1
|
Liu Q, Zhu C, Li X, Qi L, Yan H, Zhou Y, Gao F. AmChi7, an AmWRKY59 - Activated chitinase, was involved in the adaption to winter climate in Ammopiptanthusmongolicus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109436. [PMID: 39733727 DOI: 10.1016/j.plaphy.2024.109436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/31/2024]
Abstract
Chitinases are enzymes that hydrolyze β-1,4-glycosidic bonds in chitin. Previous studies have shown that several chitinases accumulated significantly in A. mongolicus, suggesting that chitinases might participate in the adaptation to winter climate in Ammopiptanthus mongolicus. Here, we analyzed the evolution and expression patterns of the chitinase gene family in A. mongolicus and investigated the function and regulatory mechanisms of the AmChi7 gene in response to abiotic stress. The chitinase gene family in A. mongolicus comprises 27 members, many of which arose through formed by tandem and segmental duplication. Several chitinase genes, including AmChi7 gene, were significantly upregulated in winter. Overexpression of AmChi7 gene enhanced the tolerance of yeast to freeze-thaw cycle and osmotic stress, and enhanced the tolerance of transgenic Arabidopsis to low-temperature and drought stress. Furthermore, AmWRKY59, a MeJA-induced transcription factor, bound to the W box element in the AmChi7 gene promoter, activating its expression in winter. It is speculated that chitinase AmChi7 accumulation in winter enhances adaptation to temperate winter climates in A. mongolicus. This study expands our understanding of the biological functions of chitinases and provides insights into the molecular mechanisms underlying winter climate adaptation in A. mongolicus.
Collapse
Affiliation(s)
- Qi Liu
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Changxin Zhu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Xuting Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Lanting Qi
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Hongxi Yan
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yijun Zhou
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Fei Gao
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
2
|
Fan Y, Wan X, Zhang X, Zhang J, Zheng C, Yang Q, Yang L, Li X, Feng L, Zou L, Xiang D. GRAS gene family in rye (Secale cereale L.): genome-wide identification, phylogeny, evolutionary expansion and expression analyses. BMC PLANT BIOLOGY 2024; 24:46. [PMID: 38216860 PMCID: PMC10787399 DOI: 10.1186/s12870-023-04674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/08/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND The GRAS transcription factor family plays a crucial role in various biological processes in different plants, such as tissue development, fruit maturation, and environmental stress. However, the GRAS family in rye has not been systematically analyzed yet. RESULTS In this study, 67 GRAS genes in S. cereale were identified and named based on the chromosomal location. The gene structures, conserved motifs, cis-acting elements, gene replications, and expression patterns were further analyzed. These 67 ScGRAS members are divided into 13 subfamilies. All members include the LHR I, VHIID, LHR II, PFYRE, and SAW domains, and some nonpolar hydrophobic amino acid residues may undergo cross-substitution in the VHIID region. Interested, tandem duplications may have a more important contribution, which distinguishes them from other monocotyledonous plants. To further investigate the evolutionary relationship of the GRAS family, we constructed six comparative genomic maps of homologous genes between rye and different representative monocotyledonous and dicotyledonous plants. The response characteristics of 19 ScGRAS members from different subfamilies to different tissues, grains at filling stages, and different abiotic stresses of rye were systematically analyzed. Paclobutrazol, a triazole-based plant growth regulator, controls plant tissue and grain development by inhibiting gibberellic acid (GA) biosynthesis through the regulation of DELLA proteins. Exogenous spraying of paclobutrazol significantly reduced the plant height but was beneficial for increasing the weight of 1000 grains of rye. Treatment with paclobutrazol, significantly reduced gibberellin levels in grain in the filling period, caused significant alteration in the expression of the DELLA subfamily gene members. Furthermore, our findings with respect to genes, ScGRAS46 and ScGRAS60, suggest that these two family members could be further used for functional characterization studies in basic research and in breeding programmes for crop improvement. CONCLUSIONS We identified 67 ScGRAS genes in rye and further analysed the evolution and expression patterns of the encoded proteins. This study will be helpful for further analysing the functional characteristics of ScGRAS genes.
Collapse
Affiliation(s)
- Yu Fan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Xianqi Wan
- Sichuan Academy of Agricultural Machinery Science, Chengdu, 610011, P.R. China
| | - Xin Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Jieyu Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Chunyu Zheng
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, 843100, P.R. China
| | - Qiaohui Yang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Li Yang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Xiaolong Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China
| | - Liang Feng
- Chengdu Institute of Food Inspection, Chengdu, 610000, P.R. China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China.
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, College of Food and Biological engineering, Chengdu University, Longquanyi District, Chengdu, 610106, Sichuan Province, P.R. China.
| |
Collapse
|
3
|
Obadi M, Xu B. Characteristics and applications of plant-derived antifreeze proteins in frozen dough: A review. Int J Biol Macromol 2024; 255:128202. [PMID: 37979748 DOI: 10.1016/j.ijbiomac.2023.128202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Frozen dough technology has been widely used in the food industry at home and abroad due to its advantages of extending shelf life, preventing aging, and facilitating refrigeration and transportation. However, during the transportation and storage process of frozen dough, the growth and recrystallization of ice crystals caused by temperature fluctuations can lead to a deterioration in the quality of the dough, resulting in poor sensory characteristics of the final product and decreased consumption, which limits the large-scale application of frozen dough. In response to this issue, antifreeze proteins (AFPs) could be used as a beneficial additive to frozen dough that can combine with ice crystals, modify the ice crystal morphology, reduce the freezing point of water, and inhibit the recrystallization of ice crystals. Because of its special structure and function, it can well alleviate the quality deterioration problem caused by ice crystal recrystallization during frozen storage of dough, especially the plant-derived AFPs, which have a prominent effect on inhibiting ice crystal recrystallization. In this review, we introduce the characteristics and mechanisms of action of plant-derived AFPs. Furthermore, the application of plant-derived AFPs in frozen dough are also discussed.
Collapse
Affiliation(s)
- Mohammed Obadi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
4
|
Zheng L, Liu Q, Wu R, Zhu M, Dorjee T, Zhou Y, Gao F. The alteration of proteins and metabolites in leaf apoplast and the related gene expression associated with the adaptation of Ammopiptanthus mongolicus to winter freezing stress. Int J Biol Macromol 2023; 240:124479. [PMID: 37072058 DOI: 10.1016/j.ijbiomac.2023.124479] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/20/2023]
Abstract
Ammopiptanthus mongolicus, an evergreen broad-leaved plant, can tolerate severe freezing stress (temperatures as low as -20 °C in winter). The apoplast is the space outside the plasma membrane that plays an important role in plant responses to environmental stress. Here, we investigated, using a multi-omics approach, the dynamic alterations in the levels of proteins and metabolites in the apoplast and related gene expression changes involved in the adaptation of A. mongolicus to winter freezing stress. Of the 962 proteins identified in the apoplast, the abundance of several PR proteins, including PR3 and PR5, increased significantly in winter, which may contribute to winter freezing-stress tolerance by functioning as antifreeze proteins. The increased abundance of the cell-wall polysaccharides and cell wall-modifying proteins, including PMEI, XTH32, and EXLA1, may enhance the mechanical properties of the cell wall in A. mongolicus. Accumulation of flavonoids and free amino acids in the apoplast may be beneficial for ROS scavenging and the maintenance of osmotic homeostasis. Integrated analyses revealed gene expression changes associated with alterations in the levels of apoplast proteins and metabolites. Our study improved the current understanding of the roles of apoplast proteins and metabolites in plant adaptation to winter freezing stress.
Collapse
Affiliation(s)
- Lamei Zheng
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Qi Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Rongqi Wu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Ming Zhu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Tashi Dorjee
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yijun Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Fei Gao
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
5
|
Livingston DP, Bertrand A, Wisniewski M, Tisdale R, Tuong T, Gusta LV, Artlip T. Factors contributing to ice nucleation and sequential freezing of leaves in wheat. PLANTA 2021; 253:124. [PMID: 34014374 PMCID: PMC8137482 DOI: 10.1007/s00425-021-03637-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/01/2021] [Indexed: 06/03/2023]
Abstract
Anatomical, metabolic and microbial factors were identified that contribute to sequential freezing in wheat leaves and likely contribute to supercooling in the youngest leaves and potentially meristematic regions. Infrared thermography (IR) has been used to observe wheat leaves freezing independently and in an age-related sequence with older leaves freezing first. To determine mechanisms that might explain this sequence of freezing several analytical approaches were used: (1) The size of xylem vessels, in proximity to where freezing initiated, was measured to see if capillary freezing point depression explained sequential freezing. The sequence of freezing in the four youngest leaves was correlated, with the largest vessels freezing first. (2) Carbohydrate and amino acids were analyzed to determine if solute concentrations as well as interactions with membranes explained the freezing sequence. Sucrose was highly correlated to the freezing sequence for all leaves suggesting a prominent role for this sugar as compared to other simple sugars and fructans. Among individual free amino acids proline and serine were correlated to the freezing sequence, with younger leaves having the highest concentrations. (3) Microflora within and on leaf surfaces were determined to measure potential freezing initiation. Levels of bacteria and fungi were correlated to the freezing sequence for all leaves, and species or genera associated with high ice nucleation activity were absent in younger leaves. Moisture content and transcript expression of ice binding proteins were also measured. As expected, our results show that no single mechanism explains the freezing sequence observed via infrared analyses. While these multiple mechanisms are operative at different levels according to the leaf age, they seem to converge when it comes to the protection of vital meristematic tissues. This provides potential phenotypic characters that could be used by breeders to develop more winter-hardy genotypes.
Collapse
Affiliation(s)
- D P Livingston
- USDA-ARS and North Carolina State University, Raleigh, NC, 27607, USA.
| | - A Bertrand
- Quebec Research and Development Centre, Agriculture and Agri-Food Canada, 2560 Hochelaga Boulevard, Québec, QC, G1V 2J3, Canada
| | - M Wisniewski
- USDA-ARS, Appalachian Fruit Research Station, Kearneysville, WV, USA
- Virginia Polytechnic Institute, Blacksburg, VA, 24061, USA
| | - R Tisdale
- USDA-ARS and North Carolina State University, Raleigh, NC, 27607, USA
| | - T Tuong
- USDA-ARS and North Carolina State University, Raleigh, NC, 27607, USA
| | - L V Gusta
- Department of Plant Science, Univ Saskatchewan, Saskatoon, Canada
| | - T Artlip
- USDA-ARS, Appalachian Fruit Research Station, Kearneysville, WV, 25430, USA
| |
Collapse
|
6
|
Wang F, Guan ZX, Dao FY, Ding H. A Brief Review of the Computational Identification of Antifreeze Protein. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190718145613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lots of cold-adapted organisms could produce antifreeze proteins (AFPs) to counter the freezing of cell fluids by controlling the growth of ice crystal. AFPs have been found in various species such as in vertebrates, invertebrates, plants, bacteria, and fungi. These AFPs from fish, insects and plants displayed a high diversity. Thus, the identification of the AFPs is a challenging task in computational proteomics. With the accumulation of AFPs and development of machine meaning methods, it is possible to construct a high-throughput tool to timely identify the AFPs. In this review, we briefly reviewed the application of machine learning methods in antifreeze proteins identification from difference section, including published benchmark dataset, sequence descriptor, classification algorithms and published methods. We hope that this review will produce new ideas and directions for the researches in identifying antifreeze proteins.
Collapse
Affiliation(s)
- Fang Wang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zheng-Xing Guan
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Fu-Ying Dao
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hui Ding
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
7
|
Akbar S, Hayat M, Kabir M, Iqbal M. iAFP-gap-SMOTE: An Efficient Feature Extraction Scheme Gapped Dipeptide Composition is Coupled with an Oversampling Technique for Identification of Antifreeze Proteins. LETT ORG CHEM 2019. [DOI: 10.2174/1570178615666180816101653] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antifreeze proteins (AFPs) perform distinguishable roles in maintaining homeostatic conditions of living organisms and protect their cell and body from freezing in extremely cold conditions. Owing to high diversity in protein sequences and structures, the discrimination of AFPs from non- AFPs through experimental approaches is expensive and lengthy. It is, therefore, vastly desirable to propose a computational intelligent and high throughput model that truly reflects AFPs quickly and accurately. In a sequel, a new predictor called “iAFP-gap-SMOTE” is proposed for the identification of AFPs. Protein sequences are expressed by adopting three numerical feature extraction schemes namely; Split Amino Acid Composition, G-gap di-peptide Composition and Reduce Amino Acid alphabet composition. Usually, classification hypothesis biased towards majority class in case of the imbalanced dataset. Oversampling technique Synthetic Minority Over-sampling Technique is employed in order to increase the instances of the lower class and control the biasness. 10-fold cross-validation test is applied to appraise the success rates of “iAFP-gap-SMOTE” model. After the empirical investigation, “iAFP-gap-SMOTE” model obtained 95.02% accuracy. The comparison suggested that the accuracy of” iAFP-gap-SMOTE” model is higher than that of the present techniques in the literature so far. It is greatly recommended that our proposed model “iAFP-gap-SMOTE” might be helpful for the research community and academia.
Collapse
Affiliation(s)
- Shahid Akbar
- Department of Computer Science, Abdul Wali Khan University, Mardan, KP 23200, Pakistan
| | - Maqsood Hayat
- Department of Computer Science, Abdul Wali Khan University, Mardan, KP 23200, Pakistan
| | - Muhammad Kabir
- Department of Computer Science, Abdul Wali Khan University, Mardan, KP 23200, Pakistan
| | - Muhammad Iqbal
- Department of Computer Science, Abdul Wali Khan University, Mardan, KP 23200, Pakistan
| |
Collapse
|
8
|
Nath A, Subbiah K. The role of pertinently diversified and balanced training as well as testing data sets in achieving the true performance of classifiers in predicting the antifreeze proteins. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2017.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Khan S, Naseem I, Togneri R, Bennamoun M. RAFP-Pred: Robust Prediction of Antifreeze Proteins Using Localized Analysis of n-Peptide Compositions. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:244-250. [PMID: 28113406 DOI: 10.1109/tcbb.2016.2617337] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In extreme cold weather, living organisms produce Antifreeze Proteins (AFPs) to counter the otherwise lethal intracellular formation of ice. Structures and sequences of various AFPs exhibit a high degree of heterogeneity, consequently the prediction of the AFPs is considered to be a challenging task. In this research, we propose to handle this arduous manifold learning task using the notion of localized processing. In particular, an AFP sequence is segmented into two sub-segments each of which is analyzed for amino acid and di-peptide compositions. We propose to use only the most significant features using the concept of information gain (IG) followed by a random forest classification approach. The proposed RAFP-Pred achieved an excellent performance on a number of standard datasets. We report a high Youden's index (sensitivity+specificity-1) value of 0.75 on the standard independent test data set outperforming the AFP-PseAAC, AFP_PSSM, AFP-Pred, and iAFP by a margin of 0.05, 0.06, 0.14, and 0.68, respectively. The verification rate on the UniProKB dataset is found to be 83.19 percent which is substantially superior to the 57.18 percent reported for the iAFP method.
Collapse
|
10
|
Bredow M, Walker VK. Ice-Binding Proteins in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:2153. [PMID: 29312400 PMCID: PMC5744647 DOI: 10.3389/fpls.2017.02153] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/05/2017] [Indexed: 05/04/2023]
Abstract
Sub-zero temperatures put plants at risk of damage associated with the formation of ice crystals in the apoplast. Some freeze-tolerant plants mitigate this risk by expressing ice-binding proteins (IBPs), that adsorb to ice crystals and modify their growth. IBPs are found across several biological kingdoms, with their ice-binding activity and function uniquely suited to the lifestyle they have evolved to protect, be it in fishes, insects or plants. While IBPs from freeze-avoidant species significantly depress the freezing point, plant IBPs typically have a reduced ability to lower the freezing temperature. Nevertheless, they have a superior ability to inhibit the recrystallization of formed ice. This latter activity prevents ice crystals from growing larger at temperatures close to melting. Attempts to engineer frost-hardy plants by the controlled transfer of IBPs from freeze-avoiding fish and insects have been largely unsuccessful. In contrast, the expression of recombinant IBP sequences from freeze-tolerant plants significantly reduced electrolyte leakage and enhanced freezing survival in freeze-sensitive plants. These promising results have spurred additional investigations into plant IBP localization and post-translational modifications, as well as a re-evaluation of IBPs as part of the anti-stress and anti-pathogen axis of freeze-tolerant plants. Here we present an overview of plant freezing stress and adaptation mechanisms and discuss the potential utility of IBPs for the generation of freeze-tolerant crops.
Collapse
Affiliation(s)
- Melissa Bredow
- Department of Biology, Queen’s University, Kingston, ON, Canada
- *Correspondence: Melissa Bredow,
| | - Virginia K. Walker
- Department of Biomedical and Molecular Sciences, and School of Environmental Studies, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
11
|
Wu S, Ning F, Wu X, Wang W. Proteomic Characterization of Differential Abundant Proteins Accumulated between Lower and Upper Epidermises of Fleshy Scales in Onion (Allium cepa L.) Bulbs. PLoS One 2016; 11:e0168959. [PMID: 28036352 PMCID: PMC5201266 DOI: 10.1371/journal.pone.0168959] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/08/2016] [Indexed: 02/03/2023] Open
Abstract
The onion (Allium cepa L.) is widely planted worldwide as a valuable vegetable crop. The scales of an onion bulb are a modified type of leaf. The one-layer-cell epidermis of onion scales is commonly used as a model experimental material in botany and molecular biology. The lower epidermis (LE) and upper epidermis (UE) of onion scales display obvious differences in microscopic structure, cell differentiation and pigment synthesis; however, associated proteomic differences are unclear. LE and UE can be easily sampled as single-layer-cell tissues for comparative proteomic analysis. In this study, a proteomic approach based on 2-DE and mass spectrometry (MS) was applied to compare LE and UE of fleshy scales from yellow and red onions. We identified 47 differential abundant protein spots (representing 31 unique proteins) between LE and UE in red and yellow onions. These proteins are mainly involved in pigment synthesis, stress response, and cell division. Particularly, the differentially accumulated chalcone-flavanone isomerase and flavone O-methyltransferase 1-like in LE may result in the differences in the onion scale color between red and yellow onions. Moreover, stress-related proteins abundantly accumulated in both LE and UE. In addition, the differential accumulation of UDP-arabinopyranose mutase 1-like protein and β-1,3-glucanase in the LE may be related to the different cell sizes between LE and UE of the two types of onion. The data derived from this study provides new insight into the differences in differentiation and developmental processes between onion epidermises. This study may also make a contribution to onion breeding, such as improving resistances and changing colors.
Collapse
Affiliation(s)
- Si Wu
- College of Sciences, Henan Agricultural University, Zhengzhou, China
| | - Fen Ning
- College of Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xiaolin Wu
- College of Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wei Wang
- College of Sciences, Henan Agricultural University, Zhengzhou, China
- * E-mail:
| |
Collapse
|
12
|
Purification and Identification of Antifreeze Protein From Cold-Acclimated Oat (Avena sativa L.) and the Cryoprotective Activities in Ice Cream. FOOD BIOPROCESS TECH 2016. [DOI: 10.1007/s11947-016-1750-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Cloning, overexpression and functional characterization of a class III chitinase from Casuarina glauca nodules. Symbiosis 2016. [DOI: 10.1007/s13199-016-0403-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
|
15
|
Deng LQ, Yu HQ, Liu YP, Jiao PP, Zhou SF, Zhang SZ, Li WC, Fu FL. Heterologous expression of antifreeze protein gene AnAFP from Ammopiptanthus nanus enhances cold tolerance in Escherichia coli and tobacco. Gene 2014; 539:132-40. [PMID: 24502990 DOI: 10.1016/j.gene.2014.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 01/02/2014] [Accepted: 01/03/2014] [Indexed: 11/23/2022]
Abstract
Antifreeze proteins are a class of polypeptides produced by certain animals, plants, fungi and bacteria that permit their survival under the subzero environments. Ammopiptanthus nanus is the unique evergreen broadleaf bush endemic to the Mid-Asia deserts. It survives at the west edge of the Tarim Basin from the disappearance of the ancient Mediterranean in the Tertiary Period. Its distribution region is characterized by the arid climate and extreme temperatures, where the extreme temperatures range from -30 °C to 40 °C. In the present study, the antifreeze protein gene AnAFP of A. nanus was used to transform Escherichia coli and tobacco, after bioinformatics analysis for its possible function. The transformed E. coli strain expressed the heterologous AnAFP gene under the induction of isopropyl β-D-thiogalactopyranoside, and demonstrated significant enhancement of cold tolerance. The transformed tobacco lines expressed the heterologous AnAFP gene in response to cold stress, and showed a less change of relative electrical conductivity under cold stress, and a less wilting phenotype after 16 h of -3 °C cold stress and thawing for 1h than the untransformed wild-type plants. All these results imply the potential value of the AnAFP gene to be used in genetic modification of commercially important crops for improvement of cold tolerance.
Collapse
Affiliation(s)
- Long-Qun Deng
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Hao-Qiang Yu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yan-Ping Liu
- Faculty of Plant Science, Tarim University, Alar, Xinjiang 843300, PR China
| | - Pei-Pei Jiao
- Faculty of Plant Science, Tarim University, Alar, Xinjiang 843300, PR China
| | - Shu-Feng Zhou
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Su-Zhi Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Wan-Chen Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Feng-Ling Fu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
16
|
Gupta R, Deswal R. Refolding of β-stranded class I chitinases of Hippophae rhamnoides enhances the antifreeze activity during cold acclimation. PLoS One 2014; 9:e91723. [PMID: 24626216 PMCID: PMC3953593 DOI: 10.1371/journal.pone.0091723] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 02/14/2014] [Indexed: 11/18/2022] Open
Abstract
Class I chitinases hydrolyse the β-1,4-linkage of chitin and also acquire antifreeze activity in some of the overwintering plants during cold stress. Two chitinases, HrCHT1a of 31 kDa and HrCHT1b of 34 kDa, were purified from cold acclimated and non-acclimated seabuckthorn seedlings using chitin affinity chromatography. 2-D gels of HrCHT1a and HrCHT1b showed single spots with pIs 7.0 and 4.6 respectively. N-terminal sequence of HrCHT1b matched with the class I chitinase of rice and antifreeze proteins while HrCHT1a could not be sequenced as it was N-terminally blocked. Unlike previous reports, where antifreeze activity of chitinase was cold inducible, our results showed that antifreeze activity is constitutive property of class I chitinase as both HrCHT1a and HrCHT1b isolated even from non-acclimated seedlings, exhibited antifreeze activity. Interestingly, HrCHT1a and HrCHT1b purified from cold acclimated seedlings, exhibited 4 and 2 times higher antifreeze activities than those purified from non-acclimated seedlings, suggesting that antifreeze activity increased during cold acclimation. HrCHT1b exhibited 23–33% higher hydrolytic activity and 2–4 times lower antifreeze activity than HrCHT1a did. HrCHT1b was found to be a glycoprotein; however, its antifreeze activity was independent of glycosylation as even deglycosylated HrCHT1b exhibited antifreeze activity. Circular dichroism (CD) analysis showed that both these chitinases were rich in unusual β-stranded conformation (36–43%) and the content of β-strand increased (∼11%) during cold acclimation. Surprisingly, calcium decreased both the activities of HrCHT1b while in case of HrCHT1a, a decrease in the hydrolytic activity and enhancement in its antifreeze activity was observed. CD results showed that addition of calcium also increased the β-stranded conformation of HrCHT1a and HrCHT1b. This is the first report, which shows that antifreeze activity is constitutive property of class I chitinase and cold acclimation and calcium regulate these activities of chitinases by changing the secondary structure.
Collapse
Affiliation(s)
- Ravi Gupta
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, India
| | - Renu Deswal
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, India
- * E-mail:
| |
Collapse
|
17
|
Perlikowski D, Kosmala A, Rapacz M, Kościelniak J, Pawłowicz I, Zwierzykowski Z. Influence of short-term drought conditions and subsequent re-watering on the physiology and proteome of Lolium multiflorum/Festuca arundinacea introgression forms, with contrasting levels of tolerance to long-term drought. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:385-94. [PMID: 23879319 DOI: 10.1111/plb.12074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/07/2013] [Indexed: 05/03/2023]
Abstract
Festuca arundinacea is a drought tolerant species. Lolium multiflorum has better forage quality but lower tolerance to abiotic stresses. Their hybrids offer an opportunity to perform research on the molecular basis of tolerance to drought. The aim of this work was to recognise the mechanisms of response to short-term drought (11 days) in a glasshouse in two L. multiflorum/F. arundinacea introgression forms with distinct levels of tolerance to long-term drought (14 weeks) in the field. Measurements of physiological parameters, analyses of protein accumulation profiles using two-dimensional gel electrophoresis, and mass spectrometry identification of proteins, which were accumulated differentially between the selected genotypes during short-term drought, were performed. Genotype 7/6, with lower yield potential during 14 weeks of drought, and lower ability to re-grow after watering, had a higher capacity for photosynthesis during 11 days of drought. Genotype 4/10, more tolerant to long-term drought, was able to repair damaged cell membranes after watering and was also characterised by lower transpiration during short-term drought. A total of 455 proteins were analysed, and the 17 that were differentially accumulated between the two genotypes were identified. The results of physiological and proteomic research led to a hypothesis that the higher photosynthetic capacity of genotype 7/6 could be due to a more efficient Calvin cycle, supported by higher accumulation of crucial proteins involving chloroplast aldolase.
Collapse
Affiliation(s)
- D Perlikowski
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan, Poland
| | | | | | | | | | | |
Collapse
|
18
|
Wang S, Zhao J, Chen L, Zhou Y, Wu J. Preparation, isolation and hypothermia protection activity of antifreeze peptides from shark skin collagen. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2013.07.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Li J, Jia B, Liang X, Liu J, Wang Y, Liang X, Yan H, Wang Y, Zhang S. An adenosine kinase in apoplastic location is involved in Magnaporthe oryzae cold acclimation. J Basic Microbiol 2013; 54:269-77. [PMID: 23681700 DOI: 10.1002/jobm.201200481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/01/2012] [Indexed: 11/12/2022]
Abstract
Cold acclimation is an important process to increase freezing tolerance for over-winter survival in many organisms. The apoplastic area is very important in cold acclimation. Two-dimensional electrophoresis was used to identify apoplastic proteins involved in the cold acclimation process of the filamentous fungus Magnaporthe oryzae, and nine protein spots showed at least 1.5-fold increase during cold treatment. These proteins were further analyzed by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry. One of these proteins was identified to be an adenosine kinase (MoAK), an ortholog of the adenosine kinase from Saccharomyces cerevisiae. The MoAK gene showed significantly increased in transcription level. Microscopic analyses showed that an MoAK::GFP fusion protein was localized in the apoplastic region. The MoAk protein showed anti-freezing activity when expressed in yeast. These results indicated that cold acclimation is crucial for fungal freezing tolerance and MoAK played an important role in this process in M. oryzae.
Collapse
Affiliation(s)
- Jian Li
- College of Plant Sciences, Jilin University, Changchun, China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Delaunois B, Colby T, Belloy N, Conreux A, Harzen A, Baillieul F, Clément C, Schmidt J, Jeandet P, Cordelier S. Large-scale proteomic analysis of the grapevine leaf apoplastic fluid reveals mainly stress-related proteins and cell wall modifying enzymes. BMC PLANT BIOLOGY 2013; 13:24. [PMID: 23391302 PMCID: PMC3640900 DOI: 10.1186/1471-2229-13-24] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 01/31/2013] [Indexed: 05/14/2023]
Abstract
BACKGROUND The extracellular space or apoplast forms a path through the whole plant and acts as an interface with the environment. The apoplast is composed of plant cell wall and space within which apoplastic fluid provides a means of delivering molecules and facilitates intercellular communications. However, the apoplastic fluid extraction from in planta systems remains challenging and this is particularly true for grapevine (Vitis vinifera L.), a worldwide-cultivated fruit plant. Large-scale proteomic analysis reveals the protein content of the grapevine leaf apoplastic fluid and the free interactive proteome map considerably facilitates the study of the grapevine proteome. RESULTS To obtain a snapshot of the grapevine apoplastic fluid proteome, a vacuum-infiltration-centrifugation method was optimized to collect the apoplastic fluid from non-challenged grapevine leaves. Soluble apoplastic protein patterns were then compared to whole leaf soluble protein profiles by 2D-PAGE analyses. Subsequent MALDI-TOF/TOF mass spectrometry of tryptically digested protein spots was used to identify proteins. This large-scale proteomic analysis established a well-defined proteomic map of whole leaf and leaf apoplastic soluble proteins, with 223 and 177 analyzed spots, respectively. All data arising from proteomic, MS and MS/MS analyses were deposited in the public database world-2DPAGE. Prediction tools revealed a high proportion of (i) classical secreted proteins but also of non-classical secreted proteins namely Leaderless Secreted Proteins (LSPs) in the apoplastic protein content and (ii) proteins potentially involved in stress reactions and/or in cell wall metabolism. CONCLUSIONS This approach provides free online interactive reference maps annotating a large number of soluble proteins of the whole leaf and the apoplastic fluid of grapevine leaf. To our knowledge, this is the first detailed proteome study of grapevine apoplastic fluid providing a comprehensive overview of the most abundant proteins present in the apoplast of grapevine leaf that could be further characterized in order to elucidate their physiological function.
Collapse
Affiliation(s)
- Bertrand Delaunois
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Unité de Recherche Vigne et Vins de Champagne – EA 4707, Laboratoire d’Œnologie et de Chimie Appliquée, B.P. 1039, Reims, cedex 02, 51687, France
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Unité de Recherche Vigne et Vins de Champagne – EA 4707, Laboratoire de Stress, Défenses et Reproduction des Plantes, B.P. 1039, Reims, cedex 02, 51687, France
| | - Thomas Colby
- Max-Planck-Institute for Plant Breeding Research, Mass Spectrometry Group, Carl-von-Linné-Weg 10, Köln, D-50829, Germany
| | - Nicolas Belloy
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Laboratoire de Signalisation et Récepteurs Matriciels (SiRMa), UMR CNRS 6237, Plate-forme de Modélisation Moléculaire, B.P. 1039, Reims, cedex 02, 51687, France
| | - Alexandra Conreux
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Unité de Recherche Vigne et Vins de Champagne – EA 4707, Laboratoire d’Œnologie et de Chimie Appliquée, B.P. 1039, Reims, cedex 02, 51687, France
| | - Anne Harzen
- Max-Planck-Institute for Plant Breeding Research, Mass Spectrometry Group, Carl-von-Linné-Weg 10, Köln, D-50829, Germany
| | - Fabienne Baillieul
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Unité de Recherche Vigne et Vins de Champagne – EA 4707, Laboratoire de Stress, Défenses et Reproduction des Plantes, B.P. 1039, Reims, cedex 02, 51687, France
| | - Christophe Clément
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Unité de Recherche Vigne et Vins de Champagne – EA 4707, Laboratoire de Stress, Défenses et Reproduction des Plantes, B.P. 1039, Reims, cedex 02, 51687, France
| | - Jürgen Schmidt
- Max-Planck-Institute for Plant Breeding Research, Mass Spectrometry Group, Carl-von-Linné-Weg 10, Köln, D-50829, Germany
| | - Philippe Jeandet
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Unité de Recherche Vigne et Vins de Champagne – EA 4707, Laboratoire d’Œnologie et de Chimie Appliquée, B.P. 1039, Reims, cedex 02, 51687, France
| | - Sylvain Cordelier
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Unité de Recherche Vigne et Vins de Champagne – EA 4707, Laboratoire de Stress, Défenses et Reproduction des Plantes, B.P. 1039, Reims, cedex 02, 51687, France
| |
Collapse
|
21
|
Zhao X, Ma Z, Yin M. Using support vector machine and evolutionary profiles to predict antifreeze protein sequences. Int J Mol Sci 2012; 13:2196-2207. [PMID: 22408447 PMCID: PMC3292016 DOI: 10.3390/ijms13022196] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 01/29/2012] [Accepted: 01/29/2012] [Indexed: 11/16/2022] Open
Abstract
Antifreeze proteins (AFPs) are ice-binding proteins. Accurate identification of new AFPs is important in understanding ice-protein interactions and creating novel ice-binding domains in other proteins. In this paper, an accurate method, called AFP_PSSM, has been developed for predicting antifreeze proteins using a support vector machine (SVM) and position specific scoring matrix (PSSM) profiles. This is the first study in which evolutionary information in the form of PSSM profiles has been successfully used for predicting antifreeze proteins. Tested by 10-fold cross validation and independent test, the accuracy of the proposed method reaches 82.67% for the training dataset and 93.01% for the testing dataset, respectively. These results indicate that our predictor is a useful tool for predicting antifreeze proteins. A web server (AFP_PSSM) that implements the proposed predictor is freely available.
Collapse
Affiliation(s)
- Xiaowei Zhao
- College of Computer Science and Information Technology, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China; E-Mail:
- Key Laboratory of Intelligent Information Processing of Jilin Universities, Northeast Normal University, Changchun 130117, China
- College of Life Science, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Zhiqiang Ma
- College of Computer Science and Information Technology, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China; E-Mail:
- Key Laboratory of Intelligent Information Processing of Jilin Universities, Northeast Normal University, Changchun 130117, China
- College of Life Science, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
- Authors to whom correspondence should be addressed; E-Mails: (Z.M.); (M.Y.); Tel./Fax: +86-0431-8453-6338 (Z.M.; M.Y.)
| | - Minghao Yin
- College of Computer Science and Information Technology, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China; E-Mail:
- Key Laboratory of Intelligent Information Processing of Jilin Universities, Northeast Normal University, Changchun 130117, China
- Authors to whom correspondence should be addressed; E-Mails: (Z.M.); (M.Y.); Tel./Fax: +86-0431-8453-6338 (Z.M.; M.Y.)
| |
Collapse
|
22
|
Cai Y, Liu S, Liao X, Ding Y, Sun J, Zhang D. Purification and partial characterization of antifreeze proteins from leaves of Ligustrum lucidum Ait. FOOD AND BIOPRODUCTS PROCESSING 2011. [DOI: 10.1016/j.fbp.2010.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
AFP-Pred: A random forest approach for predicting antifreeze proteins from sequence-derived properties. J Theor Biol 2010; 270:56-62. [PMID: 21056045 DOI: 10.1016/j.jtbi.2010.10.037] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/29/2010] [Accepted: 10/29/2010] [Indexed: 12/11/2022]
Abstract
Some creatures living in extremely low temperatures can produce some special materials called "antifreeze proteins" (AFPs), which can prevent the cell and body fluids from freezing. AFPs are present in vertebrates, invertebrates, plants, bacteria, fungi, etc. Although AFPs have a common function, they show a high degree of diversity in sequences and structures. Therefore, sequence similarity based search methods often fails to predict AFPs from sequence databases. In this work, we report a random forest approach "AFP-Pred" for the prediction of antifreeze proteins from protein sequence. AFP-Pred was trained on the dataset containing 300 AFPs and 300 non-AFPs and tested on the dataset containing 181 AFPs and 9193 non-AFPs. AFP-Pred achieved 81.33% accuracy from training and 83.38% from testing. The performance of AFP-Pred was compared with BLAST and HMM. High prediction accuracy and successful of prediction of hypothetical proteins suggests that AFP-Pred can be a useful approach to identify antifreeze proteins from sequence information, irrespective of their sequence similarity.
Collapse
|
24
|
Goulet C, Goulet C, Goulet MC, Michaud D. 2-DE proteome maps for the leaf apoplast of Nicotiana benthamiana. Proteomics 2010; 10:2536-44. [PMID: 20422621 DOI: 10.1002/pmic.200900382] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 04/08/2010] [Indexed: 12/19/2022]
Abstract
We provide 2-D gel reference maps for the apoplastic proteome of Nicotiana benthamiana leaves infiltrated or not with the bacterial gene vector Agrobacterium tumefaciens. About 90 proteins were analyzed by LC-MS/MS for identification and function assignment. We show, overall, an effective response of the plant to agroinfiltration involving a specific, cell wall maintenance-independent up-regulation of defense protein secretion. The proteome maps described should be a useful tool for systemic studies on plant-pathogen interactions or cell wall metabolism. They also should prove useful for the monitoring of secreted recombinant proteins and their possible pleiotropic effects along the cell secretory pathway of N. benthamiana leaves used as an expression platform for clinically useful proteins.
Collapse
Affiliation(s)
- Charles Goulet
- Département de phytologie, Université Laval, Québec QC, Canada
| | | | | | | |
Collapse
|
25
|
Liu JJ, Sturrock R, Ekramoddoullah AKM. The superfamily of thaumatin-like proteins: its origin, evolution, and expression towards biological function. PLANT CELL REPORTS 2010; 29:419-36. [PMID: 20204373 DOI: 10.1007/s00299-010-0826-8] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 01/26/2010] [Accepted: 01/28/2010] [Indexed: 05/18/2023]
Abstract
Thaumatin-like proteins (TLPs) are the products of a large, highly complex gene family involved in host defence and a wide range of developmental processes in fungi, plants, and animals. Despite their dramatic diversification in organisms, TLPs appear to have originated in early eukaryotes and share a well-defined TLP domain. Nonetheless, determination of the roles of individual members of the TLP superfamily remains largely undone. This review summarizes recent advances made in elucidating the varied TLP activities related to host resistance to pathogens and other physiological processes. Also discussed is the current state of knowledge on the origins and types of TLPs, regulation of gene expression, and potential biotechnological applications for TLPs.
Collapse
Affiliation(s)
- Jun-Jun Liu
- Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, BC, Canada.
| | | | | |
Collapse
|
26
|
Venketesh S, Dayananda C. Properties, Potentials, and Prospects of Antifreeze Proteins. Crit Rev Biotechnol 2008; 28:57-82. [DOI: 10.1080/07388550801891152] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Yanohara T, Okamoto S, Hongye Z, Nakamura Y, Matsuo T. Preparation of proteins from different organs of Japanese morning glory by an in vivo electro-elution procedure. PHYTOCHEMICAL ANALYSIS : PCA 2005; 16:397-404. [PMID: 16315482 DOI: 10.1002/pca.854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
An electro-elution procedure has been employed efficiently to collect proteins from stem segments, young leaves and roots of the Japanese morning glory. Electrophoretic conditions were optimised, including the size of segments (10-30 mm), the strength of the current for electro-elution (2.5-10 mA), and the exposure time of electro-elution (2-12 h). From the same quantity of organs, the in vivo electro-elution procedure permitted the collection of an amount of protein up to six times greater than that obtained with an earlier-reported centrifugation procedure. Both preparations were analysed by SDS-PAGE and showed similar protein profiles. This new technique provided an interesting insight into the large differences in both the quality and quantity of proteins between different organs of the plants. The average amount of protein collected from organs was 0.1 mg/g of tissue fresh weight. It is expected that this procedure may facilitate the discovery of new proteins with unique functions in extracellular matrices involved in the response of plants to various external stimuli.
Collapse
Affiliation(s)
- Taishi Yanohara
- United Graduate School of Agricultural Science, Course of Science of Bioresource Production, Kagoshima University, Japan
| | | | | | | | | |
Collapse
|
28
|
Tremblay K, Ouellet F, Fournier J, Danyluk J, Sarhan F. Molecular characterization and origin of novel bipartite cold-regulated ice recrystallization inhibition proteins from cereals. PLANT & CELL PHYSIOLOGY 2005; 46:884-91. [PMID: 15792959 DOI: 10.1093/pcp/pci093] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
To understand the molecular basis of freezing tolerance in plants, several low temperature-responsive genes have been identified from wheat. Among these are two genes named TaIRI-1 and TaIRI-2 (Triticum aestivum ice recrystallization inhibition) that are up-regulated during cold acclimation in freezing-tolerant species. Phytohormones involved in pathogen defense pathways (jasmonic acid and ethylene) induce the expression of one of the two genes. The encoded proteins are novel in that they have a bipartite structure that has never been reported for antifreeze proteins. Their N-terminal part shows similarity with the leucine-rich repeat-containing regions present in the receptor domain of receptor-like protein kinases, and their C-terminus is homologous to the ice-binding domain of some antifreeze proteins. The recombinant TaIRI-1 protein inhibits the growth of ice crystals, confirming its function as an ice recrystallization inhibition protein. The TaIRI genes were found only in the species belonging to the Pooideae subfamily of cereals. Comparative genomic analysis suggested that molecular evolutionary events took place in the genome of freezing-tolerant cereals to give rise to these genes with putative novel functions. These apparent adaptive DNA rearrangement events could be part of the molecular mechanisms that ensure the survival of hardy cereals in the harsh freezing environments.
Collapse
Affiliation(s)
- Karine Tremblay
- Université du Québec à Montréal, Département des Sciences biologiques, CP 8888, Succursale Centre-ville, Montréal, Québec H3C 3P8, Canada
| | | | | | | | | |
Collapse
|
29
|
Griffith M, Lumb C, Wiseman SB, Wisniewski M, Johnson RW, Marangoni AG. Antifreeze proteins modify the freezing process in planta. PLANT PHYSIOLOGY 2005; 138:330-40. [PMID: 15805474 PMCID: PMC1104187 DOI: 10.1104/pp.104.058628] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 02/03/2005] [Accepted: 02/08/2005] [Indexed: 05/18/2023]
Abstract
During cold acclimation, winter rye (Secale cereale L. cv Musketeer) plants accumulate antifreeze proteins (AFPs) in the apoplast of leaves and crowns. The goal of this study was to determine whether these AFPs influence survival at subzero temperatures by modifying the freezing process or by acting as cryoprotectants. In order to inhibit the growth of ice, AFPs must be mobile so that they can bind to specific sites on the ice crystal lattice. Guttate obtained from cold-acclimated winter rye leaves exhibited antifreeze activity, indicating that the AFPs are free in solution. Infrared video thermography was used to observe freezing in winter rye leaves. In the absence of an ice nucleator, AFPs had no effect on the supercooling temperature of the leaves. However, in the presence of an ice nucleator, AFPs lowered the temperature at which the leaves froze by 0.3 degrees C to 1.2 degrees C. In vitro studies showed that apoplastic proteins extracted from cold-acclimated winter rye leaves inhibited the recrystallization of ice and also slowed the rate of migration of ice through solution-saturated filter paper. When we examined the possible role of winter rye AFPs in cryoprotection, we found that lactate dehydrogenase activity was higher after freezing in the presence of AFPs compared with buffer, but the same effect was obtained by adding bovine serum albumin. AFPs had no effect on unstacked thylakoid volume after freezing, but did inhibit stacking of the thylakoids, thus indicating a loss of thylakoid function. We conclude that rye AFPs have no specific cryoprotective activity; rather, they interact directly with ice in planta and reduce freezing injury by slowing the growth and recrystallization of ice.
Collapse
Affiliation(s)
- Marilyn Griffith
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | | | |
Collapse
|
30
|
Griffith M, Yaish MWF. Antifreeze proteins in overwintering plants: a tale of two activities. TRENDS IN PLANT SCIENCE 2004; 9:399-405. [PMID: 15358271 DOI: 10.1016/j.tplants.2004.06.007] [Citation(s) in RCA: 278] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Antifreeze proteins are found in a wide range of overwintering plants where they inhibit the growth and recrystallization of ice that forms in intercellular spaces. Unlike antifreeze proteins found in fish and insects, plant antifreeze proteins have multiple, hydrophilic ice-binding domains. Surprisingly, antifreeze proteins from plants are homologous to pathogenesis-related proteins and also provide protection against psychrophilic pathogens. In winter rye (Secale cereale), antifreeze proteins accumulate in response to cold, short daylength, dehydration and ethylene, but not pathogens. Transferring single genes encoding antifreeze proteins to freezing-sensitive plants lowered their freezing temperatures by approximately 1 degrees C. Genes encoding dual-function plant antifreeze proteins are excellent models for use in evolutionary studies to determine how genes acquire new expression patterns and how proteins acquire new activities.
Collapse
Affiliation(s)
- Marilyn Griffith
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo ON, Canada N2L 3G1.
| | | |
Collapse
|
31
|
Stressmann M, Kitao S, Griffith M, Moresoli C, Bravo LA, Marangoni AG. Calcium interacts with antifreeze proteins and chitinase from cold-acclimated winter rye. PLANT PHYSIOLOGY 2004; 135:364-76. [PMID: 15122015 PMCID: PMC429390 DOI: 10.1104/pp.103.038158] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 02/09/2004] [Accepted: 02/09/2004] [Indexed: 05/18/2023]
Abstract
During cold acclimation, winter rye (Secale cereale) plants accumulate pathogenesis-related proteins that are also antifreeze proteins (AFPs) because they adsorb onto ice and inhibit its growth. Although they promote winter survival in planta, these dual-function AFPs proteins lose activity when stored at subzero temperatures in vitro, so we examined their stability in solutions containing CaCl2, MgCl2, or NaCl. Antifreeze activity was unaffected by salts before freezing, but decreased after freezing and thawing in CaCl2 and was recovered by adding a chelator. Ca2+ enhanced chitinase activity 3- to 5-fold in unfrozen samples, although hydrolytic activity also decreased after freezing and thawing in CaCl2. Native PAGE, circular dichroism, and Trp fluorescence experiments showed that the AFPs partially unfold after freezing and thawing, but they fold more compactly or aggregate in CaCl2. Ruthenium red, which binds to Ca(2+)-binding sites, readily stained AFPs in the absence of Ca2+, but less stain was visible after freezing and thawing AFPs in CaCl2. We conclude that the structure of AFPs changes during freezing and thawing, creating new Ca(2+)-binding sites. Once Ca2+ binds to those sites, antifreeze activity, chitinase activity and ruthenium red binding are all inhibited. Because free Ca2+ concentrations are typically low in the apoplast, antifreeze activity is probably stable to freezing and thawing in planta. Ca2+ may regulate chitinase activity if concentrations are increased locally by release from pectin or interaction with Ca(2+)-binding proteins. Furthermore, antifreeze activity can be easily maintained in vitro by including a chelator during frozen storage.
Collapse
Affiliation(s)
- Maja Stressmann
- Departments of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Overwintering plants produce antifreeze proteins (AFPs) having the ability to adsorb onto the surface of ice crystals and modify their growth. Recently, several AFPs have been isolated and characterized and five full-length AFP cDNAs have been cloned and characterized in higher plants. The derived amino acid sequences have shown low homology for identical residues. Theoretical and experimental models for structure of Lolium perenne AFP have been proposed. In addition, it was found that the hormone ethylene is involved in regulating antifreeze activity in response to cold. In this review, it is seen that the physiological and biochemical roles of AFPs may be important to protect the plant tissues from mechanical stress caused by ice formation.
Collapse
Affiliation(s)
- Okkeş Atici
- Department of Biology, Faculty of Science and Arts, Atatürk University, 25240 Erzurum, Turkey
| | | |
Collapse
|
33
|
Abdrakhamanova A, Wang QY, Khokhlova L, Nick P. Is microtubule disassembly a trigger for cold acclimation? PLANT & CELL PHYSIOLOGY 2003; 44:676-86. [PMID: 12881495 DOI: 10.1093/pcp/pcg097] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cold acclimation was followed in three cultivars of winter wheat (Triticum aestivum L.) that differ in freezing tolerance, using root growth as the indicator. During acclimation (followed through 7 d at 4 degrees C), growth rate progressively recovered. The recovery was fast in the tolerant, slow in the sensitive cultivars. The development of freezing tolerance was followed by a challenging cold shock administered after various time intervals of acclimation. Acclimation proceeded faster in the tolerant cultivars. Microtubules were monitored during the acclimation period. A rapid, but transient partial disassembly in the tolerant cultivars preceded the formation of cold-stable microtubules and the recovery of growth rate. In contrast, this transient disassembly was absent in the sensitive cultivar. When a transient disassembly was artificially generated by a pulse-treatment with the antimicrotubular herbicide pronamide, this could induce freezing tolerance. The appearance of cold-stable microtubules was accompanied by a reduced abundance of type TUA1/2 alpha-tubulin isotypes. These findings are discussed with respect to a role of microtubule disassembly in the sensing of low-temperature stress.
Collapse
|
34
|
Koike M, Okamoto T, Tsuda S, Imai R. A novel plant defensin-like gene of winter wheat is specifically induced during cold acclimation. Biochem Biophys Res Commun 2002; 298:46-53. [PMID: 12379218 DOI: 10.1016/s0006-291x(02)02391-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A novel cDNA clone, Tad1, was isolated from crown tissue of winter wheat after differential screening of cold acclimation-induced genes. The Tad1 cDNA encoded a 23kDa polypeptide with a potential N-terminal signal sequence. The putative mature sequence showed striking similarity to plant defensins or gamma-thionins, representing low molecular size antipathogenic polypeptides. High levels of Tad1 mRNA accumulation occurred within one day of cold acclimation in crown tissue and the level was maintained throughout 14 days of cold acclimation. Similar rapid induction was observed in young seedlings treated with low temperature but not with exogenous abscisic acid. In contrast to defensins from other plant species, neither salicylic acid nor methyl jasmonate induced expression of Tad1. The recombinant mature form of TAD1 polypeptide inhibited the growth of the phytopathogenic bacteria, Pseudomonas cichorii; however, no antifreeze activity was detected. Collectively, these data suggested that Tad1 is induced in cold-acclimated winter wheat independent of major defense signaling(s) and is involved in low temperature-induced resistance to pathogens during winter hardening.
Collapse
Affiliation(s)
- Michiya Koike
- Winter Stress Laboratory, National Agricultural Research Center for Hokkaido Region, NARO, Hitsujigaoka, Toyohira-ku, Sapporo 062-8555, Japan
| | | | | | | |
Collapse
|
35
|
Kuwabara C, Takezawa D, Shimada T, Hamada T, Fujikawa S, Arakawa K. Abscisic acid- and cold-induced thaumatin-like protein in winter wheat has an antifungal activity against snow mould, Microdochium nivale. PHYSIOLOGIA PLANTARUM 2002; 115:101-110. [PMID: 12010473 DOI: 10.1034/j.1399-3054.2002.1150112.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cold acclimation of winter wheat (Triticum aestivum L.) seedlings induces accumulation in the apoplast of taTLPs that are similar to thaumatin-like proteins (TLPs), which are pathogenesis-related proteins. We characterized a cDNA of WAS-3a encoding the major isoform of taTLPs from winter wheat cells and showed that WAS-3a transcripts were markedly increased by treatment with ABA and by treatment with elicitors (chitosan, beta-glucan and cell wall fractions of Fusarium oxysporum and Microdochium nivale) in wheat cells. To analyse the function of WAS-3a, a highly efficient expression system using wheat cells was established, and a large amount of recombinant WAS-3a protein (rWAS-3a) was obtained with near homogeneity. Antifungal assays using various fungi grown on agar plates revealed that rWAS-3a inhibits hyphal growth of pink snow mould, Microdochium nivale, at a low temperature. The results suggest that cold-induced taTLPs that accumulate in the apoplast contribute to snow mould resistance of winter wheat.
Collapse
Affiliation(s)
- Chikako Kuwabara
- Institute of Low Temperature Science, Hokkaido University, Kita-19 Nishi-8, Kita-ku, Sapporo 060-0819, Japan Research Institute of Agricultural Resources, Ishikawa Agricultural College, 1-308, Suematsu, Nonoichi, Ishikawa 921, Japan Graduate School of Agriculture, Hokkaido University, Kita-9 Nishi-8, Kita-ku, Sapporo, 060-8589, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Yu XM, Griffith M, Wiseman SB. Ethylene induces antifreeze activity in winter rye leaves. PLANT PHYSIOLOGY 2001; 126:1232-40. [PMID: 11457973 PMCID: PMC116479 DOI: 10.1104/pp.126.3.1232] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2000] [Revised: 03/14/2001] [Accepted: 04/15/2001] [Indexed: 05/18/2023]
Abstract
Antifreeze activity is induced by cold temperatures in winter rye (Secale cereale) leaves. The activity arises from six antifreeze proteins that accumulate in the apoplast of winter rye leaves during cold acclimation. The individual antifreeze proteins are similar to pathogenesis-related proteins, including glucanases, chitinases, and thaumatin-like proteins. The objective of this study was to study the regulation of antifreeze activity in response to ethylene and salicyclic acid, which are known regulators of pathogenesis-related proteins induced by pathogens. Nonacclimated plants treated with salicylic acid accumulated apoplastic proteins with no antifreeze activity. In contrast, when nonacclimated plants were exposed to ethylene, both antifreeze activity and the concentration of apoplastic protein increased in rye leaves. Immunoblotting revealed that six of the seven accumulated apoplastic proteins consisted of two glucanases, two chitinases, and two thaumatin-like proteins. The ethylene-releasing agent ethephon and the ethylene precursor 1-aminocyclopropane-1-carboxylate also induced high levels of antifreeze activity at 20 degrees C, and this effect could be blocked by the ethylene inhibitor AgNO(3). When intact rye plants were exposed to 5 degrees C, endogenous ethylene production and antifreeze activity were detected within 12 and 48 h of exposure to cold, respectively. Rye plants exposed to drought produced both ethylene and antifreeze activity within 24 h. We conclude that ethylene is involved in regulating antifreeze activity in winter rye in response to cold and drought.
Collapse
Affiliation(s)
- X M Yu
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | |
Collapse
|