1
|
Zhu Y, Yu X, Cheng G. Insect C-Type Lectins in Microbial Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1204:129-140. [PMID: 32152945 DOI: 10.1007/978-981-15-1580-4_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
C-type lectins (CTLs) are a family of carbohydrate-recognition domain (CRD)-containing proteins that bind to ligands in a calcium-dependent manner. CTLs act as important components of insect innate immune responses, such as pattern recognition, agglutination, encapsulation, melanization, phagocytosis and prophenoloxidase activation, as well as gut microbiome homeostasis maintenance, to defend against pathogens. Besides, some insect CTLs can facilitate pathogen infection and colonization. In this review, we describe the properties of insect CTLs and focus on explaining their role in viral, bacterial, parasitic and fungal infections.
Collapse
Affiliation(s)
- Yibin Zhu
- Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, 100084, China.,Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China.,School of Life Science, Tsinghua University, Beijing, 100084, China
| | - Xi Yu
- Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, 100084, China.,School of Life Science, Tsinghua University, Beijing, 100084, China
| | - Gong Cheng
- Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, 100084, China. .,Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
2
|
Deplazes E, Chin YKY, King GF, Mancera RL. The unusual conformation of cross-strand disulfide bonds is critical to the stability of β-hairpin peptides. Proteins 2019; 88:485-502. [PMID: 31589791 DOI: 10.1002/prot.25828] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/27/2019] [Accepted: 09/17/2019] [Indexed: 01/04/2023]
Abstract
The cross-strand disulfides (CSDs) found in β-hairpin antimicrobial peptides (β-AMPs) show a unique disulfide geometry that is characterized by unusual torsion angles and a short Cα-Cα distance. While the sequence and disulfide bond connectivity of disulfide-rich peptides is well studied, much less is known about the disulfide geometry found in CSDs and their role in the stability of β-AMPs. To address this, we solved the nuclear magnetic resonance (NMR) structure of the β-AMP gomesin (Gm) at 278, 298, and 310 K, examined the disulfide bond geometry of over 800 disulfide-rich peptides, and carried out extensive molecular dynamics (MD) simulation of the peptides Gm and protegrin. The NMR data suggests Cα-Cα distances characteristic for CSDs are independent of temperature. Analysis of disulfide-rich peptides from the Protein Data Bank revealed that right-handed and left-handed rotamers are equally likely in CSDs. The previously reported preference for right-handed rotamers was likely biased by restricting the analysis to peptides and proteins solved using X-ray crystallography. Furthermore, data from MD simulations showed that the short Cα-Cα distance is critical for the stability of these peptides. The unique disulfide geometry of CSDs poses a challenge to biomolecular force fields and to retain the stability of β-hairpin fold over long simulation times, restraints on the torsion angles might be required.
Collapse
Affiliation(s)
- Evelyne Deplazes
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, Perth, Western Australia, Australia
| | - Yanni K-Y Chin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Ricardo L Mancera
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
3
|
Schrag LG, Cao X, Dembele H, Liu X, Souhail QA, Kanost MR, Chen J, Jiang H, Prakash O. Expression and Characterization of Manduca sexta Stress Responsive Peptide-1; an Inducer of Antimicrobial Peptide Synthesis. ACTA ACUST UNITED AC 2019; 4:42-52. [PMID: 33241193 DOI: 10.11648/j.bmb.20190403.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In response to stress conditions such as wounding or infections in insects, several short peptides are processed to act as cytokines that induce AMP gene expression. To study their structure-activity relationship, immune inducibility, tissue specificity, stress responsiveness, and development relatedness, we chemically synthesized Manduca sexta stress response peptide-1, a 25-residue peptide with one disulfide bond (SRP1: FGVRVGTCPSGYVRRGTFCFPDDDY). Upon injection of the SRP1 into naïve larvae, several antimicrobial peptide genes were expressed at higher levels. The mRNA levels of SRP1 increased significantly in hemocytes and fat body after larvae were challenged with a mixture of bacteria and β-1,3-glucan. The expression patterns of SRP1 and its target genes are somewhat different from SRP2's, suggesting overlapping yet distinct functions. We elucidated the 3D structure of SRP1 in solution by two-dimensional 1H-1H NMR spectroscopy. The tertiary structure of SRP1 consists of two short β-strands at Y12-R15 and F18-F20, one type-II β-turn at R15-F18 in its well-defined core and is stabilized by a covalent disulfide bond between C8 and C19. The conformational ensemble of SRP1 from extensive atomistic simulation in explicit solvent (with 3.0 μs total effective sampling) shows high consistency with experimental intramolecular NOEs of the core region. The SRP1 core adopts a fold similar to the carboxyl-terminal subdomain of epidermal growth factor (EGF), suggesting that SRP1 may interact with EGF receptor-like molecules to trigger its biological function.
Collapse
Affiliation(s)
- Lynn G Schrag
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Hawa Dembele
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Xiaorong Liu
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003,, USA
| | - Qasim Al Souhail
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003,, USA.,Department of Biohemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003,, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Om Prakash
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
4
|
Shears SB, Hayakawa Y. Functional Multiplicity of an Insect Cytokine Family Assists Defense Against Environmental Stress. Front Physiol 2019; 10:222. [PMID: 30967784 PMCID: PMC6439351 DOI: 10.3389/fphys.2019.00222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 02/21/2019] [Indexed: 01/23/2023] Open
Abstract
The widespread distribution of insects over many ecological niches owes much to evolution of multiple mechanisms to defend against environmental stress, especially because their ectothermic nature and small body size render them particularly susceptible to extremes in temperature and water availability. In this review, we will summarize the latest information describing a single, multifunctional cytokine family that is deployed by six orders of insect species to combat a diverse variety of environmental stresses. The originating member of this peptide family was identified in Mythimna (formerly called Pseudaletia) separata armyworm; the cytokine was named growth-blocking peptide (GBP), reflecting its actions in combating parasitic invasion. The peptide’s name has been retained, though the list of its regulatory activities has greatly expanded. All members of this family are small peptides, 19–25 amino acid residues, whose major source is fat body. They are now known to regulate embryonic morphogenesis, larval growth rates, feeding activities, immune responses, nutrition, and aging. In this review, we will describe recent developments in our understanding of the mechanisms of action of the GBP family, but we will also highlight remaining gaps in our knowledge.
Collapse
Affiliation(s)
- Stephen B Shears
- Inositol Signalling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Yoichi Hayakawa
- Department of Applied Biological Sciences, Saga University, Saga, Japan
| |
Collapse
|
5
|
Herbison REH. Lessons in Mind Control: Trends in Research on the Molecular Mechanisms behind Parasite-Host Behavioral Manipulation. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00102] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
6
|
Schrag LG, Cao X, Herrera AI, Wang Y, Jiang H, Prakash O. Solution Structure and Expression Profile of an Insect Cytokine: Manduca sexta Stress Response Peptide-2. Protein Pept Lett 2017; 24:3-11. [PMID: 27903232 DOI: 10.2174/0929866524666161121142840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 11/22/2022]
Abstract
Manduca sexta stress response peptide-2 (SRP2) is predicted to be a 25-residue peptide (FGVKDGKCPSGRVRRLGICVPDDDY), which may function as an insect cytokine to regulate immune responses. Produced as an inactive precursor, endogenous proSRP2 is probably converted to active SRP2 by limited proteolysis in response to invading pathogens, along with prophenoloxidase and pro-Spätzle activation. In addition to immunity, SRP2 may control head morphogenesis or other developmental processes in the lepidopteran insect. We have examined the profiles of SRP2 gene expression in terms of immune induction capacity, tissue specificity, and developmental changes. To gain insights into its functions, we chemically synthesized SRP2, injected the peptide solution into naïve larvae, and detected significant up-regulation of several antimicrobial peptide genes. We determined the 3D molecular structure in solution of SRP2 by two-dimensional 1H-1H NMR spectroscopy. SRP2 has an ordered structure, which is composed of two short β-strands at regions R12 - R15 and I18 - V20, one type-I' β-turn at region R15 - I18, and a half turn at region C8 - S10 in its welldefined core stabilized by a covalent disulfide bond between C8 and C19. The secondary and tertiary structures are further stabilized by hydrogen bonds. Possible relationships between the structure and function are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University Stillwater, OK 74078, USA
| | - Om Prakash
- Department of Biochemistry and Molecular Biophysics, Kansas State Universities, Manhattan, KS 66506, USA
| |
Collapse
|
7
|
Abstract
Summary
For millions of years, parasites have altered the behaviour of their hosts. Parasites can affect host behaviour by: (1) interfering with the host’s normal immune–neural communication, (2) secreting substances that directly alter neuronal activity via non-genomic mechanisms and (3) inducing genomic- and/or proteomic-based changes in the brain of the host. Changes in host behaviour are often restricted to particular behaviours, with many other behaviours remaining unaffected. Neuroscientists can produce this degree of selectivity by targeting specific brain areas. Parasites, however, do not selectively attack discrete brain areas. Parasites typically induce a variety of effects in several parts of the brain. Parasitic manipulation of host behaviour evolved within the context of the manipulation of other host physiological systems (especially the immune system) that was required for a parasite’s survival. This starting point, coupled with the fortuitous nature of evolutionary innovation and evolutionary pressures to minimize the costs of parasitic manipulation, likely contributed to the complex and indirect nature of the mechanisms involved in host behavioural control. Because parasites and neuroscientists use different tactics to control behaviour, studying the methods used by parasites can provide novel insights into how nervous systems generate and regulate behaviour. Studying how parasites influence host behaviour will also help us integrate genomic, proteomic and neurophysiological perspectives on behaviour.
Collapse
Affiliation(s)
- Shelley Anne Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
8
|
Xu Q, Yu X, Liu J, Zhao H, Wang P, Hu S, Chen J, Zhang W, Hu J. Ostrinia furnacalis integrin β1 may be involved in polymerization of actin to modulate spreading and encapsulation of plasmatocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:438-445. [PMID: 22343085 DOI: 10.1016/j.dci.2012.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/07/2012] [Accepted: 02/08/2012] [Indexed: 05/31/2023]
Abstract
Insect hemocytes must change their state from non-adhesive to adhesive when they spread on or encapsulate foreign invaders. Although integrin β has been reported to play an important role in hemocyte spreading and encapsulation in several insects, how it is involved in the encapsulation process is still unclear. Here we report that integrin β1 of Ostrinia furnacalis (Ofint β1) may modulate plasmatocyte spreading by regulating polymerization of F-actin and further affecting formation of capsules. In the Sephadex A-25 bead-injected larvae, hemocytes forming capsules expressed approximately ten times more Ofint β1 than hemocytes that are free in circulation in hemolymph. When the expression of Ofint β1 in hemocytes was inhibited by dsRNA of Ofint β1 (dsINT), polymerization of F-actin in hemocytes, especially in plasmatocytes, was significantly decreased, spreading of plasmatocytes was inhibited, and encapsulation rate of Sephadex beads was also significantly decreased. Furthermore, hemocytes formed individual aggregates on beads in the dsINT injected larvae, while hemocytes formed complete capsules surrounding the beads in the control larvae; and most of the hemocytes on the beads in the dsINT-injected larvae assumed round forms rather than spread forms. Based on these results, we speculate that integrins on cellular membranes may modulate hemocyte spreading by regulating polymerization of F-actin and further affecting encapsulation of foreign objects.
Collapse
Affiliation(s)
- Qiuyun Xu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Matsumoto H, Tsuzuki S, Date-Ito A, Ohnishi A, Hayakawa Y. Characteristics common to a cytokine family spanning five orders of insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:446-454. [PMID: 22465148 DOI: 10.1016/j.ibmb.2012.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 02/22/2012] [Accepted: 03/05/2012] [Indexed: 05/31/2023]
Abstract
Growth-blocking peptide (GBP) is a member of an insect cytokine family with diverse functions including growth and immunity controls. Members of this cytokine family have been reported in 15 species of Lepidoptera, and we have recently identified GBP-like peptides in Diptera such as Lucilia cuprina and Drosophila melanogaster, indicating that this peptide family is not specific to Lepidoptera. In order to extend our knowledge of this peptide family, we purified the same family peptide from one of the tenebrionids, Zophobas atratus,(1) isolated its cDNA, and sequenced it. The Z. atratus GBP sequence together with reported sequence data of peptides from the same family enabled us to perform BLAST searches against EST and genome databases of several insect species including Coleoptera, Diptera, Hymenoptera, and Hemiptera and identify homologous peptide genes. Here we report conserved structural features in these sequence data. They consist of 19-30 amino acid residues encoded at the C terminus of a 73-152 amino acid precursor and contain the motif C-x(2)-G-x(4,6)-G-x(1,2)-C-[KR], which shares a certain similarity with the motif in the mammalian EGF peptide family. These data indicate that these small cytokines belonging to one family are present in at least five insect orders.
Collapse
Affiliation(s)
- Hitoshi Matsumoto
- Department of Applied Biological Sciences, Saga University, Honjo-1, Saga 840-8502, Japan
| | | | | | | | | |
Collapse
|
10
|
Yamaguchi K, Matsumoto H, Ochiai M, Tsuzuki S, Hayakawa Y. Enhanced expression of stress-responsive cytokine-like gene retards insect larval growth. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:183-92. [PMID: 22198334 DOI: 10.1016/j.ibmb.2011.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/22/2011] [Accepted: 11/27/2011] [Indexed: 05/26/2023]
Abstract
Growth rates of immature animals are governed by their feeding activities. A reduction in feeding sometimes causes serious growth retardation in insects; a typical case is often seen in host insects parasitized by a solitary endoparasitoid wasp. However, understanding of the mechanisms underlying the physiological repression of parasitized insects is fragmentary. Here we analyzed brain gene expression of the host common cutworm, Spodoptera litura, parasitized by a solitary endoparasitoid, Microplitis manilae, and identified a novel gene whose expression was significantly enhanced by parasitization. The gene encoded a pre-pro-peptide of a cytokine-like molecule and its expression was observed mainly in nervous tissues, hemocytes, and integuments. The 25 amino acid cytokine-like peptide encoded by the C-terminus of this gene was demonstrated to exist in the hemolymph of S. litura larvae and to change hemocytes from non-adhesive to adhesive in vitro. Further, injection of the active peptide reduced feeding activities of test larvae and consequently delayed their growth. The enhanced gene expression was also observed in larvae under severe stress conditions: abdominal ligature, proleg cutting, mechanical vibration, low temperature, and heat shock at 45°C. Elevated gene expression was maintained only in seriously growth-retarded larvae but not in recovered larvae at 24h or 48h after heat treatment. Thus, it is reasonable to conclude that stress-induced elevation of the peptide gene expression highly correlates with reduced feeding activities and growth retardation of the host larvae parasitized by M. manilae. Based on the conclusion, we named this peptide stress-responsive peptide (SRP).
Collapse
Affiliation(s)
- Koichiro Yamaguchi
- Department of Applied Biological Sciences, Saga University, Honjo-1, Saga 840-8502, Japan
| | | | | | | | | |
Collapse
|
11
|
Eleftherianos I, Xu M, Yadi H, ffrench-Constant RH, Reynolds SE. Plasmatocyte-spreading peptide (PSP) plays a central role in insect cellular immune defenses against bacterial infection. J Exp Biol 2009; 212:1840-8. [DOI: 10.1242/jeb.026278] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Insect hemocytes (blood cells) are a central part of the insect's cellular response to bacterial pathogens, and these specialist cells can both recognize and engulf bacteria. During this process, hemocytes undergo poorly characterized changes in adhesiveness. Previously, a peptide termed plasmatocyte-spreading peptide (PSP), which induces the adhesion and spreading of plasmatocytes on foreign surfaces, has been identified in lepidopteran insects. Here, we investigate the function of this peptide in the moth Manduca sexta using RNA interference (RNAi) to prevent expression of the precursor protein proPSP. We show that infection with the insect-specific bacterial pathogen Photorhabdus luminescens and non-pathogenic Escherichia coli induces proPSP mRNA transcription in the insect fat body but not in hemocytes; subsequently, proPSP protein can be detected in cell-free hemolymph. We used RNAi to silence this upregulation of proPSP and found that the knock-down insects succumbed faster to infection with P. luminescens, but not E. coli. RNAi-treated insects infected with E. coli showed a reduction in the number of circulating hemocytes and higher bacterial growth in hemolymph as well as a reduction in overall cellular immune function compared with infected controls. Interestingly,RNAi-mediated depletion of proPSP adversely affected the formation of melanotic nodules but had no additional effect on other cellular responses when insects were infected with P. luminescens, indicating that this pathogen employs mechanisms that suppress key cellular immune functions in M. sexta. Our results provide evidence for the central role of PSP in M. sexta cellular defenses against bacterial infections.
Collapse
Affiliation(s)
- I. Eleftherianos
- Department of Biology and Biochemistry, University of Bath, Claverton Down,Bath BA2 7AY, UK
| | - M. Xu
- Department of Biology and Biochemistry, University of Bath, Claverton Down,Bath BA2 7AY, UK
| | - H. Yadi
- Department of Biology and Biochemistry, University of Bath, Claverton Down,Bath BA2 7AY, UK
| | - R. H. ffrench-Constant
- School of Biological Sciences, University of Exeter, Cornwall Campus, Penryn,Cornwall TR10 9EZ, UK
| | - S. E. Reynolds
- Department of Biology and Biochemistry, University of Bath, Claverton Down,Bath BA2 7AY, UK
| |
Collapse
|
12
|
Xiao Y, Dai H, Bommineni YR, Soulages JL, Gong YX, Prakash O, Zhang G. Structure-activity relationships of fowlicidin-1, a cathelicidin antimicrobial peptide in chicken. FEBS J 2006; 273:2581-93. [PMID: 16817888 DOI: 10.1111/j.1742-4658.2006.05261.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cationic antimicrobial peptides are naturally occurring antibiotics that are actively being explored as a new class of anti-infective agents. We recently identified three cathelicidin antimicrobial peptides from chicken, which have potent and broad-spectrum antibacterial activities in vitro (Xiao Y, Cai Y, Bommineni YR, Fernando SC, Prakash O, Gilliland SE & Zhang G (2006) J Biol Chem281, 2858-2867). Here we report that fowlicidin-1 mainly adopts an alpha-helical conformation with a slight kink induced by glycine close to the center, in addition to a short flexible unstructured region near the N terminus. To gain further insight into the structural requirements for function, a series of truncation and substitution mutants of fowlicidin-1 were synthesized and tested separately for their antibacterial, cytolytic and lipopolysaccharide (LPS)-binding activities. The short C-terminal helical segment after the kink, consisting of a stretch of eight amino acids (residues 16-23), was shown to be critically involved in all three functions, suggesting that this region may be required for the peptide to interact with LPS and lipid membranes and to permeabilize both prokaryotic and eukaryotic cells. We also identified a second segment, comprising three amino acids (residues 5-7) in the N-terminal flexible region, that participates in LPS binding and cytotoxicity but is less important in bacterial killing. The fowlicidin-1 analog, with deletion of the second N-terminal segment (residues 5-7), was found to retain substantial antibacterial potency with a significant reduction in cytotoxicity. Such a peptide analog may have considerable potential for development as an anti-infective agent.
Collapse
Affiliation(s)
- Yanjing Xiao
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Many innate immune mechanisms are conserved throughout the animal kingdom. Manduca sexta, a widely used model for insect biochemical research, employs these mechanisms to defend against invading pathogens and parasites. We have isolated from M. sexta hemolymph a group of proteins (hemolin, peptidoglycan recognition proteins, beta-1,3-glucan recognition proteins, and C-type lectins), which serve as a surveillance mechanism by binding to microbial surface molecules (e.g. peptidoglycan, lipopolysaccharide, lipoteichoic acid, and beta-1,3-glucan). The binding triggers diverse responses such as phagocytosis, nodule formation, encapsulation, melanization, and synthesis of anti-microbial peptides/proteins. Some of these responses are mediated and coordinated by serine proteinase cascades, analogous to the complement system in mammals. Our current research is focused on the proteolytic activation of prophenoloxidase (proPO)--a reaction implicated in melanotic encapsulation, wound healing, and protein cross-linking. We have isolated three proPO-activating proteinases, each of which requires serine proteinase homologs as a cofactor for generating active phenoloxidase. The proteinases and proteinase-like molecules, containing one to two clip domains at their amino-terminus, are acute-phase proteins induced upon an immune challenge. Inhibitory regulation of the proteinases by serpins and association of the proteinase homologs with a bacteria-binding lectin are important for ensuring a localized defense response. Additional serine proteinases expressed in M. sexta hemocytes and fat body have been discovered. Future research efforts will be aimed at elucidating the proteinase cascade for proPO activation and investigating the roles of proteinases in other immune responses such as processing of plasmatocyte-spreading peptide.
Collapse
Affiliation(s)
- Michael R Kanost
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506, USA.
| | | | | |
Collapse
|
14
|
Nakahara Y, Kanamori Y, Kiuchi M, Kamimura M. Effects of silkworm paralytic peptide on in vitro hematopoiesis and plasmatocyte spreading. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2003; 52:163-174. [PMID: 12655604 DOI: 10.1002/arch.10080] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bombyx mori paralytic peptide (BmPP), a multifunctional cytokine-like molecule, is expressed in the hematopoietic organ-wing imaginal disc complex, suggesting that BmPP is involved in both immune response and the hematopoietic process. We studied the effects of BmPP on plasmatocytes and hematopoietic organs of the silkworm. BmPP (1 microM) stimulated spreading of circulating plasmatocytes, but the percentage of spread plasmatocytes was only 20%. Over 10 nM of BmPP, however, elicited prominent spreading in 70% of young plasmatocytes discharged from cultured hematopoietic organs. Cells in hematopoietic organs that were enzymatically dispersed did not spread even after adding 100 nM of BmPP, indicating that plasmatocytes acquired BmPP-sensitivity immediately after discharge. When cultured in a medium containing larval plasma, hematopoietic organs grew markedly and discharged a large number of hemocytes, over 95% of which were morphologically plasmatocytes. The hemocyte discharge was blocked in the medium containing BmPP dose-dependently, although hematopoietic organ growth was not suppressed. These results suggest that BmPP plays important roles both in hematopoietic regulation and in the hemocyte immune reaction of the silkworm.
Collapse
Affiliation(s)
- Yuichi Nakahara
- National Institute of Agrobiological Sciences, Ibaraki, Japan
| | | | | | | |
Collapse
|
15
|
Tada M, Aizawa T, Shinohara Y, Matsubara K, Miura K, Yoshida M, Shitara K, Kouno T, Mizuguchi M, Nitta K, Hayakawa Y, Kawano K. Roles of aromatic residues in the structure and biological activity of the small cytokine, growth-blocking peptide (GBP). J Biol Chem 2003; 278:10778-83. [PMID: 12506114 DOI: 10.1074/jbc.m211251200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growth-blocking peptide (GBP) is a small (25 amino acids) insect cytokine with a variety of functions: controlling the larval development of lepidopteran insects, acting as a mitogen for various types of cultured cells, and stimulating insect blood cells. The aromatic residues of GBP (Phe-3, Tyr-11, and Phe-23) are highly conserved in the ENF peptide family found in lepidopteran insects. We investigated the relationship between the biological activities and structural properties of a series of GBP mutants, in which each of the three aromatic residues is replaced by a different residue. The results of the hemocytes-stimulating assays of GBP mutants indicated that Phe-3 is the key residue in this activity: Ala or Tyr replacement resulted in significant loss of the activity, but Leu replacement did not. The replacements of other aromatic residues hardly affected the activity. On the other hand, NMR analysis of the mutants suggested that Tyr-11 is a key residue for maintaining the core structure of GBP. Surprisingly, the Y11A mutant maintained its biological activity, although its native-like secondary structure was disordered. Detailed analyses of the (15)N-labeled Y11A mutant by heteronuclear NMR spectroscopy showed that the native-like beta-sheet structure of Y11A was induced by the addition of 2,2,2-trifluoroethanol. The results suggest that Y11A has a tendency to form a native-like structure, and this property may give the Y11A mutant native-like activity.
Collapse
Affiliation(s)
- Masahito Tada
- Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Song J, Xu P, Koutychenko A, Ni F. Stability of protein-bound conformations of bioactive peptides: the folded conformation of an epidermal growth factor-like thrombomodulin fragment is similar to that recognized by thrombin. Biopolymers 2002; 65:373-86. [PMID: 12434426 DOI: 10.1002/bip.10253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The relationship between the free and bound conformations of bioactive peptides is explored using the epidermal growth factor (EGF)-like thrombomodulin fragment hTM409-426 as a model system. The hTM409-426 peptide has a sequence of C(409)PEGYILDDGFIC(421)TDIDE (with a disulfide bond between Cys409 and Cys421) and is a selective inhibitor of thrombin. Upon binding to thrombin, hTM409-426 adopts a well-defined conformation-namely, a beta-turn followed by an antiparallel beta-sheet, similar to those found in all other EGF-like protein repeats (Hrabal et al., Protein Science, 1996, Vol. 5, 195-203). Here we demonstrate that, at pH 6.8 and at 25 degrees C, the hTM409-426 peptide in the free state is very flexible, but still populates a type II beta-turn over residues Pro410-Glu411-Gly412-Tyr413 and the clustering of some hydrophobic side chains, both of which are present in the thrombin-bound conformation. At a lower temperature of 5 degrees C, significant conformational shifts of the C alpha H proton resonances and extensive medium- and long-range NOEs are observed, indicating the presence of folded conformations with unique backbone-backbone and side-chain interactions. A comparison of the NOE patterns in the free state with transferred NOEs shows that the free-state folded and the thrombin-bound conformations of the hTM409-426 peptide are very similar, particularly over residues Pro410-Ile424. The folded conformation of hTM409-426 appears to be stabilized by two hydrophobic clusters, one formed by the side chains of residues Pro410, Tyr413, Leu415, and Phe419 and the Cys409-Cys421 disulfide bond, the second involving residues Ile414 and Ile424. These results indicate that the overall topology of the thrombin-bound conformation of the hTM409-426 peptide is prefolded in the free state and the primary sequence (including the disulfide bond) may be selective for an ensemble of conformations similar to that recognized by thrombin.
Collapse
Affiliation(s)
- Jianxing Song
- Montréal Joint Centre for Structural Biology, Biotechnology Research Institute, National Research Council of Canada, Montréal, Québec H4P 2R2, Canada
| | | | | | | |
Collapse
|
17
|
Miura K, Kamimura M, Aizawa T, Kiuchi M, Hayakawa Y, Mizuguchi M, Kawano K. Solution structure of paralytic peptide of silkworm, Bombyx mori. Peptides 2002; 23:2111-6. [PMID: 12535689 DOI: 10.1016/s0196-9781(02)00254-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Paralytic peptide of Bombyx mori (BmPP) is one of the multifunctional ENF-peptides; the name of "ENF" is the consensus N-terminal amino acid sequence of the family peptides. We revealed that BmPP significantly possesses growth-blocking activity and plasmatocyte-spreading activity and that its activity profiles are different from those of another ENF-family peptide, namely, the growth-blocking peptide of Pseudaletia separata (PsGBP). We also determined the NMR structures of BmPP and PsGBP under the same conditions, which revealed the structural differences of the first and second beta-turn regions between the two peptides. On the basis of our results, it can be considered that the tertiary structural difference in these peptides may cause their different profiles of growth-blocking activity.
Collapse
Affiliation(s)
- Kazunori Miura
- Bio-oriented Technology Research Advancement Institution, 1-40-2 Nisshin, Saitama, Saitama 331-8537, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Kanost MR, Jiang H, Wang Y, Yu XQ, Ma C, Zhu Y. Hemolymph proteinases in immune responses of Manduca sexta. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 484:319-28. [PMID: 11419000 DOI: 10.1007/978-1-4615-1291-2_32] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- M R Kanost
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | | | |
Collapse
|
19
|
Sasagawa H, Nakahara Y, Kiuchi M. An ENF peptide, Bombyx mori paralytic peptide, induces cell proliferation and morphological changes in Bombyx cell lines. In Vitro Cell Dev Biol Anim 2001; 37:638-40. [PMID: 11776967 DOI: 10.1290/1071-2690(2001)037<0638:aepbmp>2.0.co;2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Ohnishi A, Oda Y, Hayakawa Y. Characterization of receptors of insect cytokine, growth-blocking peptide, in human keratinocyte and insect Sf9 cells. J Biol Chem 2001; 276:37974-9. [PMID: 11495909 DOI: 10.1074/jbc.m104856200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insect cytokine, growth-blocking peptide (GBP), enhances cell proliferation of human keratinocyte cells with a potency almost equivalent to that of human epidermal growth factor (EGF). GBP consists of 25 amino acid residues containing a core region that shows a striking similarity to the C-terminal beta-loop domain of EGF and disordered N and C termini. The present study demonstrates that, although GBP lacks the N-terminal half-portion of EGF molecule, at least five amino acids of the disordered N-terminal six-amino acid region are indispensable for affecting the cell growth activity of GBP. Upon stimulating mitogenesis in keratinocyte cells, GBP directly binds and activates their EGF receptors. GBP also effects proliferative activity on insect Sf9 cells through the binding and activation of the specific receptor, which consists of a heterodimeric complex: a binding subunit (60 kDa) and a tyrosine phosphorylation subunit (58 kDa). These results indicate that GBP enhances cell proliferation of human keratinocyte and insect Sf9 cells through the activation of EGF and GBP receptors, respectively.
Collapse
Affiliation(s)
- A Ohnishi
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan 060-0819
| | | | | |
Collapse
|
21
|
Aizawa T, Hayakawa Y, Ohnishi A, Fujitani N, Clark KD, Strand MR, Miura K, Koganesawa N, Kumaki Y, Demura M, Nitta K, Kawano K. Structure and activity of the insect cytokine growth-blocking peptide. Essential regions for mitogenic and hemocyte-stimulating activities are separate. J Biol Chem 2001; 276:31813-8. [PMID: 11429413 DOI: 10.1074/jbc.m105251200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growth-blocking peptide (GBP) is a 25-amino acid insect cytokine found in Lepidopteran insects that possesses diverse biological activities such as larval growth regulation, cell proliferation, and stimulation of immune cells (plasmatocytes). The tertiary structure of GBP consists of a structured core that contains a disulfide bridge and a short antiparallel beta-sheet (Tyr(11)-Arg(13) and Cys(19)-Pro(21)) and flexible N and C termini (Glu(1)-Gly(6) and Phe(23)-Gln(25)). In this study, deletion and point mutation analogs of GBP were synthesized to investigate the relationship between the structure of GBP and its mitogenic and plasmatocyte spreading activity. The results indicated that deletion of the N-terminal residue, Glu(1), eliminated all plasmatocyte spreading activity but did not reduce mitogenic activity. In contrast, deletion of Phe(23) along with the remainder of the C terminus destroyed all mitogenic activity but only slightly reduced plasmatocyte spreading activity. Therefore, the minimal structure of GBP containing mitogenic activity is 2-23 GBP, whereas that with plasmatocyte spreading activity is 1-22 GBP. NMR analysis indicated that these N- and C-terminal deletion mutants retained a similar core structure to wild-type GBP. Replacement of Asp(16) with either a Glu, Leu, or Asn residue similarly did not alter the core structure of GBP. However, these mutants had no mitogenic activity, although they retained about 50% of their plasmatocyte spreading activity. We conclude that specific residues in the unstructured and structured domains of GBP differentially affect the biological activities of GBP, which suggests the possibility that multifunctional properties of this peptide may be mediated by different forms of a GBP receptor.
Collapse
Affiliation(s)
- T Aizawa
- Bio-oriented Technology Research Advancement Institution, Saitama 331-8537, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kamimura M, Nakahara Y, Kanamori Y, Tsuzuki S, Hayakawa Y, Kiuchi M. Molecular cloning of silkworm paralytic peptide and its developmental regulation. Biochem Biophys Res Commun 2001; 286:67-73. [PMID: 11485309 DOI: 10.1006/bbrc.2001.5365] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The silkworm paralytic peptide (PP) is a member of the ENF peptide family that exerts multiple biological activities involved in defense reaction and growth regulation. We isolated its cDNA and examined mRNA expression profiles. cDNA encoded 131 amino acids from which the 23-residue PP sequence was found at the C-terminal portion. Immunoblot analysis and paralytic activity assay indicated that inactive pro-protein in larval hemolymph was processed into active peptide immediately after bleeding. In the last larval instar, 0.6-kb PP mRNA was expressed in various tissues, of which the fat body was predominant. Its expression in the fat body decreased during the feeding period and then increased during metamorphic process. Juvenile hormone and 20-hydroxyecdysone upregulated its expression. At the embryonic stage, 1.5-kb mRNA, in addition to 0.6-kb mRNA, was expressed from 1 day after oviposition to hatching. PP was thus expressed stage-specifically under hormonal control.
Collapse
Affiliation(s)
- M Kamimura
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Wang Y, Jiang H, Kanost MR. Biological activity of Manduca sexta paralytic and plasmatocyte spreading peptide and primary structure of its hemolymph precursor. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1999; 29:1075-1086. [PMID: 10612042 DOI: 10.1016/s0965-1748(99)00086-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A family of hemolymph peptides was previously identified in several lepidopteran insects, which exhibited multiple biological activities including rapid paralysis, blockage of growth and development, or stimulation of plasmatocyte spreading and aggregation. We synthesized Manduca sexta paralytic peptide 1 (PP1) and found that after it was injected into larvae, bleeding from wounds was dramatically reduced. PP1 also stimulated spreading and aggregation behavior of M. sexta plasmatocytes in vitro. Stimulation of plasmatocyte aggregation and adherence to the body wall may explain a decrease observed in the number of circulating plasmatocytes after injection of PP1. Such aggregates might rapidly form plugs in wounds to prevent bleeding. We cloned a cDNA for a Manduca paralytic peptide precursor, using polymerase chain reactions and cDNA library screening. The active 23-residue PP2 peptide encoded by this clone is at the carboxyl-terminal end of a precursor protein predicted to be 107 amino acid residues long after cleavage of a secretion signal peptide. Active PP2 was produced by processing of recombinant proPP2 by bovine factor Xa. A single proPP2 mRNA was present in fat body but not in hemocytes. The level of this mRNA was not affected by injection of bacteria into larvae. We produced recombinant proPP2 in Escherichia coli and used this protein to produce an antiserum. The antiserum detected proPP2 in plasma and was used to observe rapid proteolytic processing of proPP2 after hemolymph collection.
Collapse
Affiliation(s)
- Y Wang
- Department of Biochemistry, Kansas State University, Manhattan 66506, USA
| | | | | |
Collapse
|