM) with updated treatment of volatile organic compounds (VOCs) and a comprehensive suite of airborne datasets over North America to (i) characterize the VOC budget and (ii) test the ability of current models to capture the distribution and reactivity of atmospheric VOCs over this region. Biogenic emissions dominate the North American VOC budget in the model, accounting for 70 % and 95 % of annually emitted VOC carbon and reactivity, respectively. Based on current inventories anthropogenic emissions have declined to the point where biogenic emissions are the dominant summertime source of VOC reactivity even in most major North American cities. Methane oxidation is a 2x larger source of nonmethane VOCs (via production of formaldehyde and methyl hydroperoxide) over North America in the model than are anthropogenic emissions. However, anthropogenic VOCs account for over half of the ambient VOC loading over the majority of the region owing to their longer aggregate lifetime. Fires can be a significant VOC source episodically but are small on average. In the planetary boundary layer (PBL), the model exhibits skill in capturing observed variability in total VOC abundance (R 2 = 0:36) and reactivity (R 2 = 0:54). The same is not true in the free troposphere (FT), where skill is low and there is a persistent low model bias (~ 60 %), with most (27 of 34) model VOCs underestimated by more than a factor of 2. A comparison of PBL: FT concentration ratios over the southeastern US points to a misrepresentation of PBL ventilation as a contributor to these model FT biases. We also find that a relatively small number of VOCs (acetone, methanol, ethane, acetaldehyde, formaldehyde, isoprene C oxidation products, methyl hydroperoxide) drive a large fraction of total ambient VOC reactivity and associated model biases; research to improve understanding of their budgets is thus warranted. A source tracer analysis suggests a current overestimate of biogenic sources for hydroxyacetone, methyl ethyl ketone and glyoxal, an underestimate of biogenic formic acid sources, and an underestimate of peroxyacetic acid production across biogenic and anthropogenic precursors. Future work to improve model representations of vertical transport and to address the VOC biases discussed are needed to advance predictions of ozone and SOA formation.
Collapse
Affiliation(s)
- Xin Chen
- Department of Soil, Water, and Climate, University of Minnesota, Minneapolis-Saint Paul, MN, USA
| | - Dylan B. Millet
- Department of Soil, Water, and Climate, University of Minnesota, Minneapolis-Saint Paul, MN, USA
| | | | - Armin Wisthaler
- Institute for Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Eric C. Apel
- Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | - Elliot L. Atlas
- Department of Atmospheric Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - Donald R. Blake
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Ilann Bourgeois
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Steven S. Brown
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - John D. Crounse
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Joost A. de Gouw
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Frank M. Flocke
- Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | - Alan Fried
- Institute of Arctic & Alpine Research, University of Colorado, Boulder, CO, USA
| | - Brian G. Heikes
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Rebecca S. Hornbrook
- Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | - Tomas Mikoviny
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Kyung-Eun Min
- School of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Markus Müller
- Institute for Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria
| | - J. Andrew Neuman
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | | | - Jeff Peischl
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Gabriele G. Pfister
- Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | - Dirk Richter
- Institute of Arctic & Alpine Research, University of Colorado, Boulder, CO, USA
| | - James M. Roberts
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - Thomas B. Ryerson
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - Stephen R. Shertz
- Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | - Chelsea R. Thompson
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Victoria Treadaway
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Patrick R. Veres
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
| | - James Walega
- Institute of Arctic & Alpine Research, University of Colorado, Boulder, CO, USA
| | - Carsten Warneke
- Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | | | - Petter Weibring
- Institute of Arctic & Alpine Research, University of Colorado, Boulder, CO, USA
| | - Bin Yuan
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
| |
Collapse
|
27
|
Yue X, Unger N. Fire air pollution reduces global terrestrial productivity. Nat Commun 2018; 9:5413. [PMID: 30575760 PMCID: PMC6303378 DOI: 10.1038/s41467-018-07921-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 11/15/2018] [Indexed: 11/19/2022] Open
Abstract
Fire emissions generate air pollutants ozone (O3) and aerosols that influence the land carbon cycle. Surface O3 damages vegetation photosynthesis through stomatal uptake, while aerosols influence photosynthesis by increasing diffuse radiation. Here we combine several state-of-the-art models and multiple measurement datasets to assess the net impacts of fire-induced O3 damage and the aerosol diffuse fertilization effect on gross primary productivity (GPP) for the 2002-2011 period. With all emissions except fires, O3 decreases global GPP by 4.0 ± 1.9 Pg C yr-1 while aerosols increase GPP by 1.0 ± 0.2 Pg C yr-1 with contrasting spatial impacts. Inclusion of fire pollution causes a further GPP reduction of 0.86 ± 0.74 Pg C yr-1 during 2002-2011, resulting from a reduction of 0.91 ± 0.44 Pg C yr-1 by O3 and an increase of 0.05 ± 0.30 Pg C yr-1 by aerosols. The net negative impact of fire pollution poses an increasing threat to ecosystem productivity in a warming future world.
Collapse
Affiliation(s)
- Xu Yue
- Climate Change Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Nadine Unger
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QE, UK.
| |
Collapse
|
28
|
Millet DB, Alwe HD, Chen X, Deventer MJ, Griffis TJ, Holzinger R, Bertman SB, Rickly PS, Stevens PS, Léonardis T, Locoge N, Dusanter S, Tyndall GS, Alvarez SL, Erickson MH, Flynn JH. Bidirectional Ecosystem-Atmosphere Fluxes of Volatile Organic Compounds Across the Mass Spectrum: How Many Matter? ACS EARTH & SPACE CHEMISTRY 2018; 2:764-777. [PMID: 33615099 PMCID: PMC7894362 DOI: 10.1021/acsearthspacechem.8b00061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Terrestrial ecosystems are simultaneously the largest source and a major sink of volatile organic compounds (VOCs) to the global atmosphere, and these two-way fluxes are an important source of uncertainty in current models. Here, we apply high-resolution mass spectrometry (proton transfer reaction-quadrupole interface time-of-flight; PTR-QiTOF) to measure ecosystem-atmosphere VOC fluxes across the entire detected mass range (m/z 0-335) over a mixed temperate forest and use the results to test how well a state-of-science chemical transport model (GEOS-Chem CTM) is able to represent the observed reactive carbon exchange. We show that ambient humidity fluctuations can give rise to spurious VOC fluxes with PTR-based techniques and present a method to screen for such effects. After doing so, 377 of the 636 detected ions exhibited detectable gross fluxes during the study, implying a large number of species with active ecosystem-atmosphere exchange. We introduce the reactivity flux as a measure of how Earth-atmosphere fluxes influence ambient OH reactivity and show that the upward total VOC (∑VOC) carbon and reactivity fluxes are carried by a far smaller number of species than the downward fluxes. The model underpredicts the ∑VOC carbon and reactivity fluxes by 40-60% on average. However, the observed net fluxes are dominated (90% on a carbon basis, 95% on a reactivity basis) by known VOCs explicitly included in the CTM. As a result, the largest CTM uncertainties in simulating VOC carbon and reactivity exchange for this environment are associated with known rather than unrepresented species. This conclusion pertains to the set of species detectable by PTR-TOF techniques, which likely represents the majority in terms of carbon mass and OH reactivity, but not necessarily in terms of aerosol formation potential. In the case of oxygenated VOCs, the model severely underpredicts the gross fluxes and the net exchange. Here, unrepresented VOCs play a larger role, accounting for ~30% of the carbon flux and ~50% of the reactivity flux. The resulting CTM biases, however, are still smaller than those that arise from uncertainties for known and represented compounds.
Collapse
Affiliation(s)
- Dylan B. Millet
- University of Minnesota, Saint Paul, Minnesota 55108, United States
| | | | - Xin Chen
- University of Minnesota, Saint Paul, Minnesota 55108, United States
| | | | | | | | - Steven B. Bertman
- Western Michigan University, Kalamazoo, Michigan 49008, United States
| | | | | | - Thierry Léonardis
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l’Atmosphère et Génie de l’Environnement, 59000 Lille, France
| | - Nadine Locoge
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l’Atmosphère et Génie de l’Environnement, 59000 Lille, France
| | - Sébastien Dusanter
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l’Atmosphère et Génie de l’Environnement, 59000 Lille, France
| | - Geoffrey S. Tyndall
- National Center for Atmospheric Research, Boulder, Colorado 80305, United States
| | | | | | - James H. Flynn
- University of Houston, Houston, Texas 77004, United States
| |
Collapse
|
29
|
Wang Z, Wang Y, Li J, Henne S, Zhang B, Hu J, Zhang J. Impacts of the Degradation of 2,3,3,3-Tetrafluoropropene into Trifluoroacetic Acid from Its Application in Automobile Air Conditioners in China, the United States, and Europe. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2819-2826. [PMID: 29381347 DOI: 10.1021/acs.est.7b05960] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
HFO-1234yf (2,3,3,3-tetrafluoropropene) was proposed as an automobile air conditioner (MAC) refrigerant worldwide. However, its atmospheric degradation product is the highly soluble and phytotoxic trifluoroacetic acid (TFA), which persists in aquatic environments. We used a global three-dimensional chemical transport model to assess the potential environmental effects resulting from complete future conversion of the refrigerant in all MAC to HFO-1234yf in China, the United States, and Europe. The annual mean atmospheric concentrations of HFO-1234yf were 2.62, 2.20, and 2.73 pptv, and the mean deposition rates of TFA were 0.96, 0.45, and 0.52 kg km-2 yr-1, in three regions. The regional TFA deposition sources mainly came from emissions within the same region. The annual TFA deposition in the North Pole region was lower than the global average and mainly originated from European emissions. A potential doubling in the future HFO-1234yf emissions in China mainly affected the local TFA depositions. The TFA concentrations in rainwater were strongly affected by the regional precipitation rates. North Africa and the Middle East, regions with scant rainfall, had extremely high TFA concentrations. The rainwater concentrations of TFA during individual rain events can exceed the level considered to be safe, indicating substantial potential regional risks from future HFO-1234yf use.
Collapse
Affiliation(s)
- Ziyuan Wang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control , College of Environmental Sciences and Engineering, Peking University , Beijing 100871 , China
- School of Earth and Atmospheric Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Yuhang Wang
- School of Earth and Atmospheric Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Jianfeng Li
- School of Earth and Atmospheric Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Stephan Henne
- Laboratory for Air Pollution/Environmental Technology , Empa, Swiss Federal Laboratories for Materials Science and Technology , Uberlandstrasse 129 , Dübendorf 8600 , Switzerland
| | - Boya Zhang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control , College of Environmental Sciences and Engineering, Peking University , Beijing 100871 , China
| | - Jianxin Hu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control , College of Environmental Sciences and Engineering, Peking University , Beijing 100871 , China
| | - Jianbo Zhang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control , College of Environmental Sciences and Engineering, Peking University , Beijing 100871 , China
| |
Collapse
|
30
|
Matturro B, Frascadore E, Cappello S, Genovese M, Rossetti S. In situ detection of alkB2 gene involved in Alcanivorax borkumensis SK2(T) hydrocarbon biodegradation. MARINE POLLUTION BULLETIN 2016; 110:378-382. [PMID: 27315756 DOI: 10.1016/j.marpolbul.2016.06.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 06/06/2023]
Abstract
This study aimed to develop a new assay based on the whole cell hybridization in order to monitor alkane hydroxylase genes (alkB system) of the marine bacterium Alcanivorax borkumensis SK2(T) commonly reported as the predominant microorganism responsible for the biodegradation of n-alkanes which are the major fraction of petroleum hydrocarbons. The assay based on the whole cell hybridization targeting alkB2 gene was successfully developed and calibrated on a pure culture of Alcanivorax borkumensis SK2(T) with a detection efficiency up to 80%. The approach was further successfully validated on hydrocarbon-contaminated seawater and provided cells abundance (6.74E+04alkB2-carryingcellsmL(-1)) higher of about one order of magnitude than those obtained by qPCR (4.96E+03alkB2genecopiesmL(-1)). This study highlights the validity of the assay for the detection at single cell level of key-functional genes involved in the biodegradation of n-alkanes.
Collapse
Affiliation(s)
- Bruna Matturro
- Water Research Institute, IRSA-CNR, Via Salaria km 29,300, Monterotondo, RM, Italy
| | - Emanuela Frascadore
- Water Research Institute, IRSA-CNR, Via Salaria km 29,300, Monterotondo, RM, Italy
| | - Simone Cappello
- Institute of Marine and Coastal Environments, IAMC-CNR, Spianata S. Raineri, 86, Messina, ME, Italy
| | - Mariella Genovese
- Institute of Marine and Coastal Environments, IAMC-CNR, Spianata S. Raineri, 86, Messina, ME, Italy
| | - Simona Rossetti
- Water Research Institute, IRSA-CNR, Via Salaria km 29,300, Monterotondo, RM, Italy.
| |
Collapse
|
31
|
Evaluating Summer-Time Ozone Enhancement Events in the Southeast United States. ATMOSPHERE 2016. [DOI: 10.3390/atmos7080108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Oikawa PY, Ge C, Wang J, Eberwein JR, Liang LL, Allsman LA, Grantz DA, Jenerette GD. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region. Nat Commun 2015; 6:8753. [PMID: 26556236 PMCID: PMC4659929 DOI: 10.1038/ncomms9753] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 09/28/2015] [Indexed: 11/27/2022] Open
Abstract
Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality. Soil NOx emissions can significantly impact air quality in agricultural regions, particularly high temperature fertilized systems. Here, the authors investigate NOx emissions in one such system in California and suggest that the NOx emissions are the highest ever observed, with implications for air quality.
Collapse
Affiliation(s)
- P Y Oikawa
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, USA
| | - C Ge
- Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - J Wang
- Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - J R Eberwein
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | - L L Liang
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | - L A Allsman
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | - D A Grantz
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | - G D Jenerette
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| |
Collapse
|
33
|
Thackray CP, Friedman CL, Zhang Y, Selin NE. Quantitative Assessment of Parametric Uncertainty in Northern Hemisphere PAH Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:9185-93. [PMID: 26110215 PMCID: PMC4786340 DOI: 10.1021/acs.est.5b01823] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We quantitatively examine the relative importance of uncertainty in emissions and physicochemical properties (including reaction rate constants) to Northern Hemisphere (NH) and Arctic polycyclic aromatic hydrocarbon (PAH) concentrations, using a computationally efficient numerical uncertainty technique applied to the global-scale chemical transport model GEOS-Chem. Using polynomial chaos (PC) methods, we propagate uncertainties in physicochemical properties and emissions for the PAHs benzo[a]pyrene, pyrene and phenanthrene to simulated spatially resolved concentration uncertainties. We find that the leading contributors to parametric uncertainty in simulated concentrations are the black carbon-air partition coefficient and oxidation rate constant for benzo[a]pyrene, and the oxidation rate constants for phenanthrene and pyrene. NH geometric average concentrations are more sensitive to uncertainty in the atmospheric lifetime than to emissions rate. We use the PC expansions and measurement data to constrain parameter uncertainty distributions to observations. This narrows a priori parameter uncertainty distributions for phenanthrene and pyrene, and leads to higher values for OH oxidation rate constants and lower values for European PHE emission rates.
Collapse
Affiliation(s)
- Colin P. Thackray
- Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Correspondence to: C. P. Thackray (), Telephone: 857-250-5183, 77 Massachusetts Avenue 54-1810, Cambridge, MA, 02139, USA
| | - Carey L. Friedman
- Department of Earth, Atmospheric and Planetary Science and Center for Global Change Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Yanxu Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Noelle E. Selin
- Engineering Systems Division and Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
34
|
Liu Z, Wang Y, Costabile F, Amoroso A, Zhao C, Huey LG, Stickel R, Liao J, Zhu T. Evidence of aerosols as a media for rapid daytime HONO production over China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:14386-14391. [PMID: 25401515 DOI: 10.1021/es504163z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Current knowledge of daytime HONO sources remains incomplete. A large missing daytime HONO source has been found in many places around the world, including polluted regions in China. Conventional understanding and recent studies attributed this missing source mainly to ground surface processes or gas-phase chemistry, while assuming aerosols to be an insignificant media for HONO production. We analyze in situ observations of HONO and its precursors at an urban site in Beijing, China, and report an apparent dependence of the missing HONO source strength on aerosol surface area and solar ultraviolet radiation. Based on extensive correlation analysis and process-modeling, we propose that the rapid daytime HONO production in Beijing can be explained by enhanced hydrolytic disproportionation of NO2 on aqueous aerosol surfaces due to catalysis by dicarboxylic acid anions. The combination of high abundance of NO2, aromatic hydrocarbons, and aerosols over broad regions in China likely leads to elevated HONO levels, rapid OH production, and enhanced oxidizing capacity on a regional basis. Our findings call for attention to aerosols as a media for daytime heterogeneous HONO production in polluted regions like Beijing. This study also highlights the complex and uncertain heterogeneous chemistry in China, which merits future efforts of reconciling regional modeling and laboratory experiments, in order to understand and mitigate the regional particulate and O3 pollutions over China.
Collapse
Affiliation(s)
- Zhen Liu
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wei WM, Zheng RH, Hou T, Xu SJ, Zhang SH. Theoretical studies on the dissociation reactions of chloromethyl peroxynitrate. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Paulot F, Jacob DJ. Hidden cost of U.S. agricultural exports: particulate matter from ammonia emissions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:903-8. [PMID: 24370064 DOI: 10.1021/es4034793] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We use a model of agricultural sources of ammonia (NH3) coupled to a chemical transport model to estimate the impact of U.S. food export on particulate matter concentrations (PM2.5). We find that food export accounts for 11% of total U.S. NH3 emissions (13% of agricultural emissions) and that it increases the population-weighted exposure of the U.S. population to PM2.5 by 0.36 μg m(-3) on average. Our estimate is sensitive to the proper representation of the impact of NH3 on ammonium nitrate, which reflects the interplay between agricultural (NH3) and combustion emissions (NO, SO2). Eliminating NH3 emissions from food export would achieve greater health benefits than the reduction of the National Ambient Air Quality Standards for PM2.5 from 15 to 12 μg m(-3). Valuation of the increased premature mortality associated with PM2.5 from food export (36 billion US$ (2006) per year) amounts to 50% of the gross food export value. Livestock operations in densely populated areas have particularly large health costs. Decreasing SO2 and NOx emissions will indirectly reduce health impact of food export as an ancillary benefit.
Collapse
Affiliation(s)
- Fabien Paulot
- School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
| | | |
Collapse
|
37
|
Wei WM, Zheng RH, Wu YK, Pan YL, Yang F. Ab initio studies of isomerization and dissociation reactions of methyl peroxynitrate. Struct Chem 2013. [DOI: 10.1007/s11224-013-0351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Paulot F, Jacob DJ, Henze DK. Sources and processes contributing to nitrogen deposition: an adjoint model analysis applied to biodiversity hotspots worldwide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:3226-3233. [PMID: 23458244 DOI: 10.1021/es3027727] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Anthropogenic enrichment of reactive nitrogen (Nr) deposition is an ecological concern. We use the adjoint of a global 3-D chemical transport model (GEOS-Chem) to identify the sources and processes that control Nr deposition to an ensemble of biodiversity hotspots worldwide and two U.S. national parks (Cuyahoga and Rocky Mountain). We find that anthropogenic sources dominate deposition at all continental sites and are mainly regional (less than 1000 km) in origin. In Hawaii, Nr supply is controlled by oceanic emissions of ammonia (50%) and anthropogenic sources (50%), with important contributions from Asia and North America. Nr deposition is also sensitive in complicated ways to emissions of SO2, which affect Nr gas-aerosol partitioning, and of volatile organic compounds (VOCs), which affect oxidant concentrations and produce organic nitrate reservoirs. For example, VOC emissions generally inhibit deposition of locally emitted NOx but significantly increase Nr deposition downwind. However, in polluted boreal regions, anthropogenic VOC emissions can promote Nr deposition in winter. Uncertainties in chemical rate constants for OH + NO2 and NO2 hydrolysis also complicate the determination of source-receptor relationships for polluted sites in winter. Application of our adjoint sensitivities to the representative concentration pathways (RCPs) scenarios for 2010-2050 indicates that future decreases in Nr deposition due to NOx emission controls will be offset by concurrent increases in ammonia emissions from agriculture.
Collapse
Affiliation(s)
- Fabien Paulot
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.
| | | | | |
Collapse
|
39
|
Murray LT, Jacob DJ, Logan JA, Hudman RC, Koshak WJ. Optimized regional and interannual variability of lightning in a global chemical transport model constrained by LIS/OTD satellite data. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd017934] [Citation(s) in RCA: 245] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Friedman CL, Selin NE. Long-range atmospheric transport of polycyclic aromatic hydrocarbons: a global 3-D model analysis including evaluation of Arctic sources. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:9501-9510. [PMID: 22856669 DOI: 10.1021/es301904d] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We use the global 3-D chemical transport model GEOS-Chem to simulate long-range atmospheric transport of polycyclic aromatic hydrocarbons (PAHs). To evaluate the model's ability to simulate PAHs with different volatilities, we conduct analyses for phenanthrene (PHE), pyrene (PYR), and benzo[a]pyrene (BaP). GEOS-Chem captures observed seasonal trends with no statistically significant difference between simulated and measured mean annual concentrations. GEOS-Chem also captures variability in observed concentrations at nonurban sites (r = 0.64, 0.72, and 0.74, for PHE, PYR, and BaP). Sensitivity simulations suggest snow/ice scavenging is important for gas-phase PAHs, and on-particle oxidation and temperature-dependency of gas-particle partitioning have greater effects on transport than irreversible partitioning or increased particle concentrations. GEOS-Chem estimates mean atmospheric lifetimes of <1 day for all three PAHs. Though corresponding half-lives are lower than the 2-day screening criterion for international policy action, we simulate concentrations at the high-Arctic station of Spitsbergen within four times observed concentrations with strong correlation (r = 0.70, 0.68, and 0.70 for PHE, PYR, and BaP). European and Russian emissions combined account for ~80% of episodic high-concentration events at Spitsbergen.
Collapse
Affiliation(s)
- Carey L Friedman
- Center for Global Change Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
| | | |
Collapse
|
41
|
Millet DB, Apel E, Henze DK, Hill J, Marshall JD, Singh HB, Tessum CW. Natural and anthropogenic ethanol sources inNorth America and potential atmospheric impacts of ethanol fuel use. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:8484-92. [PMID: 22731385 DOI: 10.1021/es300162u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We used an ensemble of aircraft measurements with the GEOS-Chem chemical transport model to constrain present-day North American ethanol sources, and gauge potential long-range impacts of increased ethanol fuel use. We find that current ethanol emissions are underestimated by 50% in Western North America, and overestimated by a factor of 2 in the east. Our best estimate for year-2005 North American ethanol emissions is 670 GgC/y, with 440 GgC/y from the continental U.S. We apply these optimized source estimates to investigate two scenarios for increased ethanol fuel use in the U.S.: one that assumes a complete transition from gasoline to E85 fuel, and one tied to the biofuel requirements of the U.S. Energy Indepence and Security Act (EISA). For both scenarios, increased ethanol emissions lead to higher atmospheric acetaldehyde concentrations (by up to 14% during winter for the All-E85 scenario and 2% for the EISA scenario) and an associated shift in reactive nitrogen partitioning reflected by an increase in the peroxyacetyl nitrate (PAN) to NO(y) ratio. The largest relative impacts occur during fall, winter, and spring because of large natural emissions of ethanol and other organic compounds during summer. Projected changes in atmospheric PAN reflect a balance between an increased supply of peroxyacetyl radicals from acetaldehyde oxidation, and the lower NO(x) emissions for E85 relative to gasoline vehicles. The net effect is a general PAN increase in fall through spring, and a weak decrease over the U.S. Southeast and the Atlantic Ocean during summer. Predicted NO(x) concentrations decrease in surface air over North America (by as much 5% in the All-E85 scenario). Downwind of North America this effect is counteracted by higher NO(x) export efficiency driven by increased PAN production and transport. From the point of view of NO(x) export from North America, the increased PAN formation associated with E85 fuel use thus acts to offset the associated lower NO(x) emissions.
Collapse
Affiliation(s)
- Dylan B Millet
- University of Minnesota, Minneapolis-St. Paul, Minnesota, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Marais EA, Jacob DJ, Kurosu TP, Chance K, Murphy JG, Reeves C, Mills G, Casadio S, Millet DB, Barkley MP, Paulot F, Mao J. Isoprene emissions in Africa inferred from OMI observations of formaldehyde columns. ATMOSPHERIC CHEMISTRY AND PHYSICS 2012; 12:6219-6235. [PMID: 33688332 PMCID: PMC7939075 DOI: 10.5194/acp-12-6219-2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We use 2005-2009 satellite observations of formaldehyde (HCHO) columns from the OMI instrument to infer biogenic isoprene emissions at monthly 1 × 1° resolution over the African continent. Our work includes new approaches to remove biomass burning influences using OMI absorbing aerosol optical depth data (to account for transport of fire plumes) and anthropogenic influences using AATSR satellite data for persistent small-flame fires (gas flaring). The resulting biogenic HCHO columns (ΩHCHO) from OMI follow closely the distribution of vegetation patterns in Africa. We infer isoprene emission (E ISOP) from the local sensitivity S = ΔΩHCHO / ΔE ISOP derived with the GEOS-Chem chemical transport model using two alternate isoprene oxidation mechanisms, and verify the validity of this approach using AMMA aircraft observations over West Africa and a longitudinal transect across central Africa. Displacement error (smearing) is diagnosed by anomalously high values of S and the corresponding data are removed. We find significant sensitivity of S to NOx under low-NOx conditions that we fit to a linear function of tropospheric column NO2. We estimate a 40% error in our inferred isoprene emissions under high-NOx conditions and 40-90% under low-NOx conditions. Our results suggest that isoprene emission from the central African rainforest is much lower than estimated by the state-of-the-science MEGAN inventory.
Collapse
Affiliation(s)
- E. A. Marais
- Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - D. J. Jacob
- Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - T. P. Kurosu
- Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
| | - K. Chance
- Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA
| | - J. G. Murphy
- Department of Chemistry, University of Toronto, Toronto, Canada
| | - C. Reeves
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - G. Mills
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - S. Casadio
- Instrument Data quality Evaluation and Analysis (IDEAS), Serco Spa Via Sciadonna 24, 00044 Frascati (Roma), Italy
| | - D. B. Millet
- Department of Soil, Water and Climate, University of Minnesota, St. Paul, MN, USA
| | - M. P. Barkley
- Space Research Centre, University of Leicester, Leicester, UK
| | - F. Paulot
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - J. Mao
- Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA
| |
Collapse
|
43
|
Huang Y, Wu S, Dubey M, French NHF. Impact of aging mechanism on model simulated carbonaceous aerosols. ATMOSPHERIC CHEMISTRY AND PHYSICS 2012; 12:10.5194/acpd-12-28993-2012. [PMID: 24174929 PMCID: PMC3809914 DOI: 10.5194/acpd-12-28993-2012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Carbonaceous aerosols including organic carbon and black carbon have significant implications for both climate and air quality. In the current global climate or chemical transport models, a fixed hydrophobic-to-hydrophilic conversion lifetime for carbonaceous aerosol (τ) is generally assumed, which is usually around one day. We have implemented a new detailed aging scheme for carbonaceous aerosols in a chemical transport model (GEOS-Chem) to account for both the chemical oxidation and the physical condensation-coagulation effects, where τ is affected by local atmospheric environment including atmospheric concentrations of water vapor, ozone, hydroxyl radical and sulfuric acid. The updated τ exhibits large spatial and temporal variations with the global average (up to 11 km altitude) calculated to be 2.6 days. The chemical aging effects are found to be strongest over the tropical regions driven by the low ozone concentrations and high humidity there. The τ resulted from chemical aging generally decreases with altitude due to increases in ozone concentration and decreases in humidity. The condensation-coagulation effects are found to be most important for the high-latitude areas, in particular the polar regions, where the τ values are calculated to be up to 15 days. When both the chemical aging and condensation-coagulation effects are considered, the total atmospheric burdens and global average lifetimes of BC, black carbon, (OC, organic carbon) are calculated to increase by 9% (3%) compared to the control simulation, with considerable enhancements of BC and OC concentrations in the Southern Hemisphere. Model evaluations against data from multiple datasets show that the updated aging scheme improves model simulations of carbonaceous aerosols for some regions, especially for the remote areas in the Northern Hemisphere. The improvement helps explain the persistent low model bias for carbonaceous aerosols in the Northern Hemisphere reported in literature. Further model sensitivity simulations focusing on the continental outflow of carbonaceous aerosols demonstrate that previous studies using the old aging scheme could have significantly underestimated the intercontinental transport of carbonaceous aerosols.
Collapse
Affiliation(s)
- Y. Huang
- Department of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - S. Wu
- Atmospheric Science Program, Department of Geological and Mining Engineering and Sciences, Department of Civil and Environmental Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - M.K. Dubey
- Earth System Observations, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - N. H. F. French
- Michigan Tech Research Institute, Michigan Technological University, Ann Arbor, MI 48105, USA
| |
Collapse
|
44
|
Huang Y, Wu S, Dubey MK, French NHF. Impact of aging mechanism on model simulated carbonaceous aerosols. ATMOSPHERIC CHEMISTRY AND PHYSICS 2012; 12:6329-6343. [PMID: 24174929 DOI: 10.5194/acp-13-6329-2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Carbonaceous aerosols including organic carbon and black carbon have significant implications for both climate and air quality. In the current global climate or chemical transport models, a fixed hydrophobic-to-hydrophilic conversion lifetime for carbonaceous aerosol (τ) is generally assumed, which is usually around one day. We have implemented a new detailed aging scheme for carbonaceous aerosols in a chemical transport model (GEOS-Chem) to account for both the chemical oxidation and the physical condensation-coagulation effects, where τ is affected by local atmospheric environment including atmospheric concentrations of water vapor, ozone, hydroxyl radical and sulfuric acid. The updated τ exhibits large spatial and temporal variations with the global average (up to 11 km altitude) calculated to be 2.6 days. The chemical aging effects are found to be strongest over the tropical regions driven by the low ozone concentrations and high humidity there. The τ resulted from chemical aging generally decreases with altitude due to increases in ozone concentration and decreases in humidity. The condensation-coagulation effects are found to be most important for the high-latitude areas, in particular the polar regions, where the τ values are calculated to be up to 15 days. When both the chemical aging and condensation-coagulation effects are considered, the total atmospheric burdens and global average lifetimes of BC, black carbon, (OC, organic carbon) are calculated to increase by 9% (3%) compared to the control simulation, with considerable enhancements of BC and OC concentrations in the Southern Hemisphere. Model evaluations against data from multiple datasets show that the updated aging scheme improves model simulations of carbonaceous aerosols for some regions, especially for the remote areas in the Northern Hemisphere. The improvement helps explain the persistent low model bias for carbonaceous aerosols in the Northern Hemisphere reported in literature. Further model sensitivity simulations focusing on the continental outflow of carbonaceous aerosols demonstrate that previous studies using the old aging scheme could have significantly underestimated the intercontinental transport of carbonaceous aerosols.
Collapse
Affiliation(s)
- Y Huang
- Department of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | | | | | | |
Collapse
|
45
|
Liu JJ, Jones DBA, Zhang S, Kar J. Influence of interannual variations in transport on summertime abundances of ozone over the Middle East. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jd016188] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Barkley MP, Palmer PI, Ganzeveld L, Arneth A, Hagberg D, Karl T, Guenther A, Paulot F, Wennberg PO, Mao J, Kurosu TP, Chance K, Müller JF, De Smedt I, Van Roozendael M, Chen D, Wang Y, Yantosca RM. Can a “state of the art” chemistry transport model simulate Amazonian tropospheric chemistry? ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2011jd015893] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Paulot F, Wunch D, Crounse JD, Toon GC, Millet DB, DeCarlo PF, Vigouroux C, Deutscher NM, González Abad G, Notholt J, Warneke T, Hannigan JW, Warneke C, de Gouw JA, Dunlea EJ, De Mazière M, Griffith DWT, Bernath P, Jimenez JL, Wennberg PO. Importance of secondary sources in the atmospheric budgets of formic and acetic acids. ATMOSPHERIC CHEMISTRY AND PHYSICS 2011; 11:1989-2013. [PMID: 33758586 PMCID: PMC7983864 DOI: 10.5194/acp-11-1989-2011] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We present a detailed budget of formic and acetic acids, two of the most abundant trace gases in the atmosphere. Our bottom-up estimate of the global source of formic and acetic acids are ∼1200 and ∼1400Gmolyr-1, dominated by photochemical oxidation of biogenic volatile organic compounds, in particular isoprene. Their sinks are dominated by wet and dry deposition. We use the GEOS-Chem chemical transport model to evaluate this budget against an extensive suite of measurements from ground, ship and satellite-based Fourier transform spectrometers, as well as from several aircraft campaigns over North America. The model captures the seasonality of formic and acetic acids well but generally underestimates their concentration, particularly in the Northern midlatitudes. We infer that the source of both carboxylic acids may be up to 50% greater than our estimate and report evidence for a long-lived missing secondary source of carboxylic acids that may be associated with the aging of organic aerosols. Vertical profiles of formic acid in the upper troposphere support a negative temperature dependence of the reaction between formic acid and the hydroxyl radical as suggested by several theoretical studies.
Collapse
Affiliation(s)
- F. Paulot
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California, USA
| | - D. Wunch
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California, USA
| | - J. D. Crounse
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - G. C. Toon
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - D. B. Millet
- University of Minnesota, Department of Soil, Water and Climate, St. Paul, Minnesota, USA
| | - P. F. DeCarlo
- Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
| | - C. Vigouroux
- Belgian Institute for Space Aeronomy, Brussels, Belgium
| | - N. M. Deutscher
- School of Chemistry, University of Wollongong, Wollongong, Australia
| | | | - J. Notholt
- Institute of Environmental Physics, Bremen, Germany
| | - T. Warneke
- Institute of Environmental Physics, Bremen, Germany
| | - J. W. Hannigan
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - C. Warneke
- Earth System Research Laboratory, Chemical Sciences Division, NOAA, Boulder, Colorado, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
| | - J. A. de Gouw
- Earth System Research Laboratory, Chemical Sciences Division, NOAA, Boulder, Colorado, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
| | - E. J. Dunlea
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, USA
| | - M. De Mazière
- Belgian Institute for Space Aeronomy, Brussels, Belgium
| | - D. W. T. Griffith
- School of Chemistry, University of Wollongong, Wollongong, Australia
| | - P. Bernath
- Department of Chemistry, University of York, York, UK
| | - J. L. Jimenez
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, USA
| | - P. O. Wennberg
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
48
|
Smith-Downey NV, Sunderland EM, Jacob DJ. Anthropogenic impacts on global storage and emissions of mercury from terrestrial soils: Insights from a new global model. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jg001124] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
|
50
|
Farina SC, Adams PJ, Pandis SN. Modeling global secondary organic aerosol formation and processing with the volatility basis set: Implications for anthropogenic secondary organic aerosol. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd013046] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|