1
|
Ide S, Ikeda K. Caenorhabditis elegans for opioid addiction research. Curr Opin Neurobiol 2024; 88:102914. [PMID: 39236640 DOI: 10.1016/j.conb.2024.102914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/16/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
The problem of drug addiction has become a profound societal problem worldwide. A better understanding of the neurobiological basis of addiction and the discovery of more effective treatments are needed. Recent studies have shown that many mechanisms that underlie addiction exist in more primitive organisms, including the nematode Caenorhabditis elegans (C. elegans). C. elegans is also hypothesized to possess a functional opioid-like system, including the endogenous opioid-like peptide NLP-24 and opioid-like receptor NPR-17. Opioids, such as morphine, are thought to cause addiction-like behavior by activating dopamine nerves in C. elegans via the opioid-like system. Accumulating evidence suggests that C. elegans is an excellent animal model for identifying molecular mechanisms of addiction.
Collapse
Affiliation(s)
- Soichiro Ide
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, Japan.
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, Japan; Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo, Japan
| |
Collapse
|
2
|
Martins AC, Virgolini MB, Ávila DS, Scharf P, Li J, Tinkov AA, Skalny AV, Bowman AB, Rocha JBT, Aschner M. Mitochondria in the Spotlight: C. elegans as a Model Organism to Evaluate Xenobiotic-Induced Dysfunction. Cells 2023; 12:2124. [PMID: 37681856 PMCID: PMC10486742 DOI: 10.3390/cells12172124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/19/2023] [Accepted: 08/20/2023] [Indexed: 09/09/2023] Open
Abstract
Mitochondria play a crucial role in cellular respiration, ATP production, and the regulation of various cellular processes. Mitochondrial dysfunctions have been directly linked to pathophysiological conditions, making them a significant target of interest in toxicological research. In recent years, there has been a growing need to understand the intricate effects of xenobiotics on human health, necessitating the use of effective scientific research tools. Caenorhabditis elegans (C. elegans), a nonpathogenic nematode, has emerged as a powerful tool for investigating toxic mechanisms and mitochondrial dysfunction. With remarkable genetic homology to mammals, C. elegans has been used in studies to elucidate the impact of contaminants and drugs on mitochondrial function. This review focuses on the effects of several toxic metals and metalloids, drugs of abuse and pesticides on mitochondria, highlighting the utility of C. elegans as a model organism to investigate mitochondrial dysfunction induced by xenobiotics. Mitochondrial structure, function, and dynamics are discussed, emphasizing their essential role in cellular viability and the regulation of processes such as autophagy, apoptosis, and calcium homeostasis. Additionally, specific toxins and toxicants, such as arsenic, cadmium, and manganese are examined in the context of their impact on mitochondrial function and the utility of C. elegans in elucidating the underlying mechanisms. Furthermore, we demonstrate the utilization of C. elegans as an experimental model providing a promising platform for investigating the intricate relationships between xenobiotics and mitochondrial dysfunction. This knowledge could contribute to the development of strategies to mitigate the adverse effects of contaminants and drugs of abuse, ultimately enhancing our understanding of these complex processes and promoting human health.
Collapse
Affiliation(s)
- Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Miriam B. Virgolini
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Daiana Silva Ávila
- Laboratory of Biochemistry and Toxicology in Caenorhabditis Elegans, Universidade Federal do Pampa, Campus Uruguaiana, BR-472 Km 592, Uruguaiana 97500-970, RS, Brazil
| | - Pablo Scharf
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Jung Li
- College of Osteopathic Medicine, Des Moines University, Des Moines, IA 50312, USA
| | - Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
| | - Anatoly V. Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
- Peoples Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA
| | - João B. T. Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| |
Collapse
|
3
|
Radevski ME, Prendergast MA, Bardo MT, Akins CK. PT150 blocks the rewarding properties of ethanol and attenuates ethanol-induced reduction of egg laying in Coturnix quail. Psychopharmacology (Berl) 2023; 240:295-301. [PMID: 36607385 DOI: 10.1007/s00213-022-06299-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023]
Abstract
RATIONALE Alcohol use disorder (AUD) has been shown to be associated with a dysregulated stress system. Reducing the stress hormone corticosterone (CORT), that binds to glucocorticoid receptors, may attenuate the rewarding properties of drugs of abuse. However, the effect of blocking corticosterone receptors on ethanol reward has yet to be investigated. OBJECTIVES The current study investigated whether the stress hormone receptor antagonist, PT150, would block the rewarding properties of ethanol via the glucocorticoid receptor system and attenuate other ethanol-induced effects. METHODS A conditioned place preference (CPP) procedure was used to examine the rewarding properties of ethanol in an avian preclinical model. Ethanol was paired with the least preferred chamber. On alternate days, water was paired with the preferred chamber. After eight pairings, a place preference test was given that allowed subjects to have access to both chambers. Half of the subjects received PT150 prior to ethanol administration. The other half received vehicle. Time spent in each chamber during the preference tests, locomotor activity during the pairings, and egg production in female birds was recorded. RESULTS Ethanol treatment resulted in a CPP and pretreatment of PT150 blocked the acquisition of the ethanol-induced place preference. Neither ethanol nor PT150 altered locomotor activity. Pretreatment of PT150 also increased egg production in female quail treated with ethanol. CONCLUSIONS These findings suggest repeated ethanol pairings with visual cues can produce a CPP. Furthermore, pretreatment of PT150 may be a potential pharmacotherapy for blocking the rewarding properties of ethanol and may enhance egg production in female quail treated with ethanol.
Collapse
Affiliation(s)
- Mia E Radevski
- Department of Psychology, University of Kentucky, Lexington, KY, 40506, USA.
| | - Mark A Prendergast
- Department of Psychology, University of Kentucky, Lexington, KY, 40506, USA
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY, 40506, USA
| | - Chana K Akins
- Department of Psychology, University of Kentucky, Lexington, KY, 40506, USA
| |
Collapse
|
4
|
Albrecht PA, Fernandez-Hubeid LE, Deza-Ponzio R, Romero VL, Gonzales-Moreno C, Carranza AD, Moran Y, Asis R, Virgolini MB. Reduced acute functional tolerance and enhanced preference for ethanol in Caenorhabditis elegans exposed to lead during development: Potential role of alcohol dehydrogenase. Neurotoxicol Teratol 2022; 94:107131. [DOI: 10.1016/j.ntt.2022.107131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/13/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022]
|
5
|
Albrecht PA, Fernandez-Hubeid LE, Deza-Ponzio R, Virgolini MB. The intertwining between lead and ethanol in the model organism Caenorhabditis elegans. FRONTIERS IN TOXICOLOGY 2022; 4:991787. [PMID: 36204698 PMCID: PMC9531147 DOI: 10.3389/ftox.2022.991787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Caenorhabditis elegans (C. elegans) is a model organism widely used to evaluate the mechanistic aspects of toxicants with the potential to predict responses comparable to those of mammals. We report here the consequences of developmental lead (Pb) exposure on behavioral responses to ethanol (EtOH) in C. elegans. In addition, we present data on morphological alterations in the dopamine (DA) synapse and DA-dependent behaviors aimed to dissect the neurobiological mechanisms that underlie the relationship between these neurotoxicants. Finally, the escalation to superior animals that parallels the observed effects in both experimental models with references to EtOH metabolism and oxidative stress is also discussed. Overall, the literature revised here underpins the usefulness of C. elegans to evidence behavioral responses to a combination of neurotoxicants in mechanistic-orientated studies.
Collapse
Affiliation(s)
- P A Albrecht
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - L E Fernandez-Hubeid
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - R Deza-Ponzio
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M B Virgolini
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
6
|
Hughes S, van de Klashorst D, Veltri CA, Grundmann O. Acute, Sublethal, and Developmental Toxicity of Kratom ( Mitragyna speciosa Korth.) Leaf Preparations on Caenorhabditis elegans as an Invertebrate Model for Human Exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6294. [PMID: 35627831 PMCID: PMC9140534 DOI: 10.3390/ijerph19106294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022]
Abstract
Kratom (Mitragyna speciosa Korth.) is a tree native to Southeast Asia with stimulant and opioid-like effects which has seen increased use in Europe and North America in recent years. Its safety and pharmacological effects remain under investigation, especially in regard to developmental and generational toxicity. In the current study, we investigated commercial kratom preparations using the nematode Caenorhabditis elegans as a translational model for toxicity and pharmacological effects. The pure alkaloids mitragynine and 7-hydroxymitragynine as well as aqueous, ethanolic, and methanolic extracts of three commercial kratom products were evaluated using a battery of developmental, genotoxic, and opioid-related experiments. As determined previously, the mitragynine and 7-hydroxymitragynine content in kratom samples was higher in the alcoholic extracts than the aqueous extracts. Above the human consumption range equivalent of 15-70 µg/mL, kratom dose-dependently reduced brood size and health of parent worms and their progeny. 7-hydroxymitragynine, but not mitragynine, presented with toxic and developmental effects at very high concentrations, while the positive control, morphine, displayed toxic effects at 0.5 mM. Kratom and its alkaloids did not affect pumping rate or interpump interval in the same way as morphine, suggesting that kratom is unlikely to act primarily via the opioid-signalling pathway. Only at very high doses did kratom cause developmental and genotoxic effects in nematodes, indicating its relative safety.
Collapse
Affiliation(s)
- Samantha Hughes
- A-LIFE Amsterdam Institute for Life and Environment, Section Environmental Health and Toxicology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | | | - Charles A. Veltri
- Department of Pharmaceutical Sciences, College of Pharmacy, Midwestern University, Glendale, AZ 85308, USA;
| | - Oliver Grundmann
- Department of Pharmaceutical Sciences, College of Pharmacy, Midwestern University, Glendale, AZ 85308, USA;
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
7
|
Sheardown E, Mech AM, Petrazzini MEM, Leggieri A, Gidziela A, Hosseinian S, Sealy IM, Torres-Perez JV, Busch-Nentwich EM, Malanchini M, Brennan CH. Translational relevance of forward genetic screens in animal models for the study of psychiatric disease. Neurosci Biobehav Rev 2022; 135:104559. [PMID: 35124155 PMCID: PMC9016269 DOI: 10.1016/j.neubiorev.2022.104559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/10/2021] [Accepted: 02/01/2022] [Indexed: 12/16/2022]
Abstract
Psychiatric disorders represent a significant burden in our societies. Despite the convincing evidence pointing at gene and gene-environment interaction contributions, the role of genetics in the etiology of psychiatric disease is still poorly understood. Forward genetic screens in animal models have helped elucidate causal links. Here we discuss the application of mutagenesis-based forward genetic approaches in common animal model species: two invertebrates, nematodes (Caenorhabditis elegans) and fruit flies (Drosophila sp.); and two vertebrates, zebrafish (Danio rerio) and mice (Mus musculus), in relation to psychiatric disease. We also discuss the use of large scale genomic studies in human populations. Despite the advances using data from human populations, animal models coupled with next-generation sequencing strategies are still needed. Although with its own limitations, zebrafish possess characteristics that make them especially well-suited to forward genetic studies exploring the etiology of psychiatric disorders.
Collapse
Affiliation(s)
- Eva Sheardown
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Aleksandra M Mech
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | | | - Adele Leggieri
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Agnieszka Gidziela
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Saeedeh Hosseinian
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Ian M Sealy
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jose V Torres-Perez
- UK Dementia Research Institute at Imperial College London and Department of Brain Sciences, Imperial College London, 86 Wood Lane, London W12 0BZ, UK
| | - Elisabeth M Busch-Nentwich
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Margherita Malanchini
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK
| | - Caroline H Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England, UK.
| |
Collapse
|
8
|
Ide S, Kunitomo H, Iino Y, Ikeda K. Caenorhabditis Elegans Exhibits Morphine Addiction-like Behavior via the Opioid-like Receptor NPR-17. Front Pharmacol 2022; 12:802701. [PMID: 35046825 PMCID: PMC8762297 DOI: 10.3389/fphar.2021.802701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/09/2021] [Indexed: 11/14/2022] Open
Abstract
Addiction has become a profound societal problem worldwide, and few effective treatments are available. The nematode Caenorhabditis elegans (C. elegans) is an excellent invertebrate model to study neurobiological disease states. C. elegans reportedly developed a preference for cues that had previously been paired with addictive drugs, similar to place conditioning findings in rodents. Moreover, several recent studies discovered and reported the existence of an opioid-like system in C. elegans. Still unclear, however, is whether C. elegans exhibits addictive-like behaviors for opioids, such as morphine. In the present study, we found that C. elegans exhibited dose-dependent preference for morphine using the conditioned chemosensory-cue preference (CCP) test. This preference was blocked by co-treatment with the opioid receptor antagonist naloxone. C. elegans also exhibited aversion to naloxone-precipitated withdrawal from chronic morphine exposure. The expression of morphine-induced CCP and morphine withdrawal were abolished in worms that lacked the opioid-like receptor NPR-17. Dopamine-deficient mutant (cat-2 (e1112)) worms also did not exhibit morphine-induced CCP. These results indicate that the addictive function of the opioid system exists in C. elegans, which may serve as a useful model of opioid addiction.
Collapse
Affiliation(s)
- Soichiro Ide
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hirofumi Kunitomo
- Department of Biological Sciences, Faculty of Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yuichi Iino
- Department of Biological Sciences, Faculty of Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
9
|
Ebrahimi Z, Kahvandi N, Komaki A, Karimi SA, Naderishahab M, Sarihi A. The role of mGlu4 receptors within the nucleus accumbens in acquisition and expression of morphine-induced conditioned place preference in male rats. BMC Neurosci 2021; 22:17. [PMID: 33743609 PMCID: PMC7981834 DOI: 10.1186/s12868-021-00627-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/12/2021] [Indexed: 11/26/2022] Open
Abstract
Background Several studies have shown that glutamate neurotransmission in the nucleus accumbens (NAc) is required for the development of morphine-induced conditional place preference (CPP). In addition, metabotropic glutamate receptors (mGluRs) in NAc play important roles in the reward pathways. However, the precise role of mGluR4 in different steps of the morphine-induced CPP is less well known. In the present study the effect of bilateral intra-accumbal infusion of VU0155041, as a specific mGluR4 agonist on the acquisition and expression of morphine induced CPP in male Wistar rats was investigated. The animals were bilaterally implanted with guide cannulae above the NAc. In the first step of the study, the VU0155041 was administered at doses of 10, 30 and 50 μg/0.5 μL saline per side into the NAc during the 3 days of morphine (5 mg/kg) conditioning (acquisition) phase of morphine-induced CPP. In the second step of the study, the rats bilaterally received VU0155041 at the dose of 50 μg/0.5 μL, 5 min before the post-conditioning test in order to check the effect of VU0155041 on the expression of morphine-induced CPP. Results The results showed that the intra-accumbal injection of VU0155041 inhibits the acquisition of morphine-induced CPP in a dose dependent manner, but had no effect on expression. Conclusions The data indicated that intra-NAc administration of VU0155041 dose dependently blocks the establishment of morphine-induced CPP and reduces the rewarding properties of morphine. These effects may be related to changes in glutamate activity in the NAC and/or learning dependent mechanism of glutamate neurotransmission in reward pathway(s).
Collapse
Affiliation(s)
- Zahra Ebrahimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nazanin Kahvandi
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Asaad Karimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marzieh Naderishahab
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran. .,Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
10
|
Abstract
Addiction is a disease characterized by compulsive drug seeking and consumption observed in 20-30% of users. An addicted individual will favor drug reward over natural rewards, despite major negative consequences. Mechanistic research on rodents modeling core components of the disease has identified altered synaptic transmission as the functional substrate of pathological behavior. While the initial version of a circuit model for addiction focused on early drug adaptive behaviors observed in all individuals, it fell short of accounting for the stochastic nature of the transition to compulsion. The model builds on the initial pharmacological effect common to all addictive drugs-an increase in dopamine levels in the mesolimbic system. Here, we consolidate this early model by integrating circuits underlying compulsion and negative reinforcement. We discuss the genetic and epigenetic correlates of individual vulnerability. Many recent data converge on a gain-of-function explanation for circuit remodeling, revealing blueprints for novel addiction therapies.
Collapse
Affiliation(s)
- Christian Lüscher
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; .,Clinic of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, CH-1211 Geneva, Switzerland
| | - Patricia H Janak
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
11
|
McKendrick G, Graziane NM. Drug-Induced Conditioned Place Preference and Its Practical Use in Substance Use Disorder Research. Front Behav Neurosci 2020; 14:582147. [PMID: 33132862 PMCID: PMC7550834 DOI: 10.3389/fnbeh.2020.582147] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/02/2020] [Indexed: 12/25/2022] Open
Abstract
The conditioned place preference (CPP) paradigm is a well-established model utilized to study the role of context associations in reward-related behaviors, including both natural rewards and drugs of abuse. In this review article, we discuss the basic history, various uses, and considerations that are tied to this technique. There are many potential takeaway implications of this model, including negative affective states, conditioned drug effects, memory, and motivation, which are all considered here. We also discuss the neurobiology of CPP including relevant brain regions, molecular signaling cascades, and neuromodulatory systems. We further examine some of our prior findings and how they integrate CPP with self-administration paradigms. Overall, by describing the fundamentals of CPP, findings from the past few decades, and implications of using CPP as a research paradigm, we have endeavored to support the case that the CPP method is specifically advantageous for studying the role of a form of Pavlovian learning that associates drug use with the surrounding environment.
Collapse
Affiliation(s)
- Greer McKendrick
- Neuroscience Graduate Program, Penn State College of Medicine, Hershey, PA, United States.,Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Nicholas M Graziane
- Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
12
|
Park JY, Cheong MC, Cho JY, Koo HS, Paik YK. A novel functional cross-interaction between opioid and pheromone signaling may be involved in stress avoidance in Caenorhabditis elegans. Sci Rep 2020; 10:7524. [PMID: 32371913 PMCID: PMC7200713 DOI: 10.1038/s41598-020-64567-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 04/17/2020] [Indexed: 11/09/2022] Open
Abstract
Upon sensing starvation stress, Caenorhabditis elegans larvae (L2d) elicit two seemingly opposing behaviors to escape from the stressful condition: food-seeking roaming mediated by the opioid peptide NLP-24 and dauer formation mediated by pheromones. Because opioid and pheromone signals both originate in ASI chemosensory neurons, we hypothesized that they might act sequentially or competitively to avoid starvation stress. Our data shows that NPR-17 opioid receptor signaling suppressed pheromone biosynthesis and the overexpression of opioid genes disturbed dauer formation. Likewise, DAF-37 pheromone receptor signaling negatively modulated nlp-24 expression in the ASI neurons. Under short-term starvation (STS, 3 h), both pheromone and opioid signaling were downregulated in gpa-3 mutants. Surprisingly, the gpa-3;nlp-24 double mutants exhibited much higher dauer formation than seen in either of the single mutants. Under long-term starvation (LTS, >24 h), the stress-activated SKN-1a downregulated opioid signaling and then enhanced dauer formation. Both insulin and serotonin stimulated opioid signaling, whereas NHR-69 suppressed opioid signaling. Thus, GPA-3 and SKN-1a are proposed to regulate cross-antagonistic interaction between opioids and pheromones in a cell-specific manner. These regulatory functions are suggested to be exerted via the selective interaction of GPA-3 with NPR-17 and site-specific SKN-1 binding to the promoter of nlp-24 to facilitate stress avoidance.
Collapse
Affiliation(s)
- Jun Young Park
- Interdisciplinary Program in Integrative Omics for Biomedical Science, Yonsei University, Seoul, 03722, Korea
- Yonsei Proteome Research Center, Yonsei University, Seoul, 03722, Korea
| | - Mi Cheong Cheong
- Department of Pharmacology, UT Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Jin-Young Cho
- Yonsei Proteome Research Center, Yonsei University, Seoul, 03722, Korea
| | - Hyeon-Sook Koo
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Young-Ki Paik
- Interdisciplinary Program in Integrative Omics for Biomedical Science, Yonsei University, Seoul, 03722, Korea.
- Yonsei Proteome Research Center, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
13
|
Katner SN, Bredhold KE, Steagall KB, Bell RL, Neal-Beliveau BS, Cheong MC, Engleman EA. Caenorhabditis elegans as a model system to identify therapeutics for alcohol use disorders. Behav Brain Res 2019; 365:7-16. [PMID: 30802531 DOI: 10.1016/j.bbr.2019.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/15/2019] [Accepted: 02/10/2019] [Indexed: 02/04/2023]
Abstract
Alcohol use disorders (AUDs) cause serious problems in society and few effective treatments are available. Caenorhabditis elegans (C. elegans) is an excellent invertebrate model to study the neurobiological basis of human behavior with a conserved, fully tractable genome, and a short generation time for fast generation of data at a fraction of the cost of other organisms. C. elegans demonstrate movement toward, and concentration-dependent self-exposure to various psychoactive drugs. The discovery of opioid receptors in C. elegans provided the impetus to test the hypothesis that C. elegans may be used as a medications screen to identify new AUD treatments. We tested the effects of naltrexone, an opioid antagonist and effective treatment for AUDs, on EtOH preference in C. elegans. Six-well agar test plates were prepared with EtOH placed in a target zone on one side and water in the opposite target zone of each well. Worms were treated with naltrexone before EtOH preference testing and then placed in the center of each well. Wild-type worms exhibited a concentration-dependent preference for 50, 70 and 95% EtOH. Naltrexone blocked acute EtOH preference, but had no effect on attraction to food or benzaldehyde in wild-type worms. Npr-17 opioid receptor knockout mutants did not display a preference for EtOH. In contrast, npr-17 opioid receptor rescue mutants exhibited significant EtOH preference behavior, which was attenuated by naltrexone. Chronic EtOH exposure induced treatment resistance and compulsive-like behavior. These data indicate that C. elegans can serve as a model system to identify compounds to treat AUDs.
Collapse
Affiliation(s)
- Simon N Katner
- Department of Psychiatry & Institute of Psychiatric Research, Indianapolis, IN, 46202, USA.
| | | | - Kevin B Steagall
- Department of Psychiatry & Institute of Psychiatric Research, Indianapolis, IN, 46202, USA
| | - Richard L Bell
- Department of Psychiatry & Institute of Psychiatric Research, Indianapolis, IN, 46202, USA
| | | | - Mi C Cheong
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Eric A Engleman
- Department of Psychiatry & Institute of Psychiatric Research, Indianapolis, IN, 46202, USA
| |
Collapse
|
14
|
Wang Z, Xu Z, Li X. Impacts of methamphetamine and ketamine on C.elegans's physiological functions at environmentally relevant concentrations and eco-risk assessment in surface waters. JOURNAL OF HAZARDOUS MATERIALS 2019; 363:268-276. [PMID: 30312923 DOI: 10.1016/j.jhazmat.2018.09.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
In this work, C. elegans as a model organism was treated with methamphetamine (METH) and ketamine (KET) to assess its eco-toxicity at a range (0.05-250 μg L-1) that covers environmentally relevant concentrations (0.05-0.5 μg L-1). METH (≥0.05 μg L-1) and KET (≥0.5 μg L-1) significantly affected the feeding rate, locomotion, gustation and olfaction (P < 0.05), which may result in pronounced disturbance to aquatic ecology. Alterations in the contents of neurotransmitters (i.e., octopamine (OA), dopamine (DA), and serotonin (5-HT)) correlated with the physiology change. The metabolic activities and the antioxidase activity (i.e., superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)) of METH and KET in C. elegans were different, which could partly explain the difference of the physiological changes induced by the two substances. Moreover, these two drugs could induce vulva deformity, and the 50% effect concentrations were 620.34 μg L-1 for METH and 54.39 μg L-1 for KET, respectively. The risk quotients (RQ) in two Chinese rivers, the Shenzhen and Liangshui River, were calculated to assess eco-risks of METH and KET. RQs of KET in the Shenzhen River were over 0.1 at the medium risk level, indicating that eco-risks of illicit drugs to aquatic organism cannot be overlooked.
Collapse
Affiliation(s)
- Zhenglu Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zeqiong Xu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiqing Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
15
|
Engleman EA, Steagall KB, Bredhold KE, Breach M, Kline HL, Bell RL, Katner SN, Neal-Beliveau BS. Caenorhabditis elegans Show Preference for Stimulants and Potential as a Model Organism for Medications Screening. Front Physiol 2018; 9:1200. [PMID: 30214414 PMCID: PMC6125605 DOI: 10.3389/fphys.2018.01200] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 08/10/2018] [Indexed: 12/20/2022] Open
Abstract
The nematode Caenorhabditis elegans (C. elegans) is a popular invertebrate model organism to study neurobiological disease states. This is due in part to the intricate mapping of all neurons and synapses of the entire animal, the wide availability of mutant strains, and the genetic and molecular tools that can be used to manipulate the genome and gene expression. We have shown that, C. elegans develops a conditioned preference for cues that had previously been paired with either cocaine or methamphetamine exposure that is dependent on dopamine neurotransmission, similar to findings using place conditioning with rats and mice. In the current study, we show C. elegans also display a preference for, and self-exposure to, cocaine and nicotine. This substance of abuse (SOA) preference response can be selectively blocked by pretreatment with naltrexone and is consistent with the recent discovery of an opioid receptor system in C. elegans. In addition, pre-exposure to the smoking cessation treatment varenicline also inhibits self-exposure to nicotine. Exposure to concentrations of treatments that inhibit SOA preference/self-exposure did not induce any significant inhibition of locomotor activity or affect food or benzaldehyde chemotaxis. These data provide predictive validity for the development of high-throughput C. elegans behavioral medication screens. These screens could enable fast and accurate generation of data to identify compounds that may be effective in treating human addiction. The successful development and validation of such models would introduce powerful and novel tools in the search for new pharmacological treatments for substance use disorders, and provide a platform to study the mechanisms that underlie addictions.
Collapse
Affiliation(s)
- Eric A Engleman
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kevin B Steagall
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kristin E Bredhold
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Michaela Breach
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Hannah L Kline
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Simon N Katner
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bethany S Neal-Beliveau
- Department of Psychology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| |
Collapse
|
16
|
Lee AH, Brandon CL, Wang J, Frost WN. An Argument for Amphetamine-Induced Hallucinations in an Invertebrate. Front Physiol 2018; 9:730. [PMID: 29988540 PMCID: PMC6026665 DOI: 10.3389/fphys.2018.00730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 05/25/2018] [Indexed: 12/03/2022] Open
Abstract
Hallucinations – compelling perceptions of stimuli that aren’t really there – occur in many psychiatric and neurological disorders, and are triggered by certain drugs of abuse. Despite their clinical importance, the neuronal mechanisms giving rise to hallucinations are poorly understood, in large part due to the absence of animal models in which they can be induced, confirmed to be endogenously generated, and objectively analyzed. In humans, amphetamine (AMPH) and related psychostimulants taken in large or repeated doses can induce hallucinations. Here we present evidence for such phenomena in the marine mollusk Tritonia diomedea. Animals injected with AMPH were found to sporadically launch spontaneous escape swims in the absence of eliciting stimuli. Deafferented isolated brains exposed to AMPH, where real stimuli could play no role, generated sporadic, spontaneous swim motor programs. A neurophysiological search of the swim network traced the origin of these drug-induced spontaneous motor programs to spontaneous bursts of firing in the S-cells, the CNS afferent neurons that normally inform the animal of skin contact with its predators and trigger the animal’s escape swim. Further investigation identified AMPH-induced enhanced excitability and plateau potential properties in the S-cells. Taken together, these observations support an argument that Tritonia’s spontaneous AMPH-induced swims are triggered by false perceptions of predator contact – i.e., hallucinations—and illuminate potential cellular mechanisms for such phenomena.
Collapse
Affiliation(s)
- Anne H Lee
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Cindy L Brandon
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Jean Wang
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - William N Frost
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
17
|
Sobkowiak R, Zielezinski A, Karlowski WM, Lesicki A. Nicotine affects protein complex rearrangement in Caenorhabditis elegans cells. Drug Chem Toxicol 2017; 40:470-483. [PMID: 28049353 DOI: 10.1080/01480545.2016.1264411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nicotine may affect cell function by rearranging protein complexes. We aimed to determine nicotine-induced alterations of protein complexes in Caenorhabditis elegans (C. elegans) cells, thereby revealing links between nicotine exposure and protein complex modulation. We compared the proteomic alterations induced by low and high nicotine concentrations (0.01 mM and 1 mM) with the control (no nicotine) in vivo by using mass spectrometry (MS)-based techniques, specifically the cetyltrimethylammonium bromide (CTAB) discontinuous gel electrophoresis coupled with liquid chromatography (LC)-MS/MS and spectral counting. As a result, we identified dozens of C. elegans proteins that are present exclusively or in higher abundance in either nicotine-treated or untreated worms. Based on these results, we report a possible network that captures the key protein components of nicotine-induced protein complexes and speculate how the different protein modules relate to their distinct physiological roles. Using functional annotation of detected proteins, we hypothesize that the identified complexes can modulate the energy metabolism and level of oxidative stress. These proteins can also be involved in modulation of gene expression and may be crucial in Alzheimer's disease. The findings reported in our study reveal putative intracellular interactions of many proteins with the cytoskeleton and may contribute to the understanding of the mechanisms of nicotinic acetylcholine receptor (nAChR) signaling and trafficking in cells.
Collapse
Affiliation(s)
- Robert Sobkowiak
- a Department of Cell Biology , Adam Mickiewicz University , Poznań , Poland and
| | - Andrzej Zielezinski
- b Department of Computational Biology , Faculty of Biology, Adam Mickiewicz University , Poznań , Poland
| | - Wojciech M Karlowski
- b Department of Computational Biology , Faculty of Biology, Adam Mickiewicz University , Poznań , Poland
| | - Andrzej Lesicki
- a Department of Cell Biology , Adam Mickiewicz University , Poznań , Poland and
| |
Collapse
|
18
|
Insulin signaling genes modulate nicotine-induced behavioral responses in Caenorhabditis elegans. Behav Pharmacol 2016; 27:44-9. [PMID: 26317299 DOI: 10.1097/fbp.0000000000000186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Insulin signaling has been suggested to modulate nicotine dependence, but the underlying genetic evidence has been lacking. Here, we used the nematode, Caenorhabditis elegans, to investigate whether genetic alterations in the insulin signaling pathway affect behavioral responses to nicotine. For this, we challenged drug-naive C. elegans with an acute dose of nicotine (100 μmol/l) while recording changes in their locomotion speed. Although nicotine treatment stimulated locomotion speed in wild-type C. elegans, the same treatment reduced locomotion speed in mutants defective in insulin signaling. This phenotype could be suppressed by mutations in daf-16, a gene encoding a FOXO transcription factor that acts downstream of insulin signaling. Our data suggest that insulin signaling genes, daf-2, age-1, pdk-1, akt-1, and akt-2, modulate behavioral responses to nicotine in C. elegans, indicating a genetic link between nicotine behavior and insulin signaling.
Collapse
|
19
|
Katner SN, Neal-Beliveau BS, Engleman EA. Embryonic Methamphetamine Exposure Inhibits Methamphetamine Cue Conditioning and Reduces Dopamine Concentrations in Adult N2 Caenorhabditis elegans. Dev Neurosci 2016; 38:139-49. [PMID: 27233671 DOI: 10.1159/000445761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/23/2016] [Indexed: 11/19/2022] Open
Abstract
Methamphetamine (MAP) addiction is substantially prevalent in today's society, resulting in thousands of deaths and costing billions of dollars annually. Despite the potential deleterious consequences, few studies have examined the long-term effects of embryonic MAP exposure. Using the invertebrate nematode Caenorhabditis elegans allows for a controlled analysis of behavioral and neurochemical changes due to early developmental drug exposure. The objective of the current study was to determine the long-term behavioral and neurochemical effects of embryonic exposure to MAP in C. elegans. In addition, we sought to improve our conditioning and testing procedures by utilizing liquid filtration, as opposed to agar, and smaller, 6-well testing plates to increase throughput. Wild-type N2 C. elegans were embryonically exposed to 50 μM MAP. Using classical conditioning, adult-stage C. elegans were conditioned to MAP (17 and 500 μM) in the presence of either sodium ions (Na+) or chloride ions (Cl-) as conditioned stimuli (CS+/CS-). Following conditioning, a preference test was performed by placing worms in 6-well test plates spotted with the CS+ and CS- at opposite ends of each well. A preference index was determined by counting the number of worms in the CS+ target zone divided by the total number of worms in the CS+ and CS- target zones. A food conditioning experiment was also performed in order to determine whether embryonic MAP exposure affected food conditioning behavior. For the neurochemical experiments, adult worms that were embryonically exposed to MAP were analyzed for dopamine (DA) content using high-performance liquid chromatography. The liquid filtration conditioning procedure employed here in combination with the use of 6-well test plates significantly decreased the time required to perform these experiments and ultimately increased throughput. The MAP conditioning data found that pairing an ion with MAP at 17 or 500 μM significantly increased the preference for that ion (CS+) in worms that were not pre-exposed to MAP. However, worms embryonically exposed to MAP did not exhibit significant drug cue conditioning. The inability of MAP-exposed worms to condition to MAP was not associated with deficits in food conditioning, as MAP-exposed worms exhibited a significant cue preference associated with food. Furthermore, our results found that embryonic MAP exposure reduced DA levels in adult C. elegans, which could be a key mechanism contributing to the long-term effects of embryonic MAP exposure. It is possible that embryonic MAP exposure may be impairing the ability of C. elegans to learn associations between MAP and the CS+ or inhibiting the reinforcing properties of MAP. However, our food conditioning data suggest that MAP-exposed animals can form associations between cues and food. The depletion of DA levels during embryonic exposure to MAP could be responsible for driving either of these processes during adulthood.
Collapse
Affiliation(s)
- Simon N Katner
- Department of Psychiatry, Institute of Psychiatric Research, Indianapolis, Ind., USA
| | | | | |
Collapse
|
20
|
Bermingham DP, Hardaway JA, Snarrenberg CL, Robinson SB, Folkes OM, Salimando GJ, Jinnah H, Blakely RD. Acute blockade of the Caenorhabditis elegans dopamine transporter DAT-1 by the mammalian norepinephrine transporter inhibitor nisoxetine reveals the influence of genetic modifications of dopamine signaling in vivo. Neurochem Int 2016; 98:122-8. [PMID: 26850478 DOI: 10.1016/j.neuint.2016.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 11/16/2022]
Abstract
Modulation of neurotransmission by the catecholamine dopamine (DA) is conserved across phylogeny. In the nematode Caenorhabditis elegans, excess DA signaling triggers Swimming-Induced Paralysis (Swip), a phenotype first described in animals with loss of function mutations in the presynaptic DA transporter (dat-1). Swip has proven to be a phenotype suitable for the identification of novel dat-1 mutations as well as the identification of novel genes that impact DA signaling. Pharmacological manipulations can also induce Swip, though the reagents employed to date lack specificity and potency, limiting their use in evaluation of dat-1 expression and function. Our lab previously established the mammalian norepinephrine transporter (NET) inhibitor nisoxetine to be a potent antagonist of DA uptake conferred by DAT-1 following heterologous expression. Here we demonstrate the ability of low (μM) concentrations of nisoxetine to trigger Swip within minutes of incubation, with paralysis dependent on DA release and signaling, and non-additive with Swip triggered by dat-1 deletion. Using nisoxetine in combination with genetic mutations that impact DA release, we further demonstrate the utility of the drug for demonstrating contributions of presynaptic DA receptors and ion channels to Swip. Together, these findings reveal nisoxetine as a powerful reagent for monitoring multiple dimensions of DA signaling in vivo, thus providing a new resource that can be used to evaluate contributions of dat-1 and other genes linked to DA signaling without the potential for compensations that attend constitutive genetic mutations.
Collapse
Affiliation(s)
- Daniel P Bermingham
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37240-7933, USA
| | - J Andrew Hardaway
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37240-7933, USA
| | - Chelsea L Snarrenberg
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37240-7933, USA
| | - Sarah B Robinson
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37240-7933, USA
| | - Oakleigh M Folkes
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37240-7933, USA
| | - Greg J Salimando
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37240-7933, USA
| | - Hussain Jinnah
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37240-7933, USA
| | - Randy D Blakely
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37240-7933, USA; Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37240-7933, USA.
| |
Collapse
|
21
|
Caenorhabditis elegans as a Model to Study the Molecular and Genetic Mechanisms of Drug Addiction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 137:229-52. [PMID: 26810004 DOI: 10.1016/bs.pmbts.2015.10.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Drug addiction takes a massive toll on society. Novel animal models are needed to test new treatments and understand the basic mechanisms underlying addiction. Rodent models have identified the neurocircuitry involved in addictive behavior and indicate that rodents possess some of the same neurobiologic mechanisms that mediate addiction in humans. Recent studies indicate that addiction is mechanistically and phylogenetically ancient and many mechanisms that underlie human addiction are also present in invertebrates. The nematode Caenorhabditis elegans has conserved neurobiologic systems with powerful molecular and genetic tools and a rapid rate of development that enables cost-effective translational discovery. Emerging evidence suggests that C. elegans is an excellent model to identify molecular mechanisms that mediate drug-induced behavior and potential targets for medications development for various addictive compounds. C. elegans emit many behaviors that can be easily quantitated including some that involve interactions with the environment. Ethanol (EtOH) is the best-studied drug-of-abuse in C. elegans and at least 50 different genes/targets have been identified as mediating EtOH's effects and polymorphisms in some orthologs in humans are associated with alcohol use disorders. C. elegans has also been shown to display dopamine and cholinergic system-dependent attraction to nicotine and demonstrate preference for cues previously associated with nicotine. Cocaine and methamphetamine have been found to produce dopamine-dependent reward-like behaviors in C. elegans. These behavioral tests in combination with genetic/molecular manipulations have led to the identification of dozens of target genes/systems in C. elegans that mediate drug effects. The one target/gene identified as essential for drug-induced behavioral responses across all drugs of abuse was the cat-2 gene coding for tyrosine hydroxylase, which is consistent with the role of dopamine neurotransmission in human addiction. Overall, C. elegans can be used to model aspects of drug addiction and identify systems and molecular mechanisms that mediate drug effects. The findings are surprisingly consistent with analogous findings in higher-level organisms. Further, model refinement is warranted to improve model validity and increase utility for medications development.
Collapse
|
22
|
The effect of ethanol on reversal learning in honey bees (Apis mellifera anatolica): Response inhibition in a social insect model. Alcohol 2015; 49:245-58. [PMID: 25837483 DOI: 10.1016/j.alcohol.2015.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 02/24/2015] [Accepted: 02/28/2015] [Indexed: 11/23/2022]
Abstract
We investigated the effects of ethanol on reversal learning in honey bees (Apis mellifera anatolica). The rationale behind the present experiment was to determine the species generality of the effect of ethanol on response inhibition. Subjects were originally trained to associate either a cinnamon or lavender odor with a sucrose feeding before a reversal of the conditioned stimuli. We administered 15 μL of ethanol at varying doses (0%, 2.5%, 5%, 10%, or 20%) according to group assignment. Ethanol was either administered 5 min before original discrimination training or 5 min before the stimuli reversal. We analyzed the effects of these three manipulations via a recently developed individual analysis that eschews aggregate assessments in favor of a model that conceptualizes learning as occurring in individual organisms. We measured responding in the presence of conditioned stimuli associated with a sucrose feeding, responding in the presence of conditioned stimuli associated with distilled water, and responding in the presence of the unconditioned stimulus (sucrose). Our analyses revealed the ethanol dose manipulation lowered responding for all three measures at increasingly higher doses, which suggests ethanol served as a general behavioral suppressor. Consistent with previous ethanol reversal literature, we found administering ethanol before the original discrimination phase or before the reversal produced inconsistent patterns of responding at varying ethanol doses.
Collapse
|