1
|
Pirani A. The Implementation of Infant Anoesis and Adult Autonoesis in the Retrogenesis and Staging System of the Neurocognitive Disorders: A Proposal for a Multidimensional Person-Centered Model. Geriatrics (Basel) 2025; 10:20. [PMID: 39997519 PMCID: PMC11854936 DOI: 10.3390/geriatrics10010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/26/2025] Open
Abstract
Background: Retrogenesis is the process by which the degenerative and vascular mechanisms of dementia reverse the order of acquisition in the normal development. Objective: The development of memory/knowledge after birth may help to know the biopsychosocial and functional characteristics (biosphere) of the retrogenesis. Methods: A literature review was performed in the PubMed, Google Scholar, and Scopus databases using 43 keywords related to retrogenesis: 234 eligible records were selected. Results: The infantile amnesia, characterized from anoesis, was described along the infant/child's biosphere in which the limbic system progressively develops the acquisition of the body knowledge (Anoetic Body Consciousness, AnBC). Anoesis is the infant memory state characterized by the absence of long-term memories of the many stressful/painful experiences that accompany the acquisition under the long-life voluntary control of the long-term memories fundamental for the body growth and survival (mainly chewing/swallowing and walking). At the age of 3-4 years, usually, the AnBC evolves, as a continuum, into the adulthood autonoesis with the emergence, in the child/adolescent, of the consciousness of "self" trough the development of the Episodic Autobiographic Memory (EAM) and the Autonoetic Mind Consciousness (AuMC). The development of cognition and knowledge is due to the progressive maturation of the whole limbic system and not only of the hippocampus. In the biopsychosocial retrogenesis, the EAM/AuMC vanishes progressively along the mild, moderate, and severe stages of dementia when the infant AnBC resurfaces, losing progressively the basic activities of daily living in a retrogenetic order of acquisition where the last functions to disappear are chewing/swallowing. Conclusion: The transition from the adult EAM-AuMC to the infant AnBC, as a continuum in the individual biosphere, adds a contribution to the assessment of the retrogenesis in dementia from a multidimensional person-centered model.
Collapse
Affiliation(s)
- Alessandro Pirani
- Alzheimer's Association "Francesco Mazzuca", Via Reno Vecchio, 33, 44042 Cento, Italy
| |
Collapse
|
2
|
Du YJ, Guan YH, Thome KT, Dong JC. Music Therapy and Music Intervention for NSCLC Patients Undergoing PET with Fear of Cancer Recurrence. Integr Cancer Ther 2024; 23:15347354241269898. [PMID: 39135426 PMCID: PMC11322939 DOI: 10.1177/15347354241269898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/18/2023] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
Background: Cancer and psychiatric symptoms are associated. Fear of cancer recurrence (FCR) is the most common psychological problem for cancer survivors. Pharmacological interventions can help, but also have major drawbacks. Music therapy and music interventions have been shown to be a safe and practical complementary treatment. Objective: This randomized, controlled trial aimed to investigate the effects of music therapy and music intervention in attenuating non-small cell lung cancer (NSCLC) patients' anxiety related to FCR. Methods: NSCLC patients with FCR were randomly allocated to a music therapy and intervention group (G1) and Control group (G2). Patients' anxiety was measured using the State-Trait Anxiety Inventory scores and heart rates. Primary outcome measure were PET scans. Secondary measures were salivary cortisol, salivary α-amylase levels and heart rate. Findings: Patients in G1 showed higher glucose metabolism of 18F-FDG in the superior frontal gyrus, anterior cingulate, superior temporal gyrus, and parahippocampal gyrus, compared to those in G2 (all P < .001). Heart rates and salivary α-amylase area under the curve (AUC) and relative variation (VAR) in G1 were significantly lower than those in G2 (all P < .05). State-Trait Anxiety Inventory scores and cortisol AUC in G1 were significantly lower than those in G2 (all P < .05). Conclusions: Music therapy and interventions can reduce anxiety and endocrinological responses and change glucose metabolism of 18F-FDG in fear-related brain regions.Trial registration: Registered retrospectively, ISRCTN Registry, www.isrctn.com, ISRCTN23276302Clinical Implications: Cancer treatment centers and physical examination centers should consider providing music therapy and intervention to the appropriate patients as a routine component of a comprehensive clinical care during medical examinations.
Collapse
Affiliation(s)
- Yi-jie Du
- Qingpu Traditional Chinese Medicine Hospital, Shanghai, China
| | | | | | | |
Collapse
|
3
|
Zhang SY, Chen SQ, Zhang JY, Chen CH, Xiang XJ, Cai HR, Ding SL. The effects of bilateral prostriata lesions on spatial learning and memory in the rat. Front Behav Neurosci 2022; 16:1010321. [PMID: 36439966 PMCID: PMC9682012 DOI: 10.3389/fnbeh.2022.1010321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Area prostriata is the primary limbic structure for rapid response to the visual stimuli in the far peripheral visual field. Recent studies have revealed that the prostriata receives inputs not only from the visual and auditory cortices but also from many structures critical for spatial processing and navigation. To gain insight into the functions of the prostriata in spatial learning and memory the present study examines the effects of bilateral lesions of the prostriata on motor ability, exploratory interest and spatial learning and memory using the open field, elevated plus-maze and Morris water maze tests. Our results show that the spatial learning and memory abilities of the rats with bilateral prostriata lesions are significantly reduced compared to the control and sham groups. In addition, the lesion rats are found to be less interested in space exploration and more anxious while the exercise capacity of the rats is not affected based on the first two behavioral tests. These findings suggest that the prostriata plays important roles in spatial learning and memory and may be involved in anxiety as well.
Collapse
Affiliation(s)
- Shun-Yu Zhang
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Sheng-Qiang Chen
- Department of Psychology, School of Health Management, Guangzhou Medical University, Guangzhou, China
| | - Jin-Yuan Zhang
- Department of Psychology, School of Health Management, Guangzhou Medical University, Guangzhou, China
| | - Chang-Hui Chen
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Jun Xiang
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Hui-Ru Cai
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Song-Lin Ding
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Allen Institute for Brain Science, Seattle, WA, United States
- *Correspondence: Song-Lin Ding,
| |
Collapse
|
4
|
Pierre WC, Zhang E, Londono I, De Leener B, Lesage F, Lodygensky GA. Non-invasive in vivo MRI detects long-term microstructural brain alterations related to learning and memory impairments in a model of inflammation-induced white matter injury. Behav Brain Res 2022; 428:113884. [DOI: 10.1016/j.bbr.2022.113884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/18/2022] [Accepted: 04/03/2022] [Indexed: 11/28/2022]
|
5
|
Davis SM, Burman MA. Maternal separation with neonatal pain influences later-life fear conditioning and somatosenation in male and female rats. Stress 2021; 24:504-513. [PMID: 33043804 PMCID: PMC8039057 DOI: 10.1080/10253890.2020.1825674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Early life adversity, including that which occurs in a medical setting, has been increasingly shown to have lasting consequences on both physical and mental health. In order to understand the lasting effects of early-life adversity, such as that might occur in the neonatal intensive care unit (NICU), several rodent models have been developed including maternal separation, neonatal handling, and repeated needle prick pain. However, in the clinical scenario, these stressors are often combined. Thus, the current study seeks to observe the lasting impacts of both neonatal pain and maternal separation in a rodent model. Rats were separated from their dam for 6 h per day during the first 7 days of life, during which they were subjected to repeated needle prick pain or handling. A separate group was left undisturbed. All rats were subsequently tested for threat processing using a 3-day Pavlovian fear conditioning model and for somatosensation using measures of mechanical and thermal thresholds. Results indicated that rats subjected to maternal separation and pain had enhanced fear conditioning in adolescence as well as displaying a modest age-independent tactile hypersensitivity compared to undisturbed controls. These data show that experiencing combined neonatal pain and maternal separation may create a latent vulnerability to subsequent stressors.
Collapse
Affiliation(s)
- Seth M. Davis
- Department of Psychology, University of New England
- Center for Excellence in the Neurosciences, University of
New England
| | - Michael A. Burman
- Department of Psychology, University of New England
- Center for Excellence in the Neurosciences, University of
New England
| |
Collapse
|
6
|
Davis SM, Zuke JT, Berchulski MR, Burman MA. Amygdalar Corticotropin-Releasing Factor Signaling Is Required for Later-Life Behavioral Dysfunction Following Neonatal Pain. Front Physiol 2021; 12:660792. [PMID: 34045975 PMCID: PMC8144524 DOI: 10.3389/fphys.2021.660792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
Neonatal pain such as that experienced by infants in the neonatal intensive care unit is known to produce later-life dysfunction including heightened pain sensitivity and anxiety, although the mechanisms remain unclear. Both chronic pain and stress in adult organisms are known to influence the corticotropin-releasing factor (CRF) system in the Central Nucleus of the Amygdala, making this system a likely candidate for changes following neonatal trauma. To examine this, neonatal rats were subjected to daily pain, non-painful handling or left undisturbed for the first week of life. Beginning on postnatal day, 24 male and female rats were subjected to a 4-day fear conditioning and sensory testing protocol. Some subjects received intra-amygdalar administration of either Vehicle, the CRF receptor 1 (CRF1) receptor antagonist Antalarmin, or the CRF receptor 2 (CRF2) receptor antagonist Astressin 2B prior to fear conditioning and somatosensory testing, while others had tissue collected following fear conditioning and CRF expression in the CeA and BLA was assessed using fluorescent in situ hybridization. CRF1 antagonism attenuated fear-induced hypersensitivity in neonatal pain and handled rats, while CRF2 antagonism produced a general antinociception. In addition, neonatal pain and handling produced a lateralized sex-dependent decrease in CRF expression, with males showing a diminished number of CRF-expressing cells in the right CeA and females showing a similar reduction in the number of CRF-expressing cells in the left BLA compared to undisturbed controls. These data show that the amygdalar CRF system is a likely target for alleviating dysfunction produced by early life trauma and that this system continues to play a major role in the lasting effects of such trauma into the juvenile stage of development.
Collapse
Affiliation(s)
- Seth M Davis
- Department of Psychology, University of New England, Biddeford, ME, United States.,Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, United States
| | - Jared T Zuke
- Department of Psychology, University of New England, Biddeford, ME, United States.,Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, United States
| | - Mariah R Berchulski
- Department of Psychology, University of New England, Biddeford, ME, United States.,Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, United States
| | - Michael A Burman
- Department of Psychology, University of New England, Biddeford, ME, United States.,Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, United States
| |
Collapse
|
7
|
Ryazantseva M, Englund J, Shintyapina A, Huupponen J, Shteinikov V, Pitkänen A, Partanen JM, Lauri SE. Kainate receptors regulate development of glutamatergic synaptic circuitry in the rodent amygdala. eLife 2020; 9:52798. [PMID: 32202495 PMCID: PMC7117908 DOI: 10.7554/elife.52798] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/22/2020] [Indexed: 12/13/2022] Open
Abstract
Perturbed information processing in the amygdala has been implicated in developmentally originating neuropsychiatric disorders. However, little is known on the mechanisms that guide formation and refinement of intrinsic connections between amygdaloid nuclei. We demonstrate that in rodents the glutamatergic connection from basolateral to central amygdala (BLA-CeA) develops rapidly during the first 10 postnatal days, before external inputs underlying amygdala-dependent behaviors emerge. During this restricted period of synaptic development, kainate-type of ionotropic glutamate receptors (KARs) are highly expressed in the BLA and tonically activated to regulate glutamate release via a G-protein-dependent mechanism. Genetic manipulation of this endogenous KAR activity locally in the newborn LA perturbed development of glutamatergic input to CeA, identifying KARs as a physiological mechanism regulating formation of the glutamatergic circuitry in the amygdala.
Collapse
Affiliation(s)
- Maria Ryazantseva
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Jonas Englund
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Alexandra Shintyapina
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Johanna Huupponen
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Vasilii Shteinikov
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Asla Pitkänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Juha M Partanen
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Sari E Lauri
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Cohen AO, Matese NG, Filimontseva A, Shen X, Shi TC, Livne E, Hartley CA. Aversive learning strengthens episodic memory in both adolescents and adults. ACTA ACUST UNITED AC 2019; 26:272-279. [PMID: 31209122 PMCID: PMC6581005 DOI: 10.1101/lm.048413.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Abstract
Adolescence is often filled with positive and negative emotional experiences that may change how individuals remember and respond to stimuli in their environment. In adults, aversive events can both enhance memory for associated stimuli as well as generalize to enhance memory for unreinforced but conceptually related stimuli. The present study tested whether learned aversive associations similarly lead to better memory and generalization across a category of stimuli in adolescents. Participants completed an olfactory Pavlovian category conditioning task in which trial-unique exemplars from one of two categories were partially reinforced with an aversive odor. Participants then returned 24 h later to complete a recognition memory test. We found better corrected recognition memory for the reinforced versus the unreinforced category of stimuli in both adults and adolescents. Further analysis revealed that enhanced recognition memory was driven specifically by better memory for the reinforced exemplars. Autonomic arousal during learning was also related to subsequent memory. These findings build on previous work in adolescent and adult humans and rodents showing comparable acquisition of aversive Pavlovian conditioned responses across age groups and demonstrate that memory for stimuli with an acquired aversive association is enhanced in both adults and adolescents.
Collapse
Affiliation(s)
- Alexandra O Cohen
- Department of Psychology, New York University, New York, New York 10003, USA
| | - Nicholas G Matese
- Department of Psychology, New York University, New York, New York 10003, USA
| | | | - Xinxu Shen
- Department of Psychology, New York University, New York, New York 10003, USA
| | - Tracey C Shi
- Columbia University Irving Medical Center, Neurobiology and Behavior Program, New York, New York 10032, USA
| | - Ethan Livne
- Weizmann Institute of Science, Department of Neurobiology, Rehovot 7610001, Israel
| | - Catherine A Hartley
- Department of Psychology, New York University, New York, New York 10003, USA
| |
Collapse
|
9
|
Ramsaran AI, Schlichting ML, Frankland PW. The ontogeny of memory persistence and specificity. Dev Cogn Neurosci 2019; 36:100591. [PMID: 30316637 PMCID: PMC6969236 DOI: 10.1016/j.dcn.2018.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/06/2018] [Accepted: 09/25/2018] [Indexed: 02/01/2023] Open
Abstract
Interest in the ontogeny of memory blossomed in the twentieth century following the initial observations that memories from infancy and early childhood are rapidly forgotten. The intense exploration of infantile amnesia in subsequent years has led to a thorough characterization of its psychological determinants, although the neurobiology of memory persistence has long remained elusive. By contrast, other phenomena in the ontogeny of memory like infantile generalization have received relatively less attention. Despite strong evidence for reduced memory specificity during ontogeny, infantile generalization is poorly understood from psychological and neurobiological perspectives. In this review, we examine the ontogeny of memory persistence and specificity in humans and nonhuman animals at the levels of behavior and the brain. To this end, we first describe the behavioral phenotypes associated with each phenomenon. Looking into the brain, we then discuss neurobiological mechanisms in the hippocampus that contribute to the ontogeny of memory. Hippocampal neurogenesis and critical period mechanisms have recently been discovered to underlie amnesia during early development, and at the same time, we speculate that similar processes may contribute to the early bias towards memory generalization.
Collapse
Affiliation(s)
- Adam I Ramsaran
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, M5G 1X8, Canada; Department of Psychology, University of Toronto, Toronto, M5S 3G3, Canada
| | | | - Paul W Frankland
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, M5G 1X8, Canada; Department of Psychology, University of Toronto, Toronto, M5S 3G3, Canada; Department of Physiology, University of Toronto, Toronto, M5S 1A8, Canada; Institute of Medical Science, University of Toronto, Toronto, M5S 1A8, Canada; Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, M5G 1M1, Canada.
| |
Collapse
|
10
|
Santarelli AJ, Khan AM, Poulos AM. Contextual fear retrieval-induced Fos expression across early development in the rat: An analysis using established nervous system nomenclature ontology. Neurobiol Learn Mem 2018; 155:42-49. [PMID: 29807127 DOI: 10.1016/j.nlm.2018.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/07/2018] [Accepted: 05/19/2018] [Indexed: 02/07/2023]
Abstract
The neural circuits underlying the acquisition, retention and retrieval of contextual fear conditioning have been well characterized in the adult animal. A growing body of work in younger rodents indicates that context-mediated fear expression may vary across development. However, it remains unclear how this expression may be defined across the full range of key developmental ages. Nor is it fully clear whether the structure of the adult context fear network generalizes to earlier ages. In this study, we compared context fear retrieval-induced behavior and neuroanatomically constrained immediate early-gene expression across infant (P19), early and late juvenile (P24 and P35), and adult (P90) male Long-Evans rats. We focused our analysis on neuroanatomically defined subregions and nuclei of the basolateral complex of the amygdala (BLA complex), dorsal and ventral portions of the hippocampus and the subregions of the medial prefrontal cortex as defined by the nomenclature of the Swanson (2004) adult rat brain atlas. Relative to controls and across all ages tested, there were greater numbers of Fos immunoreactive (Fos-ir) neurons in the posterior part of the basolateral amygdalar nuclei (BLAp) following context fear retrieval that correlated statistically with the expression of freezing. However, Fos-ir within regions having known connections with the BLA complex was differentially constrained by developmental age: early juvenile, but not adult rats exhibited an increase of context fear-dependent Fos-ir neurons in prelimbic and infralimbic areas, while adult, but not juvenile rats displayed increases in Fos-ir neurons within the ventral CA1 hippocampus. These results suggest that juvenile and adult rodents may recruit developmentally unique pathways in the acquisition and retrieval of contextual fear. This study extends prior work by providing a broader set of developmental ages and a rigorously defined neuroanatomical ontology within which the contextual fear network can be studied further.
Collapse
Affiliation(s)
- Anthony J Santarelli
- Department of Psychology, Center for Neuroscience, State University of New York, University at Albany, Albany, NY 12222, USA
| | - Arshad M Khan
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Andrew M Poulos
- Department of Psychology, Center for Neuroscience, State University of New York, University at Albany, Albany, NY 12222, USA.
| |
Collapse
|
11
|
Davis SM, Rice M, Rudlong J, Eaton V, King T, Burman MA. Neonatal pain and stress disrupts later-life pavlovian fear conditioning and sensory function in rats: Evidence for a two-hit model. Dev Psychobiol 2018; 60:520-533. [PMID: 29749116 DOI: 10.1002/dev.21632] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/16/2018] [Indexed: 12/24/2022]
Abstract
Early life trauma has been linked to increased risks for anxiety, depression, and chronic pain. We used rodent models of acute and inflammatory neonatal pain to explore effects on fear conditioning and somatosensory function. Hindpaw needle pricks or handling on postnatal days (PNDs) 1-7 caused lasting impacts on affective and somatosensory function when assessed at later ages, PNDs 24 (postweaning), 45 (adolescence), or 66 (adulthood). First, auditory, but not contextual, freezing was mildly disrupted regardless of age. Second, a profound postfear conditioning tactile hypersensitivity was observed in neonatally stressed, postweaning rats. In the absence of fear conditioning, the mechanical hypersensitivity was not observed, consistent with a two-hit model of psychopathology. Injections of 2% α-carrageenan did not have the same lasting impact but was slightly protective against observed effects of neonatal vehicle injections. Basal and elicited corticosterone levels postweaning were not altered by neonatal pain or handling. These data demonstrate that neonatal adversity can have lasting impacts on affective and somatosensory function that differs regardless of age.
Collapse
Affiliation(s)
- Seth M Davis
- Department of Psychology, University of New England, Biddeford, Maine.,Department of Biomedical Sciences, University of New England, Biddeford, Maine
| | - Makaela Rice
- Department of Psychology, University of New England, Biddeford, Maine
| | - Jacob Rudlong
- Department of Psychology, University of New England, Biddeford, Maine
| | - Victoria Eaton
- Department of Psychology, University of New England, Biddeford, Maine
| | - Tamara King
- Department of Biomedical Sciences, University of New England, Biddeford, Maine.,Center for Excellence in the Neurosciences, University of New England, Biddeford, Maine
| | - Michael A Burman
- Department of Psychology, University of New England, Biddeford, Maine.,Department of Biomedical Sciences, University of New England, Biddeford, Maine
| |
Collapse
|
12
|
Robinson-Drummer PA, Chakraborty T, Heroux NA, Rosen JB, Stanton ME. Age and experience dependent changes in Egr-1 expression during the ontogeny of the context preexposure facilitation effect (CPFE). Neurobiol Learn Mem 2018; 150:1-12. [PMID: 29452227 DOI: 10.1016/j.nlm.2018.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/29/2018] [Accepted: 02/08/2018] [Indexed: 12/19/2022]
Abstract
The context preexposure facilitation effect (CPFE) is a variant of contextual fear conditioning in which acquisition of the contextual representation and association of the retrieved contextual memory with an immediate foot-shock are separated by 24 h. During the CPFE, learning- related expression patterns of the early growth response-1 gene (Egr-1) vary based on training phase and brain sub-region in adult and adolescent rats (Asok, Schreiber, Jablonski, Rosen, & Stanton, 2013; Schreiber, Asok, Jablonski, Rosen, & Stanton, 2014; Chakraborty, Asok, Stanton, & Rosen, 2016). The current experiments extended our previous findings by examining Egr-1 expression in infant (PD17) and juvenile (PD24) rats during the CPFE using preexposure protocols involving single-exposure (SE) or multiple-exposure (ME) to context. Following a 5 min preexposure to the training context (i.e. the SE protocol), Egr-1 expression in the medial prefrontal cortex (mPFC), dorsal hippocampus (dHPC) and lateral nucleus of the amygdala (LA) was differentially increased in PD24 rats relative to PD17 rats. In contrast, increased Egr-1 expression following an immediate foot-shock (2s, 1.5 mA) did not differ between PD17 and PD24 rats, and was not learning-related. Interestingly, increasing the number of exposures to the training chamber on the preexposure day (i.e. ME protocol) altered training-day expression such that a learning-related increase in expression was observed in the mPFC in PD24 but not PD17 rats. Together, these results illustrate a clear maturation of Egr-1 expression that is both age- and experience-dependent. In addition, the data suggest that regional activity and plasticity within the mPFC on the preexposure but not the training day may contribute to the ontogenetic profile of the effect. Further studies are necessary to elucidate the causal role of sub-region-specific neuroplasticity in the ontogeny of the CPFE.
Collapse
Affiliation(s)
- P A Robinson-Drummer
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| | - T Chakraborty
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - N A Heroux
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - J B Rosen
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - M E Stanton
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
13
|
Debiec J, Sullivan RM. The neurobiology of safety and threat learning in infancy. Neurobiol Learn Mem 2017; 143:49-58. [PMID: 27826033 PMCID: PMC5418109 DOI: 10.1016/j.nlm.2016.10.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/20/2022]
Abstract
What an animal needs to learn to survive is altered dramatically as they change from dependence on the parent for protection to independence and reliance on self-defense. This transition occurs in most altricial animals, but our understanding of the behavioral neurobiology has mostly relied on the infant rat. The transformation from dependence to independence occurs over three weeks in pups and is accompanied by complex changes in responses to both natural and learned threats and the supporting neural circuitry. Overall, in early life, the threat system is quiescent and learning is biased towards acquiring attachment related behaviors to support attachment to the caregiver and proximity seeking. Caregiver-associated cues learned in infancy have the ability to provide a sense of safety throughout lifetime. This attachment/safety system is activated by learning involving presumably pleasurable stimuli (food, warmth) but also painful stimuli (tailpinch, moderate shock). At about the midway point to independence, pups begin to have access to the adult-like amygdala-dependent threat system and amygdala-dependent responses to natural dangers such as predator odors. However, pups have the ability to switch between the infant and adult-like system, which is controlled by maternal presence and modification of stress hormones. Specifically, if the pup is alone, it will learn fear but if with the mother it will learn attachment (10-15days of age). As pups begin to approach weaning, pups lose access to the attachment system and rely only on the amygdala-dependent threat system. However, pups learning system is complex and exhibits flexibility that enables the mother to override the control of the attachment circuit, since newborn pups may acquire threat responses from the mother expressing fear in their presence. Together, these data suggest that the development of pups' threat learning system is not only dependent upon maturation of the amygdala, but it is also exquisitely controlled by the environment. Most notably the mother can switch pup learning between attachment to threat learning in a moment's notice. This enables the mother to navigate pup's learning about the world and what is threatening and what is safe.
Collapse
Affiliation(s)
- Jacek Debiec
- Molecular & Behavioral Neuroscience Institute and Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States.
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Child and Adolescent Psychiatry, New York University Langone Medical Center, United States.
| |
Collapse
|
14
|
Carter DA. Molecular phenotyping of transient postnatal tyrosine hydroxylase neurons in the rat bed nucleus of the stria terminalis. J Chem Neuroanat 2017; 82:29-38. [DOI: 10.1016/j.jchemneu.2017.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/08/2017] [Accepted: 04/10/2017] [Indexed: 01/18/2023]
|
15
|
Optogenetic Examination of Prefrontal-Amygdala Synaptic Development. J Neurosci 2017; 37:2976-2985. [PMID: 28193691 DOI: 10.1523/jneurosci.3097-16.2017] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/18/2017] [Accepted: 02/05/2017] [Indexed: 11/21/2022] Open
Abstract
A brain network comprising the medial prefrontal cortex (mPFC) and amygdala plays important roles in developmentally regulated cognitive and emotional processes. However, very little is known about the maturation of mPFC-amygdala circuitry. We conducted anatomical tracing of mPFC projections and optogenetic interrogation of their synaptic connections with neurons in the basolateral amygdala (BLA) at neonatal to adult developmental stages in mice. Results indicate that mPFC-BLA projections exhibit delayed emergence relative to other mPFC pathways and establish synaptic transmission with BLA excitatory and inhibitory neurons in late infancy, events that coincide with a massive increase in overall synaptic drive. During subsequent adolescence, mPFC-BLA circuits are further modified by excitatory synaptic strengthening as well as a transient surge in feedforward inhibition. The latter was correlated with increased spontaneous inhibitory currents in excitatory neurons, suggesting that mPFC-BLA circuit maturation culminates in a period of exuberant GABAergic transmission. These findings establish a time course for the onset and refinement of mPFC-BLA transmission and point to potential sensitive periods in the development of this critical network.SIGNIFICANCE STATEMENT Human mPFC-amygdala functional connectivity is developmentally regulated and figures prominently in numerous psychiatric disorders with a high incidence of adolescent onset. However, it remains unclear when synaptic connections between these structures emerge or how their properties change with age. Our work establishes developmental windows and cellular substrates for synapse maturation in this pathway involving both excitatory and inhibitory circuits. The engagement of these substrates by early life experience may support the ontogeny of fundamental behaviors but could also lead to inappropriate circuit refinement and psychopathology in adverse situations.
Collapse
|