1
|
Labaune O, Deroche T, Castanier C, Berret B. On the perception of movement vigour. Q J Exp Psychol (Hove) 2023; 76:2329-2345. [PMID: 36376994 DOI: 10.1177/17470218221140986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It is common to get the impression that someone moves rather slowly or quickly in everyday life. In motor control, the natural pace of movement is captured by the concept of vigour, which is often quantified from the speed or duration of goal-directed actions. A common phenomenon, here referred to as the vigour law, is that preferred speed and duration idiosyncratically increase with the magnitude of the motion. According to the direct-matching hypothesis, this vigour law could thus underlie the judgement of someone else's movement vigour. We conducted a series of three experiments (N = 80) to test whether the vigour law also exists in perception and whether it is linked to that of action. In addition to measuring participants' vigour, we also asked them to judge the quickness of stimuli representing horizontal arm reaching movements varying through amplitudes, speeds, and durations. Results showed that speed and duration of movements perceived as neither fast nor slow (i.e., natural pace) increased with amplitude, thereby indicating that the vigour law holds when an observer judges the natural pace of others' movements. Results also revealed that this judgement was population-based (related to the average vigour of all participants) rather than individual-based (participant's own vigour).
Collapse
Affiliation(s)
- Ombeline Labaune
- CIAMS, Université Paris-Saclay, Orsay, France
- CIAMS, Université d'Orléans, Orléans, France
| | - Thomas Deroche
- CIAMS, Université Paris-Saclay, Orsay, France
- CIAMS, Université d'Orléans, Orléans, France
| | - Carole Castanier
- CIAMS, Université Paris-Saclay, Orsay, France
- CIAMS, Université d'Orléans, Orléans, France
| | - Bastien Berret
- CIAMS, Université Paris-Saclay, Orsay, France
- CIAMS, Université d'Orléans, Orléans, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
2
|
Strength of the perception action coupling in human body discrimination tasks. Hum Mov Sci 2022; 85:102993. [DOI: 10.1016/j.humov.2022.102993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 06/03/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022]
|
3
|
Abstract
The accurate perception of human crowds is integral to social understanding and interaction. Previous studies have shown that observers are sensitive to several crowd characteristics such as average facial expression, gender, identity, joint attention, and heading direction. In two experiments, we examined ensemble perception of crowd speed using standard point-light walkers (PLW). Participants were asked to estimate the average speed of a crowd consisting of 12 figures moving at different speeds. In Experiment 1, trials of intact PLWs alternated with trials of scrambled PLWs with a viewing duration of 3 seconds. We found that ensemble processing of crowd speed could rely on local motion alone, although a globally intact configuration enhanced performance. In Experiment 2, observers estimated the average speed of intact-PLW crowds that were displayed at reduced viewing durations across five blocks of trials (between 2500 ms and 500 ms). Estimation of fast crowds was precise and accurate regardless of viewing duration, and we estimated that three to four walkers could still be integrated at 500 ms. For slow crowds, we found a systematic deterioration in performance as viewing time reduced, and performance at 500 ms could not be distinguished from a single-walker response strategy. Overall, our results suggest that rapid and accurate ensemble perception of crowd speed is possible, although sensitive to the precise speed range examined.
Collapse
|
4
|
The two-process theory of biological motion processing. Neurosci Biobehav Rev 2020; 111:114-124. [PMID: 31945392 DOI: 10.1016/j.neubiorev.2020.01.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/12/2019] [Accepted: 01/08/2020] [Indexed: 01/22/2023]
Abstract
Perception, identification, and understanding of others' actions from motion information are vital for our survival in the social world. A breakthrough in the understanding of action perception was the discovery that our visual system is sensitive to human action from the sparse motion input of only a dozen point lights, a phenomenon known as biological motion (BM) processing. Previous psychological and computational models cannot fully explain the emerging evidence for the existence of BM processing during early ontogeny. Here, we propose a two-process model of the mechanisms underlying BM processing. We hypothesize that the first system, the 'Step Detector,' rapidly processes the local foot motion and feet-below-the-body information that is specific to vertebrates, is less dependent on postnatal learning, and involves subcortical networks. The second system, the 'Bodily Action Evaluator,' slowly processes the fine global structure-from-motion, is specific to conspecific, and dependent on gradual learning processed in cortical networks. This proposed model provides new insight into research on the development of BM processing.
Collapse
|
5
|
Caramenti M, Lafortuna CL, Mugellini E, Abou Khaled O, Bresciani JP, Dubois A. Regular physical activity modulates perceived visual speed when running in treadmill-mediated virtual environments. PLoS One 2019; 14:e0219017. [PMID: 31242254 PMCID: PMC6594642 DOI: 10.1371/journal.pone.0219017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/13/2019] [Indexed: 11/25/2022] Open
Abstract
In virtual reality, visual speed is usually underestimated relative to locomotor speed. Here we investigated how physical activity and fitness affect perceived visual speed when running in a treadmill-mediated virtual environment. Thirty healthy participants (ten sedentary individuals, ten team sport players and ten expert runners) ran on a treadmill at two different speeds (8, 12km/h) in front of a moving virtual scene. Participants were asked to match the speed of the visual scene to their running speed (i.e. treadmill speed), indicating for each trial whether the scene was moving slower or faster than the treadmill. The speed of the visual scene was adjusted according to the participant’s response using a staircase until visual and running speeds were perceived as equivalent. More sedentary participants underestimated visual speed relative to their actual running speed. Specifically, visual speed had to exceed running speed to be perceived as equivalent. The underestimation of visual speed was speed-dependent, and it was significantly larger for sedentary participants than for team sports players and expert runners. The volume of physical activity per week was found to be the best predictor of visual speed perception for both running speeds, while the perceived effort constituted a good predictor only at 8km/h. Physical fitness, on the other hand turned out to be a poor predictor of visual speed perception. Therefore, in order to enhance users’ engagement and their adherence to physical activity programs, the development of “personalized” treadmill-mediated virtual environments should take into account users’ personal characteristics to provide the most natural and engaging feedback possible.
Collapse
Affiliation(s)
- Martina Caramenti
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
- Laboratorio di Biomeccanica “Franco Saibene”, Istituto di Bioimmagini e Fisiologia Molecolare, CNR, Segrate, Milano, Italy
- HumanTech Institute, University of Applied Sciences and Arts Western Switzerland, Fribourg, Switzerland
- * E-mail:
| | - Claudio L. Lafortuna
- Laboratorio di Biomeccanica “Franco Saibene”, Istituto di Bioimmagini e Fisiologia Molecolare, CNR, Segrate, Milano, Italy
| | - Elena Mugellini
- HumanTech Institute, University of Applied Sciences and Arts Western Switzerland, Fribourg, Switzerland
| | - Omar Abou Khaled
- HumanTech Institute, University of Applied Sciences and Arts Western Switzerland, Fribourg, Switzerland
| | - Jean-Pierre Bresciani
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
- Université Grenoble-Alpes, LPNC Grenoble, France
| | - Amandine Dubois
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
6
|
Lindor ER, van Boxtel JJ, Rinehart NJ, Fielding J. Motor difficulties are associated with impaired perception of interactive human movement in autism spectrum disorder: A pilot study. J Clin Exp Neuropsychol 2019; 41:856-874. [DOI: 10.1080/13803395.2019.1634181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ebony R. Lindor
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Victoria, Australia
- Deakin Child Study Centre, School of Psychology, Faculty of Health, Deakin University Geelong, Victoria, Australia
| | - Jeroen J.A. van Boxtel
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Victoria, Australia
- School of Psychology, Faculty of Health, University of Canberra, Canberra, Australia
| | - Nicole J. Rinehart
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Victoria, Australia
- Deakin Child Study Centre, School of Psychology, Faculty of Health, Deakin University Geelong, Victoria, Australia
| | - Joanne Fielding
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Victoria, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
7
|
Sotoodeh MS, Taheri-Torbati H, Sohrabi M, Ghoshuni M. Perception of biological motions is preserved in people with autism spectrum disorder: electrophysiological and behavioural evidences. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2019; 63:72-84. [PMID: 30456855 DOI: 10.1111/jir.12565] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/28/2018] [Accepted: 10/14/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND There have been some controversies over the ability of individuals with autism spectrum disorder (ASD) to perceive biological motion. In this study, we used electroencephalography and behavioural measures (recognition test) to examine whether or not children with ASD can correctly identify biological motion. METHOD Twenty participants with ASD (mean = 11.3, SD = 2.1 years) and 20 typically developed (TD) participants (mean = 11.4, SD = 2.8 years) participated in the study. They watched videos and point light displays of actions, and their EEG was recorded. Then they answered action recognition test, and their accuracy and response times were recorded. RESULTS Our findings showed that children with ASD had the same mu suppression as a TD age-matched control group in both point light display and video presentations. Furthermore, the results showed that while TD and ASD groups did not differ in accuracy, ASD participants had a slower reaction time. CONCLUSION Taken together, our results indicate that the perception of non-emotional BMs is preserved in children with ASD.
Collapse
Affiliation(s)
- M S Sotoodeh
- Department of Motor Behavior, Ferdowsi University of Mashhad, Mashhad, Iran
| | - H Taheri-Torbati
- Department of Motor Behavior, Ferdowsi University of Mashhad, Mashhad, Iran
| | - M Sohrabi
- Department of Motor Behavior, Ferdowsi University of Mashhad, Mashhad, Iran
| | - M Ghoshuni
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
8
|
Thomaschke R, Miall RC, Rueß M, Mehta PR, Hopkins B. Visuomotor and motorvisual priming with different types of set-level congruency: evidence in support of ideomotor theory, and the planning and control model (PCM). PSYCHOLOGICAL RESEARCH 2018; 82:1073-1090. [PMID: 28756514 PMCID: PMC6132632 DOI: 10.1007/s00426-017-0885-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/28/2017] [Indexed: 11/05/2022]
Abstract
Perception can prime action (visuomotor priming), and action can prime perception (motorvisual priming). According to ideomotor theory both effects rely on the overlap of mental representations between perception and action. This implies that both effects get more pronounced the more features they share. We tested this hypothesis by employing in a motorvisual (Exp. 1) and in a visuomotor (Exp. 2) setting, three different pairs of left/right target stimuli (hand pictures, arrows, and words) varying in how strongly they overlap with the pair of left/right responses. For two stimulus pairs (hands and words) the hypothesis was confirmed: hand pictures share more features with the responses than words, consequently hand pictures produced a stronger visuomotor and a stronger motorvisual priming effect than words. However, arrow stimuli showed a different pattern: the temporal dynamics of both priming effects, as well as the direction of the effect seen in motorvisual priming, were significant but opposite to that of the hand and word stimuli. This suggests that the arrows' representations were not involved in ideomotor processes, and we propose instead that they were represented in a spatial or scalar fashion, outside the representations assumed in ideomotor theory. The results are discussed in the context of ideomotor theory, and the planning and control model of motorvisual priming.
Collapse
Affiliation(s)
- Roland Thomaschke
- Lancaster University, Lancaster, UK.
- Institut für Psychologie, Albert-Ludwigs-Universität Freiburg, Engelbergerstraße 41c, 79085, Freiburg, Germany.
| | | | - Miriam Rueß
- Institut für Psychologie, Albert-Ludwigs-Universität Freiburg, Engelbergerstraße 41c, 79085, Freiburg, Germany
| | | | | |
Collapse
|
9
|
Eddy CM, Cook JL. Emotions in action: The relationship between motor function and social cognition across multiple clinical populations. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:229-244. [PMID: 29857027 DOI: 10.1016/j.pnpbp.2018.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/17/2018] [Accepted: 05/25/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Clare M Eddy
- National Centre for Mental Health and College of Medical and Dental Sciences, BSMHFT, University of Birmingham, Birmingham, UK
| | - Jennifer L Cook
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
10
|
Caramenti M, Lafortuna CL, Mugellini E, Abou Khaled O, Bresciani JP, Dubois A. Matching optical flow to motor speed in virtual reality while running on a treadmill. PLoS One 2018; 13:e0195781. [PMID: 29641564 PMCID: PMC5895071 DOI: 10.1371/journal.pone.0195781] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/29/2018] [Indexed: 11/19/2022] Open
Abstract
We investigated how visual and kinaesthetic/efferent information is integrated for speed perception in running. Twelve moderately trained to trained subjects ran on a treadmill at three different speeds (8, 10, 12 km/h) in front of a moving virtual scene. They were asked to match the visual speed of the scene to their running speed-i.e., treadmill's speed. For each trial, participants indicated whether the scene was moving slower or faster than they were running. Visual speed was adjusted according to their response using a staircase until the Point of Subjective Equality (PSE) was reached, i.e., until visual and running speed were perceived as equivalent. For all three running speeds, participants systematically underestimated the visual speed relative to their actual running speed. Indeed, the speed of the visual scene had to exceed the actual running speed in order to be perceived as equivalent to the treadmill speed. The underestimation of visual speed was speed-dependent, and percentage of underestimation relative to running speed ranged from 15% at 8km/h to 31% at 12km/h. We suggest that this fact should be taken into consideration to improve the design of attractive treadmill-mediated virtual environments enhancing engagement into physical activity for healthier lifestyles and disease prevention and care.
Collapse
Affiliation(s)
- Martina Caramenti
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
- Istituto di Bioimmagini e Fisiologia Molecolare, Consiglio Nazionale delle Ricerche, Segrate, Milano, Italy
- HumanTech Institute, University of Applied Sciences and Arts Western Switzerland, Fribourg, Switzerland
| | - Claudio L. Lafortuna
- Istituto di Bioimmagini e Fisiologia Molecolare, Consiglio Nazionale delle Ricerche, Segrate, Milano, Italy
| | - Elena Mugellini
- HumanTech Institute, University of Applied Sciences and Arts Western Switzerland, Fribourg, Switzerland
| | - Omar Abou Khaled
- HumanTech Institute, University of Applied Sciences and Arts Western Switzerland, Fribourg, Switzerland
| | - Jean-Pierre Bresciani
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Amandine Dubois
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
11
|
Wermelinger S, Gampe A, Behr J, Daum MM. Interference of action perception on action production increases across the adult life span. Exp Brain Res 2017; 236:577-586. [PMID: 29249051 DOI: 10.1007/s00221-017-5157-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 12/14/2017] [Indexed: 10/18/2022]
Abstract
Action perception and action production are assumed to be based on an internal simulation process that involves the sensorimotor system. This system undergoes changes across the life span and is assumed to become less precise with age. In the current study, we investigated how increasing age affects the magnitude of interference in action production during simultaneous action perception. In a task adapted from Brass et al. (Brain Cogn 44(2):124-143, 2000), we asked participants (aged 20-80 years) to respond to a visually presented finger movement and/or symbolic cue by executing a previously defined finger movement. Action production was assessed via participants' reaction times. Results show that participants were slower in trials in which they were asked to ignore an incongruent finger movement compared to trials in which they had to ignore an incongruent symbolic cue. Moreover, advancing age was shown to accentuate this effect. We suggest that the internal simulation of the action becomes less precise with age making the sensorimotor system more susceptible to perturbations such as the interference of a concurrent action perception.
Collapse
Affiliation(s)
- Stephanie Wermelinger
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14, 8050, Zurich, Switzerland.
| | - Anja Gampe
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14, 8050, Zurich, Switzerland
| | - Jannis Behr
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14, 8050, Zurich, Switzerland
| | - Moritz M Daum
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14, 8050, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Wermelinger S, Gampe A, Daum MM. Higher levels of motor competence are associated with reduced interference in action perception across the lifespan. PSYCHOLOGICAL RESEARCH 2017; 83:432-444. [PMID: 29116436 DOI: 10.1007/s00426-017-0941-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 10/27/2017] [Indexed: 11/29/2022]
Abstract
Action perception and action production are tightly linked and elicit bi-directional influences on each other when performed simultaneously. In this study, we investigated whether age-related differences in manual fine-motor competence and/or age affect the (interfering) influence of action production on simultaneous action perception. In a cross-sectional eye-tracking study, participants of a broad age range (N = 181, 20-80 years) observed a manual grasp-and-transport action while performing an additional motor or cognitive distractor task. Action perception was measured via participants' frequency of anticipatory gaze shifts towards the action goal. Manual fine-motor competence was assessed with the Motor Performance Series. The interference effect in action perception was greater in the motor than the cognitive distractor task. Furthermore, manual fine-motor competence and age in years were both associated with this interference. The better the participants' manual fine-motor competence and the younger they were, the smaller the interference effect. However, when both influencing factors (age and fine-motor competence) were taken into account, a model including only age-related differences in manual fine-motor competence best fit with our data. These results add to the existing literature that motor competence and its age-related differences influence the interference effects between action perception and production.
Collapse
Affiliation(s)
- Stephanie Wermelinger
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14, 8050, Zurich, Switzerland.
| | - Anja Gampe
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14, 8050, Zurich, Switzerland
| | - Moritz M Daum
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14, 8050, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Turi M, Muratori F, Tinelli F, Morrone MC, Burr DC. Autism is associated with reduced ability to interpret grasping actions of others. Sci Rep 2017; 7:12687. [PMID: 28979000 PMCID: PMC5627240 DOI: 10.1038/s41598-017-12995-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 09/13/2017] [Indexed: 11/20/2022] Open
Abstract
We investigated the ability of children with ASD to discriminate a small cylinder from a large cube by observing a point-light movie of an actor grasping the object, either from an allocentric or egocentric viewpoint (observing action of others or self). Compared with typically developing controls, high functioning autistic children showed a strong selective impairment in this task, but only with the allocentric viewpoint, where thresholds were twice as high: egocentric thresholds were similar to age- and ability-matched controls. The magnitude of the impairment correlated strongly with the degree of symptomology (R2 = 0.5). The results suggest that children with ASD might be impaired in their ability to predict and infer the consequences of others' movements, which could be related to the social-communicative deficits often reported in autism.
Collapse
Affiliation(s)
- Marco Turi
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Fondazione Stella Maris Mediterraneo, Chiaromonte, Potenza, Italy
| | - Filippo Muratori
- IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesca Tinelli
- Department of Developmental Neuroscience, Stella Maris Scientific Institute, Pisa, Italy
| | - Maria Concetta Morrone
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Robotics, Brain & Cognitive Sciences Department, Italian Institute of Technology, via Morego 30, 16163, Genoa, Italy
| | - David C Burr
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, Italy.
- CNR Neuroscience Institute, Pisa, Italy.
| |
Collapse
|
14
|
Kloeters S, Hartmann CJ, Pundmann VD, Schnitzler A, Südmeyer M, Lange J. Impaired perception of human movements in Parkinson’s disease. Behav Brain Res 2017; 317:88-94. [DOI: 10.1016/j.bbr.2016.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/30/2016] [Accepted: 09/03/2016] [Indexed: 12/01/2022]
|
15
|
Cook J. From movement kinematics to social cognition: the case of autism. Philos Trans R Soc Lond B Biol Sci 2016; 371:rstb.2015.0372. [PMID: 27069049 DOI: 10.1098/rstb.2015.0372] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2016] [Indexed: 11/12/2022] Open
Abstract
The way in which we move influences our ability to perceive, interpret and predict the actions of others. Thus movements play an important role in social cognition. This review article will appraise the literature concerning movement kinematics and motor control in individuals with autism, and will argue that movement differences between typical and autistic individuals may contribute to bilateral difficulties in reciprocal social cognition.
Collapse
Affiliation(s)
- Jennifer Cook
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
16
|
Abstract
Two studies demonstrated that the motivation to resolve cognitive dissonance affects the visual perception of physical environments. In Study 1, subjects crossed a campus quadrangle wearing a costume reminiscent of Carmen Miranda. In Study 2, subjects pushed themselves up a hill while kneeling on a skateboard. Subjects performed either task under a high-choice, low-choice, or control condition. Subjects in the high-choice conditions, presumably to resolve dissonance, perceived the environment to be less aversive than did subjects in the low-choice and control conditions, seeing a shorter distance to travel (Study 1) and a shallower slope to climb (Study 2). These studies suggest that the impact of motivational states extends from social judgment down into perceptual processes.
Collapse
|
17
|
Buchanan JJ, Park I. Observation and physical practice: different practice contexts lead to similar outcomes for the acquisition of kinematic information. PSYCHOLOGICAL RESEARCH 2015; 81:83-98. [DOI: 10.1007/s00426-015-0723-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 11/06/2015] [Indexed: 10/22/2022]
|
18
|
Abstract
Research on embodiment is rich in impressive demonstrations but somewhat poor in comprehensive explanations. Although some moderators and driving mechanisms have been identified, a comprehensive conceptual account of how bodily states or dynamics influence behavior is still missing. Here, we attempt to integrate current knowledge by describing three basic psychological mechanisms: direct state induction, which influences how humans feel or process information, unmediated by any other cognitive mechanism; modal priming, which changes the accessibility of concepts associated with a bodily state; sensorimotor simulation, which affects the ease with which congruent and incongruent actions are performed. We argue that the joint impact of these mechanisms can account for most existing embodiment effects. Additionally, we summarize empirical tests for distinguishing these mechanisms and suggest a guideline for future research about the mechanisms underlying embodiment effects.
Collapse
Affiliation(s)
- Anita Körner
- Department of Psychology II, University of Würzburg, Würzburg, Germany
| | - Sascha Topolinski
- Social and Economic Cognition, Department of Psychology, University of Cologne, Cologne, Germany
| | - Fritz Strack
- Department of Psychology II, University of Würzburg, Würzburg, Germany
| |
Collapse
|
19
|
Case LK, Pineda J, Ramachandran VS. Common coding and dynamic interactions between observed, imagined, and experienced motor and somatosensory activity. Neuropsychologia 2015; 79:233-45. [PMID: 25863237 DOI: 10.1016/j.neuropsychologia.2015.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 03/01/2015] [Accepted: 04/03/2015] [Indexed: 01/25/2023]
Abstract
Motor imagery and perception - considered generally as forms of motor simulation - share overlapping neural representations with motor production. While much research has focused on the extent of this "common coding," less attention has been paid to how these overlapping representations interact. How do imagined, observed, or produced actions influence one another, and how do we maintain control over our perception and behavior? In the first part of this review we describe interactions between motor production and motor simulation, and explore apparent regulatory mechanisms that balance these processes. Next, we consider the somatosensory system. Numerous studies now support a "sensory mirror system" comprised of neural representations activated by either afferent sensation or vicarious sensation. In the second part of this review we summarize evidence for shared representations of sensation and sensory simulation (including imagery and observed sensation), and suggest that similar interactions and regulation of simulation occur in the somatosensory domain as in the motor domain. We suggest that both motor and somatosensory simulations are flexibly regulated to support simulations congruent with our sensorimotor experience and goals and suppress or separate the influence of those that are not. These regulatory mechanisms are frequently revealed by cases of brain injury but can also be employed to facilitate sensorimotor rehabilitation.
Collapse
Affiliation(s)
- Laura K Case
- Center for Brain and Cognition, University of California, San Diego, USA; Pain and Integrative Neuroscience Branch, National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA.
| | - Jaime Pineda
- Department of Cognitive Science, University of California, San Diego, USA
| | | |
Collapse
|
20
|
Beyond action-specific simulation: domain-general motor contributions to perception. Trends Cogn Sci 2015; 19:176-8. [DOI: 10.1016/j.tics.2015.01.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 01/28/2015] [Accepted: 01/29/2015] [Indexed: 11/18/2022]
|
21
|
Cook R, Gaule A, Aichelburg C, Press C. Motor contributions to the perception of relative phase. J Exp Psychol Hum Percept Perform 2014; 40:1763-8. [PMID: 24999611 PMCID: PMC4170819 DOI: 10.1037/a0037351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The extent to which different stimulus elements move together, namely their relative phase, is a central visual feature of many social and physical systems; characterizing everything from the oscillations of a walker’s limbs to the alternating lights at pedestrian crossings. The experiments described here provide the first evidence of a motor contribution to the representation of relative phase. Using an interference paradigm, we demonstrate that a motor load dramatically impairs discrimination of relative phase. Comparable interference effects were observed for biological and mechanical stimuli, indicative of a domain-general mechanism. In addition, we show that the same motor load has little effect on a similar static-angle matching task, and that an auditory rhythmic load did not interfere with phase discriminations in the same way as the motor load. These results suggest that the motor system contributes to the perception of relative phase; information crucial for interpreting our social and physical environments.
Collapse
Affiliation(s)
- Richard Cook
- Department of Psychology, City University London
| | - Anne Gaule
- Division of Psychology and Language Sciences, University College London
| | | | - Clare Press
- Department of Psychological Sciences, Birkbeck, University of London
| |
Collapse
|
22
|
Witt JK, Sugovic M. Response bias cannot explain action-specific effects: evidence from compliant and non-compliant participants. Perception 2013; 42:138-52. [PMID: 23700953 DOI: 10.1068/p7367] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
According to the action-specific account of perception, the perceiver's ability to act influences perception of the target. For example, targets that are easier to acquire are reported to look closer, bigger, and slower. However, an alternative explanation for these effects is that they are due to response bias, rather than to changes in perception. To test the role of response bias, we employed two separate manipulations. We manipulated people's abilities to block a ball and measured the corresponding effects on estimated ball speed. We also created an explicit task demand by giving participants instructions that emphasized responding either slow or fast. Participants were grouped, based on whether they were compliant or non-compliant with the instructions. Regardless of their compliance, we found an action-specific effect of blocking ability on estimated speed. Given that non-compliant participants still showed the effect, the results provide strong evidence against a response-bias explanation of this action-specific effect. Paired with earlier research, we conclude that blocking ability influences perceived speed. Perception expresses the relationship between the environment and the perceiver, and this view is consistent with emerging neural and behavioral evidence for an interconnected perceptual-motor system.
Collapse
Affiliation(s)
- Jessica K Witt
- Department of Psychology, Colorado State University, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
23
|
Does the athletes' body shape the athletes' mind? A few ideas on athletes' mental rotation performance. Commentary on Jansen and Lehmann. Adv Cogn Psychol 2013; 9:99-101. [PMID: 23833696 PMCID: PMC3700736 DOI: 10.2478/v10053-008-0136-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/05/2013] [Indexed: 11/20/2022] Open
Abstract
Athletes exhibit differences in perceptual-cognitive abilities when compared to non-athletes. Recent theoretical developments focus on the role of the athletes' body in perceptual-cognitive tasks such as mental rotation tasks. It is assumed that the degree to which stimuli in mental rotation tasks can be embodied facilitates the mental rotation process. The implications of this assumption are discussed and ideas for future research are presented.
Collapse
|
24
|
Salomon R, Lim M, Kannape O, Llobera J, Blanke O. "Self pop-out": agency enhances self-recognition in visual search. Exp Brain Res 2013; 228:173-81. [PMID: 23665753 DOI: 10.1007/s00221-013-3549-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 04/25/2013] [Indexed: 11/25/2022]
Abstract
In real-life situations, we are often required to recognize our own movements among movements originating from other people. In social situations, these movements are often correlated (for example, when dancing or walking with others) adding considerable difficulty to self-recognition. Studies from visual search have shown that visual attention can selectively highlight specific features to make them more salient. Here, we used a novel visual search task employing virtual reality and motion tracking to test whether visual attention can use efferent information to enhance self-recognition of one's movements among four or six moving avatars. Active movements compared to passive movements allowed faster recognition of the avatar moving like the subject. Critically, search slopes were flat for the active condition but increased for passive movements, suggesting efficient search for active movements. In a second experiment, we tested the effects of using the participants' own movements temporally delayed as distractors in a self-recognition discrimination task. We replicated the results of the first experiment with more rapid self-recognition during active trials. Importantly, temporally delayed distractors increased reaction times despite being more perceptually different than the spatial distractors. The findings demonstrate the importance of agency in self-recognition and self-other discrimination from movement in social settings.
Collapse
Affiliation(s)
- R Salomon
- Center for Neuroprosthetics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
25
|
Labiadh L, Ramanantsoa MM, Golomer E. Imitation of an action course in preschool and school-aged children: a hierarchical reconstruction. Hum Mov Sci 2013; 32:425-35. [PMID: 23639615 DOI: 10.1016/j.humov.2012.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 11/19/2022]
Abstract
Imitation is commonly considered as a hierarchical process. The current study explored the reproduction of a multi-task course in deferred imitation. Eighty-five children between 3.5 and 7.5 years old were divided into five groups and instructed to watch a live human adult demonstrator who performed simple successive actions, such as walking, jumping, grasping, carrying objects from one location to another through six sessions. After a five-minute delay, the children were individually instructed to reproduce the course. Their responses were videotaped and coded in dichotomous data at two hierarchical levels, namely goals and their spatial location. The main findings showed no improvement in the replication of goals due either to age or trials. However, there was an improvement in the integration of the goals' spatial location over trials. This signifies that imitation is an active reconstruction mechanism hierarchically organized.
Collapse
Affiliation(s)
- Lazhar Labiadh
- Laboratoire GEPECS, Equipe TEC: Techniques et Enjeux du Corps - UFR STAPS 1 rue Lacretelle, 75015 Paris, France.
| | | | | |
Collapse
|
26
|
Ping RM, Goldin-Meadow S, Beilock SL. Understanding gesture: is the listener's motor system involved? J Exp Psychol Gen 2013; 143:195-204. [PMID: 23565671 DOI: 10.1037/a0032246] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Listeners are able to glean information from the gestures that speakers produce, seemingly without conscious awareness. However, little is known about the mechanisms that underlie this process. Research on human action understanding shows that perceiving another's actions results in automatic activation of the motor system in the observer, which then affects the observer's understanding of the actor's goals. We ask here whether perceiving another's gesture can similarly result in automatic activation of the motor system in the observer. In Experiment 1, we first established a new procedure in which listener response times are used to study how gesture impacts sentence comprehension. In Experiment 2, we used this procedure, in conjunction with a secondary motor task, to investigate whether the listener's motor system is involved in this process. We showed that moving arms and hands (but not legs and feet) interferes with the listener's ability to use information conveyed in a speaker's hand gestures. Our data thus suggest that understanding gesture relies, at least in part, on the listener's own motor system.
Collapse
|
27
|
Thomaschke R. Investigating ideomotor cognition with motorvisual priming paradigms: key findings, methodological challenges, and future directions. Front Psychol 2012. [PMID: 23189067 PMCID: PMC3505020 DOI: 10.3389/fpsyg.2012.00519] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ideomotor theory claims that perceptual representations of action-effects are functionally involved in the planning of actions. Strong evidence for this claim comes from a phenomenon called motorvisual priming. Motorvisual priming refers to the finding that action planning directly affects perception, and that the effects are selective for stimuli that share features with the planned action. Motorvisual priming studies have provided detailed insights into the processing of perceptual representations in action planning. One important finding is that such representations in action planning have a categorical format, whereas metric representations are not anticipated in planning. Further essential findings regard the processing mechanisms and the time course of ideomotor cognition. Perceptual representations of action-effects are first activated by action planning and then bound into a compound representation of the action plan. This compound representation is stabilized throughout the course of the action by the shielding of all involved representations from other cognitive processes. Despite a rapid growth in the number of motorvisual priming studies in the current literature, there are still many aspects of ideomotor cognition which have not yet been investigated. These aspects include the scope of ideomotor processing with regard to action types and stimulus types, as well as the exact nature of the binding and shielding mechanisms involved.
Collapse
Affiliation(s)
- Roland Thomaschke
- Institut für Psychologie, Universität Regensburg Regensburg, Germany
| |
Collapse
|
28
|
Manera V, Cavallo A, Chiavarino C, Schouten B, Verfaillie K, Becchio C. Are you approaching me? Motor execution influences perceived action orientation. PLoS One 2012; 7:e37514. [PMID: 22624042 PMCID: PMC3356325 DOI: 10.1371/journal.pone.0037514] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 04/22/2012] [Indexed: 11/18/2022] Open
Abstract
Human observers are especially sensitive to the actions of conspecifics that match their own actions. This has been proposed to be critical for social interaction, providing the basis for empathy and joint action. However, the precise relation between observed and executed actions is still poorly understood. Do ongoing actions change the way observers perceive others' actions? To pursue this question, we exploited the bistability of depth-ambiguous point-light walkers, which can be perceived as facing towards the viewer or as facing away from the viewer. We demonstrate that point-light walkers are perceived more often as facing the viewer when the observer is walking on a treadmill compared to when the observer is performing an action that does not match the observed behavior (e.g., cycling). These findings suggest that motor processes influence the perceived orientation of observed actions: Acting observers tend to perceive similar actions by conspecifics as oriented towards themselves. We discuss these results in light of the possible mechanisms subtending action-induced modulation of perception.
Collapse
Affiliation(s)
- Valeria Manera
- Department of Psychology, Center for Cognitive Science, University of Turin, Turin, Italy
- Laboratory of Experimental Psychology, K.U. Leuven, Leuven, Belgium
| | - Andrea Cavallo
- Department of Psychology, Center for Cognitive Science, University of Turin, Turin, Italy
| | - Claudia Chiavarino
- Department of Psychology, Center for Cognitive Science, University of Turin, Turin, Italy
| | - Ben Schouten
- Laboratory of Experimental Psychology, K.U. Leuven, Leuven, Belgium
| | - Karl Verfaillie
- Laboratory of Experimental Psychology, K.U. Leuven, Leuven, Belgium
| | - Cristina Becchio
- Department of Psychology, Center for Cognitive Science, University of Turin, Turin, Italy
- * E-mail:
| |
Collapse
|
29
|
Unconscious effects of action on perception. Brain Sci 2012; 2:130-46. [PMID: 24962769 PMCID: PMC4061788 DOI: 10.3390/brainsci2020130] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 04/03/2012] [Accepted: 04/09/2012] [Indexed: 11/17/2022] Open
Abstract
We spend much of our life predicting the future. This involves developing theories and making predictions about others' intentions, goals and about the consequences of the actions we are observing. Adapting our actions and behaviours to the environment is required for achieving our goals, and to do this the motor system relies on input from sensory modalities. However, recent theories suggest that the link between motor and perceptual areas is bidirectional, and that predictions based on planned or intended actions can unconsciously influence and modify our perception. In the following review we describe current theories on the link between action and perception, and examine the ways in which the motor system can unconsciously alter our perception.
Collapse
|
30
|
Thomaschke R, Hopkins B, Miall RC. The planning and control model (PCM) of motorvisual priming: reconciling motorvisual impairment and facilitation effects. Psychol Rev 2012; 119:388-407. [PMID: 22369178 PMCID: PMC3936358 DOI: 10.1037/a0027453] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 01/04/2012] [Accepted: 01/20/2012] [Indexed: 11/08/2022]
Abstract
Previous research on dual-tasks has shown that, under some circumstances, actions impair the perception of action-consistent stimuli, whereas, under other conditions, actions facilitate the perception of action-consistent stimuli. We propose a new model to reconcile these contrasting findings. The planning and control model (PCM) of motorvisual priming proposes that action planning binds categorical representations of action features so that their availability for perceptual processing is inhibited. Thus, the perception of categorically action-consistent stimuli is impaired during action planning. Movement control processes, on the other hand, integrate multi-sensory spatial information about the movement and, therefore, facilitate perceptual processing of spatially movement-consistent stimuli. We show that the PCM is consistent with a wider range of empirical data than previous models on motorvisual priming. Furthermore, the model yields previously untested empirical predictions. We also discuss how the PCM relates to motorvisual research paradigms other than dual-tasks.
Collapse
Affiliation(s)
- Roland Thomaschke
- Department of Psychology, University of Regensburg, 93053 Regensburg, Germany.
| | | | | |
Collapse
|
31
|
The effect of a second runner on pacing strategy and RPE during a running time trial. Int J Sports Physiol Perform 2011; 7:26-32. [PMID: 21941007 DOI: 10.1123/ijspp.7.1.26] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE The aim of this study was to examine performance, pacing strategy and perception of effort during a 5 km time trial while running with or without the presence of another athlete. METHODS Eleven nonelite male athletes participated in five 5 km time trials: two self-paced, maximal effort trials performed at the start and end of the study, and three trials performed in the presence of a second runner. In the three trials, the second runner ran either in front of the subject, behind the subject, or next to the subject. Performance times, heart rate, RPE, and a subjective assessment of the effect of the second runner on the athlete's performance were recorded during each of the trials. RESULTS There was no significant difference in performance times, heart rate or RPE between any of the five trials. Running speed declined from the 1st to the 4th kilometer and then increased for the last kilometer in all five trials. Following the completion of all trials, 9 of the 11 subjects perceived it to be easier to complete the 5 km time trial with another runner in comparison with running alone. CONCLUSIONS While the athletes perceived their performance to be improved by the presence of another runner, their pacing strategy, running speed, heart rate and RPE were not significantly altered. These findings indicate that an athlete's subconscious pacing strategy is robust and is not altered by the presence of another runner.
Collapse
|
32
|
Spatiotemporal tuning of the facilitation of biological motion perception by concurrent motor execution. J Neurosci 2011; 31:3493-9. [PMID: 21368061 DOI: 10.1523/jneurosci.4277-10.2011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The execution of motor behavior influences concurrent visual action observation and especially the perception of biological motion. The neural mechanisms underlying this interaction between perception and motor execution are not exactly known. In addition, the available experimental evidence is partially inconsistent because previous studies have reported facilitation as well as impairments of action perception by concurrent execution. Exploiting a novel virtual reality paradigm, we investigated the spatiotemporal tuning of the influence of motor execution on the perception of biological motion within a signal-detection task. Human observers were presented with point-light stimuli that were controlled by their own movements. Participants had to detect a point-light arm in a scrambled mask, either while executing waving movements or without concurrent motor execution (baseline). The temporal and spatial coherence between the observed and executed movements was parametrically varied. We found a systematic tuning of the facilitatory versus inhibitory influences of motor execution on biological motion detection with respect to the temporal and the spatial congruency between observed and executed movements. Specifically, we found a gradual transition between facilitatory and inhibitory interactions for decreasing temporal synchrony and spatial congruency. This result provides evidence for a spatiotemporally highly selective coupling between dynamic motor representations and neural structures involved in the visual processing of biological motion. In addition, our study offers a unifying explanation that reconciles contradicting results about modulatory effects of motor execution on biological motion perception in previous studies.
Collapse
|
33
|
Assimilation and contrast: the two sides of specific interference between action and perception. PSYCHOLOGICAL RESEARCH 2011; 76:171-82. [DOI: 10.1007/s00426-011-0338-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 04/23/2011] [Indexed: 10/18/2022]
|
34
|
Sparenberg P, Springer A, Prinz W. Predicting others' actions: evidence for a constant time delay in action simulation. PSYCHOLOGICAL RESEARCH 2011; 76:41-9. [PMID: 21365343 DOI: 10.1007/s00426-011-0321-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 02/14/2011] [Indexed: 11/24/2022]
Abstract
Recent evidence indicates that humans can precisely predict the outcome of occluded actions. It has been suggested that these predictions arise from a mental simulation which might run in real-time. The present experiments aimed to specify the time course of this simulation process. Participants watched transiently occluded point-light actions and the temporal outcome after occlusion was manipulated. Participants were instructed to judge the temporal coherence of the action after a short (Experiment 1) and a long occlusion period (Experiment 2). Both experiments revealed a comparable negative point of subjective equality (PSE), indicating that action simulation took constantly longer than the observed action itself. Such a temporal error was not present when inverted actions were used, (Experiment 3) ruling out a pure visually driven effect. The results suggest that the temporal error is due to costs arising from a switch from action perception to an internal simulation process involving motor representations.
Collapse
Affiliation(s)
- Peggy Sparenberg
- Department of Psychology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, 04103, Leipzig, Germany.
| | | | | |
Collapse
|
35
|
Wamain Y, Tallet J, Zanone PG, Longcamp M. "Biological geometry perception": visual discrimination of eccentricity is related to individual motor preferences. PLoS One 2011; 6:e15995. [PMID: 21283813 PMCID: PMC3023766 DOI: 10.1371/journal.pone.0015995] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 12/02/2010] [Indexed: 11/29/2022] Open
Abstract
Background In the continuum between a stroke and a circle including all possible ellipses, some eccentricities seem more “biologically preferred” than others by the motor system, probably because they imply less demanding coordination patterns. Based on the idea that biological motion perception relies on knowledge of the laws that govern the motor system, we investigated whether motorically preferential and non-preferential eccentricities are visually discriminated differently. In contrast with previous studies that were interested in the effect of kinematic/time features of movements on their visual perception, we focused on geometric/spatial features, and therefore used a static visual display. Methodology/Principal Findings In a dual-task paradigm, participants visually discriminated 13 static ellipses of various eccentricities while performing a finger-thumb opposition sequence with either the dominant or the non-dominant hand. Our assumption was that because the movements used to trace ellipses are strongly lateralized, a motor task performed with the dominant hand should affect the simultaneous visual discrimination more strongly. We found that visual discrimination was not affected when the motor task was performed by the non-dominant hand. Conversely, it was impaired when the motor task was performed with the dominant hand, but only for the ellipses that we defined as preferred by the motor system, based on an assessment of individual preferences during an independent graphomotor task. Conclusions/Significance Visual discrimination of ellipses depends on the state of the motor neural networks controlling the dominant hand, but only when their eccentricity is “biologically preferred”. Importantly, this effect emerges on the basis of a static display, suggesting that what we call “biological geometry”, i.e., geometric features resulting from preferential movements is relevant information for the visual processing of bidimensional shapes.
Collapse
Affiliation(s)
- Yannick Wamain
- Laboratoire Adaptation Perceptivo-Motrice et Apprentissage, Université de Toulouse, Toulouse, France
| | - Jessica Tallet
- Laboratoire Adaptation Perceptivo-Motrice et Apprentissage, Université de Toulouse, Toulouse, France
| | - Pier-Giorgio Zanone
- Laboratoire Adaptation Perceptivo-Motrice et Apprentissage, Université de Toulouse, Toulouse, France
| | - Marieke Longcamp
- Laboratoire Adaptation Perceptivo-Motrice et Apprentissage, Université de Toulouse, Toulouse, France
- Institut de Neurosciences Cognitives de la Méditerranée, CNRS-Université de la Méditerranée, Marseille, France
- * E-mail:
| |
Collapse
|
36
|
Bisio A, Stucchi N, Jacono M, Fadiga L, Pozzo T. Automatic versus voluntary motor imitation: effect of visual context and stimulus velocity. PLoS One 2010; 5:e13506. [PMID: 20976006 PMCID: PMC2958128 DOI: 10.1371/journal.pone.0013506] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 09/24/2010] [Indexed: 11/18/2022] Open
Abstract
Automatic imitation is the tendency to reproduce observed actions involutarily. Though this topic has been widely treated, at present little is known about the automatic imitation of the kinematic features of an observed movement. The present study was designed to understand if the kinematics of a previously seen stimulus primes the executed action, and if this effect is sensitive to the kinds of stimuli presented. We proposed a simple imitation paradigm in which a dot or a human demonstrator moved in front of the participant who was instructed either to reach the final position of the stimulus or to imitate its motion with his or her right arm. Participants' movements were automatically contaminated by stimulus velocity when it moved according to biological laws, suggesting that automatic imitation was kinematic dependent. Despite that the performance, in term of reproduced velocity, improved in a context of voluntary imitation, subjects did not replicate the observed motions exactly. These effects were not affected by the kind of stimuli used, i.e., motor responses were influenced in the same manner after dot or human observation. These findings support the existence of low-level sensory-motor matching mechanisms that work on movement planning and represent the basis for higher levels of social interaction.
Collapse
Affiliation(s)
- Ambra Bisio
- Department of Robotics, Brain and Cognitive Sciences, Italian Institute of Technology, Genova, Italy.
| | | | | | | | | |
Collapse
|
37
|
Shiffrar M, Heinen T. Die Fähigkeiten von Athleten verändern deren Wahrnehmung von Handlungen. ZEITSCHRIFT FUR SPORTPSYCHOLOGIE 2010. [DOI: 10.1026/1612-5010/a000018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Zusammenfassung. Wie nimmt das menschliche visuelle System Handlungen wahr? – Traditionelle Modelle der visuellen Wahrnehmung nehmen an, dass bei allen Beobachtern die gleichen visuellen Prozesse der Analyse von visuellen Stimuli unterschiedlicher Art zu Grunde liegen. Dieser theoretische Ansatz sagt vorher, dass unterschiedliche Personen Gegenstände und Handlungen in gleicher Art und Weise wahrnehmen, unabhängig davon, ob sich ihr Bewegungssystem beispielsweise durch krankheitsbedingte Veränderungen oder Trainingsanpassungen unterscheidet. Demgegenüber nehmen Theorien der embodied perception an, dass individuelle Fähigkeiten des Beobachters die visuelle Wahrnehmung beeinflussen. Ausgehend von diesem Ansatz ist das, was man sieht, dadurch bestimmt, was man physisch tun (kann). Menschliche Bewegung wird dabei als eine spezielle Kategorie von visuellen Bewegungsreizen angesehen, da es die einzige Bewegungsart ist, welche der Mensch ausführen und wahrnehmen kann. Der vorliegende Artikel gibt einen Überblick über aktuelle neuro- und verhaltenswissenschaftliche Befunde zur visuellen Wahrnehmung menschlicher Bewegung unter besonderer Berücksichtigung der Rolle des motorischen Systems. Dabei wird auf die Wahrnehmung von Athleten eingegangen, da diese Personengruppe über spezifische motorische und visuelle Fähigkeiten verfügt, welche den Erklärungswert traditioneller Theorien der visuellen Wahrnehmung kritisch hinterfragen.
Collapse
Affiliation(s)
- Maggie Shiffrar
- Rutgers The State University of New Jersey, Department of Psychology, Newark
| | - Thomas Heinen
- Deutsche Sporthochschule Köln, Psychologisches Institut, Köln
| |
Collapse
|
38
|
|
39
|
Shiffrar M. People watching: visual, motor, and social processes in the perception of human movement. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2010; 2:68-78. [DOI: 10.1002/wcs.88] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Maggie Shiffrar
- Department of Psychology, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
40
|
Witt JK, Dorsch TE. Kicking to bigger uprights: field goal kicking performance influences perceived size. Perception 2010; 38:1328-40. [PMID: 19911630 DOI: 10.1068/p6325] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Perception relates not only to the optical information from the environment but also to the perceiver's performance on a given task. We present evidence that the perceived height and width of an American-football field goal post relates to the perceiver's kicking performance. Participants who made more successful kicks perceived the field goal posts to be farther apart and perceived the crossbar to be closer to the ground compared with participants who made fewer kicks. Interestingly, the current results show perceptual effects related to performance only after kicking the football but not before kicking. We also found that the types of performance errors influenced specific aspects of perception. The more kicks that were missed left or right of the target, the narrower the field goal posts looked. The more kicks that were missed short of the target, the taller the field goal crossbar looked. These results demonstrate that performance is a factor in size perception.
Collapse
Affiliation(s)
- Jessica K Witt
- Department of Psychological Sciences, Purdue University, 703 Third Street, West Lafayette, IN 47907-2046, USA.
| | | |
Collapse
|
41
|
The visual perception of motion by observers with autism spectrum disorders: a review and synthesis. Psychon Bull Rev 2010; 16:761-77. [PMID: 19815780 DOI: 10.3758/pbr.16.5.761] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Traditionally, psychological research on autism spectrum disorder (ASD) has focused on social and cognitive abilities. Vision provides an important input channel to both of these processes, and, increasingly, researchers are investigating whether observers with ASD differ from typical observers in their visual percepts. Recently, significant controversies have arisen over whether observers with ASD differ from typical observers in their visual analyses of movement. Initial studies suggested that observers with ASD experience significant deficits in their visual sensitivity to coherent motion in random dot displays but not to point-light displays of human motion. More recent evidence suggests exactly the opposite: that observers with ASD do not differ from typical observers in their visual sensitivity to coherent motion in random dot displays, but do differ from typical observers in their visual sensitivity to human motion. This review examines these apparently conflicting results, notes gaps in previous findings, suggests a potentially unifying hypothesis, and identifies areas ripe for future research.
Collapse
|
42
|
Blaesi S, Wilson M. The mirror reflects both ways: action influences perception of others. Brain Cogn 2009; 72:306-9. [PMID: 19914763 DOI: 10.1016/j.bandc.2009.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 09/26/2009] [Accepted: 10/03/2009] [Indexed: 10/20/2022]
Abstract
Substantial evidence links perception of others' bodies and mental representation of the observer's own body; however, the overwhelming majority of this evidence is unidirectional, showing influence from perception to action. It has been proposed that the influence also runs from action to perception, but to date the evidence is scant. Here we report that ordinary motor actions performed by the subject affect concurrent psychophysical judgments of human-body stimuli. Subjects remained unaware of the connection between the action and the main task. The results show that perception can change as a result of the observer's ongoing actions.
Collapse
Affiliation(s)
- Sabine Blaesi
- Department of Psychology, University of California, Santa Cruz, CA 95064, United States
| | | |
Collapse
|
43
|
Repp BH, Knoblich G. Performed or observed keyboard actions affect pianists' judgements of relative pitch. Q J Exp Psychol (Hove) 2009; 62:2156-70. [PMID: 19358057 DOI: 10.1080/17470210902745009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Action can affect visual perception if the action's expected sensory effects resemble a concurrent unstable or deviant event. To determine whether action can also change auditory perception, participants were required to play pairs of octave-ambiguous tones by pressing successive keys on a piano or computer keyboard and to judge whether each pitch interval was rising or falling. Both pianists and nonpianist musicians gave significantly more "rising" responses when the order of key presses was left-to-right than when it was right-to-left, in accord with the pitch mapping of the piano. However, the effect was much larger in pianists. Pianists showed a similarly large effect when they passively observed the experimenter pressing keys on a piano keyboard, as long as the keyboard faced the participant. The results suggest that acquired action-effect associations can affect auditory perceptual judgement.
Collapse
|
44
|
Ping RM, Dhillon S, Beilock SL. Reach For What You Like: The Body's Role in Shaping Preferences. EMOTION REVIEW 2009. [DOI: 10.1177/1754073908100439] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The position of individuals' bodies (e.g., holding a pencil in the mouth in a way that either facilitates or inhibits smiling musculature) can influence their emotional reactions to the stimuli they encounter, and can even impact their explicit preferences for one item over another. In this article we begin by reviewing the literature demonstrating these effects, explore mechanisms to explain this body-preference link, and introduce new work from our lab that asks whether one's bodily or motor experiences might also shape preferences in situations where the body is not contorted in a particular position, or when there is no intention to act. Such work suggests that one consequence of perceiving an object is the automatic and covert motor simulation of acting on this object. This, in turn, provides individuals with information about how easy or hard this action would be. It transpires that we like to do what is easy, and we also prefer objects that are easier to act on. The notion that judgments of object likeability are driven by motoric information furthers embodied cognition theories by demonstrating that even our preferences are grounded in action.
Collapse
Affiliation(s)
- Raedy M. Ping
- Department of Psychology, The University of Chicago,
USA
| | | | | |
Collapse
|
45
|
Aznar-Casanova JA, da Silva JA, Ribeiro-Filho NP, Santillán JE. ¿Es el espacio visualmente percibido un espacio métrico? STUDIES IN PSYCHOLOGY 2009. [DOI: 10.1174/021093909789618486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
46
|
Abstract
Is the visual analysis of human actions modulated by the emotional content of those actions? This question is motivated by a consideration of the neuroanatomical connections between visual and emotional areas. Specifically, the superior temporal sulcus (STS), known to play a critical role in the visual detection of action, is extensively interconnected with the amygdala, a center for emotion processing. To the extent that amygdala activity influences STS activity, one would expect to find systematic differences in the visual detection of emotional actions. A series of psychophysical studies tested this prediction. Experiment 1 identified point-light walker movies that convincingly depicted five different emotional states: happiness, sadness, neutral, anger, and fear. In Experiment 2, participants performed a walker detection task with these movies. Detection performance was systematically modulated by the emotional content of the gaits. Participants demonstrated the greatest visual sensitivity to angry walkers. The results of Experiment 3 suggest that local velocity cues to anger may account for high false alarm rates to the presence of angry gaits. These results support the hypothesis that the visual analysis of human action depends upon emotion processes.
Collapse
Affiliation(s)
- Arieta Chouchourelou
- Department of Psychology, Rutgers University - Newark Campus, Newark, NJ 07102, USA.
| | | | | | | |
Collapse
|
47
|
Witt JK, Proffitt DR. Action-specific influences on distance perception: a role for motor simulation. J Exp Psychol Hum Percept Perform 2008; 34:1479-92. [PMID: 19045987 PMCID: PMC3490620 DOI: 10.1037/a0010781] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Perception is influenced by the perceiver's ability to perform intended actions. For example, when people intend to reach with a tool to targets that are just beyond arm's reach, the targets look closer than when they intend to reach without the tool (J. K. Witt, D. R. Proffitt, & W. Epstein, 2005). This is one of several examples demonstrating that behavioral potential affects perception. However, the action-specific processes that are involved in relating the person's abilities to perception have yet to be explored. Four experiments are presented that implicate motor simulation as a mediator of these effects. When a perceiver intends to perform an action, the perceiver runs a motor simulation of that action. The perceiver's ability to perform the action, as determined by the outcome of the simulation, influences perceived distance.
Collapse
Affiliation(s)
- Jessica K Witt
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
48
|
Zwickel J, Grosjean M, Prinz W. A contrast effect between the concurrent production and perception of movement directions. VISUAL COGNITION 2008. [DOI: 10.1080/13506280701653586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Grosjean M, Zwickel J, Prinz W. Acting while perceiving: assimilation precedes contrast. PSYCHOLOGICAL RESEARCH 2008; 73:3-13. [PMID: 18365250 PMCID: PMC2757607 DOI: 10.1007/s00426-008-0146-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 03/01/2008] [Indexed: 11/24/2022]
Abstract
To explore the nature of specific interactions between concurrent perception and action, participants were asked to move one of their hands in a certain direction while simultaneously observing an independent stimulus motion of a (dis)similar direction. The kinematics of the hand trajectories revealed a form of contrast effect (CE) in that the produced directions were biased away from the perceived directions (“Experiment 1”). Specifically, the endpoints of horizontal movements were lower when having watched an upward as opposed to a downward motion. However, when participants moved under higher speed constraints and were not presented with the stimulus motion prior to initiating their movements, the CE was preceded by an assimilation effect, i.e., movements were biased toward the stimulus motion directions (“Experiment 2”). These findings extend those of related studies by showing that CEs of this type actually correspond to the second phase of a bi-phasic pattern of specific perception–action interference.
Collapse
Affiliation(s)
- Marc Grosjean
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Munich, Germany.
| | | | | |
Collapse
|
50
|
Abstract
Converging lines of evidence point to a strong link between action and perception. In this study, we show that this linkage plays a role in controlling the dynamics of binocular rivalry, in which two stimuli compete for perceptual awareness. Observers dichoptically viewed two dynamic rival stimuli while moving a computer mouse with one hand. When the motion of one rival stimulus was consistent with observers' own hand movements, dominance durations of that stimulus were extended and, remarkably, suppression durations of that stimulus were abbreviated. Additional measurements revealed that this change in rivalry dynamics was not attributable to observers' knowledge about the condition under test. Thus, self-generated actions can influence the resolution of perceptual conflict, even when the object being controlled falls outside of visual awareness.
Collapse
Affiliation(s)
- Kazushi Maruya
- Department of Psychology, Vanderbilt University, Nashville, TN 37203, USA
| | | | | |
Collapse
|