1
|
Dickerson AG, Joseph CA, Kashfi K. Current Approaches and Innovations in Managing Preeclampsia: Highlighting Maternal Health Disparities. J Clin Med 2025; 14:1190. [PMID: 40004721 PMCID: PMC11856135 DOI: 10.3390/jcm14041190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Preeclampsia (PE) is a major cause of maternal mortality and morbidity, affecting 3-6% of pregnancies worldwide and ranking among the top six causes of maternal deaths in the U.S. PE typically develops after 20 weeks of gestation and is characterized by new-onset hypertension and/or end-organ dysfunction, with or without proteinuria. Current management strategies for PE emphasize early diagnosis, blood pressure control, and timely delivery. For prevention, low-dose aspirin (81 mg/day) is recommended for high-risk women between 12 and 28 weeks of gestation. Magnesium sulfate is also advised to prevent seizures in preeclamptic women at risk of eclampsia. Emerging management approaches include antiangiogenic therapies, hypoxia-inducible factor suppression, statins, and supplementation with CoQ10, nitric oxide, and hydrogen sulfide donors. Black women are at particularly high risk for PE, potentially due to higher rates of hypertension and cholesterol, compounded by healthcare disparities and possible genetic factors, such as the APOL1 gene. This review explores current and emerging strategies for managing PE and addresses the underlying causes of health disparities, offering potential solutions to improve outcomes.
Collapse
Affiliation(s)
- Alexis G. Dickerson
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA; (A.G.D.); (C.A.J.)
| | - Christiana A. Joseph
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA; (A.G.D.); (C.A.J.)
- Department of Chemistry and Physics, State University of New York at Old Westbury, Old Westbury, NY 11568, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA; (A.G.D.); (C.A.J.)
- Department of Chemistry and Physics, State University of New York at Old Westbury, Old Westbury, NY 11568, USA
- Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10091, USA
| |
Collapse
|
2
|
Guo X, Yao Y, Wang T, Wu J, Jiang R. The impact of hyperandrogenemia on pregnancy complications and outcomes in patients with PCOS: a systematic review and meta-analysis. Hypertens Pregnancy 2024; 43:2379389. [PMID: 39004840 DOI: 10.1080/10641955.2024.2379389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/10/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a metabolic and reproductive disorder. Current research findings present conflicting views on the effects of different PCOS phenotypes on outcomes in pregnancy and for newborns. METHODS This research study followed the guidelines of the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA). A thorough search of literature was carried out using the Cochrane Menstrual Disorders and Subfertility Group trials register, Web of Science, and EMBASE databases from their start to December 2023. The search focused on studies examining the links between hyperandrogenic and non-hyperandrogenic PCOS phenotypes and risks in pregnancy and neonatology. Odds ratios (ORs) and 95% confidence intervals (CIs) were computed using either a fixed-effects or random-effects model. RESULTS Our analysis incorporated 10 research studies. Expectant mothers with a hyperandrogenic PCOS subtype had increased ORs for gestational diabetes mellitus (GDM) and preeclampsia (PE) compared to those with a non-hyperandrogenic PCOS subtype, with respective values of 2.14 (95% CI, 1.18-3.88, I2 = 0%) and 2.04 (95% CI, 1.02-4.08, I2 = 53%). Nevertheless, no notable differences were detected in ORs for outcomes like preterm birth, live birth, miscarriage, cesarean delivery, pregnancy-induced hypertension, small for gestational age babies, large for gestational age newborns, and neonatal intensive care unit admissions between pregnant women with hyperandrogenic PCOS phenotype and those without. CONCLUSIONS This meta-analysis highlights that the presence of hyperandrogenism heightens the risks of GDM and PE within the PCOS population. Healthcare providers ought to be aware of this connection for improved patient management.
Collapse
Affiliation(s)
- Xiaohan Guo
- Department of Obstetrics and Gynecology, Women's Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Yingsha Yao
- Department of Obstetrics and Gynecology, Women's Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Ting Wang
- Department of Obstetrics and Gynecology, Women's Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Juanhong Wu
- Department of Obstetrics and Gynecology, Women's Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Ruoan Jiang
- Department of Obstetrics and Gynecology, Women's Hospital Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
- Traditional Chinese Medicine for Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Couture C, Brien ME, Rechtzigel J, Ling S, Ledezma-Soto C, Duran Bishop G, Boufaied I, Dal Soglio D, Rey E, McGraw S, Graham CH, Girard S. Predictive biomarkers and initial analysis of maternal immune alterations in postpartum preeclampsia reveal an immune-driven pathology. Front Immunol 2024; 15:1380629. [PMID: 38745664 PMCID: PMC11091301 DOI: 10.3389/fimmu.2024.1380629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/13/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Postpartum preeclampsia (PPPE) is an under-diagnosed condition, developing within 48 hours to 6 weeks following an uncomplicated pregnancy. The etiology of PPPE is still unknown, leaving patients vulnerable and making the identification and treatment of patients requiring postpartum care an unmet need. We aimed to understand the immune contribution to PPPE at the time of diagnosis, as well as uncover the predictive potential of perinatal biomarkers for the early postnatal identification of high-risk patients. Methods Placentas were collected at delivery from uncomplicated pregnancies (CTL) and PPPE patients for immunohistochemistry analysis. In this initial study, blood samples in PPPE patients were collected at the time of PPPE diagnosis (48h-25 days postpartum; mean 7.4 days) and compared to CTL blood samples taken 24h after delivery. Single-cell transcriptomics, flow cytometry, intracellular cytokine staining, and the circulating levels of inflammatory mediators were evaluated in the blood. Results Placental CD163+ cells and 1st trimester blood pressures can be valuable non-invasive and predictive biomarkers of PPPE with strong clinical application prospects. Furthermore, changes in immune cell populations, as well as cytokine production by CD14+, CD4+, and CD8+ cells, suggested a dampened response with an exhausted phenotype including decreased IL1β, IL12, and IFNγ as well as elevated IL10. Discussion Understanding maternal immune changes at the time of diagnosis and prenatally within the placenta in our sizable cohort will serve as groundwork for pre-clinical and clinical research, as well as guiding clinical practice for example in the development of immune-targeted therapies, and early postnatal identification of patients who would benefit from more thorough follow-ups and risk education in the weeks following an uncomplicated pregnancy.
Collapse
Affiliation(s)
- Camille Couture
- Department of Obstetrics and Gynecology; Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
- Sainte-Justine Hospital Research Center, Montreal, QC, Canada
| | - Marie-Eve Brien
- Sainte-Justine Hospital Research Center, Montreal, QC, Canada
| | - Jade Rechtzigel
- Department of Obstetrics and Gynecology; Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - SuYun Ling
- Department of Obstetrics and Gynecology; Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Cecilia Ledezma-Soto
- Department of Obstetrics and Gynecology; Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | | | - Ines Boufaied
- Sainte-Justine Hospital Research Center, Montreal, QC, Canada
| | - Dorothée Dal Soglio
- Department of Pathology and Cellular Biology, Université de Montréal, Montreal, QC, Canada
| | - Evelyne Rey
- Sainte-Justine Hospital Research Center, Montreal, QC, Canada
- Department of Obstetrics and Gynecology, Université de Montréal, Montreal, QC, Canada
| | - Serge McGraw
- Sainte-Justine Hospital Research Center, Montreal, QC, Canada
- Department of Obstetrics and Gynecology, Université de Montréal, Montreal, QC, Canada
| | - Charles H. Graham
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Sylvie Girard
- Department of Obstetrics and Gynecology; Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
- Department of Obstetrics and Gynecology, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
4
|
Kozlosky D, Barrett E, Aleksunes LM. Regulation of Placental Efflux Transporters during Pregnancy Complications. Drug Metab Dispos 2022; 50:1364-1375. [PMID: 34992073 PMCID: PMC9513846 DOI: 10.1124/dmd.121.000449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 12/29/2021] [Indexed: 12/16/2022] Open
Abstract
The placenta is essential for regulating the exchange of solutes between the maternal and fetal circulations. As a result, the placenta offers support and protection to the developing fetus by delivering crucial nutrients and removing waste and xenobiotics. ATP-binding cassette transporters, including multidrug resistance protein 1, multidrug resistance-associated proteins, and breast cancer resistance protein, remove chemicals through active efflux and are considered the primary transporters within the placental barrier. Altered transporter expression at the barrier could result in fetal exposure to chemicals and/or accumulation of xenobiotics within trophoblasts. Emerging data demonstrate that expression of these transporters is changed in women with pregnancy complications, suggesting potentially compromised integrity of placental barrier function. The purpose of this review is to summarize the regulation of placental efflux transporters during medical complications of pregnancy, including 1) placental inflammation/infection and chorioamnionitis, 2) hypertensive disorders of pregnancy, 3) metabolic disorders including gestational diabetes and obesity, and 4) fetal growth restriction/altered fetal size for gestational age. For each disorder, we review the basic pathophysiology and consider impacts on the expression and function of placental efflux transporters. Mechanisms of transporter dysregulation and implications for fetal drug and toxicant exposure are discussed. Understanding how transporters are up- or downregulated during pathology is important in assessing possible exposures of the fetus to potentially harmful chemicals in the environment as well as the disposition of novel therapeutics intended to treat placental and fetal diseases. SIGNIFICANCE STATEMENT: Diseases of pregnancy are associated with reduced expression of placental barrier transporters that may impact fetal pharmacotherapy and exposure to dietary and environmental toxicants.
Collapse
Affiliation(s)
- Danielle Kozlosky
- Joint Graduate Program in Toxicology (D.K.) and Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (D.K., L.M.A.), Rutgers University, Piscataway, New Jersey; Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (E.B., L.M.A.); Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey (E.B.); and Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey (L.M.A.)
| | - Emily Barrett
- Joint Graduate Program in Toxicology (D.K.) and Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (D.K., L.M.A.), Rutgers University, Piscataway, New Jersey; Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (E.B., L.M.A.); Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey (E.B.); and Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey (L.M.A.)
| | - Lauren M Aleksunes
- Joint Graduate Program in Toxicology (D.K.) and Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (D.K., L.M.A.), Rutgers University, Piscataway, New Jersey; Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (E.B., L.M.A.); Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey (E.B.); and Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey (L.M.A.)
| |
Collapse
|
5
|
Zafonte RD, Wang L, Arbelaez CA, Dennison R, Teng YD. Medical Gas Therapy for Tissue, Organ, and CNS Protection: A Systematic Review of Effects, Mechanisms, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104136. [PMID: 35243825 PMCID: PMC9069381 DOI: 10.1002/advs.202104136] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/10/2022] [Indexed: 05/13/2023]
Abstract
Gaseous molecules have been increasingly explored for therapeutic development. Here, following an analytical background introduction, a systematic review of medical gas research is presented, focusing on tissue protections, mechanisms, data tangibility, and translational challenges. The pharmacological efficacies of carbon monoxide (CO) and xenon (Xe) are further examined with emphasis on intracellular messengers associated with cytoprotection and functional improvement for the CNS, heart, retina, liver, kidneys, lungs, etc. Overall, the outcome supports the hypothesis that readily deliverable "biological gas" (CO, H2 , H2 S, NO, O2 , O3 , and N2 O) or "noble gas" (He, Ar, and Xe) treatment may preserve cells against common pathologies by regulating oxidative, inflammatory, apoptotic, survival, and/or repair processes. Specifically, CO, in safe dosages, elicits neurorestoration via igniting sGC/cGMP/MAPK signaling and crosstalk between HO-CO, HIF-1α/VEGF, and NOS pathways. Xe rescues neurons through NMDA antagonism and PI3K/Akt/HIF-1α/ERK activation. Primary findings also reveal that the need to utilize cutting-edge molecular and genetic tactics to validate mechanistic targets and optimize outcome consistency remains urgent; the number of neurotherapeutic investigations is limited, without published results from large in vivo models. Lastly, the broad-spectrum, concurrent multimodal homeostatic actions of medical gases may represent a novel pharmaceutical approach to treating critical organ failure and neurotrauma.
Collapse
Affiliation(s)
- Ross D. Zafonte
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Neurotrauma Recovery Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
- Spaulding Research InstituteSpaulding Rehabilitation Hospital NetworkBostonMA02129USA
| | - Lei Wang
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Christian A. Arbelaez
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Rachel Dennison
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Yang D. Teng
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Neurotrauma Recovery Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
- Spaulding Research InstituteSpaulding Rehabilitation Hospital NetworkBostonMA02129USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| |
Collapse
|
6
|
Meyer N, Langwisch S, Scharm M, Zenclussen AC. Using ultrasound to define the time point of intrauterine growth retardation in a mouse model of heme oxygenase-1 deficiency†. Biol Reprod 2021; 103:126-134. [PMID: 32342097 DOI: 10.1093/biolre/ioaa057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/09/2019] [Accepted: 04/27/2020] [Indexed: 12/17/2022] Open
Abstract
The enzyme heme oxygenase-1 (HO-1), encoded by the HMOX1 gene, mediates heme catabolism by cleaving free heme. We have previously revealed the importance of HO-1 in pregnancy. Here, we determined the impact of maternal or paternal HO-1 deficiency on fetal growth and placental parameters throughout gestation. We mated Hmox1-sufficient (WT), partial (HET)-, or total (KO)-deficient BALB/c female mice with Hmox1-WT or -KO BALB/c males and performed ultrasound analysis to monitor placental and fetal growth. Doppler measurements were used to determine maternal blood flow parameters. Offspring weights and feto-placental indices (FPI) were also determined. We found a significantly increased number of underdeveloped fetuses at gd10 in HET females that were mated with WT males compared with WT × WT pairings. At the same gestational age, underdeveloped placentas could be detected in HET females mated with KO males. Many fetuses from the KO × KO combination died in utero between gd12 and gd14. At gd14, abnormal placental parameters were found in surviving fetuses, which had significant reduced weights. Moreover, only 3.11% female and 5.33% male KO pups resulted from 10 HET × HET breeding pairs over 1 year. Our results show that HO-1 from both maternal and paternal origins is important for proper placental and fetal growth. Placental growth restriction and occurrence of abortions in mice that were partially or totally deficient in HO-1 were recorded in vivo from gd10 onwards. Future studies will focus on elucidating the cellular and molecular mechanisms behind these observations.
Collapse
Affiliation(s)
- Nicole Meyer
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Stefanie Langwisch
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Markus Scharm
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Ana Claudia Zenclussen
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
7
|
Peoc'h K, Puy V, Fournier T. Haem oxygenases play a pivotal role in placental physiology and pathology. Hum Reprod Update 2020; 26:634-649. [PMID: 32347305 DOI: 10.1093/humupd/dmaa014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/20/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Haem oxygenases (HO) catabolise haem, which is the prosthetic group of numerous haemoproteins. Thus, multiple primary cellular pathways and functions rely on haem availability. HO exists in two isoforms, both expressed in the placenta, namely HO-1 and HO-2, the first being inducible. Haem oxygenases, particularly HO-1, have garnered specific interest in the field of physiological and pathological placental function. These enzymes mediate haem degradation by cleaving the alpha methene bridge to produce biliverdin, which is subsequently converted to bilirubin, carbon monoxide and iron. HO-1 has anti-inflammatory and antioxidant activities. SEARCH METHODS An initial literature analysis was performed using PubMed on 3 October 2018 using key terms such as 'haem oxygenase and pregnancy', 'haem oxygenase and placenta', 'HO-1 and pregnancy', 'HO-1 and placenta', 'HO and placenta', 'HO and pregnancy', 'genetic variant and HO', 'CO and pregnancy', 'CO and placenta', 'Bilirubin and pregnancy', 'Iron and pregnancy' and 'PPAR and Haem', selecting consensus conferences, recommendations, meta-analyses, practical recommendations and reviews. A second literature analysis was performed, including notable miscarriages, foetal loss and diabetes mellitus, on 20 December 2019. The three authors studied the publications independently to decipher whether they should be included in the manuscript. OBJECTIVE AND RATIONALE This review aimed to summarise current pieces of knowledge of haem oxygenase location, function and regulation in the placenta, either in healthy pregnancies or those associated with miscarriages and foetal loss, pre-eclampsia, foetal growth restriction and diabetes mellitus. OUTCOMES HO-1 exerts some protective effects on the placentation, probably by a combination of factors, including its interrelation with the PGC-1α/PPAR pathway and the sFlt1/PlGF balance, and through its primary metabolites, notably carbon monoxide and bilirubin. Its protective role has been highlighted in numerous pregnancy conditions, including pre-eclampsia, foetal growth restriction, gestational diabetes mellitus and miscarriages. WIDER IMPLICATIONS HO-1 is a crucial enzyme in physiological and pathological placentation. This protective enzyme is currently considered a potential therapeutic target in various pregnancy diseases.
Collapse
Affiliation(s)
- Katell Peoc'h
- Université de Paris, Laboratory of Excellence GR-Ex, Centre de Recherche sur l'Inflammation, INSERM U1149, UFR de Médecine Bichat, 75018 Paris, France
- Assistance Publique des Hôpitaux de Paris, APHP Nord, Paris, France
| | - Vincent Puy
- Reproductive Biology Unit CECOS, Paris-Saclay University, Antoine Béclère Hospital, APHP, Clamart 92140, France
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université de Paris, Université Paris-Saclay, CEA, F-92265 Fontenay-aux-Roses, France
| | - Thierry Fournier
- Université de Paris, INSERM, UMR-S 1139, 3PHM, F-75006, Paris, France
- Fondation PremUp, F-75014, Paris, France
| |
Collapse
|
8
|
Inoue R, Irie Y, Akagi R. Role of heme oxygenase-1 in human placenta on iron supply to fetus. Placenta 2020; 103:53-58. [PMID: 33075721 DOI: 10.1016/j.placenta.2020.09.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 09/10/2020] [Accepted: 09/28/2020] [Indexed: 01/18/2023]
Abstract
INTRODUCTION To date, details on how iron is supplied from the mother to the fetus through the placenta have remained unclear. Recently, increasing evidence has shown that heme oxygenase (HO)-1, which is an inducible isoform of the rate-limiting enzyme in the heme degradation pathway, may be involved in the effective reutilization of iron. In this study, we examined the distribution and gene expression of HO-1 in the villous tissue of human placenta at various periods of pregnancy. METHODS Using the placenta of 38 samples for which consent was obtained, chronological changes in the localization of HO-1 protein were examined by histological examination. RT-PCR was also performed to examine the expression of HO-1, transferrin receptor-1, and ferroportin 1. Ferric iron in the tissues was analyzed by Prussian blue staining. RESULTS Immunohistochemical studies showed that HO-1 protein was exclusively expressed in trophoblastic cells throughout gestation. In the miscarriage placenta in the first trimester, ho-1 mRNA levels were significantly higher than normal. Placenta with fetal death (miscarriage) in the first and second trimester indicate significantly higher ratio of ho-1 gene for iron production to the fpn-1 gene for iron excretion than normal. These suggest that the role of HO-1 with various physiological functions is changing throughout pregnancy. DISCUSSION These findings suggest that HO-1 in placenta plays an important role in iron supplying system in the second trimester to support fetal development.
Collapse
Affiliation(s)
- Rikako Inoue
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja-shi, Okayama, 719-1197, Japan.
| | - Yasuyuki Irie
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja-shi, Okayama, 719-1197, Japan.
| | - Reiko Akagi
- Department of Pharmacy, Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima-city, 731-0153, Japan.
| |
Collapse
|
9
|
Verheijen N, Suttorp CM, van Rheden REM, Regan RF, Helmich MPAC, Kuijpers-Jagtman AM, Wagener FADTG. CXCL12-CXCR4 Interplay Facilitates Palatal Osteogenesis in Mice. Front Cell Dev Biol 2020; 8:771. [PMID: 32974338 PMCID: PMC7471603 DOI: 10.3389/fcell.2020.00771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
Cranial neural crest cells (CNCCs), identified by expression of transcription factor Sox9, migrate to the first branchial arch and undergo proliferation and differentiation to form the cartilage and bone structures of the orofacial region, including the palatal bone. Sox9 promotes osteogenic differentiation and stimulates CXCL12-CXCR4 chemokine-receptor signaling, which elevates alkaline phosphatase (ALP)-activity in osteoblasts to initiate bone mineralization. Disintegration of the midline epithelial seam (MES) is crucial for palatal fusion. Since we earlier demonstrated chemokine-receptor mediated signaling by the MES, we hypothesized that chemokine CXCL12 is expressed by the disintegrating MES to promote the formation of an osteogenic center by CXCR4-positive osteoblasts. Disturbed migration of CNCCs by excess oxidative and inflammatory stress is associated with increased risk of cleft lip and palate (CLP). The cytoprotective heme oxygenase (HO) enzymes are powerful guardians harnessing injurious oxidative and inflammatory stressors and enhances osteogenic ALP-activity. By contrast, abrogation of HO-1 or HO-2 expression promotes pregnancy pathologies. We postulate that Sox9, CXCR4, and HO-1 are expressed in the ALP-activity positive osteogenic regions within the CNCCs-derived palatal mesenchyme. To investigate these hypotheses, we studied expression of Sox9, CXCL12, CXCR4, and HO-1 in relation to palatal osteogenesis between E15 and E16 using (immuno)histochemical staining of coronal palatal sections in wild-type (wt) mice. In addition, the effects of abrogated HO-2 expression in HO-2 KO mice and inhibited HO-1 and HO-2 activity by administrating HO-enzyme activity inhibitor SnMP at E11 in wt mice were investigated at E15 or E16 following palatal fusion. Overexpression of Sox9, CXCL12, CXCR4, and HO-1 was detected in the ALP-activity positive osteogenic regions within the palatal mesenchyme. Overexpression of Sox9 and CXCL12 by the disintegrating MES was detected. Neither palatal fusion nor MES disintegration seemed affected by either HO-2 abrogation or inhibition of HO-activity. Sox9 progenitors seem important to maintain the CXCR4-positive osteoblast pool to drive osteogenesis. Sox9 expression may facilitate MES disintegration and palatal fusion by promoting epithelial-to-mesenchymal transformation (EMT). CXCL12 expression by the MES and the palatal mesenchyme may promote osteogenic differentiation to create osteogenic centers. This study provides novel evidence that CXCL12-CXCR4 interplay facilitates palatal osteogenesis and palatal fusion in mice.
Collapse
Affiliation(s)
- Nanne Verheijen
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Christiaan M Suttorp
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - René E M van Rheden
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Raymond F Regan
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Maria P A C Helmich
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Anne Marie Kuijpers-Jagtman
- Department of Orthodontics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland.,Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Frank A D T G Wagener
- Department of Dentistry - Orthodontics and Craniofacial Biology, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
10
|
Suttorp CM, van Rheden REM, van Dijk NWM, Helmich MPAC, Kuijpers-Jagtman AM, Wagener FADTG. Heme Oxygenase Protects against Placental Vascular Inflammation and Abortion by the Alarmin Heme in Mice. Int J Mol Sci 2020; 21:ijms21155385. [PMID: 32751152 PMCID: PMC7432719 DOI: 10.3390/ijms21155385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022] Open
Abstract
Both infectious as non-infectious inflammation can cause placental dysfunction and pregnancy complications. During the first trimester of human gestation, when palatogenesis takes place, intrauterine hematoma and hemorrhage are common phenomena, causing the release of large amounts of heme, a well-known alarmin. We postulated that exposure of pregnant mice to heme during palatogenesis would initiate oxidative and inflammatory stress, leading to pathological pregnancy, increasing the incidence of palatal clefting and abortion. Both heme oxygenase isoforms (HO-1 and HO-2) break down heme, thereby generating anti-oxidative and -inflammatory products. HO may thus counteract these heme-induced injurious stresses. To test this hypothesis, we administered heme to pregnant CD1 outbred mice at Day E12 by intraperitoneal injection in increasing doses: 30, 75 or 150 μmol/kg body weight (30H, 75H or 150H) in the presence or absence of HO-activity inhibitor SnMP from Day E11. Exposure to heme resulted in a dose-dependent increase in abortion. At 75H half of the fetuses where resorbed, while at 150H all fetuses were aborted. HO-activity protected against heme-induced abortion since inhibition of HO-activity aggravated heme-induced detrimental effects. The fetuses surviving heme administration demonstrated normal palatal fusion. Immunostainings at Day E16 demonstrated higher numbers of ICAM-1 positive blood vessels, macrophages and HO-1 positive cells in placenta after administration of 75H or SnMP + 30H. Summarizing, heme acts as an endogenous “alarmin” during pregnancy in a dose-dependent fashion, while HO-activity protects against heme-induced placental vascular inflammation and abortion.
Collapse
Affiliation(s)
- Christiaan M. Suttorp
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands; (C.M.S.); (R.E.M.v.R.); (N.W.M.v.D.); (M.P.A.C.H.)
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - René E. M. van Rheden
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands; (C.M.S.); (R.E.M.v.R.); (N.W.M.v.D.); (M.P.A.C.H.)
| | - Natasja W. M. van Dijk
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands; (C.M.S.); (R.E.M.v.R.); (N.W.M.v.D.); (M.P.A.C.H.)
| | - Maria P. A. C. Helmich
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands; (C.M.S.); (R.E.M.v.R.); (N.W.M.v.D.); (M.P.A.C.H.)
| | - Anne Marie Kuijpers-Jagtman
- Department of Orthodontics, University of Groningen and University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
- Department of Orthodontics and Dentofacial Orthopedics, University of Bern, CH-3010 Bern, Switzerland
- Faculty of Dentistry, Universitas Indonesia, Jakarta ID-10430, Indonesia
| | - Frank A. D. T. G. Wagener
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands; (C.M.S.); (R.E.M.v.R.); (N.W.M.v.D.); (M.P.A.C.H.)
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Correspondence: ; Tel.: +31-24-36-18824
| |
Collapse
|
11
|
Rengarajan A, Mauro AK, Boeldt DS. Maternal disease and gasotransmitters. Nitric Oxide 2020; 96:1-12. [PMID: 31911124 DOI: 10.1016/j.niox.2020.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/20/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
Abstract
The three known gasotransmitters, nitric oxide, carbon monoxide, and hydrogen sulfide are involved in key processes throughout pregnancy. Gasotransmitters are known to impact on smooth muscle tone, regulation of immune responses, and oxidative state of cells and their component molecules. Failure of the systems that tightly regulate gasotransmitter production and downstream effects are thought to contribute to common maternal diseases such as preeclampsia and preterm birth. Normal pregnancy-related changes in uterine blood flow depend heavily on gasotransmitter signaling. In preeclampsia, endothelial dysfunction is a major contributor to aberrant gasotransmitter signaling, resulting in hypertension after 20 weeks gestation. Maintenance of pregnancy to term also requires gasotransmitter-mediated uterine quiescence. As the appropriate signals for parturition occur, regulation of gasotransmitter signaling must work in concert with those endocrine signals in order for appropriate labor and delivery timing. Like preeclampsia, preterm birth may have origins in abnormal gasotransmitter signaling. We review the evidence for the involvement of gasotransmitters in preeclampsia and preterm birth, as well as mechanistic and molecular signaling targets.
Collapse
Affiliation(s)
- Aishwarya Rengarajan
- Perinatal Research Laboratories, Dept Ob/ Gyn, UW - Madison, Madison, WI, 53715, USA
| | - Amanda K Mauro
- Perinatal Research Laboratories, Dept Ob/ Gyn, UW - Madison, Madison, WI, 53715, USA
| | - Derek S Boeldt
- Perinatal Research Laboratories, Dept Ob/ Gyn, UW - Madison, Madison, WI, 53715, USA.
| |
Collapse
|
12
|
Oltra L, Reverte V, Garcés B, Li Volti G, Moreno J, Salazar F, Llinás M. Trophoblast-induced spiral artery remodelling and uteroplacental haemodynamics in pregnant rats with increased blood pressure induced by heme oxygenase inhibition. Placenta 2020; 89:91-98. [DOI: 10.1016/j.placenta.2019.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 11/29/2022]
|
13
|
Gerasimova EM, Fedotov SA, Kachkin DV, Vashukova ES, Glotov AS, Chernoff YO, Rubel AA. Protein Misfolding during Pregnancy: New Approaches to Preeclampsia Diagnostics. Int J Mol Sci 2019; 20:E6183. [PMID: 31817906 PMCID: PMC6941028 DOI: 10.3390/ijms20246183] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/22/2022] Open
Abstract
Preeclampsia (PE) is a multisystem heterogeneous complication of pregnancy remaining a leading cause of maternal and perinatal morbidity and mortality over the world. PE has a large spectrum of clinical features and symptoms, which make diagnosis challenging. Despite a long period of studying, PE etiology is still unclear and there are no reliable rapid tests for early diagnosis of this disease. During the last decade, it was shown that proteins misfolding and aggregation are associated with PE. Several proteins, including amyloid beta peptide, transthyretin, alpha-1 antitrypsin, albumin, IgG k-free light chains, and ceruloplasmin are dysregulated in PE, resulting in toxic deposition of amyloid-like aggregates in the placenta and body fluids. It is also possible that aggregated proteins induce defective trophoblast invasion, placental ischemia, ER stress, and promote PE manifestation. The fact that protein aggregation is an emerging biomarker of PE provides an opportunity to develop new diagnostic approaches based on amyloids special features, such as Congo red (CR) staining and thioflavin T (ThT) enhanced fluorescence.
Collapse
Affiliation(s)
- Elizaveta M. Gerasimova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.M.G.); (S.A.F.); (Y.O.C.)
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Sergey A. Fedotov
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.M.G.); (S.A.F.); (Y.O.C.)
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Daniel V. Kachkin
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.M.G.); (S.A.F.); (Y.O.C.)
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Elena S. Vashukova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (E.S.V.); (A.S.G.)
| | - Andrey S. Glotov
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia; (E.S.V.); (A.S.G.)
- Laboratory of Biobanking and Genomic Medicine, Institute of Translation Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Yury O. Chernoff
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.M.G.); (S.A.F.); (Y.O.C.)
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Aleksandr A. Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.M.G.); (S.A.F.); (Y.O.C.)
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
14
|
Heme Oxygenase-2 (HO-2) as a therapeutic target: Activators and inhibitors. Eur J Med Chem 2019; 183:111703. [PMID: 31550661 DOI: 10.1016/j.ejmech.2019.111703] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 12/24/2022]
Abstract
Heme oxygenase (HO) enzymes are involved in heme catabolism and several physiological functions. Among the different HO isoforms, HO-2 stands out for its neuroprotective properties and modulatory activity in male reproduction. However, unlike the HO-1 ligands, the potential therapeutic applications of HO-2 inhibitors/activators have not been extensively explored yet. Moreover, the physiological role of HO-2 is still unclear, mostly due to the lack of highly selective HO-2 chemical probes. To boost the interest on this intriguing target, the present review updates the knowledge on the structure-activity relationships of HO-2 inhibitors and activators, as well as their potential therapeutic applications. To the best of our knowledge, among HO-2 inhibitors, clemizole derivatives are the most selective HO-2 inhibitors reported so far (IC50 HO-1 >100 μM, IC50 HO-2 = 3.4 μM), while the HO-2 nonselective inhibitors described herein possess IC50 HO-2 values ≤ 10 μM. Furthermore, the development of HO-2 activators, such as menadione analogues, helped to understand the critical moieties required for HO-2 activation. Recent advances in the potential therapeutic applications of HO-2 inhibitors/activators cover the fields of neurodegenerative, cardiovascular, inflammatory, and reproductive diseases further stimulating the interest towards this target.
Collapse
|
15
|
Preeclampsia: A review of the pathogenesis and possible management strategies based on its pathophysiological derangements. Taiwan J Obstet Gynecol 2018; 56:593-598. [PMID: 29037542 DOI: 10.1016/j.tjog.2017.08.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2017] [Indexed: 11/22/2022] Open
Abstract
This review is divided into three parts. The first part briefly describes the pathogenesis of preeclampsia. This is followed by reviewing previously reported management strategies of the disease based on its pathophysiological derangements. Finally, the author defines the safe and acceptable methods/medications that may be used to 'prevent' preeclampsia (in high risk patients) and those that may be used to 'treat' preeclampsia (meant to prolong the pregnancy in patients with established preeclampsia). The review concludes that multi-center trials are required to include multiple drugs in the same management protocol.
Collapse
|
16
|
Abstract
Preeclampsia (PE) is one of the leading causes of maternal morbidity and mortality worldwide. This disease is believed to occur in two stages with placental dysfunction in early pregnancy leading to maternal clinical findings after 20 weeks of gestation, as consequence of systemic inflammation, oxidative stress, and endothelial dysfunction. Much evidence suggests that PE women display an overshooting inflammatory response throughout pregnancy due to an unbalanced regulation of innate and adaptive immune responses. Recently, it has been suggested that dysregulation of endogenous protective pathways might be associated with PE etiopathogenesis. Resolution of inflammation is an active process coordinated by mediators from diverse nature that regulate key cellular events to restore tissue homeostasis. Inadequate or insufficient resolution of inflammation is believed to play an important role in the development of chronic inflammatory diseases, like PE. In this narrative review, we discuss possible pro-resolution pathways that might be compromised in PE women, which could be targets to novel therapeutic strategies in this disease.
Collapse
|
17
|
Suttorp CM, Cremers NA, van Rheden R, Regan RF, Helmich P, van Kempen S, Kuijpers-Jagtman AM, Wagener FADTG. Chemokine Signaling during Midline Epithelial Seam Disintegration Facilitates Palatal Fusion. Front Cell Dev Biol 2017; 5:94. [PMID: 29164113 PMCID: PMC5670099 DOI: 10.3389/fcell.2017.00094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/11/2017] [Indexed: 12/17/2022] Open
Abstract
Disintegration of the midline epithelial seam (MES) is crucial for palatal fusion, and failure results in cleft palate. Palatal fusion and wound repair share many common signaling pathways related to epithelial-mesenchymal cross-talk. We postulate that chemokine CXCL11, its receptor CXCR3, and the cytoprotective enzyme heme oxygenase (HO), which are crucial during wound repair, also play a decisive role in MES disintegration. Fetal growth restriction and craniofacial abnormalities were present in HO-2 knockout (KO) mice without effects on palatal fusion. CXCL11 and CXCR3 were highly expressed in the disintegrating MES in both wild-type and HO-2 KO animals. Multiple apoptotic DNA fragments were present within the disintegrating MES and phagocytized by recruited CXCR3-positive wt and HO-2 KO macrophages. Macrophages located near the MES were HO-1-positive, and more HO-1-positive cells were present in HO-2 KO mice compared to wild-type. This study of embryonic and palatal development provided evidence that supports the hypothesis that the MES itself plays a prominent role in palatal fusion by orchestrating epithelial apoptosis and macrophage recruitment via CXCL11-CXCR3 signaling.
Collapse
Affiliation(s)
- Christiaan M Suttorp
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Niels A Cremers
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands.,Department of Rheumatology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - René van Rheden
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Raymond F Regan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Pia Helmich
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Sven van Kempen
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Anne M Kuijpers-Jagtman
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Frank A D T G Wagener
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| |
Collapse
|
18
|
Kharb S, Bala J, Nanda S. Markers of obesity and growth in preeclamptic and normotensive pregnant women. J OBSTET GYNAECOL 2017; 37:610-615. [PMID: 28467127 DOI: 10.1080/01443615.2017.1286463] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The objective of the study was to analyse leptin, IGF-1, Apo A, lipoproteins, haem oxygenase-1 (HO-1) in maternal sera and venous umbilical cord sera of newborn babies of 25 preeclamptics (group II), and 25 normotensive pregnant women (group I) as markers of obesity and growth in preeclamptic and normotensive pregnant women. Apo A I and II levels were estimated by competitive immunoassay using direct chemiluminiscence technology. Haem oxygenase-1 (HO-1), leptin and IGF-1 were analysed by ELISA. Maternal and cord blood levels of homocysteine, folic acid, lipid profile (namely, total cholesterol, triglycerides, LDL-C, VLDL-C and HDL-C), Haem oxygenase 1 were higher in preeclamptic women as compared to normotensive pregnant women. Serum and cord blood Apo A-I and Apo B, leptin levels, IGF-I were lower in preeclamptic women as compared to normotensive pregnant. The findings of high serum HO-1 levels in maternal and cord blood in preeclampsia supports the role of oxidative stress and excessive inflammatory response in the pathogenesis of preeclampsia. It seems likely that IGF-1 and leptin play a central role in controlling foetal growth. There is increasing evidence that the foundations of life-long health are, in part, laid in the uterus. Findings of present study suggest that alterations in biochemical markers of growth and obesity occur in mothers and foetuses and modifications of uterine environment can be of help to prevent future cardiovascular risk. Impact statement Preeclampsia has been reported to be associated with an increased risk of later life cardiovascular disease. However, information regarding how obesity increases the risk of preeclampsia is limited. Atherogenic milieu occurring during pregnancy persists into adulthood and foetal growth retardation is strongly associated with adult atherosclerosis. There is conflicting evidence regarding alterations of IGFs in preeclamptic pregnancies and deficit in circulating and cord blood IGF-1 levels in intrauterine growth restricted newborns and a correlation between IGF-1 levels and birth weight have been reported. Leptin is a predictor of cardiovascular risk independent of insulin resistance. Emerging evidence supports an important role for the haem oxygenase system (HO-1) in the maintenance of a healthy pregnancy, especially during pathological challenge. Conflicting data are available regarding HO-1, leptin and IGF -1 in preeclamptic mothers. The extent to which they mediate foetal growth and developmental abnormalities remains to be clarified. Serum IGF-1 levels were significantly decreased in preeclamptics and maternal IGF-1 showed a strong inverse correlation with leptin levels. High serum HO-1 levels in maternal and cord blood in preeclampsia were observed in the present study. Findings of the present study suggest that alterations in biochemical markers of growth and obesity occur in mothers and foetuses and modifications of the uterine environment can be of help to prevent future cardiovascular risk.
Collapse
Affiliation(s)
- S Kharb
- a Department of Biochemistry, Pt. BDS PGIMS, Rohtak , Pt. B.D. Sharma University of Health Sciences , Rohtak , India
| | - J Bala
- a Department of Biochemistry, Pt. BDS PGIMS, Rohtak , Pt. B.D. Sharma University of Health Sciences , Rohtak , India
| | - S Nanda
- b Department of Obstetrics and Gynecology, Pt. BDS PGIMS, Rohtak , Pt. B.D. Sharma University of Health Sciences , Rohtak , India
| |
Collapse
|
19
|
Pathophysiology of hypertension in preeclampsia. Microvasc Res 2016; 109:34-37. [PMID: 27793558 DOI: 10.1016/j.mvr.2016.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 10/23/2016] [Indexed: 11/20/2022]
|
20
|
Li J, Zhou J, Ye Y, Liu Q, Wang X, Zhang N, Wang X. Increased Heme Oxygenase-1 and Nuclear Factor Erythroid 2-Related Factor-2 in the Placenta Have a Cooperative Action on Preeclampsia. Gynecol Obstet Invest 2016; 81:543-551. [PMID: 27764834 DOI: 10.1159/000451025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 09/26/2016] [Indexed: 04/13/2024]
Abstract
BACKGROUND Previous studies have shown that oxidative stress is an important factor in preeclampsia (PE). Heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor-2 (Nrf2) are protective proteins that are involved in combating oxidative stress in the body. Nrf2 is also an essential upstream transcription factor regulating HO-1. This study was aimed at exploring the physiological roles of HO-1 and Nrf2 in PE. METHODS Serum and placenta were collected from 30 patients who presented with severe PE and 30 healthy pregnant females. HO-1 and Nrf2 levels in placenta were measured. Following stimulation of the HTR-8/SVneo cell line with tert-butylhydroquinone (tBHQ), an Nrf2 activator, nuclear Nrf2 protein and HO-1 mRNA levels were determined. RESULTS Compared with the healthy pregnancy group, HO-1 protein and mRNA levels were increased in placental samples obtained from the severe PE group (p < 0.01, p < 0.05). Similar increases were also observed for Nrf2 protein levels (p < 0.01). Nuclear Nrf2 protein and HO-1 mRNA levels were both increased in the HTR-8/SVneo cell line following stimulation with tBHQ (p < 0.05). CONCLUSION Patients with severe PE may be protected against oxidative injury following an elevation in HO-1 and Nrf2 levels. Nrf2 is likely to have a synergistic effect on HO-1 in PE.
Collapse
Affiliation(s)
- Jing Li
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Carbon Monoxide (CO) Released from Tricarbonyldichlororuthenium (II) Dimer (CORM-2) in Gastroprotection against Experimental Ethanol-Induced Gastric Damage. PLoS One 2015; 10:e0140493. [PMID: 26460608 PMCID: PMC4604159 DOI: 10.1371/journal.pone.0140493] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/25/2015] [Indexed: 01/29/2023] Open
Abstract
The physiological gaseous molecule, carbon monoxide (CO) becomes a subject of extensive investigation due to its vasoactive activity throughout the body but its role in gastroprotection has been little investigated. We determined the mechanism of CO released from its donor tricarbonyldichlororuthenium (II) dimer (CORM-2) in protection of gastric mucosa against 75% ethanol-induced injury. Rats were pretreated with CORM-2 30 min prior to 75% ethanol with or without 1) non-selective (indomethacin) or selective cyclooxygenase (COX)-1 (SC-560) and COX-2 (celecoxib) inhibitors, 2) nitric oxide (NO) synthase inhibitor L-NNA, 3) ODQ, a soluble guanylyl cyclase (sGC) inhibitor, hemin, a heme oxygenase (HO)-1 inductor or zinc protoporphyrin IX (ZnPPIX), an inhibitor of HO-1 activity. The CO content in gastric mucosa and carboxyhemoglobin (COHb) level in blood was analyzed by gas chromatography. The gastric mucosal mRNA expression for HO-1, COX-1, COX-2, iNOS, IL-4, IL-1β was analyzed by real-time PCR while HO-1, HO-2 and Nrf2 protein expression was determined by Western Blot. Pretreatment with CORM-2 (0.5-10 mg/kg) dose-dependently attenuated ethanol-induced lesions and raised gastric blood flow (GBF) but large dose of 100 mg/kg was ineffective. CORM-2 (5 mg/kg and 50 mg/kg i.g.) significantly increased gastric mucosal CO content and whole blood COHb level. CORM-2-induced protection was reversed by indomethacin, SC-560 and significantly attenuated by celecoxib, ODQ and L-NNA. Hemin significantly reduced ethanol damage and raised GBF while ZnPPIX which exacerbated ethanol-induced injury inhibited CORM-2- and hemin-induced gastroprotection and the accompanying rise in GBF. CORM-2 significantly increased gastric mucosal HO-1 mRNA expression and decreased mRNA expression for iNOS, IL-1β, COX-1 and COX-2 but failed to affect HO-1 and Nrf2 protein expression decreased by ethanol. We conclude that CORM-2 released CO exerts gastroprotection against ethanol-induced gastric lesions involving an increase in gastric microcirculation mediated by sGC/cGMP, prostaglandins derived from COX-1, NO-NOS system and its anti-inflammatory properties.
Collapse
|
22
|
Zenclussen ML, Linzke N, Schumacher A, Fest S, Meyer N, Casalis PA, Zenclussen AC. Heme oxygenase-1 is critically involved in placentation, spiral artery remodeling, and blood pressure regulation during murine pregnancy. Front Pharmacol 2015; 5:291. [PMID: 25628565 PMCID: PMC4292788 DOI: 10.3389/fphar.2014.00291] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/15/2014] [Indexed: 12/26/2022] Open
Abstract
The onset of pregnancy implies the appearance of a new organ, the placenta. One main function of the placenta is to supply oxygen to the fetus via hemoproteins. In this review, we highlight the importance of the enzyme heme oxygenase-1 (HO-1) for pregnancy to be established and maintained. HO-1 expression is pivotal to promote placental function and fetal development, thus determining the success of pregnancy. The deletion of the gene Hmox1 in mice leads to inadequate remodeling of spiral arteries and suboptimal placentation followed by intrauterine growth restriction (IUGR) and fetal lethality. A partial Hmox1 deletion leads to IUGR as well, with heterozygote and wild-type fetuses being born, but Hmox1 (-/-) significantly below the expected Mendelian rate. This strong phenotype is associated with diminished number of pregnancy-protective uterine natural killer (uNK) cells. Pregnant heterozygote females develop gestational hypertension. The protective HO-1 effects on placentation and fetal growth can be mimicked by the exogenous administration of carbon monoxide (CO), a product of heme catalyzed by HO-1. CO application promotes the in situ proliferation of uNK cells, restores placentation and fetal growth, while normalizing blood pressure. Similarly, HO-1 inhibition provokes hypertension in pregnant rats. The HO-1/CO axis plays a pivotal role in sustaining pregnancy and aids in the understanding of the biology of pregnancy and reveals a promising therapeutic application in the treatment of pregnancy complications.
Collapse
Affiliation(s)
- Maria L Zenclussen
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg , Germany
| | - Nadja Linzke
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg , Germany
| | - Anne Schumacher
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg , Germany
| | - Stefan Fest
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg , Germany
| | - Nicole Meyer
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg , Germany
| | - Pablo A Casalis
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg , Germany
| | - Ana C Zenclussen
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg , Germany
| |
Collapse
|
23
|
Schumacher A, Zenclussen AC. Effects of heme oxygenase-1 on innate and adaptive immune responses promoting pregnancy success and allograft tolerance. Front Pharmacol 2015; 5:288. [PMID: 25610397 PMCID: PMC4285018 DOI: 10.3389/fphar.2014.00288] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/10/2014] [Indexed: 12/14/2022] Open
Abstract
The heme-degrading enzyme heme oxygenase-1 (HO-1) has cytoprotective, antioxidant, and anti-inflammatory properties. Moreover, HO-1 is reportedly involved in suppressing destructive immune responses associated with inflammation, autoimmune diseases, and allograft rejection. During pregnancy, maternal tolerance to foreign fetal antigens is a prerequisite for successful embryo implantation and fetal development. Here, HO-1 has been implicated in counteracting the overwhelming inflammatory immune responses towards fetal allo-antigens, thereby contributing to fetal acceptance. Accordingly, HO-1 ablation negatively impacts the critical steps of pregnancy such as fertilization, implantation, placentation, and fetal growth. In the present review, we summarize recent data on the immune modulatory capacity of HO-1 towards allo-antigens expressed by the semi-allogeneic fetus and organ allografts. In this regard, HO-1 has been shown to promote alloantigen tolerance by blocking dendritic cell maturation resulting in reduced T cell responses and increased numbers of regulatory T cells. Moreover, HO-1 is suggested to shift the uterine cytokine milieu towards a protective Th2 profile and protects fetal tissue from apoptosis by upregulating anti-apoptotic molecules. Thus, HO-1 is not only a pivotal regulator of the initial steps of pregnancy; but also, an important player in supporting the maternal immune system in tolerating the fetus.
Collapse
Affiliation(s)
- Anne Schumacher
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University Magdeburg, Germany
| | - Ana C Zenclussen
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University Magdeburg, Germany
| |
Collapse
|
24
|
Park HR, Kamau PW, Korte C, Loch-Caruso R. Tetrabromobisphenol A activates inflammatory pathways in human first trimester extravillous trophoblasts in vitro. Reprod Toxicol 2014; 50:154-62. [PMID: 25461914 PMCID: PMC4260776 DOI: 10.1016/j.reprotox.2014.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/02/2014] [Accepted: 10/07/2014] [Indexed: 01/25/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is a widely used flame retardant. Despite the presence of TBBPA in gestational tissues and the importance of proper regulation of inflammatory networks for successful pregnancy, there is no prior study on the effects of TBBPA on inflammatory responses in gestational tissues. The present study aimed to investigate TBBPA activation of inflammatory pathways, specifically cytokine and prostaglandin production, in the human first trimester placental cell line HTR-8/SVneo. TBBPA enhanced release of interleukin (IL)-6, IL-8, and prostaglandin E2 (PGE2), and suppressed TGF-β release in HTR-8/SVneo cells. The lowest effective concentration was 10 μM TBBPA. A commercial immune response PCR array revealed increased expression of genes involved in inflammatory pathways stimulated by TBBPA in HTR-8/SVneo cells. Because proper regulation of inflammatory mediators in the gestational compartment is necessary for normal placental development and successful pregnancy, further investigation on the impact of TBBPA-stimulated responses on trophoblast function is warranted.
Collapse
Affiliation(s)
- Hae-Ryung Park
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA.
| | - Patricia W Kamau
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA
| | - Cassandra Korte
- College of Arts and Sciences, Lynn University, 3601 North Military Trail, Boca Raton, FL 33431, USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA
| |
Collapse
|
25
|
Venditti CC, Smith GN. Involvement of the Heme Oxygenase System in the Development of Preeclampsia and as a Possible Therapeutic Target. WOMENS HEALTH 2014; 10:623-43. [DOI: 10.2217/whe.14.54] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The enzyme heme oxygenase (HO) is an important regulatory molecule present in most nucleated mammalian cells which functions to break down the pro-oxidant molecule heme into three products, carbon monoxide (CO), biliverdin and free iron. The HO system has been associated with many physiologic functions, including vascular tone, regulation of inflammation and apoptosis, angiogenesis and antioxidant capabilities. Deficiencies in HO are associated with several pregnancy disorders, including preeclampsia. With no present cure, this disorder continues to affect 5–7% of all pregnancies worldwide, leading to maternal and fetal morbidity and mortality. Researchers continue to strive for therapeutic potentials and this review will outline the possible use of the HO/CO system as a target treatment/prevention of preeclampsia in the future.
Collapse
Affiliation(s)
- Carolina C Venditti
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Canada
| | - Graeme N Smith
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Canada
- Department of Obstetrics & Gynecology, Queen's University, Kingston General Hospital, 76 Stuart Street, Kingston K7L 2V7, Canada
| |
Collapse
|
26
|
Park HR, Loch-Caruso R. Protective effect of nuclear factor E2-related factor 2 on inflammatory cytokine response to brominated diphenyl ether-47 in the HTR-8/SVneo human first trimester extravillous trophoblast cell line. Toxicol Appl Pharmacol 2014; 281:67-77. [PMID: 25305463 DOI: 10.1016/j.taap.2014.09.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/09/2014] [Accepted: 09/29/2014] [Indexed: 12/18/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used flame retardants, and BDE-47 is a prevalent PBDE congener detected in human tissues. Exposure to PBDEs has been linked to adverse pregnancy outcomes in humans. Although the underlying mechanisms of adverse birth outcomes are poorly understood, critical roles for oxidative stress and inflammation are implicated. The present study investigated antioxidant responses in a human extravillous trophoblast cell line, HTR-8/SVneo, and examined the role of nuclear factor E2-related factor 2 (Nrf2), an antioxidative transcription factor, in BDE-47-induced inflammatory responses in the cells. Treatment of HTR-8/SVneo cells with 5, 10, 15, and 20μM BDE-47 for 24h increased intracellular glutathione (GSH) levels compared to solvent control. Treatment of HTR-8/SVneo cells with 20μM BDE-47 for 24h induced the antioxidant response element (ARE) activity, indicating Nrf2 transactivation by BDE-47 treatment, and resulted in differential expression of redox-sensitive genes compared to solvent control. Pretreatment with tert-butyl hydroquinone (tBHQ) or sulforaphane, known Nrf2 inducers, reduced BDE-47-stimulated IL-6 release with increased ARE reporter activity, reduced nuclear factor kappa B (NF-κB) reporter activity, increased GSH production, and stimulated expression of antioxidant genes compared to non-Nrf2 inducer pretreated groups, suggesting that Nrf2 may play a protective role against BDE-47-mediated inflammatory responses in HTR-8/SVneo cells. These results suggest that Nrf2 activation significantly attenuated BDE-47-induced IL-6 release by augmentation of cellular antioxidative system via upregulation of Nrf2 signaling pathways, and that Nrf2 induction may be a potential therapeutic target to reduce adverse pregnancy outcomes associated with toxicant-induced oxidative stress and inflammation.
Collapse
Affiliation(s)
- Hae-Ryung Park
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA.
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA
| |
Collapse
|
27
|
George EM, Warrington JP, Spradley FT, Palei AC, Granger JP. The heme oxygenases: important regulators of pregnancy and preeclampsia. Am J Physiol Regul Integr Comp Physiol 2014; 307:R769-77. [PMID: 24898840 DOI: 10.1152/ajpregu.00132.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The heme oxygenase system has long been believed to act largely as a housekeeping unit, converting prooxidant free heme from heme protein degradation into the benign bilirubin for conjugation and safe excretion. In recent decades, however, heme oxygenases have emerged as important regulators of cardiovascular function, largely through the production of their biologically active metabolites: carbon monoxide, bilirubin, and elemental iron. Even more recently, a number of separate lines of evidence have demonstrated an important role for the heme oxygenases in the establishment and maintenance of pregnancy. Early preclinical and clinical studies have associated defects in the heme oxygenase with the obstetrical complication preeclampsia, as well as failure to establish adequate placental blood flow, an underlying mechanism of the disorder. Several recent preclinical studies have suggested, however, that the heme oxygenase system could serve as a valuable therapeutic tool for the management of preeclampsia, which currently has few pharmacological options. This review will summarize the role of heme oxygenases in pregnancy and highlight their potential in advancing the management of patients with preeclampsia.
Collapse
Affiliation(s)
- Eric M George
- Department of Physiology and Biophysics, The University of Mississippi Medical Center, Jackson, Mississippi; and Department of Biochemistry, The University of Mississippi Medical Center, Jackson, Mississippi
| | - Junie P Warrington
- Department of Physiology and Biophysics, The University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Frank T Spradley
- Department of Physiology and Biophysics, The University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Ana C Palei
- Department of Physiology and Biophysics, The University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Joey P Granger
- Department of Physiology and Biophysics, The University of Mississippi Medical Center, Jackson, Mississippi; and
| |
Collapse
|
28
|
Warrington JP, Coleman K, Skaggs C, Hosick PA, George EM, Stec DE, Ryan MJ, Granger JP, Drummond HA. Heme oxygenase-1 promotes migration and β-epithelial Na+ channel expression in cytotrophoblasts and ischemic placentas. Am J Physiol Regul Integr Comp Physiol 2014; 306:R641-6. [PMID: 24553299 DOI: 10.1152/ajpregu.00566.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Preeclampsia is thought to arise from inadequate cytotrophoblast migration and invasion of the maternal spiral arteries, resulting in placental ischemia and hypertension. Evidence suggests that altered expression of epithelial Na(+) channel (ENaC) proteins may be a contributing mechanism for impaired cytotrophoblast migration. ENaC activity is required for normal cytotrophoblast migration. Moreover, β-ENaC, the most robustly expressed placental ENaC message, is reduced in placentas from preeclamptic women. We recently demonstrated that heme oxygenase-1 (HO-1) protects against hypertension in a rat model of placental ischemia; however, whether HO-1 regulation of β-ENaC contributes to the beneficial effects of HO-1 is unknown. The purpose of this study was to determine whether β-ENaC mediates cytotrophoblast migration and whether HO-1 enhances ENaC-mediated migration. We showed that placental ischemia, induced by reducing uterine perfusion suppressed, and HO-1 induction restored, β-ENaC expression in ischemic placentas. Using an in vitro model, we found that HO-1 induction, using cobalt protoporphyrin, stimulates cytotrophoblast β-ENaC expression by 1.5- and 1.8-fold (10 and 50 μM). We then showed that silencing of β-ENaC in cultured cytotrophoblasts (BeWo cells), by expression of dominant-negative constructs, reduced migration to 56 ± 13% (P < 0.05) of control. Importantly, HO-1 induction enhanced migration (43 ± 5% of control, P < 0.05), but the enhanced migratory response was entirely blocked by ENaC inhibition with amiloride (10 μM). Taken together, our results suggest that β-ENaC mediates cytotrophoblast migration and increasing β-ENaC expression by HO-1 induction enhances migration. HO-1 regulation of cytotrophoblast β-ENaC expression and migration may be a potential therapeutic target in preeclamptic patients.
Collapse
Affiliation(s)
- Junie P Warrington
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Transthyretin is dysregulated in preeclampsia, and its native form prevents the onset of disease in a preclinical mouse model. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1425-1436. [PMID: 24035612 DOI: 10.1016/j.ajpath.2013.07.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/21/2013] [Accepted: 07/22/2013] [Indexed: 01/05/2023]
Abstract
Preeclampsia is a major pregnancy complication with potential short- and long-term consequences for both mother and fetus. Understanding its pathogenesis and causative biomarkers is likely to yield insights for prediction and treatment. Herein, we provide evidence that transthyretin, a transporter of thyroxine and retinol, is aggregated in preeclampsia and is present at reduced levels in sera of preeclamptic women, as detected by proteomic screen. We demonstrate that transthyretin aggregates form deposits in preeclampsia placental tissue and cause apoptosis. By using in vitro approaches and a humanized mouse model, we provide evidence for a causal link between dysregulated transthyretin and preeclampsia. Native transthyretin inhibits all preeclampsia-like features in the humanized mouse model, including new-onset proteinuria, increased blood pressure, glomerular endotheliosis, and production of anti-angiogenic factors. Our findings suggest that a focus on transthyretin structure and function is a novel strategy to understand and combat preeclampsia.
Collapse
|
30
|
Raghupathy R. Cytokines as key players in the pathophysiology of preeclampsia. Med Princ Pract 2013; 22 Suppl 1:8-19. [PMID: 23949305 PMCID: PMC5586811 DOI: 10.1159/000354200] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 12/16/2012] [Indexed: 01/25/2023] Open
Abstract
Preeclampsia (PE) is an important, common, and dangerous complication of pregnancy; it causes maternal and perinatal illness and is responsible for a high proportion of maternal and infant deaths. PE is associated with increased blood pressure and proteinuria, with a whole host of other potentially serious complications in the mother and fetus. The maternal syndrome in PE is primarily that of generalized dysfunction of the maternal endothelium, and this generalized endothelial dysfunction appears to be part of an exaggerated systemic inflammatory response that involves maternal leukocytes and proinflammatory cytokines. This review examines evidence that points to a significant role for the maternal immune system; inadequate trophoblast invasion of spiral arteries initiates ischemia and hypoxia in the placenta, resulting in an increased release of proinflammatory cytokines in the placenta. Placental ischemia and hypoxia also cause the enhanced release of trophoblast microparticles into the maternal circulation which stimulates increased induction of proinflammatory cytokines and the activation of maternal endothelial cells. This activation results in a systemic, diffuse endothelial cell dysfunction which is the fundamental pathophysiological feature of this syndrome. Recent evidence also supports important roles for proinflammatory cytokines in hypertension, proteinuria, and edema which are characteristic features of PE.
Collapse
Affiliation(s)
- Raj Raghupathy
- Department of Microbiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, Safat, Kuwait
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Emerging evidence supports an important role for the heme oxygenase system in the maintenance of a healthy pregnancy. This review attempts to collect these wide-ranging data and summarize the recent progress in the field. RECENT FINDINGS New studies looking at heme oxygenase depletion in a variety of animal models have demonstrated that the heme oxygenase system is an important regulator of placental development, particularly in vascular structure. Furthermore, emerging studies demonstrate a role for heme oxygenase in the maintenance of pregnancy, especially during pathological challenge. Intriguingly, it now appears that the heme oxygenase system can be dramatically altered by pathological disorders of pregnancy, in particular preeclampsia, perhaps functionally in the symptomatic phase of the disorder. Promisingly, however, recent data suggest that induction of the heme oxygenase system, or administration of its bioactive metabolites, could provide a promising novel therapeutic approach to the management of this currently untreatable disease. SUMMARY Long considered a molecular housekeeping system, the heme oxygenase system is now known to be an important stress response pathway. New evidence suggests that it is also an important player in pregnancy and preeclampsia. However, the evidence now also suggests that it may provide a therapeutic approach for this common disease with few management options.
Collapse
|
32
|
George EM, Hosick PA, Stec DE, Granger JP. Heme oxygenase inhibition increases blood pressure in pregnant rats. Am J Hypertens 2013; 26:924-30. [PMID: 23553216 DOI: 10.1093/ajh/hpt045] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND During normal gestation, the placenta is a relatively hypoxic organ and, as such, is subject to significant oxidative stress. In the preeclamptic patient, inadequate remodeling of the maternal vasculature severely exacerbates placental oxidative stress, which has been shown to be an important component of maternal hypertension. There is emerging evidence that Heme Oxygenase-1 (HO-1) acts as an important regulator of placental and cardiovascular function during normal pregnancy. Here, we have examined the effect of Heme Oxygenase (HO) inhibition in late gestation on maternal blood pressure, angiogenic balance, and placental oxidative stress in pregnant rats. METHODS HO activity was inhibited with tin mesoporphyrin (SnMP), which was administered on gestational day 14, and blood pressure was measured on gestational day 19. Placental angiogenic balance and plasma Vascular Endothelial Growth Factor (VEGF) were determined by sandwich enzyme-linked immunosorbent assay. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity was measured by lucigenin chemilluminescence. RESULTS In response to SnMP treatment, maternal mean arterial pressure (MAP) was significantly increased (99±1 vs. 113±2mm Hg; P < 0.05; n = 15 per group). Placental soluble fms-like tyrosine kinase-1 (sFlt-1) (631±47 vs. 648±26 pg/mg; P = 0.76) levels in the placenta were not affected by HO inhibition. Additionally, there was no significant difference in free VEGF in the maternal circulation (287±22 vs. 329±14 pg/ml; P = 0.11). There was, however, a significant decrease in placental VEGF (23±2 vs. 16±1 pg/mg; P < 0.05) and a significant increase in placental NADPH oxidase activity in SnMP-treated rats (2021±238 vs. 3005±301 RLU/min/mg; P < 0.05). CONCLUSIONS Our results demonstrate that HO is an important regulator of blood pressure and an important antioxidant in the developing placenta.
Collapse
Affiliation(s)
- Eric M George
- Department of Physiology and Biophysics and the Center for Excellence in Cardiovascular Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | | | | |
Collapse
|
33
|
Vanella L, Di Giacomo C, Acquaviva R, Barbagallo I, Li Volti G, Cardile V, Abraham NG, Sorrenti V. Effects of ellagic Acid on angiogenic factors in prostate cancer cells. Cancers (Basel) 2013; 5:726-738. [PMID: 24216999 PMCID: PMC3730328 DOI: 10.3390/cancers5020726] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 05/31/2013] [Accepted: 06/07/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Several natural antioxidants, including ellagic acid (EA), have been reported to have chemotherapeutic activity in vivo and in vitro settings. Cytochrome P450 (CYP) activity and synthesis of both epoxyeicosatrienoic acids (EETs) and 20-hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE), together with vascular endothelial growth factor (VEGF) and heme oxygenase system (HO) have emerged as important modulators of tumor growth and metastasis. METHODS The anti-angiogenic effects of EA were investigated in the human prostatic cancer cell line LnCap. HO-1, HO-2, CYP2J2 and soluble epoxyde hydrolase (sEH) expressions were evaluated by western blotting. Levels of VEGF and osteoprotegerin (OPG) were determined in the culture supernatant using an ELISA assay, while CYP mRNAs were determined by qRT-PCR. RESULTS EA treatment induced a significant decrease (p < 0.05) in HO-1, HO-2 and CYP2J2 expression, and in VEGF and OPG levels. Similarly CYP2J2, CYP4F2 and CYPA22 mRNAs were significantly (p < 0.05) down-regulated by EA treatment. The decrease in CYP2J2 mRNA was associated with an increase in sEH expression. CONCLUSIONS RESULTS reported in the present study highlighted the ability of EA to modulate a new pathway, in addition to anti-proliferative and pro-differentiation properties, via a mechanism that involves a decrease in eicosanoid synthesis and a down-regulation of the HO system in prostate cancer.
Collapse
Affiliation(s)
- Luca Vanella
- Department of Drug Science, Section of Biochemistry, University of Catania, I-95125 Catania, Italy; E-Mails: (L.V.); (C.D.G.); (R.A.); (I.B.); (G.L.V.)
| | - Claudia Di Giacomo
- Department of Drug Science, Section of Biochemistry, University of Catania, I-95125 Catania, Italy; E-Mails: (L.V.); (C.D.G.); (R.A.); (I.B.); (G.L.V.)
| | - Rosaria Acquaviva
- Department of Drug Science, Section of Biochemistry, University of Catania, I-95125 Catania, Italy; E-Mails: (L.V.); (C.D.G.); (R.A.); (I.B.); (G.L.V.)
| | - Ignazio Barbagallo
- Department of Drug Science, Section of Biochemistry, University of Catania, I-95125 Catania, Italy; E-Mails: (L.V.); (C.D.G.); (R.A.); (I.B.); (G.L.V.)
| | - Giovanni Li Volti
- Department of Drug Science, Section of Biochemistry, University of Catania, I-95125 Catania, Italy; E-Mails: (L.V.); (C.D.G.); (R.A.); (I.B.); (G.L.V.)
| | - Venera Cardile
- Department of Bio-Medical Sciences, Section of Physiology, University of Catania, I-95125, Catania, Italy; E-Mail:
| | - Nader G. Abraham
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; E-Mail:
| | - Valeria Sorrenti
- Department of Drug Science, Section of Biochemistry, University of Catania, I-95125 Catania, Italy; E-Mails: (L.V.); (C.D.G.); (R.A.); (I.B.); (G.L.V.)
| |
Collapse
|
34
|
Levytska K, Kingdom J, Baczyk D, Drewlo S. Heme oxygenase-1 in placental development and pathology. Placenta 2013; 34:291-8. [DOI: 10.1016/j.placenta.2013.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 01/08/2013] [Accepted: 01/12/2013] [Indexed: 12/30/2022]
|
35
|
Iwahara Y, Nagai A, Yoshiki N, Igarashi K, Yamashita K, Kubota T. Expression of heme oxygenase in the eutopic and ectopic endometrium in patients with adenomyosis. Gynecol Endocrinol 2012; 28:892-6. [PMID: 22559824 DOI: 10.3109/09513590.2012.683064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Heme oxygenase (HO) is the rate-limiting enzyme that catalyzes the degradation of heme into iron, carbon monoxide, and biliverdin. This enzyme has important functions in cellular homeostasis, including the regulation of oxidative load, apoptosis, and inflammation. Two isoforms of HO, the inducible HO-1 and the constitutive HO-2, are expressed and are known to play a role in the normal human endometrium throughout the menstrual cycle, but there is little evidence for HO expression and behavior in adenomyosis, which is the occurrence of intramural ectopic endometrial tissue. The aim of this study was to investigate the presence and localization of the two HO isoforms in both eutopic and ectopic endometrium of women with adenomyosis during the menstrual cycle. The oxidative stress and apoptosis related to HO-1 expression were also assessed. The expression of HO-1 and HO-2 in both eutopic and ectopic endometrium was confirmed, and their levels in the ectopic endometrium were lower than those in the eutopic endometrium. The cyclic variability of HO expression was lost in the ectopic endometrium during the menstrual cycle, whereas this variability was apparent in the eutopic endometrium. Moreover, HO-1 expression corresponded to apoptotic events in the eutopic endometrium. Constitutive HO-2 expression corresponded to endometrial proliferation and degradation. These results reveal that both HO-1 and HO-2 contribute little in the pathophysiology of adenomyosis.
Collapse
Affiliation(s)
- Yuki Iwahara
- Comprehensive Reproductive Medicine, Graduate School, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Larsen R, Gouveia Z, Soares MP, Gozzelino R. Heme cytotoxicity and the pathogenesis of immune-mediated inflammatory diseases. Front Pharmacol 2012; 3:77. [PMID: 22586395 PMCID: PMC3343703 DOI: 10.3389/fphar.2012.00077] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/11/2012] [Indexed: 01/01/2023] Open
Abstract
Heme, iron (Fe) protoporphyrin IX, functions as a prosthetic group in a range of hemoproteins essential to support life under aerobic conditions. The Fe contained within the prosthetic heme groups of these hemoproteins can catalyze the production of reactive oxygen species. Presumably for this reason, heme must be sequestered within those hemoproteins, thereby shielding the reactivity of its Fe-heme. However, under pathologic conditions associated with oxidative stress, some hemoproteins can release their prosthetic heme groups. While this heme is not necessarily damaging per se, it becomes highly cytotoxic in the presence of a range of inflammatory mediators such as tumor necrosis factor. This can lead to tissue damage and, as such, exacerbate the pathologic outcome of several immune-mediated inflammatory conditions. Presumably, targeting “free heme” may be used as a therapeutic intervention against these diseases.
Collapse
|
37
|
Cudmore MJ, Ramma W, Cai M, Fujisawa T, Ahmad S, Al-Ani B, Ahmed A. Resveratrol inhibits the release of soluble fms-like tyrosine kinase (sFlt-1) from human placenta. Am J Obstet Gynecol 2012; 206:253.e10-5. [PMID: 22197494 DOI: 10.1016/j.ajog.2011.11.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 10/26/2011] [Accepted: 11/18/2011] [Indexed: 10/15/2022]
Abstract
OBJECTIVE Soluble vascular endothelial growth factor receptor-1 (also know as soluble fms-like tyrosine kinase [sFlt]-1) is a key causative factor of preeclampsia. Resveratrol, a plant phytoalexin, has antiinflammatory and cardioprotective properties. We sought to determine the effect of resveratrol on sFlt-1 release. STUDY DESIGN Human umbilical vein endothelial cells, transformed human trophoblast-8 (HTR/SVneo)-8/SVneo trophoblast cells, or placental explants were incubated with cytokines and/or resveratrol. Conditioned media were assayed for sFlt-1 by enzyme-linked immunosorbent assay and cell proteins used for Western blotting. RESULTS Resveratrol inhibited cytokine-induced release of sFlt-1 from normal placental explants and from preeclamptic placental explants. Preincubation of human umbilical vein endothelial cells or HTR-8/SVneo cells with resveratrol abrogated sFlt-1 release. Resveratrol prevented the up-regulation of early growth response protein-1 (Egr-1), a transcription factor necessary for induction of the vascular endothelial growth factor receptor-1 gene and caused up-regulation of heme oxygenase-1, a cytoprotective enzyme found to be dysfunctional in preeclampsia. CONCLUSION In summary, resveratrol can inhibit sFlt-1 release and up-regulate heme oxygenase-1; thus, may offer therapeutic potential in preeclampsia.
Collapse
|
38
|
El-Mousleh T, Casalis PA, Wollenberg I, Zenclussen ML, Volk HD, Langwisch S, Jensen F, Zenclussen AC. Exploring the potential of low doses carbon monoxide as therapy in pregnancy complications. Med Gas Res 2012; 2:4. [PMID: 22348450 PMCID: PMC3837472 DOI: 10.1186/2045-9912-2-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 02/20/2012] [Indexed: 01/25/2023] Open
Abstract
Heme Oxygenase-1 (HO-1) has been shown to play a pivotal role in pregnancy outcome and its ablation leads to abnormal placentation, intrauterine fetal growth restriction (IUGR) and subsequent intrauterine fetal death. Carbon monoxide (CO) has been found to mimic the protective effects of HO-1 activity, rescuing HO-1-deficient fetuses. This gasotransmitter arises in biological systems during the oxidative catabolism of heme by HO. Here, we explored the potential of CO in preventing IUGR and established the optimal doses and therapeutic time window in a clinically relevant mouse model. We additionally investigated the pathways activated upon CO application in vivo. We established 50 ppm as the best lowest dose of CO necessary to prevent growth restriction being the optimal time frame during days 3 to 8 of mouse pregnancy. CO lead to higher fetal and placental weights and avoided fetal death without showing any pathologic effects. CO breathing further suppressed inflammatory responses, diminished placenta apoptosis and complement deposition and regulated placental angiogenesis. Our results confirm the protective role of the HO-1/CO axis and point this gas as an emerging therapeutic possibility which is worth to further explore.
Collapse
Affiliation(s)
- Tarek El-Mousleh
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Zenclussen ML, Jensen F, Rebelo S, El-Mousleh T, Casalis PA, Zenclussen AC. Heme oxygenase-1 expression in the ovary dictates a proper oocyte ovulation, fertilization, and corpora lutea maintenance. Am J Reprod Immunol 2011; 67:376-82. [PMID: 22133191 DOI: 10.1111/j.1600-0897.2011.01096.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PROBLEM Animals deficient in Heme oxygenase-1 (HO-1, Hmox1(-/-) mice) have impaired pregnancies, characterized by intrauterine fetal death. HO-1 expression has been shown to be essential for pregnancy by dictating placentation and intrauterine fetal development. Its absence leads to intrauterine fetal growth restriction and fetal loss, which is independent of the immune system. Defect in previous steps, e.g., ovulation, may, however, also count for their poor reproductive outcome. METHOD OF STUDY Here, we investigated ovulation after hormonal hyperstimulation in Hmox1 wild-type and knockout animals. RESULTS AND CONCLUSIONS We observed that animals lacking HO-1 produced significantly less oocytes after hormonal stimulation than wild type animals and this was mirrored by the number of corpora lutea in the ovary. Furthermore, ovulated oocytes from Hmox1(-/-) animals were poorly fertilized compared with those from wild-type animals. In conclusion, we demonstrate here that HO-1 plays a pivotal role in the process of oocyte ovulation as well as fertilization, bringing to light a new and unsuspected role for HO-1.
Collapse
Affiliation(s)
- Maria L Zenclussen
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Marini M, Bonaccini L, Thyrion GDZ, Vichi D, Parretti E, Sgambati E. Distribution of sugar residues in human placentas from pregnancies complicated by hypertensive disorders. Acta Histochem 2011; 113:815-25. [PMID: 21774970 DOI: 10.1016/j.acthis.2010.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 11/29/2010] [Accepted: 12/01/2010] [Indexed: 01/10/2023]
Abstract
The aim of the study was to investigate the content and distribution of sugar residues in placentas from pregnancies complicated by hypertensive disorders. Placentas from women with uncomplicated pregnancies (group 1), pregnancies complicated by gestational hypertension (group 2), pregnancies complicated by pre-eclampsia (group 3), pregnancies complicated by pre-eclampsia with HELLP syndrome (hemolysis, elevated liver enzymes and low platelets) (group 4) were collected. Lectins: ConA, WGA, PNA, SBA, DBA, UEA I, GNA, DSA, MAA, SNA, in combination with chemical and enzymatic treatments, were used. Data showed a decrease and/or lack of α-d-mannose, α-d-glucose and d-galactose-(β1-4)-N-acetyl-d-glucosamine in placentas from pre-eclampsia and pre-eclampsia with HELLP syndrome compared with control and hypertension cases. N-acetyl-d-galactosamine appeared and/or increased in placentas from hypertensive disorders. A different distribution of various types of sialic acid was observed in placentas from hypertensive disorders compared with the controls. In particular, placentas from pre-eclampsia, with and without HELLP syndrome, lacked the acetylated sialic acid side-chain. These findings demonstrate various alterations of the carbohydrate metabolism in the placentas from pregnancies complicated by different types of hypertensive disorders. This indicates correlation with the placental morpho-functional changes characteristic of these complications and with the degree of clinical severity.
Collapse
|
41
|
Protective role of heme oxygenase-1 in Listeria monocytogenes-induced abortion. PLoS One 2011; 6:e25046. [PMID: 21949846 PMCID: PMC3174987 DOI: 10.1371/journal.pone.0025046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 08/23/2011] [Indexed: 12/20/2022] Open
Abstract
It is well-known fact that various pathogens, including bacteria, virus, and protozoa, induce abortion in humans and animals. However the mechanisms of infectious abortion are little known. In this study, we demonstrated that Listeria monocytogenes infection in trophoblast giant cells decreased heme oxygenase (HO)-1 and B-cell lymphoma-extra large (Bcl-XL) expression, and that their overexpression inhibited cell death induced by the infection. Furthermore, HO-1 and Bcl-XL expression levels were also decreased by L. monocytogenes in pregnant mice. Treatment with cobalt protoporphyrin, which is known to induce HO-1, inhibited infectious abortion. Taken together, our study indicates that L. monocytogenes infection decreases HO-1 and Bcl-XL expression and induces cell death in placenta, leading to infectious abortion.
Collapse
|
42
|
Zenclussen ML, Casalis PA, El-Mousleh T, Rebelo S, Langwisch S, Linzke N, Volk HD, Fest S, Soares MP, Zenclussen AC. Haem oxygenase-1 dictates intrauterine fetal survival in mice via carbon monoxide. J Pathol 2011; 225:293-304. [PMID: 21744344 DOI: 10.1002/path.2946] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 05/18/2011] [Accepted: 05/25/2011] [Indexed: 12/27/2022]
Abstract
Pregnancy establishment implies the existence of a highly vascularized and transient organ, the placenta, which ensures oxygen supply to the fetus via haemoproteins. Haem metabolism, including its catabolism by haem oxygenase-1 (HO-1), should be of importance in maintaining the homeostasis of haemoproteins and controlling the deleterious effects associated with haem release from maternal or fetal haemoglobins, thus ensuring placental function and fetal development. We demonstrate that HO-1 expression is essential to promote placental function and fetal development, thus determining the success of pregnancy. Hmox1 deletion in mice has pathological consequences for pregnancy, namely suboptimal placentation followed by intrauterine fetal growth restriction (IUGR) and fetal lethality. These pathological effects can be mimicked by administration of exogenous haem in wild-type mice. Fetal and maternal HO-1 is required to prevent post-implantation fetal loss through a mechanism that acts independently of maternal adaptive immunity and hormones. The protective HO-1 effects on placentation and fetal growth can be mimicked by the exogenous administration of carbon monoxide (CO), a product of haem catabolism by HO-1 that restores placentation and fetal growth. In a clinical relevant model of IUGR, CO reduces the levels of free haem in circulation and prevents fetal death. We unravel a novel physiological role for HO-1/CO in sustaining pregnancy which aids in understanding the biology of pregnancy and reveals a promising therapeutic application in the treatment of pregnancy pathologies.
Collapse
Affiliation(s)
- Maria Laura Zenclussen
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Gerhart-Hauptmann-Strasse 35, Magdeburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Halilovic A, Patil KA, Bellner L, Marrazzo G, Castellano K, Cullaro G, Dunn MW, Schwartzman ML. Knockdown of heme oxygenase-2 impairs corneal epithelial cell wound healing. J Cell Physiol 2011; 226:1732-40. [PMID: 21506105 DOI: 10.1002/jcp.22502] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Heme oxygenase (HO) represents an intrinsic cytoprotective system based on its anti-oxidative and anti-inflammatory properties mediated via its products biliverdin/bilirubin and carbon monoxide (CO). We showed that deletion of HO-2 results in impaired corneal wound healing with associated chronic inflammatory complications. This study was undertaken to examine the role of HO activity and the contribution of HO-1 and HO-2 to corneal wound healing in an in vitro epithelial scratch injury model. A scratch wound model was established using human corneal epithelial (HCE) cells. These cells expressed both HO-1 and HO-2 proteins. Injury elicited a rapid and transient increase in HO-1 and HO activity; HO-2 expression was unchanged. Treatment with biliverdin or CORM-A1, a CO donor, accelerated wound closure by 10% at 24 h. Inhibition of HO activity impaired wound closure by more than 50%. However, addition of biliverdin or CORM-A1 reversed the effect of HO inhibition on wound healing. Moreover, knockdown of HO-2 expression, but not HO-1, significantly impaired wound healing. These results indicate that HO activity is required for corneal epithelial cell migration. Inhibition of HO activity impairs wound healing while amplification of its activity restores and accelerates healing. Importantly, HO-2, which is highly expressed in the corneal epithelium, appears to be critical for the wound healing process in the cornea. The mechanisms by which it contributes to cell migration in response to injury may reside in the cytoprotective properties of CO and biliverdin.
Collapse
Affiliation(s)
- Adna Halilovic
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Preeclampsia, a hypertensive disorder peculiar to pregnancy, is a systemic syndrome that appears to originate in the placenta and is characterized by widespread maternal endothelial dysfunction. Until recently, the molecular pathogenesis of phenotypic preeclampsia was largely unknown, but recent observations support the hypothesis that altered expression of placental anti-angiogenic factors are responsible for the clinical manifestations of the disease. Soluble Flt1 and soluble endoglin, secreted by the placenta, are increased in the maternal circulation weeks before the onset of preeclampsia. These anti-angiogenic factors produce systemic endothelial dysfunction, resulting in hypertension, proteinuria, and the other systemic manifestations of preeclampsia. The molecular basis for placental dysregulation of these pathogenic factors remains unknown, and as of 2011 the role of angiogenic proteins in early placental vascular development was starting to be explored. The data linking angiogenic factors to preeclampsia have exciting clinical implications, and likely will transform the detection and treatment of preeclampsia.
Collapse
Affiliation(s)
- Sharon E Maynard
- Department of Medicine, Division of Renal Diseases and Hypertension, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| | | |
Collapse
|
45
|
Bellner L, Wolstein J, Patil KA, Dunn MW, Laniado-Schwartzman M. Biliverdin Rescues the HO-2 Null Mouse Phenotype of Unresolved Chronic Inflammation Following Corneal Epithelial Injury. Invest Ophthalmol Vis Sci 2011; 52:3246-53. [PMID: 21345995 DOI: 10.1167/iovs.10-6219] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE. The heme oxygenase system (HO-1 and HO-2) represents an intrinsic cytoprotective and anti-inflammatory pathway based on its ability to modulate leukocyte migration and to inhibit the expression of inflammatory cytokines and proteins by its products biliverdin/bilirubin and carbon monoxide. Corneal injury in HO-2 null mice leads to impaired healing and chronic inflammatory complications, including ulceration and neovascularization. The authors examined whether topically administered biliverdin can counteract the effects of HO deficiency in a corneal epithelial injury model. METHODS. HO-2 null mice were treated with biliverdin 1 hour before epithelial injury and twice a day thereafter. Reepithelialization and neovascularization were assessed by fluorescein staining and vital microscopy, respectively, and were quantified by image analysis. Inflammation was quantified by histology and Gr-1-specific immunofluorescence, and oxidative stress was assessed by DHE fluorescence. RESULTS. Treatment with biliverdin accelerated wound closure, inhibited neovascularization and reduced epithelial defects. It also reduced inflammation, as evidenced by a reduction in the appearance of inflammatory cells and the expression levels of inflammatory and oxidant proteins, including KC and NOXs. CONCLUSIONS. The results clearly show that biliverdin, directly or through its metabolism to bilirubin by biliverdin reductase-the expression of which is increased after injury-rescues the aberrant inflammatory phenotype, further underscoring the importance of the HO system in the cornea for the execution of an ordered inflammatory and reparative response.
Collapse
Affiliation(s)
- Lars Bellner
- Departments of Pharmacology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | |
Collapse
|
46
|
Leber A, Zenclussen ML, Teles A, Brachwitz N, Casalis P, El-Mousleh T, Jensen F, Woidacki K, Zenclussen AC. Pregnancy: tolerance and suppression of immune responses. Methods Mol Biol 2011; 677:397-417. [PMID: 20941623 DOI: 10.1007/978-1-60761-869-0_25] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Presence of foreign tissue in a host's body would immediately lead to a strong immune response directed to destroy the alloantigens present in fetus and placenta. However, during pregnancy, the semiallogeneic fetus is allowed to grow within the maternal uterus due to multiple mechanisms of immune tolerance, which are discussed in this chapter.
Collapse
Affiliation(s)
- Anne Leber
- Department for Neurosurgery, Charite, Medical University of Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Defective reaction toward fetal alloantigens could result in both recurrent spontaneous abortions (RSAs) and recurrent early pregnancy failures (REPFs), the latter existing in couples with unexplained infertility and multiple failures of implantation after in vitro fertilization embryo transfer. Immunological mechanisms leading to RSA and REPF seem to be different, although both syndromes probably have a genetic background that has not been identified so far. Despite the fact that antiphospholipid syndrome is a well-established cause of repeated pregnancy loss, the role of different autoantibodies existing in RSA and REPF patients needs to be elucidated. Immunotherapy is believed to correct the detrimental immune reactions; however, its real effectiveness and safety for the treatment of distinct forms of pregnancy loss need to be reconsidered.
Collapse
Affiliation(s)
- Jacek R Wilczynski
- Polish Mother's Health Center Research Institute, Department of Gynecological Surgery, 281/289 Rzgowska Street, 93-338 Lódz, Poland.
| |
Collapse
|
48
|
Abstract
Heme oxygenases (HO) catabolize free heme, that is, iron (Fe) protoporphyrin (IX), into equimolar amounts of Fe(2+), carbon monoxide (CO), and biliverdin. The stress-responsive HO-1 isoenzyme affords protection against programmed cell death. The mechanism underlying this cytoprotective effect relies on the ability of HO-1 to catabolize free heme and prevent it from sensitizing cells to undergo programmed cell death. This cytoprotective effect inhibits the pathogenesis of a variety of immune-mediated inflammatory diseases.
Collapse
|
49
|
Abstract
Pre-eclampsia, a pregnancy-specific multi-organ syndrome characterized by widespread endothelial damage, is a new risk factor for cardiovascular disease. No therapies exist to prevent or treat this condition, even to achieve a modest improvement in pregnancy length or birth weight. Co-administration of soluble VEGFR-1 [VEGF (vascular endothelial growth factor) receptor-1; more commonly known as sFlt-1 (soluble Fms-like tyrosine kinase-1)] and sEng (soluble endoglin) to pregnant rats elicits severe pre-eclampsia-like symptoms. These two anti-angiogenic factors are increased dramatically prior to the clinical onset of pre-eclampsia and are quite possibly the ‘final common pathway’ responsible for the accompanying signs of hypertension and proteinuria as they can be reversed by VEGF administration in animal models. HO-1 (haem oxygenase-1), an anti-inflammatory enzyme, and its metabolite, CO (carbon monoxide), exert protective effects in several organs against oxidative stimuli. In a landmark publication, we showed that the HO-1 pathway inhibits sFlt-1 and sEng in cultured cells and human placental tissue explants. Both CO and NO (nitric oxide) promote vascular homoeostasis and vasodilatation, and activation of VEGFR-1 or VEGFR-2 induced eNOS (endothelial nitric oxide synthase) phosphorylation, NO release and HO-1 expression. Our studies established the HO-1/CO pathway as a negative regulator of cytokine-induced sFlt-1 and sEng release and eNOS as a positive regulator of VEGF-mediated vascular morphogenesis. These findings provide compelling evidence for a protective role of HO-1 in pregnancy and identify it as a target for the treatment of pre-eclampsia. Any agent that is known to up-regulate HO-1, such as statins, may have potential as a therapy. Any intervention achieving even a modest prolongation of pregnancy or amelioration of the condition could have a significant beneficial health impact worldwide.
Collapse
|
50
|
Han F, Takeda K, Ono M, Date F, Ishikawa K, Yokoyama S, Shinozawa Y, Furuyama K, Shibahara S. Hypoxemia induces expression of heme oxygenase-1 and heme oxygenase-2 proteins in the mouse myocardium. J Biochem 2009; 147:143-51. [DOI: 10.1093/jb/mvp153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|