1
|
Tiburcio PDB, Chen K, Xu L, Chen KS. Suppressing proteasome activity enhances sensitivity to actinomycin D in diffuse anaplastic Wilms tumor. Cell Rep Med 2025:102133. [PMID: 40347939 DOI: 10.1016/j.xcrm.2025.102133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 02/28/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025]
Abstract
Wilms tumor is the most common pediatric kidney cancer, and diffuse anaplastic Wilms tumor is the most chemoresistant subtype. Here, we explore how Wilms tumor cells evade the chemotherapy actinomycin D, which inhibits ribosomal RNA biogenesis. Using ribosome profiling, protein arrays, and a genome-wide knockout screen, we describe how actinomycin D disrupts protein homeostasis and blocks cell-cycle progression. When ribosomal capacity is limited by actinomycin D treatment, anaplastic Wilms tumor cells preferentially translate proteasome components. Next, we find that the proteasome inhibitor bortezomib sensitizes cells to actinomycin D treatment in vitro and prolongs survival in xenograft models. Lastly, increased levels of proteasome components are associated with anaplastic histology and worse prognosis in Wilms tumor patients. In sum, maintaining protein homeostasis is critical for Wilms tumor proliferation, and it can be therapeutically disrupted by blocking protein synthesis or turnover.
Collapse
Affiliation(s)
- Patricia D B Tiburcio
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Peter O'Donnell School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Quantitative Biomedical Research Center, Peter O'Donnell School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenneth S Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
Harinath G, Lee V, Nyquist A, Moel M, Wouters M, Hagemeier J, Verkennes B, Tacubao C, Nasher S, Kauppi K, Morgan SL, Isman A, Zalzala S. The bioavailability and blood levels of low-dose rapamycin for longevity in real-world cohorts of normative aging individuals. GeroScience 2025:10.1007/s11357-025-01532-w. [PMID: 39873920 DOI: 10.1007/s11357-025-01532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Rapamycin, also known as sirolimus, has demonstrated great potential for application in longevity medicine. However, the dynamics of low-dose rapamycin bioavailability, and any differences in bioavailability for different formulations (e.g., compounded or commercial), remain poorly understood. We thus explored rapamycin bioavailability in two real-world cohorts to begin providing a foundational understanding of differences in effects between formulations over time. The small trial study cohort was utilized to explore the blood rapamycin levels of commercial (n = 44, dosages 2, 3, 6, or 8 mg) or compounded (n = 23, dosages 5, 10, or 15 mg) rapamycin 24 h after dose self-administration. Results suggested dose-to-blood level relationships were linear for both formulations, though compounded had a lower bioavailability per milligram of rapamycin (estimated to be 31.03% of the same dose of commercial). While substantial inter-individual heterogeneity in blood rapamycin levels was observed for both formulations, repeat tests for individuals over time demonstrated relative consistency. Extending exploration to 316 real-world longevity rapamycin users from the AgelessRx Observational Research Database produced similar findings, and additionally suggested that blood rapamycin levels peak after 2 days with gradual decline thereafter. Taken together, our findings suggest that individualized dosing and routine monitoring of blood rapamycin levels should be utilized to ensure optimal dosing and efficacy for healthy longevity.
Collapse
Affiliation(s)
- Girish Harinath
- AgelessRx, Ann Arbor, MI, USA
- Division of Research and Applied Sciences, AgelessRx, Ann Arbor, MI, USA
| | - Virginia Lee
- AgelessRx, Ann Arbor, MI, USA
- Division of Research and Applied Sciences, AgelessRx, Ann Arbor, MI, USA
| | | | | | | | | | - Brandon Verkennes
- AgelessRx, Ann Arbor, MI, USA
- Data and Analytics Division, AgelessRx, Ann Arbor, MI, USA
| | - Colleen Tacubao
- AgelessRx, Ann Arbor, MI, USA
- Data and Analytics Division, AgelessRx, Ann Arbor, MI, USA
| | - Sayem Nasher
- AgelessRx, Ann Arbor, MI, USA
- Data and Analytics Division, AgelessRx, Ann Arbor, MI, USA
| | - Krister Kauppi
- Rapamycin Longevity Lab, Gothenburg, Västra Götaland County, Sweden
| | - Stefanie L Morgan
- AgelessRx, Ann Arbor, MI, USA.
- Division of Research and Applied Sciences, AgelessRx, Ann Arbor, MI, USA.
| | | | | |
Collapse
|
3
|
Minichmayr IK, Dreesen E, Centanni M, Wang Z, Hoffert Y, Friberg LE, Wicha SG. Model-informed precision dosing: State of the art and future perspectives. Adv Drug Deliv Rev 2024; 215:115421. [PMID: 39159868 DOI: 10.1016/j.addr.2024.115421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024]
Abstract
Model-informed precision dosing (MIPD) stands as a significant development in personalized medicine to tailor drug dosing to individual patient characteristics. MIPD moves beyond traditional therapeutic drug monitoring (TDM) by integrating mathematical predictions of dosing and considering patient-specific factors (patient characteristics, drug measurements) as well as different sources of variability. For this purpose, rigorous model qualification is required for the application of MIPD in patients. This review delves into new methods in model selection and validation, also highlighting the role of machine learning in improving MIPD, the utilization of biosensors for real-time monitoring, as well as the potential of models integrating biomarkers for efficacy or toxicity for precision dosing. The clinical evidence of TDM and MIPD is discussed for various medical fields including infection medicine, oncology, transplant medicine, and inflammatory bowel diseases, thereby underscoring the role of pharmacokinetics/pharmacodynamics and specific biomarkers. Further research, particularly randomized clinical trials, is warranted to corroborate the value of MIPD in enhancing patient outcomes and advancing personalized medicine.
Collapse
Affiliation(s)
- I K Minichmayr
- Dept. of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - E Dreesen
- Clinical Pharmacology and Pharmacotherapy Unit, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - M Centanni
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Z Wang
- Clinical Pharmacology and Pharmacotherapy Unit, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Y Hoffert
- Clinical Pharmacology and Pharmacotherapy Unit, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - L E Friberg
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - S G Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
4
|
Miyazaki T, Hayashi D, Nozawa A, Yasue S, Endo S, Ohnishi H, Asada R, Kato M, Fujino A, Kuroda T, Maekawa T, Fumino S, Kawakubo N, Tajiri T, Shimizu K, Sanada C, Hamada I, Ishikawa Y, Hasegawa M, Patel K, Xie Y, Ozeki M. Population pharmacokinetic analysis of sirolimus in Japanese pediatric and adult subjects receiving tablet or granule formulations. Drug Metab Pharmacokinet 2024; 59:101024. [PMID: 39427366 DOI: 10.1016/j.dmpk.2024.101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/16/2024] [Accepted: 05/29/2024] [Indexed: 10/22/2024]
Abstract
A population pharmacokinetic (PopPK) analysis was conducted using data from 215 Japanese administered oral sirolimus (tablet and granule) including healthy subjects and patients with intractable vascular anomalies and other diseases. The analysis included neonates, infants, and adults, and identified covariates that influence sirolimus pharmacokinetics (PK). The final model was used to predict sirolimus trough concentrations for various dosing regimens and covariates of interest. The results showed that sirolimus trough concentrations were predicted to increase with higher levels of hemoglobin, and that the granule formulation had a 1.23-fold higher exposure than the tablet formulation. Coadministration of CYP3A4 inducers was found to decrease trough concentrations by 54 %. The PK simulations showed that administration of the granule formulation at doses of 0.02, 0.04, 0.06, and 0.08 mg/kg/day in ages <3 months, 3 to <6 months, 6 to <12 months, and ≥1 year, respectively, resulted in >70 % target attainment within the therapeutic trough concentration range (5-15 ng/mL). In conclusion, incorporation of time-varying covariates (body weight and age) into the PopPK model appropriately predicted sirolimus concentrations in Japanese subjects from infants to adult sub-populations. This PopPK model would therefore be able to provide a reference for clinical individualization of sirolimus dosing.
Collapse
Affiliation(s)
- Taichi Miyazaki
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Daichi Hayashi
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Akifumi Nozawa
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Shiho Yasue
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Saori Endo
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Ryuta Asada
- Innovative and Clinical Research Promotion Center, Gifu University Hospital, Gifu, Japan
| | - Mototoshi Kato
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Akihiro Fujino
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Tatsuo Kuroda
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Takanobu Maekawa
- Department of General Pediatrics and Interdisciplinary Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Shigehisa Fumino
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naonori Kawakubo
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuro Tajiri
- Department of Pediatric Surgery, Reproductive and Developmental Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenji Shimizu
- Department of Clinical Development, Nobelpharma, Co., Ltd, Tokyo, Japan
| | - Chihiro Sanada
- Department of Clinical Development, Nobelpharma, Co., Ltd, Tokyo, Japan
| | - Izumi Hamada
- Department of Data Science, Nobelpharma, Co., Ltd, Tokyo, Japan
| | - Yuko Ishikawa
- Department of Data Science, Nobelpharma, Co., Ltd, Tokyo, Japan
| | | | | | | | - Michio Ozeki
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan.
| |
Collapse
|
5
|
Hu YH, Zhao YT, Guo HL, Li Y, Zhang YY, Wang J, Ding XS, Zou JJ, Chen F. Therapeutic Drug Monitoring for Sirolimus in Children with Vascular Anomalies: What Can We Learn from a Retrospective Study. Pharmaceuticals (Basel) 2024; 17:1255. [PMID: 39458895 PMCID: PMC11510395 DOI: 10.3390/ph17101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/07/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Objectives: Sirolimus (SRL), a mammalian target of rapamycin inhibitor, has been widely used to treat patients with vascular anomalies (VAs). The objectives of this study were to summarize the routine blood SRL monitoring data for VAs children, to investigate the factors contributing to the variable blood SRL concentrations and to evaluate the efficacy and safety of SRL therapy. Methods: VAs patients with routine blood SRL monitoring from July 2017 to April 2022 at the Department of Burns and Plastic Surgery, Children's Hospital of Nanjing Medical University were retrospectively collected. Clinical data were obtained from the hospital information system. Results: In total, 67 children (35 females) were enrolled. The therapeutic drug monitoring data showed that the range of measured blood trough concentrations (Ctrough) was 3.6-46.8 ng/mL. At the initial measurements, only 33% of patients were in the target concentration range (10-15 ng/mL). But this proportion became 54% at the last measurements. The whole blood-Ctrough-to-daily dose (Ctrough/Dose) ratio was significantly associated with age and body weight (BW). The patients' laboratory results did not change significantly after SRL treatment. Although the incidence of adverse events was relatively high (44.8%), most of them were mild and tolerable. 70.3% patients had total responses to SRL, whereas 29.7% children exhibited stable disease or progressive disease. No significant differences were found in Ctrough between the total response group and non-response group. Conclusions: This retrospective study revealed a high variability in SRL blood concentrations in Chinese children with VAs. Of note, pediatric patients with older age and a higher BW had a lower Ctrough/Dose ratio. It is a concern whether the range of 10-15 ng/mL is feasible for Chinese children based only on our study. Further studies recruiting more patients are required to redefine the target reference range for children with VAs.
Collapse
Affiliation(s)
- Ya-Hui Hu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Yue-Tao Zhao
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hong-Li Guo
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Yue Li
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Yuan-Yuan Zhang
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Jie Wang
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Xuan-Sheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ji-Jun Zou
- Department of Burns and Plastic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Feng Chen
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| |
Collapse
|
6
|
Fan L, Guo HL, Zhao YT, Li Y, Wang WJ, Huang J, Hu YH, Zou JJ, Chen F. Population pharmacokinetic study in children with vascular anomalies: body weight as a key variable in predicting the initial dose and dosing frequency of sirolimus. Front Pharmacol 2024; 15:1457614. [PMID: 39380905 PMCID: PMC11458483 DOI: 10.3389/fphar.2024.1457614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024] Open
Abstract
Background The main challenges faced when using sirolimus in children with vascular anomalies (VAs) still include significant pharmacokinetic (PK) variability, uncertainty in the target concentration range, as well as inconsistencies in initial dosing and dosing frequency. The aim of this study is to establish a new population pharmacokinetic (PPK) model for children with VAs to guide the individualized use of sirolimus. Methods A PPK study was performed using data from children with VAs who received sirolimus between July 2017 and April 2022. A nonlinear mixed-effect modeling with a one-compartment model structure was applied. Monte Carlo simulation was employed to propose specific dosing recommendations to achieve the target trough concentrations (C trough) of 5-15 ng/mL. Results In total, 134 blood concentrations from 49 pediatric patients were used to characterize the sirolimus pharmacokinetics. Covariate analysis identified body weight (BW) as a significant factor affecting clearance (CL) in the final PPK model. The typical clearance rate and distribution volume, standardized to a BW of 16 kg, were 4.06 L/h (4% relative standard error, RSE) and 155 L (26% RSE), respectively. Optimal dosing regimens were simulated for different BWs. For a twice-daily regimen, the recommended doses were 0.05, 0.06, 0.07, and 0.08 mg/kg/day for BW of <10, 10-20, 20-40, and ≥40 kg, respectively; for a once-daily regimen, the recommended doses were 0.06, 0.07, 0.08, and 0.09 mg/kg/day for BW of <10, 10-30, 30-50, and ≥50 kg, respectively. Notably, sirolimus C trough could be maintained between 5-15 ng/mL across various dosing frequencies based on the recommended dosing regimen. Conclusion We established a PPK model of sirolimus for children with VAs and proposed an initial dosing strategy. Integrating initial dose and medication frequency recommendations into sirolimus' guidelines will broaden its clinical options and simplify the clinical management for childhood VAs.
Collapse
Affiliation(s)
- Lin Fan
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Hong-Li Guo
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yue-Tao Zhao
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yue Li
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Wei-Jun Wang
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jian Huang
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ya-Hui Hu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ji-Jun Zou
- Department of Burns and Plastic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Ntobe-Bunkete B, Lemaitre F. Therapeutic drug monitoring in kidney and liver transplantation: current advances and future directions. Expert Rev Clin Pharmacol 2024; 17:505-514. [PMID: 38725273 DOI: 10.1080/17512433.2024.2354276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 05/08/2024] [Indexed: 05/24/2024]
Abstract
INTRODUCTION Immunosuppressive drugs (ISD) present a narrow therapeutic window and extremely high inter- and intra-individual pharmacokinetic variability, which complicates their use in solid organ transplant recipients. In order to find a narrow appropriate equilibrium for each patient with the aim of maintaining clinical efficacy and reducing the risk of adverse drug reactions, a complex both clinical and biological monitoring is required, in particular through the use of therapeutic drug monitoring (TDM). AREA COVERED This review provides an overview of the available information on the relationship between exposure to immunosuppressive drugs and their efficacy and/or toxicity in kidney and liver transplantation. The aim of the review is to describe the pharmacodynamic/pharmacokinetic relationship that exists for immunosuppressive drugs, to summarize the studies that assess the value of TDM for these drugs in clinical practice, and to present the target and monitoring strategies aimed at optimizing patient immunosuppression, which could help to take a step forward in the field of solid organ transplant patient care. EXPERT OPINION To improve the care of transplant patients, several TDM innovations can be pursued by investigators. Among these, the development of microsampling methods for TDM or the combination of pharmacodynamic biomarkers with ISD exposure measurements appear to be relevant strategies.
Collapse
Affiliation(s)
- Béni Ntobe-Bunkete
- Univ Rennes, CHU Rennes, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR S 1085, Rennes, France
- INSERM, Centre d'Investigation Clinique 1414, Rennes, France
| | - Florian Lemaitre
- Univ Rennes, CHU Rennes, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR S 1085, Rennes, France
- INSERM, Centre d'Investigation Clinique 1414, Rennes, France
- FHU SUPORT, Rennes, France
| |
Collapse
|
8
|
Rashid S, Dimitriadi M. Autophagy in spinal muscular atrophy: from pathogenic mechanisms to therapeutic approaches. Front Cell Neurosci 2024; 17:1307636. [PMID: 38259504 PMCID: PMC10801191 DOI: 10.3389/fncel.2023.1307636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder caused by the depletion of the ubiquitously expressed survival motor neuron (SMN) protein. While the genetic cause of SMA has been well documented, the exact mechanism(s) by which SMN depletion results in disease progression remain elusive. A wide body of evidence has highlighted the involvement and dysregulation of autophagy in SMA. Autophagy is a highly conserved lysosomal degradation process which is necessary for cellular homeostasis; defects in the autophagic machinery have been linked with a wide range of neurodegenerative disorders, including amyotrophic lateral sclerosis, Alzheimer's disease and Parkinson's disease. The pathway is particularly known to prevent neurodegeneration and has been suggested to act as a neuroprotective factor, thus presenting an attractive target for novel therapies for SMA patients. In this review, (a) we provide for the first time a comprehensive summary of the perturbations in the autophagic networks that characterize SMA development, (b) highlight the autophagic regulators which may play a key role in SMA pathogenesis and (c) propose decreased autophagic flux as the causative agent underlying the autophagic dysregulation observed in these patients.
Collapse
Affiliation(s)
| | - Maria Dimitriadi
- School of Life and Medical Science, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|
9
|
Park YA, Park J, Yee J, Gwak HS. Effects of CYP3A5 Genetic Polymorphisms on the Weight-adjusted through Concentration of Sirolimus in Renal Transplant Recipients: A Systematic Review and Meta-analysis. Curr Pharm Des 2024; 30:3108-3115. [PMID: 39171589 DOI: 10.2174/0113816128324199240730093415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Sirolimus, one of the immunosuppressive drugs administered to renal transplant recipients, is metabolized by cytochrome P450 (CYP) 3A5. Accordingly, CYP3A5 polymorphism is a genetic factor affecting sirolimus pharmacokinetics (PK). Therefore, we conducted a systematic review and meta-analysis on the association between sirolimus PK and CYP3A5*3 polymorphism. METHODS We searched for studies published up to 13 June 2024 from PubMed, Embase, Cochrane Library, and Web of Science. We reviewed studies on the relationship between CYP3A5*3 polymorphism and weightadjusted trough concentration/dose (C0 /D) ratio and dosage of sirolimus in renal transplant recipients, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We evaluated mean differences (MDs) and 95% confidence intervals (CIs). RESULTS A total of seven studies were included. The weight-adjusted C0 /D ratio of sirolimus was significantly higher in patients with the CYP3A5*3/*3 rather than CYP3A5*1/*1 or CYP3A5*1/*3 genotype (MD 95.27 ng/mL per mg/kg; 95% CI: 58.06, 132.47; I2 = 74%; p < 0.00001). Also, the weight-adjusted dosage of sirolimus was significantly lower in patients with the CYP3A5*3/*3 rather than CYP3A5*1/*1 or CYP3A5*1/*3 genotype (MD -2.60 × 10-3 mg/kg; 95% CI: -4.52, -0.69; I2 = 44%; p = 0.008). CONCLUSION Our meta-analysis showed a significant effect for the CYP3A5*3 genotype on weight-adjusted C0 /D ratio and dosage of sirolimus in adult renal transplant recipients.
Collapse
Affiliation(s)
- Yoon-A Park
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Juyeong Park
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jeong Yee
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, South Korea
| | - Hye Sun Gwak
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| |
Collapse
|
10
|
Zhang Z, Hu Q, Yang C, Chen M, Han B. Sirolimus is effective for primary refractory/relapsed warm autoimmune haemolytic anaemia/Evans syndrome: a retrospective single-center study. Ann Med 2023; 55:2282180. [PMID: 37967535 PMCID: PMC10653746 DOI: 10.1080/07853890.2023.2282180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Some patients with warm autoimmune haemolytic anaemia (wAIHA) or Evans syndrome (ES) have no response to glucocorticoid or relapse. Recent studies found that sirolimus was effective in autoimmune cytopenia with a low relapse rate. METHODS Data from patients with refractory/relapsed wAIHA and ES in Peking Union Medical College Hospital from July 2016 to May 2022 who had been treated with sirolimus for at least 6 months and followed up for at least 12 months were collected retrospectively. Baseline and follow-up clinical data were recorded and the rate of complete response (CR), partial response (PR) at different time points, adverse events, relapse, outcomes, and factors that may affect the efficacy and relapse were analyzed. RESULTS There were 44 patients enrolled, with 9 (20.5%) males and a median age of 44 (range: 18-86) years. 37 (84.1%) patients were diagnosed as wAIHA, and 7 (15.9%) as ES. Patients were treated with sirolimus for a median of 23 (range: 6-80) months and followed up for a median of 25 (range: 12-80) months. 35 (79.5%) patients responded to sirolimus, and 25 (56.8%) patients achieved an optimal response of CR. Mucositis (11.4%), infection (9.1%), and alanine aminotransferase elevation (9.1%) were the most common adverse events. 5/35 patients (14.3%) relapsed at a median of 19 (range: 15-50) months. Patients with a higher sirolimus plasma trough concentration had a higher overall response (OR) and CR rate (p = 0.009, 0.011, respectively). At the time of enrolment, patients were divided into two subgroups that relapsed or refractory to glucocorticoid, and the former had poorer relapse-free survival (p = 0.032) than the other group. CONCLUSION Sirolimus is effective for patients with primary refractory/relapsed wAIHA and ES, with a low relapse rate and mild side effects. Patients with a higher sirolimus plasma trough concentration had a higher OR and CR rate, and patients who relapsed to glucocorticoid treatment had poorer relapse-free survival than those who were refractory.
Collapse
Affiliation(s)
- Zhuxin Zhang
- Department of Hematology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Science, Beijing, China
| | - Qinglin Hu
- Department of Hematology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Science, Beijing, China
| | - Chen Yang
- Department of Hematology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Science, Beijing, China
| | - Miao Chen
- Department of Hematology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Science, Beijing, China
| | - Bing Han
- Department of Hematology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
11
|
Shen G, Moua KTY, Perkins K, Johnson D, Li A, Curtin P, Gao W, McCune JS. Precision sirolimus dosing in children: The potential for model-informed dosing and novel drug monitoring. Front Pharmacol 2023; 14:1126981. [PMID: 37021042 PMCID: PMC10069443 DOI: 10.3389/fphar.2023.1126981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/14/2023] [Indexed: 04/07/2023] Open
Abstract
The mTOR inhibitor sirolimus is prescribed to treat children with varying diseases, ranging from vascular anomalies to sporadic lymphangioleiomyomatosis to transplantation (solid organ or hematopoietic cell). Precision dosing of sirolimus using therapeutic drug monitoring (TDM) of sirolimus concentrations in whole blood drawn at the trough (before the next dose) time-point is the current standard of care. For sirolimus, trough concentrations are only modestly correlated with the area under the curve, with R 2 values ranging from 0.52 to 0.84. Thus, it should not be surprising, even with the use of sirolimus TDM, that patients treated with sirolimus have variable pharmacokinetics, toxicity, and effectiveness. Model-informed precision dosing (MIPD) will be beneficial and should be implemented. The data do not suggest dried blood spots point-of-care sampling of sirolimus concentrations for precision dosing of sirolimus. Future research on precision dosing of sirolimus should focus on pharmacogenomic and pharmacometabolomic tools to predict sirolimus pharmacokinetics and wearables for point-of-care quantitation and MIPD.
Collapse
Affiliation(s)
- Guofang Shen
- Department of Hematologic Malignancies Translational Sciences, City of Hope, and Department of Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, United States
| | - Kao Tang Ying Moua
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| | - Kathryn Perkins
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| | - Deron Johnson
- Clinical Informatics, City of Hope Medical Center, Duarte, CA, United States
| | - Arthur Li
- Division of Biostatistics, City of Hope, Duarte, CA, United States
| | - Peter Curtin
- Department of Hematologic Malignancies Translational Sciences, City of Hope, and Department of Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, United States
| | - Wei Gao
- Division of Engineering and Applied Science, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Jeannine S. McCune
- Department of Hematologic Malignancies Translational Sciences, City of Hope, and Department of Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, United States
| |
Collapse
|
12
|
Harbers VEM, Zwerink LGJM, Rongen GA, Klein WM, van der Vleuten CJM, van Rijnsoever IMP, Gerdsen-Drury L, Flucke UE, Verhoeven BH, de Laat PCJ, van der Horst CMAM, Schultze Kool LJ, Te Loo DMWM. Clinical differences in sirolimus treatment with low target levels between children and adults with vascular malformations - A nationwide trial. Clin Transl Sci 2023; 16:781-796. [PMID: 36824030 PMCID: PMC10176016 DOI: 10.1111/cts.13488] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/14/2023] [Accepted: 01/27/2023] [Indexed: 02/25/2023] Open
Abstract
The clinical presentation of patients with slow-flow vascular malformations is very heterogeneous. High clinical burden and subsequent reduced health-related quality of life is something they have in common. There is an unmet medical need for these patients for whom regular treatments like surgery and embolization are either insufficient or technically impossible. Sirolimus has been reported to be effective and overall well-tolerated in most patients. However, the main limitation of sirolimus is the reported high toxicity, especially when target levels of 10-15 ng/mL are being used. We report the results of a phase IIB single-arm open-label clinical trial consisting of 68 (67 in the challenge phase and 68 in the rechallenge phase) evaluable patients (children n = 33 and adults n = 35) demonstrating that treatment with low sirolimus target levels (4-10 ng/mL) is effective in 79.1% of the patients. When sirolimus treatment was stopped, the majority of patients experienced a recurrence of symptoms, supporting prolonged or even lifelong treatment requirement. Adults experienced a higher baseline pain score compared with children, having an estimated marginal mean of 6.2 versus 4.1, p < 0.05; however, they showed a similar decrease to children. Furthermore, the pediatric population experienced less often a sirolimus-related grade I-IV adverse event (35.9% vs. 64.1%, p > 0.05) compared with adults. Additionally, response rates were higher in children compared with adults (93.8% vs. 65.7%, p < 0.05), and children responded faster (28 vs. 91 days, p < 0.05). These results suggest benefits of sirolimus in patients with slow-flow vascular malformations and support its initiation as young as possible.
Collapse
Affiliation(s)
- Veroniek E M Harbers
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center of Expertise HECOVAN, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lilly G J M Zwerink
- Radboudumc Center of Expertise HECOVAN, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerard A Rongen
- Department of Internal Medicine and Pharmacology-Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Willemijn M Klein
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center of Expertise HECOVAN, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carine J M van der Vleuten
- Radboudumc Center of Expertise HECOVAN, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands.,VASCERN ERN on Rare Multisystemic Vascular Diseases, Healthcare Provider Coordinator: Assistance Publique-Hôpitaux de Paris, Hôpital Bichat-Claude Bernard, Centre de Réference (CRMR) Syndromes de Marfan et apparentés, Paris, France
| | - Ingrid M P van Rijnsoever
- Radboudumc Center of Expertise HECOVAN, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lynda Gerdsen-Drury
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Uta E Flucke
- Radboudumc Center of Expertise HECOVAN, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bas H Verhoeven
- Radboudumc Center of Expertise HECOVAN, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter C J de Laat
- Department of Pediatric Oncology, WEVAR-Team Rotterdam Erasmus MC-Sophia, Rotterdam, The Netherlands
| | - Chantal M A M van der Horst
- Department of Plastic Reconstructive and Hand Surgery, AVA-Team, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Leo J Schultze Kool
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboudumc Center of Expertise HECOVAN, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands.,VASCERN ERN on Rare Multisystemic Vascular Diseases, Healthcare Provider Coordinator: Assistance Publique-Hôpitaux de Paris, Hôpital Bichat-Claude Bernard, Centre de Réference (CRMR) Syndromes de Marfan et apparentés, Paris, France
| | - D Maroeska W M Te Loo
- Radboudumc Center of Expertise HECOVAN, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pediatric Hematology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Thieme CJ, Schulz M, Wehler P, Anft M, Amini L, Blàzquez-Navarro A, Stervbo U, Hecht J, Nienen M, Stittrich AB, Choi M, Zgoura P, Viebahn R, Schmueck-Henneresse M, Reinke P, Westhoff TH, Roch T, Babel N. In vitro and in vivo evidence that the switch from calcineurin to mTOR inhibitors may be a strategy for immunosuppression in Epstein-Barr virus-associated post-transplant lymphoproliferative disorder. Kidney Int 2022; 102:1392-1408. [PMID: 36103953 DOI: 10.1016/j.kint.2022.08.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 01/12/2023]
Abstract
Post-transplant lymphoproliferative disorder is a life-threatening complication of immunosuppression following transplantation mediated by failure of T cells to control Epstein-Barr virus (EBV)-infected and transformed B cells. Typically, a modification or reduction of immunosuppression is recommended, but insufficiently defined thus far. In order to help delineate this, we characterized EBV-antigen-specific T cells and lymphoblastoid cell lines from healthy donors and in patients with a kidney transplant in the absence or presence of the standard immunosuppressants tacrolimus, cyclosporin A, prednisolone, rapamycin, and mycophenolic acid. Phenotypes of lymphoblastoid cell-lines and T cells, T cell-receptor-repertoire diversity, and T-cell reactivity upon co-culture with autologous lymphoblastoid cell lines were analyzed. Rapamycin and mycophenolic acid inhibited lymphoblastoid cell-line proliferation. T cells treated with prednisolone and rapamycin showed nearly normal cytokine production. Proliferation and the viability of T cells were decreased by mycophenolic acid, while tacrolimus and cyclosporin A were strong suppressors of T-cell function including their killing activity. Overall, our study provides a basis for the clinical decision for the modification and reduction of immunosuppression and adds information to the complex balance of maintaining anti-viral immunity while preventing acute rejection. Thus, an immunosuppressive regime based on mTOR inhibition and reduced or withdrawn calcineurin inhibitors could be a promising strategy for patients with increased risk of or manifested EBV-associated post-transplant lymphoproliferative disorder.
Collapse
Affiliation(s)
- Constantin J Thieme
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Malissa Schulz
- Hochschule für Technik und Wirtschaft Berlin (HTW), Berlin, Germany
| | - Patrizia Wehler
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Moritz Anft
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Leila Amini
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Arturo Blàzquez-Navarro
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Ulrik Stervbo
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Jochen Hecht
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain; Experimental and Health Sciences Department, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mikalai Nienen
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Mira Choi
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Panagiota Zgoura
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Richard Viebahn
- Department of Surgery, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Michael Schmueck-Henneresse
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Petra Reinke
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Timm H Westhoff
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Toralf Roch
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Nina Babel
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany; Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany.
| |
Collapse
|
14
|
Zhao YT, Dai HR, Li Y, Zhang YY, Guo HL, Ding XS, Hu YH, Chen F. Comparison of LC-MS/MS and EMIT methods for the precise determination of blood sirolimus in children with vascular anomalies. Front Pharmacol 2022; 13:925018. [PMID: 36147342 PMCID: PMC9486013 DOI: 10.3389/fphar.2022.925018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Sirolimus (SRL) is a mammalian target of rapamycin (mTOR) inhibitor. The whole blood concentration of SRL is routinely monitored to tailor dosage and prevent toxicity. Currently, the enzyme multiplied immunoassay technique (EMIT) is often applied to perform therapeutic drug monitoring (TDM) of SRL, but the cross-reactivity with various metabolites is of great concern. A more specific method is required, such as liquid chromatography–tandem mass spectrometry (LC-MS/MS). However, no study on the method comparison of the EMIT and LC-MS/MS for the measurement of whole blood SRL concentration in children with vascular anomalies has been reported. This study developed a simple and sensitive LC-MS/MS assay for the determination of SRL. Meanwhile, consistency between LC-MS/MS and the EMIT was evaluated by linear regression and Bland–Altman analysis. Whole blood samples were deproteinized with methanol for erythrocyte lysis, and the resulting solution was injected into the LC-MS/MS system using the positive electrospray ionization mode. The multiple reaction monitoring transitions of m/z 931.7 → 864.6 and m/z 934.7 → 864.6 were used for SRL and SRL-d3 as the internal standards, respectively. The analytes were separated on a C18 column with a gradient mobile phase (0.1 mM formic acid and 0.05 mM ammonium acetate in methanol/ultrapure water). Blood samples collected from children with vascular anomalies undergoing SRL therapy were tested by EMIT and by LC-MS/MS. The linear range of LC-MS/MS was 0.500–50.0 ng/ml and that of the EMIT was 3.50–30.0 ng/ml. A significant positive correlation between the two assays was established with a regression equation described as [EMIT] = 1.281 × [LC−MS/MS] + 2.450 (r = 0.8361). Bland–Altman plots showed a mean concentration overestimation of 4.7 ng/ml [95% CI: (−3.1, 12.6)] and a positive bias of 63.1% [95% CI: (−36.1, 162.3)] generated by the EMIT more than that of by LC-MS/MS. In conclusion, the two methods were closely correlated, indicating that switching between the two methods is feasible. Considering the overestimation nature of the EMIT assay, switching from the EMIT to the LC-MS/MS method deserves close attention and necessary re-evaluation for the target therapeutic reference range, may be required when methods are switched within the same clinical laboratory or results are compared between different laboratories.
Collapse
Affiliation(s)
- Yue-Tao Zhao
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao-Ran Dai
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yue Li
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan-Yuan Zhang
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Hong-Li Guo
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xuan-Sheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ya-Hui Hu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Ya-Hui Hu, ; Feng Chen,
| | - Feng Chen
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Ya-Hui Hu, ; Feng Chen,
| |
Collapse
|
15
|
Hartinger JM, Ryšánek P, Slanař O, Šíma M. Pharmacokinetic principles of dose adjustment of mTOR inhibitors in solid organ transplanted patients. J Clin Pharm Ther 2022; 47:1362-1367. [PMID: 35934622 DOI: 10.1111/jcpt.13753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 07/17/2022] [Indexed: 11/24/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVES mTOR inhibitors possess narrow therapeutic range and substantial pharmacokinetic variability and the consequences from suboptimal dosing are serious. The aim of this review is to summarize the current knowledge about the factors influencing mTOR inhibitors pharmacokinetics and the possibility of using these relationships in order to improve its therapy individualization in solid organ transplanted patients. METHODS Literature search from Pubmed and Web of Science databases were performed using Boolean search operators in order to identify relevant studies. RESULTS AND DISCUSSION A total of 701 reports were identified from the initial literature search. Out of which 40 studies dealt with relationships between various factors and pharmacokinetics of mTOR inhibitors and with relevance of these associations for dosage optimization. WHAT IS NEW AND CONCLUSION The overview of the current covariates for pharmacokinetic variability of mTOR inhibitors has been provided on the level of absorption, distribution and elimination, and consequences of these relationships for dosing optimization has been summarized.
Collapse
Affiliation(s)
- Jan Miroslav Hartinger
- Department of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague 2, Czech Republic
| | - Pavel Ryšánek
- Department of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague 2, Czech Republic
| | - Ondřej Slanař
- Department of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague 2, Czech Republic
| | - Martin Šíma
- Department of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague 2, Czech Republic
| |
Collapse
|
16
|
Li S, Zhan M, Wu S, Liao J, Xu H, Sun D, Zhao X, Wang Y. Population Pharmacokinetic Analysis and Dosing Optimization of Sirolimus in Children With Tuberous Sclerosis Complex. J Clin Pharmacol 2022; 62:948-959. [PMID: 35094415 DOI: 10.1002/jcph.2033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/25/2022] [Indexed: 02/05/2023]
Abstract
Sirolimus is confirmed to be effective in the treatment of tuberous sclerosis complex (TSC) and related disorders. The study aims to establish a population pharmacokinetic model of oral sirolimus for children with TSC and provide an evidence-based approach for individualization of sirolimus dosing in the pediatric population. A total of 64 children were recruited in this multicenter, retrospective pharmacokinetic study. Whole-blood concentrations of sirolimus, demographic, and clinical information were collected and analyzed using a nonlinear mixed-effects population modeling method. The final model was internally and externally validated. Then Monte Carlo simulations were performed to evaluate and optimize the dosing regimens. In addition, the efficacy and safety of sirolimus therapy was assessed retrospectively in patients with epilepsy or cardiac rhabdomyomas associated with TSC. Finally, the sirolimus pharmacokinetic profile was described by a 1-compartment model with first-order absorption and elimination along with body weight and total daily dose as significant covariates. The typical population parameter estimates of apparent volume of distribution and apparent clearance were 69.48 L and 2.79 L/h, respectively. Simulations demonstrated that dosage regimens stratified by body surface area may be more appropriate for children with TSC. These findings could be used to inform individualized dosing strategies of sirolimus for pediatric patients with TSC.
Collapse
Affiliation(s)
- SiChan Li
- Department of Clinical Pharmacy, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Clinical Medical Research Center for Neurodevelopmental Disabilities in Children, Hubei Province, People's Republic of China
| | - Min Zhan
- Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - SanLan Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - JianXiang Liao
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Hua Xu
- Department of Clinical Pharmacy, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Dan Sun
- Clinical Medical Research Center for Neurodevelopmental Disabilities in Children, Hubei Province, People's Republic of China
- Department of Neurology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xia Zhao
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Yang Wang
- Department of Clinical Pharmacy, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Clinical Medical Research Center for Neurodevelopmental Disabilities in Children, Hubei Province, People's Republic of China
| |
Collapse
|
17
|
Cuadrado-Payán E, Diekmann F, Cucchiari D. Medical Aspects of mTOR Inhibition in Kidney Transplantation. Int J Mol Sci 2022; 23:ijms23147707. [PMID: 35887051 PMCID: PMC9322634 DOI: 10.3390/ijms23147707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 11/16/2022] Open
Abstract
The advances in transplant immunosuppression have reduced substantially the incidence of kidney graft rejection. In recent years, the focus has moved from preventing rejection to preventing the long-term consequences of long-standing immunosuppression, including nephrotoxicity induced by calcineurin inhibitors (CNI), as well as infectious and neoplastic complications. Since the appearance in the late 1990s of mTOR inhibitors (mTORi), these unmet needs in immunosuppression management could be addressed thanks to their benefits (reduced rate of viral infections and cancer). However, management of side effects can be troublesome and hands-on experience is needed. Here, we review all the available information about them. Thanks to all the basic, translational and clinical research achieved in the last twenty years, we now use mTORi as de novo immunosuppression in association with CNI. Another possibility is represented by the conversion of either CNI or mycophenolate (MPA) to an mTORi later on after transplantation in low-risk kidney transplant recipients.
Collapse
Affiliation(s)
- Elena Cuadrado-Payán
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, 08036 Barcelona, Spain; (E.C.-P.); (F.D.)
| | - Fritz Diekmann
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, 08036 Barcelona, Spain; (E.C.-P.); (F.D.)
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Red de Investigación Renal (REDINREN), 28029 Madrid, Spain
| | - David Cucchiari
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, 08036 Barcelona, Spain; (E.C.-P.); (F.D.)
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-932-2744103474
| |
Collapse
|
18
|
Harbers VEM, van der Salm N, Pegge SAH, van der Vleuten CJM, Verhoeven BH, Vrancken SLAG, Schultze Kool LJ, Fuijkschot J, te Loo DMMWM. Effective low-dose sirolimus regimen for kaposiform haemangioendothelioma with Kasabach-Merritt phenomenon in young infants. Br J Clin Pharmacol 2022; 88:2769-2781. [PMID: 34957601 PMCID: PMC9303919 DOI: 10.1111/bcp.15202] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/29/2022] Open
Abstract
AIMS Management of kaposiform haemangioendotheliomas (KHE) with Kasabach-Merritt phenomenon is challenging in young infants who are subjected to developmental pharmacokinetic changes. Sirolimus, sometimes combined with corticosteroids, can be used as an effective treatment of KHE. Simultaneously, toxicities such as interstitial pneumonitis related to the use of sirolimus may be fatal. As infants have a very low CYP3-enzyme expression at birth, which rises during ageing, we hypothesize that a reduced metabolization of sirolimus might lead to high sirolimus serum levels and low dose may be sufficient without the side effects. METHODS A case series of 5 infants with kaposiform haemangioendothelioma with Kasabach-Merritt phenomenon was analysed retrospectively. All infants were treated with sirolimus 0.2 mg/m2 every 24 or 48 hours according to their age. Prednisone was added to the therapy for additional effect in 4 patients. RESULTS In all patients, low dose of sirolimus led to therapeutic sirolimus levels (4-6 ng/mL). All infants (aged 4 days-7 months) had a complete haematological response, without serious adverse events. In all patients, the Kasabach-Merritt phenomenon resolved, the coagulation profile normalized and tumour size reduction was seen. CONCLUSION Low-dose sirolimus treatment is safe for infants with kaposiform haemangioendothelioma and Kasabach-Merritt phenomenon. It is essential to realize that during the first months of life, metabolism is still developing and enzymes necessary to metabolise drugs like sirolimus still have to mature. To avoid toxic levels, the sirolimus dosage should be based on age and the associated pharmacological developments.
Collapse
Affiliation(s)
| | | | - Sjoert A. H. Pegge
- Radboud University Medical centre (Radboudumc)NijmegenGelderlandthe Netherlands
| | | | - Bas H. Verhoeven
- Radboud University Medical centre (Radboudumc)NijmegenGelderlandthe Netherlands
| | | | | | - Joris Fuijkschot
- Radboud University Medical centre (Radboudumc)NijmegenGelderlandthe Netherlands
| | | |
Collapse
|
19
|
Zhang C, Tam TW, Chau MK, García Córdoba CA, Yung S, Chan TM. Effect of Combined Mycophenolate and Rapamycin Treatment on Kidney Fibrosis in Murine Lupus Nephritis. Front Pharmacol 2022; 13:866077. [PMID: 35571122 PMCID: PMC9095843 DOI: 10.3389/fphar.2022.866077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Background: A significant proportion of lupus nephritis patients develop chronic kidney disease (CKD) and progressive kidney fibrosis, for which there is no specific treatment. We previously reported that mycophenolate or rapamycin monotherapy showed comparable efficacy in suppressing kidney fibrosis in a murine model of lupus nephritis through their direct action on mesangial cells. We extended our study to investigate the effect of combined mycophenolate and rapamycin treatment (MR) on kidney fibrosis in NZBWF1/J mice. Methods: Female NZBWF1/J mice with active nephritis were randomized to receive vehicle or treatment with mycophenolate (50 mg/kg/day) and rapamycin (1.5 mg/kg/day) (MR) for up to 12 weeks, and the effect of treatment on clinical parameters, kidney histology, and fibrotic processes was investigated. Results: Progression of nephritis in untreated mice was accompanied by mesangial proliferation, glomerulosclerosis, tubular atrophy, protein cast formation, increased mTOR and ERK phosphorylation, and induction of TGF-β1, IL-6, α-smooth muscle actin, fibronectin, and collagen expression. Combined MR treatment prolonged survival, improved kidney function, decreased anti-dsDNA antibody level, and ameliorated histopathological changes. The effect of combined MR treatment on kidney histology and function was comparable to that of mycophenolate or rapamycin monotherapy. In vitro studies in human mesangial cells showed that exogenous TGF-β1 and IL-6 both induced mTOR and ERK phosphorylation and downstream fibrotic processes. Both mycophenolic acid and rapamycin inhibited inflammatory and fibrotic processes induced by TGF-β1 or IL-6 by downregulating mTOR and ERK phosphorylation. Conclusions: Our findings indicate that combined mycophenolate and rapamycin, at reduced dose, improves kidney fibrosis in murine lupus nephritis through their distinct effect on mTOR and ERK signaling in mesangial cells.
Collapse
Affiliation(s)
- Chenzhu Zhang
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Tsz Wai Tam
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Mel Km Chau
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | | | - Susan Yung
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Tak Mao Chan
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
20
|
Immunosuppression in Lung Transplantation. Handb Exp Pharmacol 2021; 272:139-164. [PMID: 34796380 DOI: 10.1007/164_2021_548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Immunosuppression in lung transplantation is an area devoid of robust clinical data. This chapter will review the history of immunosuppression in lung transplantation. Additionally, it will evaluate the three classes of induction, maintenance, and rescue immunosuppression in detail. Induction immunosuppression in lung transplantation aims to decrease incidence of lung allograft rejection, however infectious risk must be considered when determining if induction is appropriate and which agent is most favorable. Similar to other solid organ transplant patient populations, a multi-drug approach is commonly prescribed for maintenance immunosuppression to minimize single agent drug toxicities. Emphasis of this review is placed on key medication considerations including dosing, adverse effects, and drug interactions. Clinical considerations will be reviewed per drug class given available literature. Finally, acute cellular, antibody mediated, and chronic rejection are reviewed.
Collapse
|
21
|
Seyfinejad B, Jouyban A. Overview of therapeutic drug monitoring of immunosuppressive drugs: Analytical and clinical practices. J Pharm Biomed Anal 2021; 205:114315. [PMID: 34399192 DOI: 10.1016/j.jpba.2021.114315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/16/2021] [Accepted: 08/05/2021] [Indexed: 01/04/2023]
Abstract
Immunosuppressant drugs (ISDs) play a key role in short-term patient survival together with very low acute allograft rejection rates in transplant recipients. Due to the narrow therapeutic index and large inter-patient pharmacokinetic variability of ISDs, therapeutic drug monitoring (TDM) is needed to dose adjustment for each patient (personalized medicine approach) to avoid treatment failure or side effects of the therapy. To achieve this, TDM needs to be done effectively. However, it would not be possible without the proper clinical practice and analytical tools. The purpose of this review is to provide a guide to establish reliable TDM, followed by a critical overview of the current analytical methods and clinical practices for the TDM of ISDs, and to discuss some of the main practical aspects of the TDM.
Collapse
Affiliation(s)
- Behrouz Seyfinejad
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Near East University, PO BOX: 99138 Nicosia, North Cyprus, Mersin 10, Turkey.
| |
Collapse
|
22
|
Zwart TC, Guchelaar HJ, van der Boog PJM, Swen JJ, van Gelder T, de Fijter JW, Moes DJAR. Model-informed precision dosing to optimise immunosuppressive therapy in renal transplantation. Drug Discov Today 2021; 26:2527-2546. [PMID: 34119665 DOI: 10.1016/j.drudis.2021.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/21/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022]
Abstract
Immunosuppressive therapy is pivotal for sustained allograft and patient survival after renal transplantation. However, optimally balanced immunosuppressive therapy is challenged by between-patient and within-patient pharmacokinetic (PK) variability. This could warrant the application of personalised dosing strategies to optimise individual patient outcomes. Pharmacometrics, the science that investigates the xenobiotic-biotic interplay using computer-aided mathematical modelling, provides options to describe and quantify this PK variability and enables identification of patient characteristics affecting immunosuppressant PK and treatment outcomes. Here, we review and critically appraise the available pharmacometric model-informed dosing solutions for the typical immunosuppressants in modern renal transplantation, to guide their initial and subsequent dosing.
Collapse
Affiliation(s)
- Tom C Zwart
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands; Leiden Network for Personalised Therapeutics, Leiden, the Netherlands
| | - Paul J M van der Boog
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands; LUMC Transplant Center, Leiden University Medical Center, Leiden, the Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands; Leiden Network for Personalised Therapeutics, Leiden, the Netherlands
| | - Teun van Gelder
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Johan W de Fijter
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands; LUMC Transplant Center, Leiden University Medical Center, Leiden, the Netherlands
| | - Dirk Jan A R Moes
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands; Leiden Network for Personalised Therapeutics, Leiden, the Netherlands.
| |
Collapse
|
23
|
Patients with Congenital Low-Flow Vascular Malformation Treated with Low Dose Sirolimus. Adv Ther 2021; 38:3465-3482. [PMID: 34003452 PMCID: PMC8190005 DOI: 10.1007/s12325-021-01758-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Patients with congenital vascular malformations often suffer from an impaired quality of life (QoL) because of pain and functional disabilities. Previous studies have shown that the mTOR inhibitor sirolimus can reduce complaints and improve QoL in some patients. High target levels of sirolimus of 10-15 ng/ml were well tolerated; however, in a relative high percentage of patients sirolimus caused serious adverse events (AEs). METHODS A case series of 12 patients with therapy-resistant low-flow vascular malformations was treated with sirolimus, using low target levels of 4-10 ng/ml. Efficacy of sirolimus was evaluated in regard to pain symptoms using the visual analogue scale/numeric rating scale and patients reported QoL. To rule out a placebo effect of sirolimus, sirolimus was stopped after a certain time point and reintroduced as soon as complaints returned. Adverse events were closely monitored and graded using the Common Terminology Criteria for Adverse Events (CTCAE) grading. RESULTS An improvement in symptoms was seen in 92% (n = 11/12) of patients. In nine patients pain complaints returned. Seven out of nine of them (78%) again experienced a reduction of symptoms after restarting sirolimus treatment. Despite low target levels, these response rates are comparable to those found in the literature using higher target levels of sirolimus. However, significantly less serious AEs were observed with low dose sirolimus, suggesting low dose sirolimus might be safer. Unfortunately, young adolescent female patients developed serious menstrual disturbances during treatment with low dose sirolimus. We describe this adverse event for the first time in patients with congenital vascular malformations and this might be specifically related to low dose sirolimus. CONCLUSIONS Low dose sirolimus showed a high efficacy in patients with therapy-resistant and low-flow malformation, with a lower incidence of serious adverse events. At the same time a new adverse event, namely menstrual cycle disturbance, was observed in young adolescents, indicating the need for caution when sirolimus is given. This is extremely relevant to patients with low-flow vascular malformation, who are likely to require lifelong treatment for their condition.
Collapse
|
24
|
Chua JP, De Calbiac H, Kabashi E, Barmada SJ. Autophagy and ALS: mechanistic insights and therapeutic implications. Autophagy 2021; 18:254-282. [PMID: 34057020 PMCID: PMC8942428 DOI: 10.1080/15548627.2021.1926656] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mechanisms of protein homeostasis are crucial for overseeing the clearance of misfolded and toxic proteins over the lifetime of an organism, thereby ensuring the health of neurons and other cells of the central nervous system. The highly conserved pathway of autophagy is particularly necessary for preventing and counteracting pathogenic insults that may lead to neurodegeneration. In line with this, mutations in genes that encode essential autophagy factors result in impaired autophagy and lead to neurodegenerative conditions such as amyotrophic lateral sclerosis (ALS). However, the mechanistic details underlying the neuroprotective role of autophagy, neuronal resistance to autophagy induction, and the neuron-specific effects of autophagy-impairing mutations remain incompletely defined. Further, the manner and extent to which non-cell autonomous effects of autophagy dysfunction contribute to ALS pathogenesis are not fully understood. Here, we review the current understanding of the interplay between autophagy and ALS pathogenesis by providing an overview of critical steps in the autophagy pathway, with special focus on pivotal factors impaired by ALS-causing mutations, their physiologic effects on autophagy in disease models, and the cell type-specific mechanisms regulating autophagy in non-neuronal cells which, when impaired, can contribute to neurodegeneration. This review thereby provides a framework not only to guide further investigations of neuronal autophagy but also to refine therapeutic strategies for ALS and related neurodegenerative diseases.Abbreviations: ALS: amyotrophic lateral sclerosis; Atg: autophagy-related; CHMP2B: charged multivesicular body protein 2B; DPR: dipeptide repeat; FTD: frontotemporal dementia; iPSC: induced pluripotent stem cell; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; PINK1: PTEN induced kinase 1; RNP: ribonuclear protein; sALS: sporadic ALS; SPHK1: sphingosine kinase 1; TARDBP/TDP-43: TAR DNA binding protein; TBK1: TANK-binding kinase 1; TFEB: transcription factor EB; ULK: unc-51 like autophagy activating kinase; UPR: unfolded protein response; UPS: ubiquitin-proteasome system; VCP: valosin containing protein.
Collapse
Affiliation(s)
- Jason P Chua
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Hortense De Calbiac
- Recherche translationnelle sur les maladies neurologiques, Institut Imagine, UMR-1163 INSERM et Université Paris Descartes, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Edor Kabashi
- Recherche translationnelle sur les maladies neurologiques, Institut Imagine, UMR-1163 INSERM et Université Paris Descartes, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
25
|
MRI for Response Assessment of Extensive Lymphatic Malformations in Children Treated With Sirolimus. AJR Am J Roentgenol 2021; 217:741-752. [PMID: 33405944 DOI: 10.2214/ajr.20.24378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND. Extensive lymphatic malformations (LMs) may cause substantial morbidity. The mammalian target of rapamycin (mTOR) inhibitor sirolimus shows promise for treating vascular anomalies, although response assessment is not standardized. OBJECTIVE. The purpose of this study was to retrospectively characterize changes seen on MRI of children with extensive LMs treated with sirolimus. METHODS. Twenty-five children treated with sirolimus for extensive LMs were included. Baseline MRI was defined as the MRI examination performed closest to therapy initiation; follow-up MRI was defined as the most recent MRI examination performed while the patient was receiving therapy. Two pediatric radiologists independently determined MRI lesion volume by tracing lesion contours on all slices (normalized to patient body surface area expressed in square meters) and determined signal by placing an ROI on the dominant portion of the lesions (normalized to CSF signal) on baseline and follow-up T2-weighted MRI sequences. Interreader agreement was determined, and values were averaged for further analysis. Volume and signal changes were compared with patient, lesion, and treatment characteristics. RESULTS. The mean (± SD) interval between initiation of sirolimus treatment and follow-up MRI was 22.1 ± 13.8 months. The mean lesion volume index on baseline and follow-up MRI was 728 ± 970 and 345 ± 501 mL/m2, respectively (p < .001). Ninety-two percent of children showed a decrease in lesion volume index that was greater than 10% (mean volume change, -46.4% ± 28.2%). Volume change was inversely correlated with age (r = -0.466; p = .02). The mean volume change was -64.7% ± 25.4% in children younger than 2 years old versus -32.0% ± 21.6% in children 2 years old or older (p = .008). The mean volume change was -58.1% ± 24.0% for craniocervical lesions versus -35.5% ± 28.2% for lesions involving the trunk and/or extremities (p = .03). Mean lesion signal ratio on baseline and follow-up MRI was 0.81 ± 0.29 and 0.59 ± 0.26, respectively (p < .001). Mean signal ratio change was -23.8% ± 22.7%. Volume and signal changes were moderately correlated (r = 0.469; p = .02). Volume and signal changes were not associated with sex, lesion subtype, serum concentration of sirolimus, or the interval between sirolimus initiation and follow-up MRI (p > .05). Interreader agreement for volume index change was excellent (intraclass correlation coefficient, 0.983), and that for signal ratio change was moderate to good (intraclass correlation coefficient, 0.764). CONCLUSION. Sirolimus treatment of extensive LMs in children is associated with significant reductions in volume and signal on T2-weighted MRI. The decrease in volume is greater in younger children and craniocervical lesions. CLINICAL IMPACT. The results may facilitate development of standardized MRI-based criteria for assessing the response of vascular malformations to pharmacotherapy.
Collapse
|
26
|
Abstract
Vascular malformations are inborn errors of vascular morphogenesis and consist of localized networks of abnormal blood and/or lymphatic vessels with weak endothelial cell proliferation. They have historically been managed by surgery and sclerotherapy. Extensive insight into the genetic origin and molecular mechanism of development has been accumulated over the last 20 years. Since the discovery of the first somatic mutations in a vascular anomaly 10 years ago, it is now recognized that they are perhaps all caused by inherited or somatic mutations in genes that hyperactivate two major intracellular signaling pathways: the RAS/MAPK/ERK and/or the phosphatidylinositol 3 kinase (PIK3)/protein kinase B/mammalian target of rapamycin (mTOR) pathway. Several targeted molecular inhibitors of these pathways have been developed, mostly for the treatment of cancers that harbor mutations in the same pathways. The mTOR inhibitor sirolimus is the most studied compound for the treatment of venous, lymphatic, and complex malformations. Disease responses of vascular malformations to sirolimus have now been reported in several studies in terms of clinical changes, quality of life, functional and radiological outcomes, and safety. Other targeted treatment strategies, such as the PIK3CA inhibitor alpelisib for PIK3CA-mutated vascular malformations, are also emerging. Repurposing of cancer drugs has become a major focus in this rapidly evolving field.
Collapse
|
27
|
Establishment of a Liquid Chromatography-Tandem Mass Spectrometry Method for the Determination of Immunosuppressant Levels in the Peripheral Blood Mononuclear Cells of Chinese Renal Transplant Recipients. Ther Drug Monit 2020; 42:686-694. [PMID: 32858576 DOI: 10.1097/ftd.0000000000000765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Monitoring immunosuppressant levels, such as mycophenolic acid (MPA), cyclosporin A (CsA), and tacrolimus (TAC), in peripheral blood mononuclear cells (PBMCs) could be useful in organ transplant patients administered individualized therapy. The authors developed a liquid chromatography-tandem mass spectrometry assay technique to simultaneously determine immunosuppressant levels in PBMCs and assess their pharmacokinetics in Chinese renal allograft recipients. METHODS PBMCs were isolated from the whole blood of 27 Chinese renal transplant patients using Ficoll-Paque Plus solution, and cell number was determined; acetonitrile treatment for protein precipitation, and gradient elution was performed on an Agilent Eclipse XDB-C18 column (3.5 μm, 2.1 × 100 mm) with mobile phase: water and methanol (containing 2 mM ammonium formate); flow rate: 0.3 mL·min. RESULTS The calibration curves of MPA, CsA, and TAC had a linear range (ng·mL): 0.098-39.2 (r = 0.9987), 0.255-102 (r = 0.9969), and 0.028-11.2 (r = 0.9993), respectively. The extraction effects, matrix effects, and mean relative recovery of these immunosuppressants were 70.4%-93.2%, 72.7%-96.5%, and 90.1%-112.4%, respectively. The within-day and between-day coefficients of variation were <15%. The AUC0-12 of MPA in PBMCs correlated well with those in plasma. The level of MPA, CsA, and TAC in PBMCs might be more stable during dosing interval. CONCLUSIONS The derived liquid chromatography-tandem mass spectrometry assay is suitable for simultaneously monitoring different immunosuppressants in PBMCs. Pharmacokinetic of MPA, CsA, and TAC displayed considerable interindividual variability. Intracellular monitoring of immunosuppressants may facilitate individualized therapy for renal allograft recipients.
Collapse
|
28
|
Roy H, Nandi S. In-Silico Modeling in Drug Metabolism and Interaction: Current Strategies of Lead Discovery. Curr Pharm Des 2020; 25:3292-3305. [PMID: 31481001 DOI: 10.2174/1381612825666190903155935] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/01/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Drug metabolism is a complex mechanism of human body systems to detoxify foreign particles, chemicals, and drugs through bio alterations. It involves many biochemical reactions carried out by invivo enzyme systems present in the liver, kidney, intestine, lungs, and plasma. After drug administration, it crosses several biological membranes to reach into the target site for binding and produces the therapeutic response. After that, it may undergo detoxification and excretion to get rid of the biological systems. Most of the drugs and its metabolites are excreted through kidney via urination. Some drugs and their metabolites enter into intestinal mucosa and excrete through feces. Few of the drugs enter into hepatic circulation where they go into the intestinal tract. The drug leaves the liver via the bile duct and is excreted through feces. Therefore, the study of total methodology of drug biotransformation and interactions with various targets is costly. METHODS To minimize time and cost, in-silico algorithms have been utilized for lead-like drug discovery. Insilico modeling is the process where a computer model with a suitable algorithm is developed to perform a controlled experiment. It involves the combination of both in-vivo and in-vitro experimentation with virtual trials, eliminating the non-significant variables from a large number of variable parameters. Whereas, the major challenge for the experimenter is the selection and validation of the preferred model, as well as precise simulation in real physiological status. RESULTS The present review discussed the application of in-silico models to predict absorption, distribution, metabolism, and excretion (ADME) properties of drug molecules and also access the net rate of metabolism of a compound. CONCLUSION It helps with the identification of enzyme isoforms; which are likely to metabolize a compound, as well as the concentration dependence of metabolism and the identification of expected metabolites. In terms of drug-drug interactions (DDIs), models have been described for the inhibition of metabolism of one compound by another, and for the compound-dependent induction of drug-metabolizing enzymes.
Collapse
Affiliation(s)
- Harekrishna Roy
- Nirmala College of Pharmacy, Mangalagiri, Guntur, Affiliated to Acharya Nagarjuna University, Andhra Pradesh-522503, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University, Kashipur-244713, India
| |
Collapse
|
29
|
Mizuno T, Dong M, Taylor ZL, Ramsey LB, Vinks AA. Clinical implementation of pharmacogenetics and model-informed precision dosing to improve patient care. Br J Clin Pharmacol 2020; 88:1418-1426. [PMID: 32529759 DOI: 10.1111/bcp.14426] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/15/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
Providing maximal therapeutic efficacy without toxicity is a universal goal of rational drug therapy. However, substantial between-patient variability in drug response often impedes such successful treatments and brings the necessity of tailoring drug dose to individual needs for more precise therapy. In many cases plenty of patient characteristics, such as body size, genetic makeup and environmental factors, need to be taken into consideration to find the optimal dose in clinical practice. A pharmacokinetics and pharmacodynamics (PK/PD) model-informed approach offers integration of various patient information to provide an expectation of drug response and derive practical dose estimates to support clinicians' dosing decisions. Such an approach was pioneered in the late 1970s, but its broad clinical acceptance and implementation have been hampered by the lack of widespread computer technology, including user-friendly software tools. This has significantly changed in recent years. With the advent of electronic health records (EHRs) and the ubiquity of user-friendly software tools, we now experience a convergence of clinical information, pharmacogenetics, systems pharmacology and pharmacometrics, and technology. Advanced pharmacometrics research is now more appliable and implementable to improve health care. This article presents examples of successful development and implementation of pharmacogenetics-guided and PK/PD model-informed decision support to facilitate precision dosing, including the development of an EHR-embedded decision support tool. Through the integration of clinical decision support tools in EHRs, clinical pharmacometrics support can be brought directly to the clinical team and the bedside.
Collapse
Affiliation(s)
- Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Min Dong
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Zachary L Taylor
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Division of Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Molecular, Cellular, and Biochemical Pharmacology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Laura B Ramsey
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Division of Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Alexander A Vinks
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Division of Research in Patient Services, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
30
|
Samimi M, Le Gouge A, Boralevi F, Passeron T, Pascal F, Bernard P, Agbo-Godeau S, Leducq S, Fricain JC, Vaillant L, Francès C. Topical rapamycin versus betamethasone dipropionate ointment for treating oral erosive lichen planus: a randomized, double-blind, controlled study. J Eur Acad Dermatol Venereol 2020; 34:2384-2391. [PMID: 32128907 DOI: 10.1111/jdv.16324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 02/18/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND Although superpotent topical corticosteroids are the first-line treatment for oral erosive lichen planus (OELP), topical rapamycin was found efficient in a previous case series. OBJECTIVES To compare the efficacy and safety of topical rapamycin and betamethasone dipropionate ointment for OELP in a randomized, double-blind trial. METHODS Patients were randomized to receive treatment with betamethasone dipropionate ointment 0.05% in Orabase® or topical rapamycin solution (1 mg/mL) on lesions twice daily for 3 months, followed by 3 months of observation. The primary outcome was clinical remission after 3 months of treatment. Secondary outcomes were clinical remission after 1 and 2 months, reduced oral pain and reduced impact on food intake after 3 months, clinical recurrence after treatment withdrawal, and adverse events. RESULTS During a 4-year period, 76 patients were randomized and 75 received treatment (rapamycin, n = 39; betamethasone, n = 36). At 3 months, 39.4% of patients with betamethasone and 27.3% with rapamycin showed clinical remission (odds ratio 0.68, 95% CI [0.24; 1.89]; P = 0.46). Rates of remission after 1 and 2 months, reduction in pain and impact on food intake after 3 months, were higher with betamethasone than rapamycin. Recurrence of oral erosions was similar between groups. Adverse events occurred in 43.6% of patients with rapamycin (mostly burning sensation, impaired taste) and 27.8% with betamethasone (mostly oral candidiasis). CONCLUSION Although the study was limited by insufficient recruitment, we did not find any superiority of topical rapamycin over betamethasone dipropionate ointment for OELP. Given the rapid remission and pain improvement in the betamethasone group, it appears that superpotent topical corticosteroids should remain the first-line treatment for OELP.
Collapse
Affiliation(s)
- M Samimi
- Department of Dermatology, University Hospital of Tours, University of Tours, Tours, France.,ISP 1282 INRA University of Tours, Tours, France
| | - A Le Gouge
- Biometrical Department, Centre d'Investigation Clinique, INSERM CIC1415, University Hospital of Tours, Tours, France
| | - F Boralevi
- Department of Dermatology, National Centre for Rare Skin Disorders, University Hospital of Bordeaux and INSERM U1035, Bordeaux, France
| | - T Passeron
- Department of Dermatology, CHU Nice, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Université Côte d'Azur, Nice, France
| | - F Pascal
- Department of Dermatology and Stomatology, Saint-Louis Hospital, AP-HP, Université Paris 7-Diderot, Paris, France
| | - P Bernard
- Department of Dermatology, Reims University Hospital, University of Reims-Champagne-Ardenne, Reims, France
| | - S Agbo-Godeau
- Department of Stomatology and Maxillo-Facial Surgery, Groupe hospitalier Pitié-Salpêtrière-Charles-Foix, AP-HP, Paris, France
| | - S Leducq
- Department of Dermatology, University Hospital of Tours, University of Tours, Tours, France.,Biometrical Department, Centre d'Investigation Clinique, INSERM CIC1415, University Hospital of Tours, Tours, France
| | - J C Fricain
- Department of Dentistry and Oral Health, Inserm U1026 Bioingénierie Tissulaire - BioTis, Bordeaux, University Hospital of Bordeaux, France
| | - L Vaillant
- Department of Dermatology, University Hospital of Tours, University of Tours, Tours, France
| | - C Francès
- Department of Dermatology and Allergology, Hospital Tenon, Université Paris VI Pierre et Marie Curie, Sorbonnes Universités, Paris, France
| |
Collapse
|
31
|
Shao S, Hu L, Han Z, Hou K, Fang H, Zhang G, Feng Y, Huang L. The effect of ABCB1 polymorphism on sirolimus in renal transplant recipients: a meta-analysis. Transl Androl Urol 2020; 9:673-683. [PMID: 32420174 PMCID: PMC7215018 DOI: 10.21037/tau.2020.03.42] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Sirolimus (SRL) is an immunosuppressive drug and substrate of the P-glycoprotein (P-GP) encoded by ABCB1. The relationship between ABCB1 polymorphism and the pharmacokinetics of SRL in different studies were conflicting in renal transplant recipients. Thus, this meta-analysis aims to investigate the influence of ABCB1 C3435T, C1236T, and G2677T/A polymorphisms on the dose-adjusted trough level (C/D) of SRL in renal transplant recipients. Methods PubMed, Embase, and the Cochrane Library were searched for relevant studies. The quality of each eligible study was assessed according to Newcastle-Ottawa Scale. The STATA 15.0 was adopted to perform the meta-analysis. The fixed-effects model was used for pooled results with low heterogeneity (I2 ≤50%); otherwise, the random-effects model was used. Results A total of 6 studies were included in the meta-analysis. Results of pooled analysis showed no significant association of SRL C/D ratio with ABCB1 C3435T polymorphism. The subgroup analysis based on different ethnic groups and different time-points after SRL initiation in renal transplant recipients were also conducted. No significant association was observed in these subgroups. Significant associations were showed between ABCB1 C1236T polymorphism and the C/D ratio of SRL in the homozygous model (TT vs. CC; WMD: −45.54; 95% CI: −75.15, −15.94; P=0.003), and also in subgroup of Caucasian (TT vs. CC; WMD: −46.57; 95% CI: −91.90, −1.25; P=0.044 and TT vs. CC + CT; WMD: −52.10; 95% CI: −95.38, −8.82; P=0.018). Significant differences were found in association between the ABCB1 G2677T/A polymorphism and the C/D ratio of SRL, including the homozygous model (TT vs. GG; WMD: −76.47; 95% CI: −126.37, −26.58; P= 0.003), the heterozygous model (GT vs. GG,WMD: 178.62; 95% CI: 125.03, 232.22; P= 0.000), the dominant model (GT + TT vs. GG; WMD: 82.23; 95% CI: 36.28, 128.17; P=0.000), the recessive model (TT vs. GG + GT; WMD: −179.38; 95% CI: −283.33, −75.42; P=0.001), and the over-dominant model (GT vs. GG + TT; WMD: 199.44; 95% CI: 84.84, 314.05; P=0.001). Conclusions No significant association exists between ABCB1 C3435T polymorphism and the C/D ratio of SRL in renal transplant recipients. To achieve target therapeutic concentrations, ABCB1 C1236T homozygous mutant TT genotype will require a higher dose of sirolimus than wild type GG, especially in Caucasian renal transplant recipients. ABCB1 G2677T/A TT genotype will also need a higher dose of sirolimus genotype. Genotyping of ABCB1 might help to improve the individualization of SRL for renal transplant recipients. Further studies are expected to provide high-quality evidence.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Pharmacy, Peking University People's Hospital, Beijing 100044, China.,Department of Pharmacy, Affiliated Hospital of Beihua University, Jilin 132011, China
| | - Lei Hu
- Department of Pharmacy, Peking University People's Hospital, Beijing 100044, China
| | - Zaigang Han
- Department of Pharmacy, Affiliated Hospital of Beihua University, Jilin 132011, China
| | - Kelu Hou
- Department of Pharmacy, Peking University People's Hospital, Beijing 100044, China
| | - Huihui Fang
- Department of Pharmacy, Peking University People's Hospital, Beijing 100044, China
| | - Guijie Zhang
- Department of Pharmacy, Peking University People's Hospital, Beijing 100044, China
| | - Yufei Feng
- Department of Pharmacy, Peking University People's Hospital, Beijing 100044, China
| | - Lin Huang
- Department of Pharmacy, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
32
|
Effect of mycophenolate and rapamycin on renal fibrosis in lupus nephritis. Clin Sci (Lond) 2019; 133:1721-1744. [DOI: 10.1042/cs20190536] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/08/2019] [Accepted: 07/29/2019] [Indexed: 02/08/2023]
Abstract
Abstract
Lupus nephritis (LN) leads to chronic kidney disease (CKD) through progressive fibrosis. Mycophenolate inhibits inosine monophosphate dehydrogenase and is a standard treatment for LN. The mammalian or mechanistic target of rapamycin (mTOR) pathway is activated in LN. Rapamycin inhibits mTOR and is effective in preventing kidney transplant rejection, with the additional merits of reduced incidence of malignancies and viral infections. The effect of mycophenolate or rapamycin on kidney fibrosis in LN has not been investigated. We investigated the effects of mycophenolate and rapamycin in New Zealand Black and White first generation (NZB/W F1) murine LN and human mesangial cells (HMCs), focusing on mechanisms leading to kidney fibrosis. Treatment of mice with mycophenolate or rapamycin improved nephritis manifestations, decreased anti-double stranded (ds) DNA antibody titer and reduced immunoglobulin G (IgG) deposition in the kidney. Both mycophenolate and rapamycin, especially the latter, decreased glomerular mTOR Ser2448 phosphorylation. Renal histology in untreated mice showed mesangial proliferation and progressive glomerulosclerosis with tubular atrophy, and increased expression of transforming growth factor β1 (TGF-β1), monocyte chemoattractant protein-1 (MCP-1), α-smooth muscle actin (α-SMA), fibronectin (FN) and collagen. Both mycophenolate and rapamycin ameliorated the histopathological changes. Results from in vitro experiments showed that both mycophenolate and rapamycin decreased mesangial cell proliferation and their binding with anti-dsDNA antibodies. Mycophenolate and rapamycin also down-regulated mTOR and extracellular signal-regulated kinase (ERK) phosphorylation and inhibited fibrotic responses in mesangial cells that were induced by anti-dsDNA antibodies or TGF-β1. Our findings suggest that, in addition to immunosuppression, mycophenolate and rapamycin may reduce fibrosis in LN, which has important implications in preventing CKD in patients with LN.
Collapse
|
33
|
Song Y, Huang Z, Liu X, Pang Z, Chen J, Yang H, Zhang N, Cao Z, Liu M, Cao J, Li C, Yang X, Gong H, Qian J, Ge J. Platelet membrane-coated nanoparticle-mediated targeting delivery of Rapamycin blocks atherosclerotic plaque development and stabilizes plaque in apolipoprotein E-deficient (ApoE -/-) mice. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 15:13-24. [PMID: 30171903 DOI: 10.1016/j.nano.2018.08.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/24/2018] [Accepted: 08/11/2018] [Indexed: 01/24/2023]
Abstract
Although certain success has been achieved in atherosclerosis treatment, tremendous challenges remain in developing more efficient strategies to treat atherosclerosis. Platelets have inherent affinity to plaques and naturally home to atherosclerotic sites. Rapamycin features potent anti-atherosclerosis effect, but its clinical utility is limited by its low concentration at the atherosclerotic site and severe systemic toxicity. In the present study, we used platelet membrane-coated nanoparticles (PNP) as a targeted drug delivery platform to treat atherosclerosis through mimicking platelets' inherent targeting to plaques. PNP displayed 4.98-fold greater radiant efficiency than control nanoparticles in atherosclerotic arterial trees, indicating its effective homing to atherosclerotic plaques in vivo. In an atherosclerosis model established in apolipoprotein E-deficient mice, PNP encapsulating rapamycin significantly attenuated the progression of atherosclerosis and stabilized atherosclerotic plaques. These results demonstrated the perfect efficacy and pro-resolving potential of PNP as a targeted drug delivery platform for atherosclerosis treatment.
Collapse
Affiliation(s)
- Yanan Song
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheyong Huang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin Liu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiqing Pang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, China.
| | - Jing Chen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongbo Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ning Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhonglian Cao
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, China
| | - Ming Liu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiatian Cao
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chenguang Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiangdong Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Gong
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Juying Qian
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Institute of Biomedical Science, Fudan University, Shanghai, China.
| |
Collapse
|
34
|
Kraig E, Linehan LA, Liang H, Romo TQ, Liu Q, Wu Y, Benavides AD, Curiel TJ, Javors MA, Musi N, Chiodo L, Koek W, Gelfond JAL, Kellogg DL. A randomized control trial to establish the feasibility and safety of rapamycin treatment in an older human cohort: Immunological, physical performance, and cognitive effects. Exp Gerontol 2018; 105:53-69. [PMID: 29408453 DOI: 10.1016/j.exger.2017.12.026] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 12/31/2017] [Indexed: 12/21/2022]
Abstract
Inhibition of the mechanistic target of rapamycin (mTOR) pathway by rapamycin (RAPA), an FDA-approved immunosuppressive drug used as a clinical therapy to prevent solid organ allograft rejection, enhances longevity in mice. Importantly, RAPA was efficacious even when initiated in relatively old animals, suggesting that mTOR inhibition could potentially slow the progression of aging-associated pathologies in older humans (Harrison et al., 2009; Miller et al., 2011). However, the safety and tolerability of RAPA in older human subjects have not yet been demonstrated. Towards this end, we undertook a placebo-controlled pilot study in 25 generally healthy older adults (aged 70-95 years); subjects were randomized to receive either 1 mg RAPA or placebo daily. Although three subjects withdrew, 11 RAPA and 14 controls completed at least 8 weeks of treatment and were included in the analysis. We monitored for changes that would indicate detrimental effects of RAPA treatment on metabolism, including both standard clinical laboratory assays (CBC, CMP, HbA1c) and oral glucose tolerance tests (OGTTs). We also monitored parameters typically associated with aging that could potentially be modified by RAPA; these included cognitive function which was assessed by three different tools: Executive Interview-25 (EXIT25); Saint Louis University Mental Status Exam (SLUMS); and Texas Assessment of Processing Speed (TAPS). In addition, physical performance was measured by handgrip strength and 40-foot timed walks. Lastly, changes in general parameters of healthy immune aging, including serum pro-inflammatory cytokine levels and blood cell subsets, were assessed. Five subjects reported potential adverse side effects; in the RAPA group, these were limited to facial rash (1 subject), stomatitis (1 subject) and gastrointestinal issues (2 subjects) whereas placebo treated subjects only reported stomatitis (1 subject). Although no other adverse events were reported, statistically significant decrements in several erythrocyte parameters including hemoglobin (HgB) and hematocrit (Hct) as well as in red blood cell count (RBC), red blood cell distribution width (RDW), mean corpuscular volume (MCV), and mean corpuscular hemoglobin (MCH) were observed in the RAPA-treatment group. None of these changes manifested clinically significant effects during the short duration of this study. Similarly, no changes were noted in any other clinical laboratory, cognitive, physical performance, or self-perceived health status measure over the study period. Immune parameters were largely unchanged as well, possibly due to the advanced ages of the cohort (70-93 years; mean age 80.5). RAPA-associated increases in a myeloid cell subset and in TREGS were detected, but changes in most other PBMC cell subsets were not statistically significant. Importantly, the OGTTs revealed no RAPA-induced change in blood glucose concentration, insulin secretion, and insulin sensitivity. Thus, based on the results of our pilot study, it appears that short-term RAPA treatment can be used safely in older persons who are otherwise healthy; a trial with a larger sample size and longer treatment duration is warranted.
Collapse
Affiliation(s)
- Ellen Kraig
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, USA; Department of Cell Systems and Anatomy, The University of Texas Health Science Center, San Antonio, USA.
| | - Leslie A Linehan
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center, San Antonio, USA
| | - Hanyu Liang
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, USA
| | - Terry Q Romo
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, USA; GRECC, South Texas Veterans Health Care System, The University of Texas Health Science Center, San Antonio, USA
| | - Qianqian Liu
- Department of Epidemiology and Biostatistics, The University of Texas Health Science Center, San Antonio, USA
| | - Yubo Wu
- Department of Medicine, The University of Texas Health Science Center, San Antonio, USA
| | - Adriana D Benavides
- Department of Microbiology, Immunology, and Molecular Genetics, The University of Texas Health Science Center, San Antonio, USA
| | - Tyler J Curiel
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, USA; Department of Medicine, The University of Texas Health Science Center, San Antonio, USA
| | - Martin A Javors
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, USA; Department of Psychiatry, The University of Texas Health Science Center, San Antonio, USA
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, USA; Department of Medicine, The University of Texas Health Science Center, San Antonio, USA; GRECC, South Texas Veterans Health Care System, The University of Texas Health Science Center, San Antonio, USA
| | - Laura Chiodo
- GRECC, South Texas Veterans Health Care System, The University of Texas Health Science Center, San Antonio, USA
| | - Wouter Koek
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center, San Antonio, USA; Department of Psychiatry, The University of Texas Health Science Center, San Antonio, USA
| | - Jonathan A L Gelfond
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, USA; Department of Epidemiology and Biostatistics, The University of Texas Health Science Center, San Antonio, USA
| | - Dean L Kellogg
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, USA; Department of Medicine, The University of Texas Health Science Center, San Antonio, USA; GRECC, South Texas Veterans Health Care System, The University of Texas Health Science Center, San Antonio, USA
| |
Collapse
|
35
|
Mizuno T, Fukuda T, Emoto C, Mobberley-Schuman PS, Hammill AM, Adams DM, Vinks AA. Developmental pharmacokinetics of sirolimus: Implications for precision dosing in neonates and infants with complicated vascular anomalies. Pediatr Blood Cancer 2017; 64. [PMID: 28205374 DOI: 10.1002/pbc.26470] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/23/2016] [Accepted: 12/28/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Sirolimus has recently been shown to be efficacious and tolerable in pediatric patients with complicated vascular anomalies. Nevertheless, dosing information remains very limited especially for neonates and infants. The purpose of this study was to develop an age-appropriate sirolimus starting dosing regimen based on the developmental changes in drug elimination capacity using data collected in neonates and infants. PROCEDURE A recently developed sirolimus maturation model [Emoto et al. CPT Pharmacometrics Syst Pharmacol, 2016] was used to simulate clearance estimates using realistic age and weight covariates for age cohorts aged 0-24 months. Next, predose concentrations at steady state were generated for each age cohort of neonates and infants. Dose requirements to attain predefined target trough concentration ranges (10-15 and 5-10 ng/ml) were simulated across the different age groups. Starting doses were chosen to maximize the likelihood of achieving sirolimus-targeted concentrations. RESULTS The trajectory of simulated sirolimus clearances increased with age and was in agreement with the previous findings in the Phase 2 study. The proposed dosing regimens covered eight age cohorts and resulted in target attainment of more than 75-95% across selected regimens. CONCLUSIONS This study identified age-appropriate sirolimus dosing regimens for neonates and infants. The algorithm in combination with therapeutic drug management will facilitate sirolimus precision dosing in young children with vascular anomalies. A prospective evaluation is being planned.
Collapse
Affiliation(s)
- Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Tsuyoshi Fukuda
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Chie Emoto
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Paula S Mobberley-Schuman
- Division of Oncology, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Adrienne M Hammill
- Division of Oncology, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Denise M Adams
- Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Alexander A Vinks
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
36
|
Effect of CYP3A4 and CYP3A5 Genetic Polymorphisms on the Pharmacokinetics of Sirolimus in Healthy Chinese Volunteers. Ther Drug Monit 2017; 39:406-411. [DOI: 10.1097/ftd.0000000000000415] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Jacob S, Nair AB. A review on therapeutic drug monitoring of the mTOR class of immunosuppressants: everolimus and sirolimus. DRUGS & THERAPY PERSPECTIVES 2017. [DOI: 10.1007/s40267-017-0403-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Ericson JE, Zimmerman KO, Gonzalez D, Melloni C, Guptill JT, Hill KD, Wu H, Cohen-Wolkowiez M. A Systematic Literature Review Approach to Estimate the Therapeutic Index of Selected Immunosuppressant Drugs After Renal Transplantation. Ther Drug Monit 2017; 39:13-20. [PMID: 28081041 PMCID: PMC5235278 DOI: 10.1097/ftd.0000000000000364] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Drugs that exhibit close margins between therapeutic and toxic blood concentrations are considered to have a narrow therapeutic index (NTI). The Food and Drug Administration has proposed that NTI drugs should have more stringent bioequivalence standards for approval of generic formulations. However, many immunosuppressant drugs do not have a well-defined therapeutic index (TI). METHODS We sought to determine whether safety, efficacy, and pharmacokinetic data obtained from the medical literature through a comprehensive literature search could be used to estimate the TI of cyclosporine, tacrolimus, and sirolimus. In this analysis, we considered TI ≤2 as a criterion to define a drug as having an NTI. RESULTS Published literature indicates that cyclosporine has a TI of 2-3, which falls just short of our criteria to be classified as having an NTI. We found sirolimus and tacrolimus to have a therapeutic range of 5-12 ng/mL and of 5-20 ng/mL, respectively, but were unable to calculate the TI. CONCLUSIONS Although the current literature does not provide a clear indication that these drugs have an NTI, the routine use of therapeutic drug monitoring in clinical practice suggests that more stringent testing of their pharmacokinetic and pharmacodynamic properties should be performed before the approval of generic formulations.
Collapse
Affiliation(s)
- Jessica E. Ericson
- Departments of Pediatrics, Pennsylvania State University, Hershey, PA
- Duke Clinical Research Institute, Durham, NC
| | - Kanecia O. Zimmerman
- Duke Clinical Research Institute, Durham, NC
- Department of Pediatrics, Duke University, Durham, NC
| | - Daniel Gonzalez
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | - Kevin D. Hill
- Duke Clinical Research Institute, Durham, NC
- Department of Pediatrics, Duke University, Durham, NC
| | - Huali Wu
- Duke Clinical Research Institute, Durham, NC
| | - Michael Cohen-Wolkowiez
- Duke Clinical Research Institute, Durham, NC
- Department of Pediatrics, Duke University, Durham, NC
| |
Collapse
|
39
|
Zimmerman KO, Wu H, Greenberg R, Hill K, Patel UD, Ku L, Gonzalez D, Hornik C, Jiang W, Zheng N, Melloni C, Cohen-Wolkowiez M. Therapeutic Drug Monitoring, Electronic Health Records, and Pharmacokinetic Modeling to Evaluate Sirolimus Drug Exposure-Response Relationships in Renal Transplant Patients. Ther Drug Monit 2016; 38:600-6. [PMID: 27259059 PMCID: PMC5025355 DOI: 10.1097/ftd.0000000000000313] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Sirolimus, an immunosuppressive agent used in renal transplantation, can prevent allograft rejection. Identification of the therapeutic index (the ratio of minimum toxic concentration to minimum therapeutic concentration) for immunosuppresants is necessary to optimize the care of patients and set standards for bioequivalence evaluation of sirolimus products. However, the therapeutic index for sirolimus has been inconsistently defined, potentially because of inconsistencies in sirolimus exposure-response relationships. METHODS The authors used retrospective therapeutic drug monitoring data from the electronic health records of patients treated in a tertiary health care system from 2008 to 2014 to (1) develop a population pharmacokinetic (PK) model, (2) use the model to simulate sirolimus concentrations, and (3) characterize the exposure-response relationship. Using Wilcoxon rank-sum and Fisher exact tests, the authors determined relationships between sirolimus exposure and adverse events (AEs) (anemia, leukopenia, thrombocytopenia, hyperlipidemia, and decline in renal function) and the composite efficacy end point of graft loss or rejection. RESULTS The developed 2-compartment population PK model showed appropriate goodness of fit. In a late-phase (>12 months), postrenal transplant population of 27 inpatients, the authors identified statistically significant relationships between 83 simulated peak and trough sirolimus concentrations and outcomes: graft loss or rejection (P = 0.018) and decline in renal function (P = 0.006), respectively. CONCLUSIONS Use of therapeutic drug monitoring results and PK modeling permitted correlation of sirolimus concentrations with graft loss or rejection and decline in renal function. However, the method was limited in its assessment of other AEs. To better evaluate sirolimus exposure-response relationships, the method should be applied to a larger sample of newly transplanted patients with a higher propensity toward AEs or efficacy failure.
Collapse
Affiliation(s)
- Kanecia O. Zimmerman
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Huali Wu
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Rachel Greenberg
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Kevin Hill
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Uptal D. Patel
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Lawrence Ku
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Daniel Gonzalez
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Christoph Hornik
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Wenlei Jiang
- Office of Generic Drugs, US Food and Drug Administration, Silver Spring, MD, USA
| | - Nan Zheng
- Office of Generic Drugs, US Food and Drug Administration, Silver Spring, MD, USA
| | - Chiara Melloni
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Michael Cohen-Wolkowiez
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
40
|
Larson JC, Allstadt SD, Fan TM, Khanna C, Lunghofer PJ, Hansen RJ, Gustafson DL, Legendre AM, Galyon GD, LeBlanc AK, Martin-Jimenez T. Pharmacokinetics of orally administered low-dose rapamycin in healthy dogs. Am J Vet Res 2016; 77:65-71. [PMID: 26709938 DOI: 10.2460/ajvr.77.1.65] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To determine the pharmacokinetics of orally administered rapamycin in healthy dogs. ANIMALS 5 healthy purpose-bred hounds. PROCEDURES The study consisted of 2 experiments. In experiment 1, each dog received rapamycin (0.1 mg/kg, PO) once; blood samples were obtained immediately before and at 0.5, 1, 2, 4, 6, 12, 24, 48, and 72 hours after administration. In experiment 2, each dog received rapamycin (0.1 mg/kg, PO) once daily for 5 days; blood samples were obtained immediately before and at 3, 6, 24, 27, 30, 48, 51, 54, 72, 75, 78, 96, 96.5, 97, 98, 100, 102, 108, 120, 144, and 168 hours after the first dose. Blood rapamycin concentration was determined by a validated liquid chromatography-tandem mass spectrometry assay. Pharmacokinetic parameters were determined by compartmental and noncompartmental analyses. RESULTS Mean ± SD blood rapamycin terminal half-life, area under the concentration-time curve from 0 to 48 hours after dosing, and maximum concentration were 38.7 ± 12.7 h, 140 ± 23.9 ng•h/mL, and 8.39 ± 1.73 ng/mL, respectively, for experiment 1, and 99.5 ± 89.5 h, 126 ± 27.1 ng•h/mL, and 5.49 ± 1.99 ng/mL, respectively, for experiment 2. Pharmacokinetic parameters for rapamycin after administration of 5 daily doses differed significantly from those after administration of 1 dose. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that oral administration of low-dose (0.1 mg/kg) rapamycin to healthy dogs achieved blood concentrations measured in nanograms per milliliter. The optimal dose and administration frequency of rapamcyin required to achieve therapeutic effects in tumor-bearing dogs, as well as toxicity after chronic dosing, need to be determined.
Collapse
|
41
|
Target Enzyme Activity and Phosphorylation of Pathway Molecules As Specific Biomarkers in Transplantation. Ther Drug Monit 2016; 38 Suppl 1:S43-9. [DOI: 10.1097/ftd.0000000000000288] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
42
|
Hirsch HH, Yakhontova K, Lu M, Manzetti J. BK Polyomavirus Replication in Renal Tubular Epithelial Cells Is Inhibited by Sirolimus, but Activated by Tacrolimus Through a Pathway Involving FKBP-12. Am J Transplant 2016; 16:821-32. [PMID: 26639422 PMCID: PMC5064607 DOI: 10.1111/ajt.13541] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/04/2015] [Accepted: 09/24/2015] [Indexed: 01/25/2023]
Abstract
BK polyomavirus (BKPyV) replication causes nephropathy and premature kidney transplant failure. Insufficient BKPyV-specific T cell control is regarded as a key mechanism, but direct effects of immunosuppressive drugs on BKPyV replication might play an additional role. We compared the effects of mammalian target of rapamycin (mTOR)- and calcineurin-inhibitors on BKPyV replication in primary human renal tubular epithelial cells. Sirolimus impaired BKPyV replication with a 90% inhibitory concentration of 4 ng/mL by interfering with mTOR-SP6-kinase activation. Sirolimus inhibition was rapid and effective up to 24 h postinfection during viral early gene expression, but not thereafter, during viral late gene expression. The mTORC-1 kinase inhibitor torin-1 showed a similar inhibition profile, supporting the notion that early steps of BKPyV replication depend on mTOR activity. Cyclosporine A also inhibited BKPyV replication, while tacrolimus activated BKPyV replication and reversed sirolimus inhibition. FK binding protein 12kda (FKBP-12) siRNA knockdown abrogated sirolimus inhibition and increased BKPyV replication similar to adding tacrolimus. Thus, sirolimus and tacrolimus exert opposite effects on BKPyV replication in renal tubular epithelial cells by a mechanism involving FKBP-12 as common target. Immunosuppressive drugs may therefore contribute directly to the risk of BKPyV replication and nephropathy besides suppressing T cell functions. The data provide rationales for clinical trials aiming at reducing the risk of BKPyV replication and disease in kidney transplantation.
Collapse
Affiliation(s)
- H. H. Hirsch
- Transplantation & Clinical VirologyDepartment of Biomedicine (Haus Petersplatz)University of BaselBaselSwitzerland,Division Infection DiagnosticsDepartment of Biomedicine (Haus Petersplatz)University of BaselBaselSwitzerland,Infectious Diseases & Hospital EpidemiologyUniversity Hospital BaselBaselSwitzerland
| | - K. Yakhontova
- Transplantation & Clinical VirologyDepartment of Biomedicine (Haus Petersplatz)University of BaselBaselSwitzerland
| | - M. Lu
- Transplantation & Clinical VirologyDepartment of Biomedicine (Haus Petersplatz)University of BaselBaselSwitzerland
| | - J. Manzetti
- Transplantation & Clinical VirologyDepartment of Biomedicine (Haus Petersplatz)University of BaselBaselSwitzerland
| |
Collapse
|
43
|
Abstract
Immunosuppressive therapy after kidney transplantation is based on calcineurin inhibitors (CNI). In most cases CNI therapy is combined with mycophenolate and steroids. In spite of good short-term results this therapy is associated with long-term toxicities, graft loss and patient death. Therefore, alternative immunosuppressive strategies are needed that combine excellent efficacy with low incidences of long-term adverse outcomes. This review focuses on the strategies based on mTOR- inhibitors in combination with minimized exposure to CNI.
Collapse
Affiliation(s)
- Fritz Diekmann
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Villarroel, 170, E-08036 Barcelona, Spain ; Servicio de Nefrología - Clinical Institute of Nephrology and Urology, Hospital Clinic, Barcelona, Spain
| | - Josep M Campistol
- Department of Nephrology and Kidney Transplantation, Hospital Clínic, Villarroel, 170, E-08036 Barcelona, Spain
| |
Collapse
|
44
|
Morgan P, Nwafor M, Tredger M. Use of a small particle solid-core packing for improved efficiency and rapid measurement of sirolimus and everolimus by LC-MS/MS. Biomed Chromatogr 2015; 30:983-5. [DOI: 10.1002/bmc.3628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/28/2015] [Accepted: 09/28/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Phillip Morgan
- Immunosuppressive Drug Monitoring Service, Institute of Liver Studies; King's College Hospital Foundation Trust; London SE5 9RS UK
| | - Magnus Nwafor
- Immunosuppressive Drug Monitoring Service, Institute of Liver Studies; King's College Hospital Foundation Trust; London SE5 9RS UK
| | - Mike Tredger
- Immunosuppressive Drug Monitoring Service, Institute of Liver Studies; King's College Hospital Foundation Trust; London SE5 9RS UK
| |
Collapse
|
45
|
Sirolimus and everolimus in kidney transplantation. Drug Discov Today 2015; 20:1243-9. [DOI: 10.1016/j.drudis.2015.05.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/26/2015] [Accepted: 05/14/2015] [Indexed: 11/15/2022]
|
46
|
A simple and robust LC-MS/MS method for measuring sirolimus and everolimus in whole blood. Bioanalysis 2015; 6:1597-604. [PMID: 25077621 DOI: 10.4155/bio.14.43] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Therapeutic drug monitoring of immunosuppressants sirolimus and everolimus is mandatory and liquid chromatography tandem mass spectrometry (LC-MS/MS) is the preferred technology for the measurement. Due to the high hydrophobicity these analytes bind to reverse-phase columns tightly and need column heating to elute. Column heating not only requires extra instrument preparation but also causes permanent column damage if the heater is left on while elution pumps stop by the end of the run. The primary improvement in the current method was to elute the analytes at room temperature using special buffers. This new LC-MS/MS method has been validated for clinical use and offers improved simplicity and robustness by eliminating column heating yet with high sensitivity, precision and accuracy.
Collapse
|
47
|
Focus on mTOR inhibitors and tacrolimus in renal transplantation: Pharmacokinetics, exposure–response relationships, and clinical outcomes. Transpl Immunol 2014; 31:22-32. [DOI: 10.1016/j.trim.2014.05.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/09/2014] [Accepted: 05/15/2014] [Indexed: 01/05/2023]
|
48
|
Wang HF, Qiu F, Wu X, Fang J, Crownover P, Korth-Bradley J, Schulman S. Steady-state pharmacokinetics of sirolimus in stable adult Chinese renal transplant patients. Clin Pharmacol Drug Dev 2014; 3:235-41. [PMID: 27128614 DOI: 10.1002/cpdd.96] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 11/22/2013] [Indexed: 11/10/2022]
Abstract
This open-label, nonrandomized study was conducted to evaluate the steady-state pharmacokinetics of sirolimus in 24 stable Chinese renal transplant patients receiving daily oral maintenance doses of sirolimus (1-4 mg). Repeated trough and serial whole blood sirolimus concentrations over a 24-hour dosing interval were collected and assayed using high-performance liquid chromatography with tandem mass spectrometry (HPLC/MS/MS). Non-compartmental analysis (NCA) was employed to calculate sirolimus pharmacokinetic parameters. Cytochrome P450 (CYP) 3A5 genotyping was performed. Cyclosporine (CsA) levels were determined for patients who took concomitant CsA. Mean (±SD) sirolimus maximum concentration (Cmax ), area under the concentration-time curve within a dosing interval of τ (AUCτ ), oral clearance (CL/F), and trough concentration (Ctrough ) at steady state were: 14.1 ± 13.4 ng/mL, 199 ± 210 ng · h/mL, 10.1 ± 4.4 L/h, and 5.9 ± 6.3 ng/mL, respectively. Median tmax (range) was 2.49 hours (1-12 hours). A strong correlation was observed between Ctrough and AUCτ . Pharmacokinetics of sirolimus in patients with and without concomitant CsA were comparable. Allele frequency of CYP3A5*3 was 70.9% and a trend of higher oral clearance was observed in CYP3A5 expressers compared with non-expressers although the number of subjects in each genotype was small.
Collapse
Affiliation(s)
- Huifen Faye Wang
- Medical and Development, Emerging Market and Established Products Business Unit, Pfizer Inc, Groton, CT, USA
| | - Feng Qiu
- Center of Transplantation, Renji Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiongfe Wu
- Department of Nephrology, Third Military Medical University Southwest Hospital, Chongqing, China
| | - Juanzhi Fang
- Research and Development, Pfizer Inc, Groton, CT, USA
| | - Penelope Crownover
- Clinical Pharmacology/Clinical Assay Group, Pfizer Inc, New York, NY, USA
| | | | - Seth Schulman
- Medicines Development Group, Pfizer Inc, Collegeville, PA, USA
| |
Collapse
|
49
|
Tamaki Z, Asano Y, Kubo M, Ihn H, Tada Y, Sugaya M, Kadono T, Sato S. Effects of the immunosuppressant rapamycin on the expression of human α2(I) collagen and matrix metalloproteinase 1 genes in scleroderma dermal fibroblasts. J Dermatol Sci 2014; 74:251-9. [PMID: 24630239 DOI: 10.1016/j.jdermsci.2014.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 11/28/2013] [Accepted: 02/03/2014] [Indexed: 01/10/2023]
Abstract
BACKGROUND Rapamycin has been shown to exert an anti-fibrotic effect on skin fibrosis in a certain subset of patients with systemic sclerosis (SSc) and in bleomycin-treated animal models. OBJECTIVES To investigate the mechanism responsible for the anti-fibrotic effect of rapamycin especially by focusing on human α2(I) collagen (COL1A2) and matrix metalloproteinase 1 (MMP1) genes in normal and systemic sclerosis (SSc) dermal fibroblasts. METHODS The expression levels of type I procollagen and MMP1 proteins were analyzed by immunoblotting and the mRNA levels of COL1A2 and MMP1 genes were evaluated by quantitative real-time RT-PCR. The activities of COL1A2 and MMP1 promoters were determined by reporter analysis. RESULTS Rapamycin significantly decreased the levels of type I procollagen protein and COL1A2 mRNA, while significantly increasing the levels of MMP1 protein and mRNA in normal dermal fibroblasts. Similar effects of rapamycin were also observed in SSc dermal fibroblasts. Importantly, the inhibitory and stimulatory effects of rapamycin on the mRNA levels of COL1A2 and MMP1 genes, respectively, were significantly greater in SSc dermal fibroblasts than in normal dermal fibroblasts. In SSc dermal fibroblasts, rapamycin affected the expression of COL1A2 gene at the post-transcriptional level. In contrast, rapamycin altered the expression of MMP1 gene at the transcriptional level through the JNK/c-Jun signaling pathway in those cells. CONCLUSION Rapamycin has a potential to directly regulate the deposition of type I collagen in extracellular matrix through inhibiting type I collagen synthesis and promoting its degradation by MMP1, suggesting that this drug is useful for the treatment of SSc.
Collapse
Affiliation(s)
- Zenshiro Tamaki
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - Masahide Kubo
- Department of Dermatology, Tokyo Kousei-Nenkin Hospital, Tokyo, Japan
| | - Hironobu Ihn
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yayoi Tada
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Makoto Sugaya
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takafumi Kadono
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
50
|
Holt DW, Mandelbrot DA, Tortorici MA, Korth-Bradley JM, Sierka D, Levy DI, See Tai S, Horowitz GL. Long-term evaluation of analytical methods used in sirolimus therapeutic drug monitoring. Clin Transplant 2014; 28:243-51. [PMID: 24476346 DOI: 10.1111/ctr.12305] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2013] [Indexed: 11/28/2022]
Abstract
Results of therapeutic monitoring of sirolimus blood concentrations are assay and laboratory dependent. This study compared performance over time of the IMx microparticle enzyme immunoassay (MEIA), Architect chemiluminescent microparticle immunoassay (CMIA), and liquid chromatography with mass spectrometric detection (LC/MS/MS) as part of a proficiency testing scheme. Pooled samples from sirolimus-treated patients and whole-blood samples spiked with known quantities of sirolimus were assayed monthly between 2004 and 2012. When results of pooled patient samples were compared with LC/MS/MS, the MEIA assay showed an overall mean percent bias of -2.3% ± 11.2% that, although initially positive, became increasingly negative from 2007 through 2009. The CMIA, which replaced the MEIA assay, had a mean percent bias of 21.9% ± 12.3%, remaining stable from 2007 through 2012. Similarly, for spiked samples, the MEIA showed an increasingly negative bias over time vs. LC/MS/MS, whereas CMIA maintained a stable positive bias. Based on comparison of immunoassay measurements on individual patient samples, CMIA values were more than 25% higher than MEIA values. These results highlight the importance of continued proficiency testing and regular monitoring of sirolimus assay performance. Clinicians must be aware of the methodology used and adjust target levels accordingly to avoid potential effects on efficacy and toxicity.
Collapse
Affiliation(s)
- David W Holt
- Analytical Services International, St. George's, University of London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|