1
|
Coelho LP, Santos-Júnior CD, de la Fuente-Nunez C. Challenges in computational discovery of bioactive peptides in 'omics data. Proteomics 2024; 24:e2300105. [PMID: 38458994 PMCID: PMC11537280 DOI: 10.1002/pmic.202300105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 03/10/2024]
Abstract
Peptides have a plethora of activities in biological systems that can potentially be exploited biotechnologically. Several peptides are used clinically, as well as in industry and agriculture. The increase in available 'omics data has recently provided a large opportunity for mining novel enzymes, biosynthetic gene clusters, and molecules. While these data primarily consist of DNA sequences, other types of data provide important complementary information. Due to their size, the approaches proven successful at discovering novel proteins of canonical size cannot be naïvely applied to the discovery of peptides. Peptides can be encoded directly in the genome as short open reading frames (smORFs), or they can be derived from larger proteins by proteolysis. Both of these peptide classes pose challenges as simple methods for their prediction result in large numbers of false positives. Similarly, functional annotation of larger proteins, traditionally based on sequence similarity to infer orthology and then transferring functions between characterized proteins and uncharacterized ones, cannot be applied for short sequences. The use of these techniques is much more limited and alternative approaches based on machine learning are used instead. Here, we review the limitations of traditional methods as well as the alternative methods that have recently been developed for discovering novel bioactive peptides with a focus on prokaryotic genomes and metagenomes.
Collapse
Affiliation(s)
- Luis Pedro Coelho
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Woolloongabba, Queensland, Australia
- Institute of Science and Technology for Brain-Inspired Intelligence – ISTBI, Fudan University, Shanghai, China
| | - Célio Dias Santos-Júnior
- Institute of Science and Technology for Brain-Inspired Intelligence – ISTBI, Fudan University, Shanghai, China
- Laboratory of Microbial Processes & Biodiversity – LMPB, Hydrobiology Department, Federal University of São Carlos – UFSCar, São Paulo, Brazil
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Past, Present, and Future of Naturally Occurring Antimicrobials Related to Snake Venoms. Animals (Basel) 2023; 13:ani13040744. [PMID: 36830531 PMCID: PMC9952678 DOI: 10.3390/ani13040744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023] Open
Abstract
This review focuses on proteins and peptides with antimicrobial activity because these biopolymers can be useful in the fight against infectious diseases and to overcome the critical problem of microbial resistance to antibiotics. In fact, snakes show the highest diversification among reptiles, surviving in various environments; their innate immunity is similar to mammals and the response of their plasma to bacteria and fungi has been explored mainly in ecological studies. Snake venoms are a rich source of components that have a variety of biological functions. Among them are proteins like lectins, metalloproteinases, serine proteinases, L-amino acid oxidases, phospholipases type A2, cysteine-rich secretory proteins, as well as many oligopeptides, such as waprins, cardiotoxins, cathelicidins, and β-defensins. In vitro, these biomolecules were shown to be active against bacteria, fungi, parasites, and viruses that are pathogenic to humans. Not only cathelicidins, but all other proteins and oligopeptides from snake venom have been proteolyzed to provide short antimicrobial peptides, or for use as templates for developing a variety of short unnatural sequences based on their structures. In addition to organizing and discussing an expressive amount of information, this review also describes new β-defensin sequences of Sistrurus miliarius that can lead to novel peptide-based antimicrobial agents, using a multidisciplinary approach that includes sequence phylogeny.
Collapse
|
3
|
Ali W, Elsahn A, Ting DSJ, Dua HS, Mohammed I. Host Defence Peptides: A Potent Alternative to Combat Antimicrobial Resistance in the Era of the COVID-19 Pandemic. Antibiotics (Basel) 2022; 11:475. [PMID: 35453226 PMCID: PMC9032040 DOI: 10.3390/antibiotics11040475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/07/2022] Open
Abstract
One of the greatest challenges facing the medical community today is the ever-increasing trajectory of antimicrobial resistance (AMR), which is being compounded by the decrease in our antimicrobial armamentarium. From their initial discovery to the current day, antibiotics have seen an exponential increase in their usage, from medical to agricultural use. Benefits aside, this has led to an exponential increase in AMR, with the fear that over 10 million lives are predicted to be lost by 2050, according to the World Health Organisation (WHO). As such, medical researchers are turning their focus to discovering novel alternatives to antimicrobials, one being Host Defence Peptides (HDPs). These small cationic peptides have shown great efficacy in being used as an antimicrobial therapy for currently resistant microbial variants. With the sudden emergence of the SARS-CoV-2 variant and the subsequent global pandemic, the great versatility and potential use of HDPs as an alternative to conventional antibiotics in treating as well as preventing the spread of COVID-19 has been reviewed. Thus, to allow the reader to have a full understanding of the multifaceted therapeutic use of HDPs, this literature review shall cover the association between COVID-19 and AMR whilst discussing and evaluating the use of HDPs as an answer to antimicrobial resistance (AMR).
Collapse
Affiliation(s)
| | | | | | | | - Imran Mohammed
- Section of Ophthalmology, Larry A. Donoso Laboratory for Eye Research, Academic Unit of Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, Queens Medical Centre, Eye and ENT Building, Nottingham NG7 2UH, UK; (W.A.); (A.E.); (D.S.J.T.); (H.S.D.)
| |
Collapse
|
4
|
van Hoek ML, Prickett MD, Settlage RE, Kang L, Michalak P, Vliet KA, Bishop BM. The Komodo dragon (Varanus komodoensis) genome and identification of innate immunity genes and clusters. BMC Genomics 2019; 20:684. [PMID: 31470795 PMCID: PMC6716921 DOI: 10.1186/s12864-019-6029-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 08/12/2019] [Indexed: 12/23/2022] Open
Abstract
Background We report the sequencing, assembly and analysis of the genome of the Komodo dragon (Varanus komodoensis), the largest extant lizard, with a focus on antimicrobial host-defense peptides. The Komodo dragon diet includes carrion, and a complex milieu of bacteria, including potentially pathogenic strains, has been detected in the saliva of wild dragons. They appear to be unaffected, suggesting that dragons have robust defenses against infection. While little information is available regarding the molecular biology of reptile immunity, it is believed that innate immunity, which employs antimicrobial host-defense peptides including defensins and cathelicidins, plays a more prominent role in reptile immunity than it does in mammals. . Results High molecular weight genomic DNA was extracted from Komodo dragon blood cells. Subsequent sequencing and assembly of the genome from the collected DNA yielded a genome size of 1.6 Gb with 45x coverage, and the identification of 17,213 predicted genes. Through further analyses of the genome, we identified genes and gene-clusters corresponding to antimicrobial host-defense peptide genes. Multiple β-defensin-related gene clusters were identified, as well as a cluster of potential Komodo dragon ovodefensin genes located in close proximity to a cluster of Komodo dragon β-defensin genes. In addition to these defensins, multiple cathelicidin-like genes were also identified in the genome. Overall, 66 β-defensin genes, six ovodefensin genes and three cathelicidin genes were identified in the Komodo dragon genome. Conclusions Genes with important roles in host-defense and innate immunity were identified in this newly sequenced Komodo dragon genome, suggesting that these organisms have a robust innate immune system. Specifically, multiple Komodo antimicrobial peptide genes were identified. Importantly, many of the antimicrobial peptide genes were found in gene clusters. We found that these innate immunity genes are conserved among reptiles, and the organization is similar to that seen in other avian and reptilian species. Having the genome of this important squamate will allow researchers to learn more about reptilian gene families and will be a valuable resource for researchers studying the evolution and biology of the endangered Komodo dragon. Electronic supplementary material The online version of this article (10.1186/s12864-019-6029-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Monique L van Hoek
- School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - M Dennis Prickett
- Dipartimento di Scienze della Vita-Edif. C11, Università di Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Robert E Settlage
- Advanced Research Computing, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Lin Kang
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA
| | - Pawel Michalak
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, 24060, USA.,Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24060, USA.,Institute of Evolution, University of Haifa, 3498838, Haifa, Israel
| | - Kent A Vliet
- Department of Biology, University of Florida, Gainesville, Florida, FL, 32611, USA
| | - Barney M Bishop
- Department of Chemistry, George Mason University, Manassas, VA, 20110, USA.
| |
Collapse
|
5
|
Pachón-Ibáñez ME, Smani Y, Pachón J, Sánchez-Céspedes J. Perspectives for clinical use of engineered human host defense antimicrobial peptides. FEMS Microbiol Rev 2018; 41:323-342. [PMID: 28521337 PMCID: PMC5435762 DOI: 10.1093/femsre/fux012] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/28/2017] [Indexed: 12/15/2022] Open
Abstract
Infectious diseases caused by bacteria, viruses or fungi are among the leading causes of death worldwide. The emergence of drug-resistance mechanisms, especially among bacteria, threatens the efficacy of all current antimicrobial agents, some of them already ineffective. As a result, there is an urgent need for new antimicrobial drugs. Host defense antimicrobial peptides (HDPs) are natural occurring and well-conserved peptides of innate immunity, broadly active against Gram-negative and Gram-positive bacteria, viruses and fungi. They also are able to exert immunomodulatory and adjuvant functions by acting as chemotactic for immune cells, and inducing cytokines and chemokines secretion. Moreover, they show low propensity to elicit microbial adaptation, probably because of their non-specific mechanism of action, and are able to neutralize exotoxins and endotoxins. HDPs have the potential to be a great source of novel antimicrobial agents. The goal of this review is to provide an overview of the advances made in the development of human defensins as well as the cathelicidin LL-37 and their derivatives as antimicrobial agents against bacteria, viruses and fungi for clinical use.
Collapse
Affiliation(s)
- María Eugenia Pachón-Ibáñez
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville
| | - Younes Smani
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville
| | - Jerónimo Pachón
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville.,Department of Medicine, University of Seville, Seville, Spain
| | - Javier Sánchez-Céspedes
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville.,Department of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
6
|
Kudryashova E, Seveau SM, Kudryashov DS. Targeting and inactivation of bacterial toxins by human defensins. Biol Chem 2017; 398:1069-1085. [PMID: 28593905 DOI: 10.1515/hsz-2017-0106] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/18/2017] [Indexed: 11/15/2022]
Abstract
Defensins, as a prominent family of antimicrobial peptides (AMP), are major effectors of the innate immunity with a broad range of immune modulatory and antimicrobial activities. In particular, defensins are the only recognized fast-response molecules that can neutralize a broad range of bacterial toxins, many of which are among the deadliest compounds on the planet. For a decade, the mystery of how a small and structurally conserved group of peptides can neutralize a heterogeneous group of toxins with little to no sequential and structural similarity remained unresolved. Recently, it was found that defensins recognize and target structural plasticity/thermodynamic instability, fundamental physicochemical properties that unite many bacterial toxins and distinguish them from the majority of host proteins. Binding of human defensins promotes local unfolding of the affected toxins, destabilizes their secondary and tertiary structures, increases susceptibility to proteolysis, and leads to their precipitation. While the details of toxin destabilization by defensins remain obscure, here we briefly review properties and activities of bacterial toxins known to be affected by or resilient to defensins, and discuss how recognized features of defensins correlate with the observed inactivation.
Collapse
|
7
|
Bastos P, Trindade F, da Costa J, Ferreira R, Vitorino R. Human Antimicrobial Peptides in Bodily Fluids: Current Knowledge and Therapeutic Perspectives in the Postantibiotic Era. Med Res Rev 2017; 38:101-146. [PMID: 28094448 PMCID: PMC7168463 DOI: 10.1002/med.21435] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/04/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022]
Abstract
Antimicrobial peptides (AMPs) are an integral part of the innate immune defense mechanism of many organisms. Due to the alarming increase of resistance to antimicrobial therapeutics, a growing interest in alternative antimicrobial agents has led to the exploitation of AMPs, both synthetic and isolated from natural sources. Thus, many peptide-based drugs have been the focus of increasing attention by many researchers not only in identifying novel AMPs, but in defining mechanisms of antimicrobial peptide activity as well. Herein, we review the available strategies for the identification of AMPs in human body fluids and their mechanism(s) of action. In addition, an overview of the distribution of AMPs across different human body fluids is provided, as well as its relation with microorganisms and infectious conditions.
Collapse
Affiliation(s)
- Paulo Bastos
- Department of Medical Sciences, iBiMED-Institute for Research in Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Fábio Trindade
- Department of Medical Sciences, iBiMED-Institute for Research in Biomedicine, University of Aveiro, Aveiro, Portugal.,Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - João da Costa
- Department of Chemistry, CESAM, University of Aveiro, Aveiro, Portugal
| | - Rita Ferreira
- Department of Chemistry, QOPNA, Mass Spectrometry Center, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, iBiMED-Institute for Research in Biomedicine, University of Aveiro, Aveiro, Portugal.,Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| |
Collapse
|
8
|
Bandurska K, Berdowska A, Barczyńska-Felusiak R, Krupa P. Unique features of human cathelicidin LL-37. Biofactors 2015; 41:289-300. [PMID: 26434733 DOI: 10.1002/biof.1225] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/29/2015] [Indexed: 01/13/2023]
Abstract
Cathelicidins are antimicrobial peptides produced by humans and animals in response to various pathogenic microbes. This review intends to provide a brief overview of the expression, structure, properties and function of human cathelicidin LL-37 which may be a therapeutic agent against a variety of bacterial and viral diseases, cancers, and hard-to-heal wounds. Cathelicidins act as a primary defense against bacteria and other pathogens in the case of inflammation. They are able to kill bacteria and fungi, inhibit and destroy bacterial biofilms, and possess antiviral and antiparasitics properties. They can also play a role in angiogenesis, wound healing, and the regulation of apoptosis. The host defense peptide LL-37 has emerged as a novel modulator of tumor growth and metastasis in carcinogenesis of various types of cancers. LL-37 is an antimicrobial peptide able of inducing various effects. It acts as an anti- and pro- inflammatory factor. Cathelicidins are able to directly and selectively destroy membranes of various microbes and cancer cells, but they do not attack normal cells. The role of cathelicidins in cancer is double-sided. They play an important role in killing cancer cells and may provide a new possibility for the development of cancer therapeutics. However, they also can participate in carcinogenesis. Due to its activity spectrum LL-37 could be applied in pharmacotherapy. Cathelicidin peptides could serve as a template for the development of modern anti-microbial and anti-viral drugs. LL-37 is an excellent candidate to develop into therapeutics for infected wounds.
Collapse
Affiliation(s)
- Katarzyna Bandurska
- Department of Microbiology and Biotechnology, Jan Dlugosz University in Czestochowa, Czestochowa, Poland
| | - Agnieszka Berdowska
- Department of Microbiology and Biotechnology, Jan Dlugosz University in Czestochowa, Czestochowa, Poland
| | | | - Piotr Krupa
- Department of Microbiology and Biotechnology, Jan Dlugosz University in Czestochowa, Czestochowa, Poland
| |
Collapse
|
9
|
Destoumieux-Garzón D, Duperthuy M, Vanhove AS, Schmitt P, Wai SN. Resistance to Antimicrobial Peptides in Vibrios. Antibiotics (Basel) 2014; 3:540-63. [PMID: 27025756 PMCID: PMC4790380 DOI: 10.3390/antibiotics3040540] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 09/25/2014] [Accepted: 10/08/2014] [Indexed: 12/19/2022] Open
Abstract
Vibrios are associated with a broad diversity of hosts that produce antimicrobial peptides (AMPs) as part of their defense against microbial infections. In particular, vibrios colonize epithelia, which function as protective barriers and express AMPs as a first line of chemical defense against pathogens. Recent studies have shown they can also colonize phagocytes, key components of the animal immune system. Phagocytes infiltrate infected tissues and use AMPs to kill the phagocytosed microorganisms intracellularly, or deliver their antimicrobial content extracellularly to circumvent tissue infection. We review here the mechanisms by which vibrios have evolved the capacity to evade or resist the potent antimicrobial defenses of the immune cells or tissues they colonize. Among their strategies to resist killing by AMPs, primarily vibrios use membrane remodeling mechanisms. In particular, some highly resistant strains substitute hexaacylated Lipid A with a diglycine residue to reduce their negative surface charge, thereby lowering their electrostatic interactions with cationic AMPs. As a response to envelope stress, which can be induced by membrane-active agents including AMPs, vibrios also release outer membrane vesicles to create a protective membranous shield that traps extracellular AMPs and prevents interaction of the peptides with their own membranes. Finally, once AMPs have breached the bacterial membrane barriers, vibrios use RND efflux pumps, similar to those of other species, to transport AMPs out of their cytoplasmic space.
Collapse
Affiliation(s)
- Delphine Destoumieux-Garzón
- Ecology of Coastal Marine Systems, CNRS, Ifremer, University of Montpellier, IRD, Place Eugène Bataillon, CC80, 34095 Montpellier, France.
| | - Marylise Duperthuy
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden.
| | - Audrey Sophie Vanhove
- Ecology of Coastal Marine Systems, CNRS, Ifremer, University of Montpellier, IRD, Place Eugène Bataillon, CC80, 34095 Montpellier, France.
| | - Paulina Schmitt
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, 2373223 Valparaíso, Chile.
| | - Sun Nyunt Wai
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
10
|
Wang G. Human antimicrobial peptides and proteins. Pharmaceuticals (Basel) 2014; 7:545-94. [PMID: 24828484 PMCID: PMC4035769 DOI: 10.3390/ph7050545] [Citation(s) in RCA: 376] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/15/2014] [Accepted: 04/29/2014] [Indexed: 12/11/2022] Open
Abstract
As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs) play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between -3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32) can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized medicine to combat drug-resistant superbugs, fungi, viruses, parasites, or cancer. Alternatively, multiple factors (e.g., albumin, arginine, butyrate, calcium, cyclic AMP, isoleucine, short-chain fatty acids, UV B light, vitamin D, and zinc) are able to induce the expression of antimicrobial peptides, opening new avenues to the development of anti-infectious drugs.
Collapse
Affiliation(s)
- Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA.
| |
Collapse
|
11
|
Supp DM, Neely AN. Cutaneous antimicrobial gene therapy: engineering human skin replacements to combat wound infection. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17469872.3.1.73] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Abstract
Defensins are small, multifunctional cationic peptides. They typically contain six conserved cysteines whose three intramolecular disulfides stabilize a largely β-sheet structure. This review of human α-defensins begins by describing their evolution, including their likely relationship to the Big Defensins of invertebrates, and their kinship to the β-defensin peptides of many if not all vertebrates, and the θ-defensins found in certain non-human primates. We provide a short history of the search for leukocyte-derived microbicidal molecules, emphasizing the roles played by luck (good), preconceived notions (mostly bad), and proper timing (essential). The antimicrobial, antiviral, antitoxic, and binding properties of human α-defensins are summarized. The structural features of α-defensins are described extensively and their functional contributions are assessed. The properties of HD6, an enigmatic Paneth cell α-defensin, are contrasted with those of the four myeloid α-defensins (HNP1-4) and of HD5, the other α-defensin of human Paneth cells. The review ends with a decalogue that may assist researchers or students interested in α-defensins and related aspects of neutrophil function.
Collapse
Affiliation(s)
- Robert I Lehrer
- Department of Medicine and Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1688, USA.
| | | |
Collapse
|
13
|
Ouellette AJ. Paneth cell α-defensins in enteric innate immunity. Cell Mol Life Sci 2011; 68:2215-29. [PMID: 21560070 PMCID: PMC4073591 DOI: 10.1007/s00018-011-0714-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 12/18/2022]
Abstract
Paneth cells at the base of small intestinal crypts of Lieberkühn secrete high levels of α-defensins in response to cholinergic and microbial stimuli. Paneth cell α-defensins are broad spectrum microbicides that function in the extracellular environment of the intestinal lumen, and they are responsible for the majority of secreted bactericidal peptide activity. Paneth cell α-defensins confer immunity to oral infection by Salmonella enterica serovar Typhimurium, and they are major determinants of the composition of the small intestinal microbiome. In addition to host defense molecules such as α-defensins, lysozyme, and Pla2g2a, Paneth cells also produce and release proinflammatory mediators as components of secretory granules. Disruption of Paneth cell homeostasis, with subsequent induction of endoplasmic reticulum stress, autophagy, or apoptosis, contributes to inflammation in diverse genetic and experimental mouse models.
Collapse
Affiliation(s)
- André Joseph Ouellette
- Department of Pathology and Laboratory Medicine, Keck School of Medicine of the University of Southern California, USC/Norris Cancer Center, Los Angeles, CA 90089-9601, USA.
| |
Collapse
|
14
|
Abstract
Antimicrobial peptides (AMPs) are small proteins produced by epithelial surfaces and inflammatory cells, which have broad-spectrum antimicrobial and immunomodulatory activities. They are known to be important in a number of infectious and inflammatory conditions and have been shown to be present in a number of sites throughout the female reproductive tract. Inflammation and infection are associated with a number of complications of pregnancy including preterm labor, and AMPs may play a key role in maintaining and protecting pregnancy. The aim of this review is to describe the expression and function of AMPs in the pregnant female reproductive tract and their relation to preterm labor.
Collapse
Affiliation(s)
- Lorraine Frew
- MRC Centre for Reproductive Health, The Queens Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | | |
Collapse
|
15
|
Fjell CD, Jenssen H, Fries P, Aich P, Griebel P, Hilpert K, Hancock REW, Cherkasov A. Identification of novel host defense peptides and the absence of alpha-defensins in the bovine genome. Proteins 2009; 73:420-30. [PMID: 18442133 DOI: 10.1002/prot.22059] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Host defense peptides (historically called antimicrobial peptides, AMPs) are key components in the mammalian innate immune system, and are responsible for both direct killing and immunomodulatory effects in host defense against pathogenic organisms. In order to identify novel host defense peptides by sequence analysis, we constructed the AMPer resource (http://www.cnbi2.com/cgi-bin/amp.pl) that utilizes hidden Markov models to recognize sequences of antimicrobial peptides. In the current work, we utilized the AMPer resource to search bovine expressed sequence tags from the NCBI dbEST project and the bovine genome sequence for novel host defense peptides. Of the 34 known bovine AMPs, 27 were identified with high confidence in the AMPs predicted from ESTs. A further potential 68 AMPs predicted from the EST data were found that appear to be novel giving a total estimate of 102 AMPs present in the genome. Two of these were cathelicidins and selected for experimental verification in RNA derived from bovine tissue. One predicted AMP, most similar to rabbit '15 kDa protein' AMP, was confirmed to be present in infected bovine intestinal tissue using PCR. These findings demonstrated the practical applicability of the developed bioinformatics approach and laid a foundation for future discoveries of gene-coded AMPs. No members of the alpha-defensin family were found in the bovine sequences. Since we could find no technical reasons these would be missed and no references to bovine alpha-defensins in the literature, this suggests that cattle lack this important family of host defense peptides.
Collapse
Affiliation(s)
- Christopher D Fjell
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, University of British Columbia,Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Screening and cloning of antimicrobial DNA sequences using a vital staining method. Gene 2009; 430:132-9. [DOI: 10.1016/j.gene.2008.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 07/14/2008] [Accepted: 10/23/2008] [Indexed: 11/19/2022]
|
17
|
Affiliation(s)
- Dorothy M Supp
- University of Cincinnati, Shriners Hospitals for Children, Department of Surgery, College of Medicine, 3229 Burnet Avenue, Cincinnati, OH 45229, USA.
| |
Collapse
|
18
|
Lata S, Sharma BK, Raghava GPS. Analysis and prediction of antibacterial peptides. BMC Bioinformatics 2007; 8:263. [PMID: 17645800 PMCID: PMC2041956 DOI: 10.1186/1471-2105-8-263] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 07/23/2007] [Indexed: 11/14/2022] Open
Abstract
Background Antibacterial peptides are important components of the innate immune system, used by the host to protect itself from different types of pathogenic bacteria. Over the last few decades, the search for new drugs and drug targets has prompted an interest in these antibacterial peptides. We analyzed 486 antibacterial peptides, obtained from antimicrobial peptide database APD, in order to understand the preference of amino acid residues at specific positions in these peptides. Results It was observed that certain types of residues are preferred over others in antibacterial peptides, particularly at the N and C terminus. These observations encouraged us to develop a method for predicting antibacterial peptides in proteins from their amino acid sequence. First, the N-terminal residues were used for predicting antibacterial peptides using Artificial Neural Network (ANN), Quantitative Matrices (QM) and Support Vector Machine (SVM), which resulted in an accuracy of 83.63%, 84.78% and 87.85%, respectively. Then, the C-terminal residues were used for developing prediction methods, which resulted in an accuracy of 77.34%, 82.03% and 85.16% using ANN, QM and SVM, respectively. Finally, ANN, QM and SVM models were developed using N and C terminal residues, which achieved an accuracy of 88.17%, 90.37% and 92.11%, respectively. All the models developed in this study were evaluated using five-fold cross validation technique. These models were also tested on an independent or blind dataset. Conclusion Among antibacterial peptides, there is preference for certain residues at N and C termini, which helps to demarcate them from non-antibacterial peptides. Both the termini play a crucial role in imparting the antibacterial property to these peptides. Among the methods developed, SVM shows the best performance in predicting antibacterial peptides followed by QM and ANN, in that order. AntiBP (Antibacterial peptides) will help in discovering efficacious antibacterial peptides, which we hope will prove to be a boon to combat the dreadful antibiotic resistant bacteria. A user friendly web server has also been developed to help the biological community, which is accessible at .
Collapse
Affiliation(s)
- Sneh Lata
- Institute of Microbial Technology, Sector39A, Chandigarh, India
| | - BK Sharma
- Institute of Microbial Technology, Sector39A, Chandigarh, India
| | - GPS Raghava
- Institute of Microbial Technology, Sector39A, Chandigarh, India
| |
Collapse
|
19
|
Fjell CD, Hancock REW, Cherkasov A. AMPer: a database and an automated discovery tool for antimicrobial peptides. ACTA ACUST UNITED AC 2007; 23:1148-55. [PMID: 17341497 DOI: 10.1093/bioinformatics/btm068] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION Increasing antibiotics resistance in human pathogens represents a pressing public health issue worldwide for which novel antibiotic therapies based on antimicrobial peptides (AMPs) may offer one possible solution. In the current study, we utilized publicly available data on AMPs to construct hidden Markov models (HMMs) that enable recognition of individual classes of antimicrobials peptides (such as defensins, cathelicidins, cecropins, etc.) with up to 99% accuracy and can be used for discovering novel AMP candidates. RESULTS HMM models for both mature peptides and propeptides were constructed. A total of 146 models for mature peptides and 40 for propeptides have been developed for individual AMP classes. These were created by clustering and analyzing AMP sequences available in the public sources and by consequent iterative scanning of the Swiss-Prot database for previously unknown gene-coded AMPs. As a result, an additional 229 additional AMPs have been identified from Swiss-Prot, and all but 34 could be associated with known antimicrobial activities according to the literature. The final set of 1045 mature peptides and 253 propeptides have been organized into the open-source AMPer database. AVAILABILITY The developed HMM-based tools and AMP sequences can be accessed through the AMPer resource at http://www.cnbi2.com/cgi-bin/amp.pl
Collapse
Affiliation(s)
- Christopher D Fjell
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | | | | |
Collapse
|
20
|
Wang W, Mulakala C, Ward SC, Jung G, Luong H, Pham D, Waring AJ, Kaznessis Y, Lu W, Bradley KA, Lehrer RI. Retrocyclins kill bacilli and germinating spores of Bacillus anthracis and inactivate anthrax lethal toxin. J Biol Chem 2006; 281:32755-64. [PMID: 16790431 PMCID: PMC2440672 DOI: 10.1074/jbc.m603614200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Theta-defensins are cyclic octadecapeptides encoded by the modified alpha-defensin genes of certain nonhuman primates. The recent demonstration that human alpha-defensins could prevent deleterious effects of anthrax lethal toxin in vitro and in vivo led us to examine the effects of theta-defensins on Bacillus anthracis (Sterne). We tested rhesus theta-defensins 1-3, retrocyclins 1-3, and several analogues of RC-1. Low concentrations of theta-defensins not only killed vegetative cells of B. anthracis (Sterne) and rendered their germinating spores nonviable, they also inactivated the enzymatic activity of anthrax lethal factor and protected murine RAW-264.7 cells from lethal toxin, a mixture of lethal factor and protective antigen. Structure-function studies indicated that the cyclic backbone, intramolecular tri-disulfide ladder, and arginine residues of theta-defensins contributed substantially to these protective effects. Surface plasmon resonance studies showed that retrocyclins bound the lethal factor rapidly and with high affinity. Retrocyclin-mediated inhibition of the enzymatic activity of lethal factor increased substantially if the enzyme and peptide were preincubated before substrate was added. The temporal discrepancy between the rapidity of binding and the slowly progressive extent of lethal factor inhibition suggest that post-binding events, perhaps in situ oligomerization, contribute to the antitoxic properties of retrocyclins. Overall, these findings suggest that theta-defensins provide molecular templates that could be used to create novel agents effective against B. anthracis and its toxins.
Collapse
Affiliation(s)
- Wei Wang
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California 90095
| | - Chandrika Mulakala
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
| | - Sabrina C. Ward
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California 90095
| | - Grace Jung
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California 90095
| | - Hai Luong
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California 90095
| | - Duy Pham
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California 90095
| | - Alan J. Waring
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California 90095
| | - Yiannis Kaznessis
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
| | - Wuyuan Lu
- Institute for Human Virology, Biotechnology Institute, University of Maryland, Baltimore, Maryland 21201
| | - Kenneth A. Bradley
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
| | - Robert I. Lehrer
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California 90095
| |
Collapse
|
21
|
Abstract
Endogenous antimicrobial peptides (AMPs) mediate innate immunity in every species in which they have been investigated. Cathelicidins and defensins are the two major AMP families in mammals, and they are abundant components of phagocytic leukocytes and are released by epithelial cells at mucosal surfaces. In the small intestine, Paneth cells at the base of the crypts of Lieberkühn secrete alpha-defensins and additional AMPs at high levels in response to cholinergic stimulation and when exposed to bacterial antigens. Paneth cell alpha-defensins evolved to function in the extracellular environment with broad-spectrum antimicrobial activities, and they constitute the majority of bactericidal peptide activity secreted by Paneth cells. The release of Paneth cell products into the crypt lumen is inferred to protect mitotically active crypt cells from colonization by potential pathogens and confers protection from enteric infection, as is evident from the immunity of mice expressing a human Paneth cell alpha-defensin transgene to oral infection by Salmonella enterica serovar Typhimurium. alpha-Defensins in Paneth cell secretions also may interact with bacteria in the intestinal lumen above the crypt-villus boundary and influence the composition of the enteric microbial flora. Mutations that cause defects in the activation, secretion, dissolution, and bactericidal effects of Paneth cell AMPs may alter crypt innate immunity and contribute to immunopathology.
Collapse
Affiliation(s)
- A J Ouellette
- Department of Pathology & Laboratory Medicine, School of Medicine, College of Health Sciences, University of California, Irvine 92697-4800, USA.
| |
Collapse
|
22
|
Mineshiba J, Myokai F, Mineshiba F, Matsuura K, Nishimura F, Takashiba S. Transcriptional regulation of beta-defensin-2 by lipopolysaccharide in cultured human cervical carcinoma (HeLa) cells. ACTA ACUST UNITED AC 2005; 45:37-44. [PMID: 15985221 DOI: 10.1016/j.femsim.2005.01.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Revised: 01/12/2005] [Accepted: 01/17/2005] [Indexed: 11/18/2022]
Abstract
Human beta-defensin-2 (hBD-2) is an antimicrobial peptide with a broad spectrum of antimicrobial activity against bacteria, yeast and fungi. Here, we analyzed the transcriptional regulation of hBD-2 in cultured human cervical carcinoma (HeLa) cells with or without lipopolysaccharide (LPS). DNA from position -329 to -39 in the hBD-2 promoter region contained the consensus binding sites for transcription factors, one site for nuclear factor for IL-6 expression (NF-IL6) and two sites for nuclear factor-(kappa)B (NF-(kappa)B). Reporter gene assays for promoter activity revealed that the region had the highest level of responsiveness to LPS. Furthermore, mutations in both of the NF-(kappa)B binding sites caused a significant reduction of the responsiveness to LPS, whereas mutation in the NF-IL6 binding site resulted in an elevation of the basal promoter activity. Electrophoretic mobility shift assays demonstrated that LPS induced the binding of HeLa nuclear factors to 60-bp probe containing the two NF-(kappa)B binding sites, suggesting that the sites were essential for the binding. Our results suggest that the two NF-(kappa)B binding sites contribute to LPS-mediated hBD-2 transcription while the NF-IL6 binding site represses LPS-independent hBD-2 transcription in the HeLa cells.
Collapse
Affiliation(s)
- Junji Mineshiba
- Department of Pathophysiology - Periodontal Science, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8525, Japan
| | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Abstract
Defensins are endogenous, cysteine-rich antimicrobial peptides that contribute to host defence against bacterial, fungal and viral infections. There are three subfamilies of defensins in primates: alpha-defensins are most common in neutrophils and Paneth cells of the small intestine; beta-defensins protect the skin and the mucous membranes of the respiratory, genitourinary and gastrointestinal tracts; and theta-defensins, which are expressed only in Old World monkeys, lesser apes and orangutans, are lectins with broad-spectrum antiviral efficacy. Here, their discovery and recent advances in understanding their properties and functions are described.
Collapse
Affiliation(s)
- Robert I Lehrer
- Department of Medicine and Molecular Biology Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA.
| |
Collapse
|
25
|
Nguyen TX, Cole AM, Lehrer RI. Evolution of primate theta-defensins: a serpentine path to a sweet tooth. Peptides 2003; 24:1647-54. [PMID: 15019196 DOI: 10.1016/j.peptides.2003.07.023] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2003] [Accepted: 07/04/2003] [Indexed: 12/13/2022]
Abstract
Retrocyclins (ancestral human theta-defensins) are cyclic antimicrobial octadecapeptides that interfere with viral uptake and protect human cells from infection by T- and M-tropic strains of HIV-1 in vitro. As are other theta-defensins, retrocyclins are lectins that bind gp120, CD4, and galactosylceramide-all of which are implicated in HIV-1 uptake. Although theta-defensin mRNA transcripts are present in human bone marrow, spleen, thymus, testis, and skeletal muscle, a premature stop codon aborts their translation. We found six theta-defensin (DEFT) genes in the human genome; five on chromosome 8p23 and one on chromosome 1. All six of these pseudogenes, as well as their homologues in chimpanzees and gorillas, contained the same premature stop codon mutation. Whereas we found intact DEFT genes in DNA from several Old World Monkeys, Hylobates syndactylus (a lesser ape) and orangutans, no homologues were present in DNA from six New World Monkeys and five prosimians. We conclude that DEFT genes and theta-defensins arose in Old World Monkeys by mutation of a pre-existing alpha-defensin gene. Although intact DEFT genes survive in some nonhuman primates, our hominid ancestors lost their ability to produce theta-defensins after the orangutan and hominid lineages diverged. It is possible (but may be difficult to prove) that this mutation rendered our species more susceptible to infection by HIV-1.
Collapse
Affiliation(s)
- Tung X Nguyen
- Department of Medicine, UCLA Center for the Health Sciences, Room CHS 37-062, 10833 LeConte Avenue, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
26
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2003. [PMCID: PMC2448450 DOI: 10.1002/cfg.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|