1
|
Qiu C, Yuan Y, Lee SW, Ploplis VA, Castellino FJ. A local α-helix drives structural evolution of streptococcal M-protein affinity for host human plasminogen. Biochem J 2020; 477:1613-1630. [PMID: 32270857 PMCID: PMC7663350 DOI: 10.1042/bcj20200197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 11/17/2022]
Abstract
Plasminogen-binding group A streptococcal M-protein (PAM) is a signature surface virulence factor of specific strains of Group A Streptococcus pyogenes (GAS) and is an important tight binding protein for human plasminogen (hPg). After activation of PAM-bound hPg to the protease, plasmin (hPm), GAS cells develop invasive surfaces that are critical for their pathogenicity. PAMs are helical dimers in solution, which are sensitive to temperature changes over a physiological temperature range. We previously categorized PAMs into three classes (I-III) based on the number and nature of short tandem α-helical repeats (a1 and a2) in their NH2-terminal A-domains that dictate interactions with hPg/hPm. Class II PAMs are special cases since they only contain the a2-repeat, while Class I and Class III PAMs encompass complete a1a2-repeats. All dimeric PAMs tightly associate with hPg, regardless of their categories, but monomeric Class II PAMs bind to hPg much weaker than their Class I and Class III monomeric counterparts. Additionally, since the A-domains of Class II PAMs comprise different residues from other PAMs, the issue emerges as to whether Class II PAMs utilize different amino acid side chains for interactions with hPg. Herein, through NMR-refined structural analyses, we elucidate the atomic-level hPg-binding mechanisms adopted by two representative Class II PAMs. Furthermore, we develop an evolutionary model that explains from unique structural perspectives why PAMs develop variable A-domains with regard to hPg-binding affinity.
Collapse
Affiliation(s)
- Cunjia Qiu
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, U.S.A
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| | - Yue Yuan
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| | - Shaun W. Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| | - Victoria A. Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, U.S.A
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| | - Francis J. Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, U.S.A
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| |
Collapse
|
2
|
Russo BT, Ayinuola YA, Singh D, Carothers K, Fischetti VA, Flores-Mireles AL, Lee SW, Ploplis VA, Liang Z, Castellino FJ. The M Protein of Streptococcus pyogenes Strain AP53 Retains Cell Surface Functional Plasminogen Binding after Inactivation of the Sortase A Gene. J Bacteriol 2020; 202:e00096-20. [PMID: 32123038 PMCID: PMC7186463 DOI: 10.1128/jb.00096-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Streptococcus pyogenes (Lancefield group A Streptococcus [GAS]) is a β-hemolytic human-selective pathogen that is responsible for a large number of morbid and mortal infections in humans. For efficient infection, GAS requires different types of surface proteins that provide various mechanisms for evading human innate immune responses, thus enhancing pathogenicity of the bacteria. Many such virulence-promoting proteins, including the major surface signature M protein, are translocated after biosynthesis through the cytoplasmic membrane and temporarily tethered to this membrane via a type 1 transmembrane domain (TMD) positioned near the COOH terminus. In these proteins, a sorting signal, LPXTG, is positioned immediately upstream of the TMD, which is cleaved by the membrane-associated transpeptidase, sortase A (SrtA), leading to the covalent anchoring of these proteins to newly emerging l-Ala-l-Ala cross-bridges of the growing peptidoglycan cell wall. Herein, we show that inactivation of the srtA gene in a skin-tropic pattern D GAS strain (AP53) results in retention of the M protein in the cell membrane. However, while the isogenic AP53 ΔsrtA strain is attenuated in overall pathogenic properties due to effects on the integrity of the cell membrane, our data show that the M protein nonetheless can extend from the cytoplasmic membrane through the cell wall and then to the surface of the bacteria and thereby retain its important properties of productively binding and activating fluid-phase host plasminogen (hPg). The studies presented herein demonstrate an underappreciated additional mechanism of cell surface display of bacterial virulence proteins via their retention in the cell membrane and extension to the GAS surface.IMPORTANCE Group A Streptococcus pyogenes (GAS) is a human-specific pathogen that produces many surface factors, including its signature M protein, that contribute to its pathogenicity. M proteins undergo specific membrane localization and anchoring to the cell wall via the transpeptidase sortase A. Herein, we explored the role of sortase A function on M protein localization, architecture, and function, employing, a skin-tropic GAS isolate, AP53, which expresses a human plasminogen (hPg)-binding M (PAM) Protein. We showed that PAM anchored in the cell membrane, due to the targeted inactivation of sortase A, was nonetheless exposed on the cell surface and functionally interacted with host hPg. We demonstrate that M proteins, and possibly other sortase A-processed proteins that are retained in the cell membrane, can still function to initiate pathogenic processes by this underappreciated mechanism.
Collapse
Affiliation(s)
- Brady T Russo
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Yetunde A Ayinuola
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Damini Singh
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Katelyn Carothers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Vincent A Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York, USA
| | - Ana L Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Victoria A Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Zhong Liang
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
3
|
Yuan Y, Ayinuola YA, Singh D, Ayinuola O, Mayfield JA, Quek A, Whisstock JC, Law RHP, Lee SW, Ploplis VA, Castellino FJ. Solution structural model of the complex of the binding regions of human plasminogen with its M-protein receptor from Streptococcus pyogenes. J Struct Biol 2019; 208:18-29. [PMID: 31301349 PMCID: PMC6983471 DOI: 10.1016/j.jsb.2019.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/01/2019] [Accepted: 07/09/2019] [Indexed: 11/22/2022]
Abstract
VEK50 is a truncated peptide from a Streptococcal pyogenes surface human plasminogen (hPg) binding M-protein (PAM). VEK50 contains the full A-domain of PAM, which is responsible for its low nanomolar binding to hPg. The interaction of VEK50 with kringle 2, the PAM-binding domain in hPg (K2hPg), has been studied by high-resolution NMR spectroscopy. The data show that each VEK50 monomer in solution contains two tight binding sites for K2hPg, one each in the a1- (RH1; R17H18) and a2- (RH2; R30H31) repeats within the A-domain of VEK50. Two mutant forms of VEK50, viz., VEK50[RH1/AA] (VEK50ΔRH1) and VEK50[RH2/AA] (VEK50ΔRH2), were designed by replacing each RH with AA, thus eliminating one of the K2hPg binding sites within VEK50, and allowing separate study of each binding site. Using 13C- and 15N-labeled peptides, NMR-derived solution structures of VEK50 in its complex with K2hPg were solved. We conclude that the A-domain of PAM can accommodate two molecules of K2hPg docked within a short distance of each other, and the strength of the binding is slightly different for each site. The solution structure of the VEK50/K2hPg, complex, which is a reductionist model of the PAM/hPg complex, provides insights for the binding mechanism of PAM to a host protein, a process that is critical to S. pyogenes virulence.
Collapse
Affiliation(s)
- Yue Yuan
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yetunde A Ayinuola
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Damini Singh
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Olawole Ayinuola
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jeffrey A Mayfield
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Adam Quek
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800 VIC, Australia
| | - James C Whisstock
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800 VIC, Australia
| | - Ruby H P Law
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800 VIC, Australia
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Victoria A Ploplis
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Francis J Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
4
|
Qiu C, Yuan Y, Zajicek J, Liang Z, Balsara RD, Brito-Robionson T, Lee SW, Ploplis VA, Castellino FJ. Contributions of different modules of the plasminogen-binding Streptococcus pyogenes M-protein that mediate its functional dimerization. J Struct Biol 2018; 204:151-164. [PMID: 30071314 PMCID: PMC6544907 DOI: 10.1016/j.jsb.2018.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 10/28/2022]
Abstract
Group A Streptococcus pyogenes (GAS) is a causative agent of pharyngeal and dermal infections in humans. A major virulence determinant of GAS is its dimeric signature fibrillar M-protein (M-Prt), which is evolutionarily designed in modules, ranging from a hypervariable extracellular N-terminal region to a progressively more highly conserved C-terminus that is covalently anchored to the cell wall. Of the >250 GAS isolates classified, only the subset of skin-trophic Pattern D strains expresses a specific serotype of M-Prt, PAM, that directly binds to host human plasminogen (hPg) via its extracellular NH2-terminal variable A-domain region. This interaction allows these GAS strains to accumulate components of the host fibrinolytic system on their surfaces to serve extracellular functions. While structure-function studies have been accomplished on M-Prts from Pattern A-C GAS isolates with different direct ligand binding properties compared to PAM, much less is known regarding the structure-function relationships of PAM-type M-Prts, particularly their dimerization determinants. To examine these questions, PAMs from seven GAS strains with sequence variations in the NH2-terminal ligand binding domains, as well as truncated versions of PAM, were designed and studied. The results from bioinformatic and biophysical analyses show that the different domains of PAM are disparately engaged in dimerization. From these data, we propose an experimentally-based model for PAM secondary and quaternary structures that is highly dependent on the conserved helical C-terminal C-D-domains. In addition, while the N-terminal regions of PAMs are variable in sequence, the binding properties of hPg and its activated product, plasmin, to the A-domain, remain intact.
Collapse
Affiliation(s)
- Cunjia Qiu
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Yue Yuan
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Jaroslav Zajicek
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Zhong Liang
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Rashna D Balsara
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Teresa Brito-Robionson
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Shaun W Lee
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Victoria A Ploplis
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Francis J Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States.
| |
Collapse
|
5
|
Kylväjä R, Ojalehto T, Kainulainen V, Virkola R, Westerlund-Wikström B. Penicillin binding protein 3 of Staphylococcus aureus NCTC 8325-4 binds and activates human plasminogen. BMC Res Notes 2016; 9:389. [PMID: 27488131 PMCID: PMC4972960 DOI: 10.1186/s13104-016-2190-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/28/2016] [Indexed: 11/25/2022] Open
Abstract
Background Staphylococcus aureus is a versatile pathogen expressing a number of virulence-associated adhesive molecules. In a previous study, we generated in a secretion-competent Escherichia coli strain a library of random FLAG-tag positive (FTP) polypeptides of S. aureus. To identify adhesive proteins and gain additional knowledge on putative virulence factors of S. aureus, we here screened the FTP library against human serum proteins. Findings Staphylococcus aureus NCTC 8325-4, origin of the FTP library, adhered to immobilized plasminogen in vitro. In an enzyme-linked immunoassay a C-terminal part of penicillin binding protein 3 (PBP3), included in the FTP library, bound to immobilized plasminogen. We expressed and purified full-length PBP3 and its C-terminal fragments as recombinant proteins. In a time-resolved fluorometry—based assay the PBP3 polypeptides bound to immobilized plasminogen. The polypeptides enhanced formation of plasmin from plasminogen as analyzed by cleavage of a chromogenic plasmin substrate. Conclusions The present findings, although preliminary, demonstrate reliably that S. aureus NCTC 8325-4 adheres to immobilized plasminogen in vitro and that the adhesion may be mediated by a C-terminal fragment of the PBP3 protein. The full length PBP3 and the penicillin binding C-terminal domain of PBP3 expressed as recombinant proteins bound plasminogen and activated plasminogen to plasmin. These phenomena were inhibited by the lysine analogue ε-aminocaproic acid suggesting that the binding is mediated by lysine residues. A detailed molecular description of surface molecules enhancing the virulence of S. aureus will aid in understanding of its pathogenicity and help in design of antibacterial drugs in the future. Electronic supplementary material The online version of this article (doi:10.1186/s13104-016-2190-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Riikka Kylväjä
- General Microbiology, Department of Biosciences, University of Helsinki, P.O.Box 56, FI-00014, University of Helsinki, Helsinki, Finland.,Thermo Fisher Scientific, Ratastie 2, 01620, Vantaa, Finland
| | - Tuomas Ojalehto
- General Microbiology, Department of Biosciences, University of Helsinki, P.O.Box 56, FI-00014, University of Helsinki, Helsinki, Finland.,Orion Diagnostica, Koivu-Mankkaan tie 6, 02200, Espoo, Finland
| | - Veera Kainulainen
- General Microbiology, Department of Biosciences, University of Helsinki, P.O.Box 56, FI-00014, University of Helsinki, Helsinki, Finland.,Pharmacology, Faculty of Medicine, University of Helsinki, P.O.Box 63, FI-00014, University of Helsinki, Helsinki, Finland
| | - Ritva Virkola
- General Microbiology, Department of Biosciences, University of Helsinki, P.O.Box 56, FI-00014, University of Helsinki, Helsinki, Finland
| | - Benita Westerlund-Wikström
- General Microbiology, Department of Biosciences, University of Helsinki, P.O.Box 56, FI-00014, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
6
|
Bhattacharya S, Liang Z, Quek AJ, Ploplis VA, Law R, Castellino FJ. Dimerization is not a determining factor for functional high affinity human plasminogen binding by the group A streptococcal virulence factor PAM and is mediated by specific residues within the PAM a1a2 domain. J Biol Chem 2014; 289:21684-93. [PMID: 24962580 DOI: 10.1074/jbc.m114.570218] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A emm53 subclass of Group A Streptococcus pyogenes (GAS) interacts tightly with human plasma plasminogen (hPg) and plasmin (hPm) via the kringle 2 (K2hPg) domain of hPg/hPm and the N-terminal a1a2 regions of a GAS coiled-coil M-like protein (PAM). Previous studies have shown that a monomeric PAM fragment, VEK30 (residues 97-125 + Tyr), interacted specifically with isolated K2hPg. However, the binding strength of VEK30 (KD = 56 nm) was ∼60-fold weaker than that of full-length dimeric PAM (KD = 1 nm). To assess whether this attenuated binding was due to the inability of VEK30 to dimerize, we defined the minimal length of PAM required to dimerize using a series of peptides with additional PAM residues placed at the NH2 and COOH termini of VEK30. VEK64 (PAM residues 83-145 + Tyr) was found to be the smallest peptide that adopted an α-helical dimer, and was bound to K2hPg with nearly the same affinity as PAM (KD = 1-2 nm). However, addition of two PAM residues (Arg(126)-His(127)) to the COOH terminus of VEK30 (VEK32) maintained a monomeric peptidic structure, but exhibited similar K2hPg binding affinity as full-length dimeric PAM. We identified five residues in a1a2 (Arg(113), His(114), Glu(116), Arg(126), His(127)), mutation of which reduced PAM binding affinity for K2hPg by ∼ 1000-fold. Replacement of these critical residues by Ala in the GAS genome resulted in reduced virulence, similar to the effects of inactivating the PAM gene entirely. We conclude that rather than dimerization of PAM, the five key residues in the binding domain of PAM are essential to mediate the high affinity interaction with hPg, leading to increased GAS virulence.
Collapse
Affiliation(s)
- Sarbani Bhattacharya
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 and
| | - Zhong Liang
- From the W. M. Keck Center for Transgene Research and
| | - Adam J Quek
- the Department of Biochemistry and Molecular Biology, Monash University, 3800, Victoria, Australia
| | - Victoria A Ploplis
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 and
| | - Ruby Law
- the Department of Biochemistry and Molecular Biology, Monash University, 3800, Victoria, Australia
| | - Francis J Castellino
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 and
| |
Collapse
|
7
|
Liang Z, Zhang Y, Agrahari G, Chandrahas V, Glinton K, Donahue DL, Balsara RD, Ploplis VA, Castellino FJ. A natural inactivating mutation in the CovS component of the CovRS regulatory operon in a pattern D Streptococcal pyogenes strain influences virulence-associated genes. J Biol Chem 2013; 288:6561-73. [PMID: 23316057 PMCID: PMC3585089 DOI: 10.1074/jbc.m112.442657] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 12/28/2012] [Indexed: 11/06/2022] Open
Abstract
A skin-tropic invasive group A Streptococcus pyogenes (GAS) strain, AP53, contains a natural inactivating mutation in the covS gene (covS(M)) of the two-component responder (CovR)/sensor (CovS) gene regulatory system. The effects of this mutation on specific GAS virulence determinants have been assessed, with emphasis on expression of the extracellular protease, streptococcal pyrogenic exotoxin B (SpeB), capsular hyaluronic acid, and proteins that allow host plasmin assembly on the bacterial surface, viz. a high affinity plasminogen (Pg)/plasmin receptor, Pg-binding group A streptococcal M protein (PAM), and the human Pg activator streptokinase. To further illuminate mechanisms of the functioning of CovRS in the virulence of AP53, two AP53 isogenic strains were generated, one in which the natural covS(M) gene was mutated to WT-covS (AP53/covS(WT)) and a strain that contained an inactivated covR gene (AP53/ΔcovR). Two additional strains that do not contain PAM, viz. WT-NS931 and NS931/covS(M), were also employed. SpeB was not measurably expressed in strains containing covR(WT)/covS(M), whereas in strains with natural or engineered covR(WT)/covS(WT), SpeB expression was highly up-regulated. Alternatively, capsule synthesis via the hasABC operon was enhanced in strain AP53/covS(M), whereas streptokinase expression was only slightly affected by the covS inactivation. PAM expression was not substantially influenced by the covS mutation, suggesting that covRS had minimal effects on the mga regulon that controls PAM expression. These results demonstrate that a covS inactivation results in virulence gene alterations and also suggest that the CovR phosphorylation needed for gene up- or down-regulation can occur by alternative pathways to CovS kinase.
Collapse
Affiliation(s)
- Zhong Liang
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Yueling Zhang
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Garima Agrahari
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Vishwanatha Chandrahas
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Kristofor Glinton
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Deborah L. Donahue
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Rashna D. Balsara
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Victoria A. Ploplis
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Francis J. Castellino
- From the W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
8
|
Figuera-Losada M, Ranson M, Sanderson-Smith ML, Walker MJ, Castellino FJ, Prorok M. Effects on human plasminogen conformation and activation rate caused by interaction with VEK-30, a peptide derived from the group A streptococcal M-like protein (PAM). BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1804:1342-9. [PMID: 20152941 PMCID: PMC2846993 DOI: 10.1016/j.bbapap.2010.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 01/14/2010] [Accepted: 01/25/2010] [Indexed: 11/18/2022]
Abstract
In vertebrates, fibrinolysis is primarily carried out by the serine protease plasmin (Pm), which is derived from activation of the zymogen precursor, plasminogen (Pg). One of the most distinctive features of Pg/Pm is the presence of five homologous kringle (K) domains. These structural elements possess conserved Lys-binding sites (LBS) that facilitate interactions with substrates, activators, inhibitors and receptors. In human Pg (hPg), K2 displays weak Lys affinity, however the LBS of this domain has been implicated in an atypical interaction with the N-terminal region of a bacterial surface protein known as PAM (Pg-binding group A streptococcal M-like protein). A direct correlation has been established between invasiveness of group A streptococci and their ability to bind Pg. It has been previously demonstrated that a 30-residue internal peptide (VEK-30) from the N-terminal region of PAM competitively inhibits binding of the full-length parent protein to Pg. We have attempted to determine the effects of this ligand-protein interaction on the regulation of Pg zymogen activation and conformation. Our results show minimal effects on the sedimentation velocity coefficients (S degrees (20,w)) of Pg when associated to VEK-30 and a direct relationship between the concentration of VEK-30 or PAM and the activation rate of Pg. These results are in contrast with the major conformational changes elicited by small-molecule activators of Pg, and point towards a novel mechanism of Pg activation that may underlie group A streptococcal (GAS) virulence.
Collapse
Affiliation(s)
- Mariana Figuera-Losada
- W.M. Keck Center for Transgene Research and the Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Marie Ranson
- School of Biological Sciences, University of Wollongong, Northfields Ave., New South Wales 2522, Australia
| | - Martina L. Sanderson-Smith
- School of Biological Sciences, University of Wollongong, Northfields Ave., New South Wales 2522, Australia
| | - Mark J. Walker
- School of Biological Sciences, University of Wollongong, Northfields Ave., New South Wales 2522, Australia
| | - Francis J. Castellino
- W.M. Keck Center for Transgene Research and the Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Mary Prorok
- W.M. Keck Center for Transgene Research and the Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
9
|
Wang M, Zajicek J, Geiger JH, Prorok M, Castellino FJ. Solution structure of the complex of VEK-30 and plasminogen kringle 2. J Struct Biol 2010; 169:349-59. [PMID: 19800007 PMCID: PMC2826548 DOI: 10.1016/j.jsb.2009.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 09/16/2009] [Indexed: 10/20/2022]
Abstract
The solution structure of the complex containing the isolated kringle 2 domain of human plasminogen (K2(Pg)) and VEK-30, a 30-amino acid residue internal peptide from a streptococcal M-like plasminogen (Pg) binding protein (PAM), has been determined by multinuclear high-resolution NMR. Complete backbone and side-chain assignments were obtained from triple-resonance experiments, after which structure calculations were performed and ultimately refined by restrained molecular simulation in water. We find that, in contrast with the dimer of complexes observed in the asymmetric unit of the crystal, global correlation times and buoyant molecular weight determinations of the complex and its individual components showed the monomeric nature of all species in solution. The NMR-derived structure of K2(Pg) in complex with VEK-30 presents a folding pattern typical of other kringle domains, while bound VEK-30 forms an end-to-end alpha-helix (residues 6-27) in the complex. Most of the VEK-30/K2(Pg) interactions in solution occur between a single face of the alpha-helix of VEK-30 and the lysine binding site (LBS) of K2(Pg). The canonical LBS of K2(Pg), consisting of Asp54, Asp56, Trp60, Arg69, and Trp70 (kringle numbering), interacts with an internal pseudo-lysine of VEK-30, comprising side-chains of Arg17, His18, and Glu20. Site-specific mutagenesis analysis confirmed that the electrostatic field formed by the N-terminal anionic residues of the VEK-30 alpha-helix, viz., Asp7, and the non-conserved cationic residues of K2(Pg), viz., Lys43 and Arg55, play additional important roles in the docking of VEK-30 to K2(Pg). Structural analysis and kringle sequence alignments revealed several important features related to exosite binding that provide a structural rationale for the high specificity and affinity of VEK-30 for K2(Pg).
Collapse
Affiliation(s)
- Min Wang
- W.M. Keck Center for Transgene, University of Notre Dame, Notre Dame, IN 46556
| | - Jaroslav Zajicek
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - James H. Geiger
- Department of Chemistry, Michigan State University, E. Lansing, MI 48824
| | - Mary Prorok
- W.M. Keck Center for Transgene, University of Notre Dame, Notre Dame, IN 46556
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Francis J. Castellino
- W.M. Keck Center for Transgene, University of Notre Dame, Notre Dame, IN 46556
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
10
|
Fu Q, Figuera-Losada M, Ploplis VA, Cnudde S, Geiger JH, Prorok M, Castellino FJ. The lack of binding of VEK-30, an internal peptide from the group A streptococcal M-like protein, PAM, to murine plasminogen is due to two amino acid replacements in the plasminogen kringle-2 domain. J Biol Chem 2007; 283:1580-1587. [PMID: 18039665 DOI: 10.1074/jbc.m705063200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
VEK-30, a 30-amino acid internal peptide present within a streptococcal M-like plasminogen (Pg)-binding protein (PAM) from Gram-positive group-A streptococci (GAS), represents an epitope within PAM that shows high affinity for the lysine binding site (LBS) of the kringle-2 (K2) domain of human (h)Pg. VEK-30 does not interact with this same region of mouse (m)Pg, despite the high conservation of the mK2- and hK2-LBS. To identify the molecular basis for the species specificity of this interaction, hPg and mPg variants were generated, including an hPg chimera with the mK2 sequence and an mPg chimera containing the hK2 sequence. The binding of synthetic VEK-30 to these variants was studied by surface plasmon resonance. The data revealed that, in otherwise intact Pg, the species specificity of VEK-30 binding in these two cases is entirely dictated by two K2 residues that are different between hPg and mPg, namely, Arg-220 of hPg, which is a Gly in mPg, and Leu-222 of hPg, which is a Pro in mPg, neither of which are members of the canonical K2-LBS. Neither the activation of hPg, nor the enzymatic activity of its activated product, plasmin (hPm), are compromised by replacing these two amino acids by their murine counterparts. It is also demonstrated that hPg is more susceptible to activation to hPm after complexation with VEK-30 and that this property is greatly reduced as a result of the R220G and L222P replacements in hPg. These mechanisms for accumulation of protease activity on GAS likely contribute to the virulence of PAM(+)-GAS strains and identify targets for new therapeutic interventions.
Collapse
Affiliation(s)
- Qihua Fu
- W. M. Keck Center for Transgene Research and the Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Mariana Figuera-Losada
- W. M. Keck Center for Transgene Research and the Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Victoria A Ploplis
- W. M. Keck Center for Transgene Research and the Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Sara Cnudde
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
| | - James H Geiger
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
| | - Mary Prorok
- W. M. Keck Center for Transgene Research and the Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research and the Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556.
| |
Collapse
|
11
|
Chen X, Dong Y, Fan L, Yang D, Zhang M. Resonance scattering method for the ultrasensitive determination of peptides using semiconductor nanocrystals. Anal Chim Acta 2007; 597:300-5. [PMID: 17683743 DOI: 10.1016/j.aca.2007.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2007] [Revised: 04/22/2007] [Accepted: 07/02/2007] [Indexed: 11/24/2022]
Abstract
Resonance light scattering (RLS) of the functionalized ZnS nanocrystals-peptides system and its analytical application have been studied. The RLS intensity can be efficiently enhanced when various peptides were added. The mechanism of the RLS enhancement of ZnS nanocrystals was discussed. The change of RLS intensity was in proportion to the concentration of peptides. The limits of detection were in range of 2.8-5.7 ng mL(-1). Application results to synthetic samples showed simplicity, rapidity, high sensitivity and satisfactory reproducibility of the presented method. Measurements of real samples also give satisfactory results which were in good agreement with those obtained using high performance liquid chromatography (HPLC) and liquid chromatography-mass spectrography (LC-MS) methods.
Collapse
Affiliation(s)
- Xudong Chen
- School of Chemistry and Chemical Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, PR China.
| | | | | | | | | |
Collapse
|
12
|
Chen X, Dong Y, Fan L, Yang D. Fluorescence for the ultrasensitive detection of peptides with functionalized nano-ZnS. Anal Chim Acta 2007; 582:281-7. [DOI: 10.1016/j.aca.2006.09.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2006] [Revised: 08/26/2006] [Accepted: 09/14/2006] [Indexed: 11/25/2022]
|
13
|
Cnudde SE, Prorok M, Castellino FJ, Geiger JH. X-ray crystallographic structure of the angiogenesis inhibitor, angiostatin, bound to a peptide from the group A streptococcal surface protein PAM. Biochemistry 2006; 45:11052-60. [PMID: 16964966 DOI: 10.1021/bi060914j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The crystal structure of the human Pg-derived angiogenesis inhibitor, angiostatin, complexed to VEK-30, a peptide from the group A streptococcal surface protein, PAM, was determined and refined to 2.3 A resolution. This is the first structure of angiostatin bound to a ligand and provides a model of the interaction between Pg and streptococcal-derived pathogenic proteins. VEK-30 contains a "through-space isostere" for C-terminal lysine, wherein Arg and Glu side chains, separated by one helical turn, bind within the bipolar angiostatin kringle 2 (K2) domain lysine-binding site. VEK-30 also makes several contacts with K2 residues that exist outside of the canonical LBS and are not conserved among the other Pg kringles, thus providing a molecular basis for the selectivity of VEK-30 for K2. The structure also shows that Pg kringle domains undergo significant structural rearrangement relative to one another and reveals dimerization between two molecules of angiostatin and VEK-30 related by crystallographic symmetry. This dimerization, which exists only in the crystal structure, is consistent with the parallel coiled-coil full-length PAM dimer expected from sequence similarities and homology modeling.
Collapse
Affiliation(s)
- Sara E Cnudde
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
14
|
Sanderson-Smith ML, Walker MJ, Ranson M. The Maintenance of High Affinity Plasminogen Binding by Group A Streptococcal Plasminogen-binding M-like Protein Is Mediated by Arginine and Histidine Residues within the a1 and a2 Repeat Domains. J Biol Chem 2006; 281:25965-71. [PMID: 16822869 DOI: 10.1074/jbc.m603846200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subversion of the plasminogen activation system is implicated in the virulence of group A streptococci (GAS). GAS displays receptors for the human zymogen plasminogen on the cell surface, one of which is the plasminogen-binding group A streptococcal M-like protein (PAM). The plasminogen binding domain of PAM is highly variable, and this variation has been linked to host selective immune pressure. Site-directed mutagenesis of full-length PAM protein from an invasive GAS isolate was undertaken to assess the contribution of residues in the a1 and a2 repeat domains to plasminogen binding function. Mutagenesis to alanine of key plasminogen binding lysine residues in the a1 and a2 repeats (Lys98 and Lys111) did not abrogate plasminogen binding by PAM nor did additional mutagenesis of Arg101 and His102 and Glu104, which have previously been implicated in plasminogen binding. Plasminogen binding was only abolished with the additional mutagenesis of Arg114 and His115 to alanine. Furthermore, mutagenesis of both arginine (Arg101 and Arg114) and histidine (His102 and His115) residues abolished interaction with plasminogen despite the presence of Lys98 and Lys111 in the binding repeats. This study shows for the first time that residues Arg101, Arg114, His102, and His115 in both the a1 and a2 repeat domains of PAM can mediate high affinity plasminogen binding. These data suggest that highly conserved arginine and histidine residues may compensate for variation elsewhere in the a1 and a2 plasminogen binding repeats, and may explain the maintenance of high affinity plasminogen binding by naturally occurring variants of PAM.
Collapse
Affiliation(s)
- Martina L Sanderson-Smith
- School of Biological Sciences, University of Wollongong, Northfields Avenue, New South Wales 2522, Australia
| | | | | |
Collapse
|
15
|
Sanderson-Smith M, Batzloff M, Sriprakash KS, Dowton M, Ranson M, Walker MJ. Divergence in the plasminogen-binding group a streptococcal M protein family: functional conservation of binding site and potential role for immune selection of variants. J Biol Chem 2005; 281:3217-26. [PMID: 16319056 DOI: 10.1074/jbc.m508758200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Group A streptococci (GAS) display receptors for the human zymogen plasminogen on the cell surface, one of which is the plasminogen-binding group A streptococcal M protein (PAM). Characterization of PAM genes from 12 GAS isolates showed significant variation within the plasminogen-binding repeat motifs (a1/a2) of this protein. To determine the impact of sequence variation on protein function, recombinant proteins representing five naturally occurring variants of PAM, together with a recombinant M1 protein, were expressed and purified. Equilibrium dissociation constants for the interaction of PAM variants with biotinylated Glu-plasminogen ranged from 1.58 to 4.99 nm. Effective concentrations of prototype PAM required for 50% inhibition of plasminogen binding to immobilized PAM variants ranged from 0.68 to 22.06 nm. These results suggest that although variation in the a1/a2 region of the PAM protein does affect the comparative affinity of PAM variants, the functional capacity to bind plasminogen is conserved. Additionally, a potential role for the a1 region of PAM in eliciting a protective immune response was investigated by using a mouse model for GAS infection. The a1 region of PAM was found to protect immunized mice challenged with a PAM-positive GAS strain. These data suggest a link between selective immune pressure against the plasminogen-binding repeats and the functional conservation of the binding domain in PAM variants.
Collapse
Affiliation(s)
- Martina Sanderson-Smith
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Originally discovered in 1994 by Folkman and coworkers, angiostatin was identified through its antitumor effects in mice and later shown to be a potent inhibitor of angiogenesis. An internal fragment of plasminogen, angiostatin consists of kringle domains that are known to be lysine-binding. The crystal structure of angiostatin was the first multikringle domain-containing structure to be published. This review will focus on what is known about the structure of angiostatin and its implications in function from the current literature.
Collapse
Affiliation(s)
- J H Geiger
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
17
|
Tang N, Tornatore P, Weinberger SR. Current developments in SELDI affinity technology. MASS SPECTROMETRY REVIEWS 2004; 23:34-44. [PMID: 14625891 DOI: 10.1002/mas.10066] [Citation(s) in RCA: 310] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The overall history and recent advancements in Surface-Enhanced Laser Desorption/Ionization (SELDI) affinity technology is reviewed. A detailed account of SELDI technology, utilizing Immobilized-Metal Affinity surfaces, pseudo-specific chromatographic surfaces, and biospecific interactive surfaces, is presented with particular emphasis placed upon examination of fundamental characteristics as well as specific applications for each. Finally, a detailed review of the specific use of such affinity surfaces in fundamental aspects of clinical, process, and research proteomics activity is presented.
Collapse
Affiliation(s)
- Ning Tang
- Ciphergen Biosystems, 6611 Dumbarton Circle, Fremont, California 94555, USA
| | | | | |
Collapse
|
18
|
Crowe JD, Sievwright IK, Auld GC, Moore NR, Gow NAR, Booth NA. Candida albicans binds human plasminogen: identification of eight plasminogen-binding proteins. Mol Microbiol 2003; 47:1637-51. [PMID: 12622818 DOI: 10.1046/j.1365-2958.2003.03390.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several microbial pathogens augment their invasive potential by binding and activating human plasminogen to generate the proteolytic enzyme plasmin. Yeast cells and cell wall proteins (CWP) of the human pathogenic fungus Candida albicans bound plasminogen with a K(d) of 70 +/- 11 nM and 112 +/- 20 nM respectively. Bound plasminogen could be activated to plasmin by mammalian plasminogen activators; no C. albicans plasminogen activator was detected. Binding of plasminogen to CWP and whole cells was inhibited by epsilon ACA, indicating that binding was predominantly to lysine residues. Candida albicans mutant strains defective in protein glycosylation did not show altered plasminogen binding, suggesting that binding was not mediated via a surface lectin. Binding was sensitive to digestion by basic carboxypeptidase, implicating C-terminal lysine residues in binding. Proteomic analysis identified eight major plasminogen-binding proteins in isolated CWP. Five of these (phosphoglycerate mutase, alcohol dehydrogenase, thioredoxin peroxidase, catalase, transcription elongation factor) had C-terminal lysine residues and three (glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase and fructose bisphosphate aldolase) did not. Activation of plasminogen could potentially increase the capacity of this pathogenic fungus for tissue invasion and necrosis. Although surface-bound plasmin(ogen) degraded fibrin, no direct evidence for a role in invasion of endothelial matrix or in penetration and damage of endothelial cells was found.
Collapse
Affiliation(s)
- Jonathan D Crowe
- Department of Molecular and Cell Biology, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Because of its inherent flexibility, the ProteinChip Array platform has demonstrated utility into basic research as well as clinical research. In the domain of basic research, it has been used to examine protein modifications, characterize protein-protein interactions and study signal transduction and enzymatic pathways. In clinical research, it has been used to elucidate and identify biomarkers of disease, and as a platform for predictive medicine.
Collapse
Affiliation(s)
- Scot R Weinberger
- Ciphergen Biosystems, 6611 Dumbarton Circle, Fremont, California 94555, USA.
| | | | | |
Collapse
|
20
|
Rios-Steiner JL, Schenone M, Mochalkin I, Tulinsky A, Castellino FJ. Structure and binding determinants of the recombinant kringle-2 domain of human plasminogen to an internal peptide from a group A Streptococcal surface protein. J Mol Biol 2001; 308:705-19. [PMID: 11350170 DOI: 10.1006/jmbi.2001.4646] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The X-ray crystal structure of a complex of a modified recombinant kringle-2 domain of human plasminogen, K2Pg[C4G/E56D/L72Y] (mK2Pg), containing an upregulated lysine-binding site, bound to a functional 30 residue internal peptide (VEK-30) from an M-type protein of a group A Streptococcus surface protein, has been determined by molecular replacement methods using K4Pg as a model, and refined at 2.7 A resolution to a R-factor of 19.5 %. The X-ray crystal structure shows that VEK-30 exists as a nearly end-to-end alpha-helix in the complex with mK2Pg. The final structure also revealed that Arg17 and His18 of VEK-30 served as cationic loci for Asp54 and Asp56 of the consensus lysine-binding site of mK2Pg, while Glu20 of VEK-30 coordinates with Arg69 of the cationic binding site of mK2Pg. The hydrophobic ligand-binding pocket in mK2Pg, consisting primarily of Trp60 and Trp70, situated between the positive and negative centers of the lysine-binding site, is utilized in a novel manner in stabilizing the interaction with VEK-30 by forming a cation-pi-electron-mediated association with the positive side-chain of Arg17 of this peptide. Additional lysine-binding sites, as well as exosite electrostatic and hydrogen bonding interactions involving Glu9 and Lys14 of VEK-30, were observed in the structural model. The importance of these interactions were tested in solution by investigating the binding constants of synthetic variants of VEK-30 to mK2Pg, and it was found that, Lys14, Arg17, His18, and Glu20 of VEK-30 were the most critical amino acid binding determinants. With regard to the solution studies, circular dichroism analysis of the titration of VEK-30 with mK2Pg demonstrated that the peptidic alpha-helical structure increased substantially when bound to the kringle module, in agreement with the X-ray results. This investigation is the first to delineate structurally the mode of interaction of the lysine-binding site of a kringle with an internal pseudo-lysine residue of a peptide or protein that functionally interacts with a kringle module, and serves as a paradigm for this important class of interactions.
Collapse
Affiliation(s)
- J L Rios-Steiner
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | |
Collapse
|