1
|
Higgs PG, Muller UF. Principles of in vitro selection of ribozymes from random sequence libraries. J R Soc Interface 2025; 22:20240878. [PMID: 40233799 PMCID: PMC11999736 DOI: 10.1098/rsif.2024.0878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 04/17/2025] Open
Abstract
In vitro selection methods are used to identify catalytic RNAs from pools of random sequences. We discuss the central concepts using experimental data and computational models. Experiments proceed in multiple rounds, each with a reaction step and a step in which reacted sequences are recovered. Sequences are enriched each round by a factor depending on combined reaction and recovery probability. In the first round, there are few functional sequences, and it is necessary to minimize the probability of losing these. In later rounds, the loss probability is negligible, and the procedure can be optimized to maximize the enrichment factor. Clusters of related sequences emerge which descend from separate sequences in the initial pool. The fitness of an RNA depends on how well it matches a structure with specified sequence and base-pair constraints. Sequences that exactly match the constraints may be rare, but sequences a few mutations away are much more common; hence it is likely that clusters descend from suboptimal sequences. There is a high probability that beneficial mutations arise during the experiment. This explains the experimental observation that there is little correlation between cluster frequencies and fitnesses, whereas correlation between enrichment factors and fitnesses is strong.
Collapse
Affiliation(s)
- Paul G. Higgs
- Department of Physics and Astronomy, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Ulrich F. Muller
- Department of Chemistry, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
2
|
Guo L, Zhang S, Du X, Zhou M, Gu H. Fusing Allosteric Ribozymes with CRISPR-Cas12a for Efficient Diagnostics of Small Molecule Targets. SMALL METHODS 2024:e2401236. [PMID: 39420829 DOI: 10.1002/smtd.202401236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/08/2024] [Indexed: 10/19/2024]
Abstract
The CRISPR-Cas systems are adopted as powerful molecular tools for not only genetic manipulation but also point-of-care diagnostics. However, methods to enable diagnostics of non-nucleic-acid targets with these systems are still limited. Herein, by fusing ligand-dependent allosteric ribozymes with CRISPR-Cas12a, a derived CRISPR-Cas system is created for efficient quantitative analysis of non-nucleic-acid targets in 1-2 h. On two different small molecules, the system's generality, reliability and accuracy is demonstrated, and show that the well operability of this system can enable high-throughput detection of a small molecule in blood samples. The system can be further converted to rely on allosteric deoxyribozyme instead of allosteric ribozyme to recognize non-nucleic-acid targets and transduce the signal to CRISPR-Cas12a for amplification, likely making it easier for storage and more consistent in data generation as DNA possess a stability advantage over RNA. This (deoxy)ribozyme-assisted CRISPR-Cas12a system anticipates that it can facilitate bioanalysis in various scientific and clinical settings and further drive the development of clinical translation.
Collapse
Affiliation(s)
- Lichuan Guo
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery and Department of gynecologic oncology, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Chemical Biology, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shu Zhang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery and Department of gynecologic oncology, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xinyu Du
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery and Department of gynecologic oncology, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Shaanxi, 710032, China
| | - Mo Zhou
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery and Department of gynecologic oncology, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hongzhou Gu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery and Department of gynecologic oncology, Institutes of Biomedical Sciences, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Chemical Biology, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Carbon-Negative Synthetic Biology for Biomaterial Production from CO2 (CNSB), Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
- Xiangfu Laboratory, Jiashan, 314102, China
| |
Collapse
|
3
|
Volek M, Kurfürst J, Kožíšek M, Srb P, Veverka V, Curtis E. Apollon: a deoxyribozyme that generates a yellow product. Nucleic Acids Res 2024; 52:9062-9075. [PMID: 38869058 PMCID: PMC11347176 DOI: 10.1093/nar/gkae490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024] Open
Abstract
Colorimetric assays in which the color of a solution changes in the presence of an input provide a simple and inexpensive way to monitor experimental readouts. In this study we used in vitro selection to identify a self-phosphorylating kinase deoxyribozyme that produces a colorimetric signal by converting the colorless substrate pNPP into the yellow product pNP. The minimized catalytic core, sequence requirements, secondary structure, and buffer requirements of this deoxyribozyme, which we named Apollon, were characterized using a variety of techniques including reselection experiments, high-throughput sequencing, comparative analysis, biochemical activity assays, and NMR. A bimolecular version of Apollon catalyzed multiple turnover phosphorylation and amplified the colorimetric signal. Engineered versions of Apollon could detect oligonucleotides with specific sequences as well as several different types of nucleases in homogenous assays that can be performed in a single tube without the need for washes or purifications. We anticipate that Apollon will be particularly useful to reduce costs in high-throughput screens and for applications in which specialized equipment is not available.
Collapse
Affiliation(s)
- Martin Volek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague 128 44, Czech Republic
| | - Jaroslav Kurfürst
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
- Department of Informatics and Chemistry, University of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Milan Kožíšek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Pavel Srb
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague 128 44, Czech Republic
| | - Edward A Curtis
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| |
Collapse
|
4
|
Volek M, Kurfürst J, Drexler M, Svoboda M, Srb P, Veverka V, Curtis E. Aurora: a fluorescent deoxyribozyme for high-throughput screening. Nucleic Acids Res 2024; 52:9049-9061. [PMID: 38860424 PMCID: PMC11347150 DOI: 10.1093/nar/gkae467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024] Open
Abstract
Fluorescence facilitates the detection, visualization, and tracking of molecules with high sensitivity and specificity. A functional DNA molecule that generates a robust fluorescent signal would offer significant advantages for many applications compared to intrinsically fluorescent proteins, which are expensive and labor intensive to synthesize, and fluorescent RNA aptamers, which are unstable under most conditions. Here, we describe a novel deoxyriboyzme that rapidly and efficiently generates a stable fluorescent product using a readily available coumarin substrate. An engineered version can detect picomolar concentrations of ribonucleases in a simple homogenous assay, and was used to rapidly identify novel inhibitors of the SARS-CoV-2 ribonuclease Nsp15 in a high-throughput screen. Our work adds an important new component to the toolkit of functional DNA parts, and also demonstrates how catalytic DNA motifs can be used to solve real-world problems.
Collapse
Affiliation(s)
- Martin Volek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague 128 44, Czech Republic
| | - Jaroslav Kurfürst
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
- Department of Informatics and Chemistry, University of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Matúš Drexler
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Michal Svoboda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Pavel Srb
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague 128 44, Czech Republic
| | - Edward A Curtis
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 166 10, Czech Republic
| |
Collapse
|
5
|
Spirov AV, Myasnikova EM. Problem of Domain/Building Block Preservation in the Evolution of Biological Macromolecules and Evolutionary Computation. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:1345-1362. [PMID: 35594219 DOI: 10.1109/tcbb.2022.3175908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Structurally and functionally isolated domains in biological macromolecular evolution, both natural and artificial, are largely similar to "schemata", building blocks (BBs), in evolutionary computation (EC). The problem of preserving in subsequent evolutionary searches the already found domains / BBs is well known and quite relevant in biology as well as in EC. Both biology and EC are seeing parallel and independent development of several approaches to identifying and preserving previously identified domains / BBs. First, we notice the similarity of DNA shuffling methods in synthetic biology and multi-parent recombination algorithms in EC. Furthermore, approaches to computer identification of domains in proteins that are being developed in biology can be aligned with BB identification methods in EC. Finally, approaches to chimeric protein libraries optimization in biology can be compared to evolutionary search methods based on probabilistic models in EC. We propose to validate the prospects of mutual exchange of ideas and transfer of algorithms and approaches between evolutionary systems biology and EC in these three principal directions. A crucial aim of this transfer is the design of new advanced experimental techniques capable of solving more complex problems of in vitro evolution.
Collapse
|
6
|
Mohsen MG, Midy MK, Balaji A, Breaker R. Exploiting natural riboswitches for aptamer engineering and validation. Nucleic Acids Res 2023; 51:966-981. [PMID: 36617976 PMCID: PMC9881172 DOI: 10.1093/nar/gkac1218] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/04/2022] [Accepted: 12/09/2022] [Indexed: 01/10/2023] Open
Abstract
Over the past three decades, researchers have found that some engineered aptamers can be made to work well in test tubes but that these same aptamers might fail to function in cells. To help address this problem, we developed the 'Graftamer' approach, an experimental platform that exploits the architecture of a natural riboswitch to enhance in vitro aptamer selection and accelerate in vivo testing. Starting with combinatorial RNA pools that contain structural features of a guanine riboswitch aptamer interspersed with regions of random sequence, we performed multiplexed in vitro selection with a collection of small molecules. This effort yielded aptamers for quinine, guanine, and caffeine that appear to maintain structural features of the natural guanine riboswitch aptamer. Quinine and caffeine aptamers were each grafted onto a natural guanine riboswitch expression platform and reporter gene expression was monitored to determine that these aptamers function in cells. Additionally, we determined the secondary structure features and survival mechanism of a class of RNA sequences that evade the intended selection strategy, providing insight into improving this approach for future efforts. These results demonstrate that the Graftamer strategy described herein represents a convenient and straightforward approach to develop aptamers and validate their in vivo function.
Collapse
Affiliation(s)
- Michael G Mohsen
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06511, USA
| | - Matthew K Midy
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Aparaajita Balaji
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06511, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
7
|
Hamal Dhakal S, Panchapakesan SSS, Slattery P, Roth A, Breaker RR. Variants of the guanine riboswitch class exhibit altered ligand specificities for xanthine, guanine, or 2'-deoxyguanosine. Proc Natl Acad Sci U S A 2022; 119:e2120246119. [PMID: 35622895 PMCID: PMC9295807 DOI: 10.1073/pnas.2120246119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/12/2022] [Indexed: 12/30/2022] Open
Abstract
The aptamer portions of previously reported riboswitch classes that sense guanine, adenine, or 2′-deoxyguanosine are formed by a highly similar three-stem junction with distinct nucleotide sequences in the regions joining the stems. The nucleotides in these joining regions form the major features of the selective ligand-binding pocket for each aptamer. Previously, we reported the existence of additional, rare variants of the predominant guanine-sensing riboswitch class that carry nucleotide differences in the ligand-binding pocket, suggesting that these RNAs have further diversified their structures and functions. Herein, we report the discovery and analysis of three naturally occurring variants of guanine riboswitches that are narrowly distributed across Firmicutes. These RNAs were identified using comparative sequence analysis methods, which also revealed that some of the gene associations for these variants are atypical for guanine riboswitches or their previously known natural variants. Binding assays demonstrate that the newfound variant riboswitch representatives recognize xanthine, guanine, or 2′-deoxyguanosine, with the guanine class exhibiting greater discrimination against related purines than the more common guanine riboswitch class reported previously. These three additional variant classes, together with the four previously discovered riboswitch classes that employ the same three-stem junction architecture, reveal how a simple structural framework can be diversified to expand the range of purine-based ligands sensed by RNA.
Collapse
Affiliation(s)
- Siddhartha Hamal Dhakal
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103
| | | | - Paul Slattery
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103
| | - Adam Roth
- HHMI, Yale University, New Haven, CT 06520-8103
| | - Ronald R. Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103
- HHMI, Yale University, New Haven, CT 06520-8103
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8103
| |
Collapse
|
8
|
Dykstra PB, Kaplan M, Smolke CD. Engineering synthetic RNA devices for cell control. Nat Rev Genet 2022; 23:215-228. [PMID: 34983970 PMCID: PMC9554294 DOI: 10.1038/s41576-021-00436-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2021] [Indexed: 12/16/2022]
Abstract
The versatility of RNA in sensing and interacting with small molecules, proteins and other nucleic acids while encoding genetic instructions for protein translation makes it a powerful substrate for engineering biological systems. RNA devices integrate cellular information sensing, processing and actuation of specific signals into defined functions and have yielded programmable biological systems and novel therapeutics of increasing sophistication. However, challenges centred on expanding the range of analytes that can be sensed and adding new mechanisms of action have hindered the full realization of the field's promise. Here, we describe recent advances that address these limitations and point to a significant maturation of synthetic RNA-based devices.
Collapse
Affiliation(s)
- Peter B. Dykstra
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Matias Kaplan
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Christina D. Smolke
- Department of Bioengineering, Stanford University, Stanford, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA.,
| |
Collapse
|
9
|
Ao Y, Duan A, Chen B, Yu X, Wu Y, Zhang X, Li S. Integration of an Expression Platform in the SELEX Cycle to Select DNA Aptamer Binding to a Disease Biomarker. ACS OMEGA 2022; 7:10804-10811. [PMID: 35382297 PMCID: PMC8973154 DOI: 10.1021/acsomega.2c00769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/07/2022] [Indexed: 05/30/2023]
Abstract
Aptamers can be developed for biosensors, diagnostic tools, and therapeutic reagents. These applications usually require a fusion of aptamers and expression platforms. However, the fusion process is usually time-consuming and laborious. In this study, we integrated the deoxyribozyme (I-R3) as an expression platform in the SELEX cycle (called Expression-SELEX) to select aptazymes that can sense diverse molecules. We used the Maple syrup urine disease (MSUD) biomarker L-allo-isoleucine to test the selection model. After five rounds of screening, the cleavage products were sufficiently enriched to be visualized on polyacrylamide gel electrophoresis (PAGE) gel. Through high-throughput sequencing analysis, several candidates were identified. One such candidate, IR3-I-DNA, binds L-allo-isoleucine with a dissociation constant (K D) of 0.57 mM. When the ligand was present, the cleavage fraction of IR3-I-DNA increased from 0.3 to 0.5, and its K obs value improved from 1.38 min-1 to 1.97 min-1. Our selection approach can also be applied to produce aptazymes that can bind to variable ligands and be used more directly as biosensors.
Collapse
Affiliation(s)
- Yaqi Ao
- Medical
School, Huaqiao University, Xiamen 361021, P. R. China
| | - Anqi Duan
- Medical
School, Huaqiao University, Xiamen 361021, P. R. China
| | - Binfen Chen
- Medical
School, Huaqiao University, Xiamen 361021, P. R. China
| | - Xinmei Yu
- Medical
School, Huaqiao University, Xiamen 361021, P. R. China
| | - Yaoyao Wu
- Medical
School, Huaqiao University, Xiamen 361021, P. R. China
| | - Xiaojun Zhang
- Chemical
Engineering Institute, Huaqiao University, Xiamen 361021, P. R. China
| | - Sanshu Li
- Medical
School, Engineering Research Center of Molecular Medicine of Ministry
of Education, Key Laboratory of Precision Medicine and Molecular Diagnosis
of Fujian Universities, Institute of Genomics, Huaqiao University, Xiamen 361021, P. R. China
| |
Collapse
|
10
|
Spirov AV, Myasnikova EM. Heuristic algorithms in evolutionary computation and modular organization of biological macromolecules: Applications to in vitro evolution. PLoS One 2022; 17:e0260497. [PMID: 35085255 PMCID: PMC8794168 DOI: 10.1371/journal.pone.0260497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/10/2021] [Indexed: 11/19/2022] Open
Abstract
Evolutionary computing (EC) is an area of computer sciences and applied mathematics covering heuristic optimization algorithms inspired by evolution in Nature. EC extensively study all the variety of methods which were originally based on the principles of selectionism. As a result, many new algorithms and approaches, significantly more efficient than classical selectionist schemes, were found. This is especially true for some families of special problems. There are strong arguments to believe that EC approaches are quite suitable for modeling and numerical analysis of those methods of synthetic biology and biotechnology that are known as in vitro evolution. Therefore, it is natural to expect that the new algorithms and approaches developed in EC can be effectively applied in experiments on the directed evolution of biological macromolecules. According to the John Holland's Schema theorem, the effective evolutionary search in genetic algorithms (GA) is provided by identifying short schemata of high fitness which in the further search recombine into the larger building blocks (BBs) with higher and higher fitness. The multimodularity of functional biological macromolecules and the preservation of already found modules in the evolutionary search have a clear analogy with the BBs in EC. It seems reasonable to try to transfer and introduce the methods of EC, preserving BBs and essentially accelerating the search, into experiments on in vitro evolution. We extend the key instrument of the Holland's theory, the Royal Roads fitness function, to problems of the in vitro evolution (Biological Royal Staircase, BioRS, functions). The specific version of BioRS developed in this publication arises from the realities of experimental evolutionary search for (DNA-) RNA-devices (aptazymes). Our numerical tests showed that for problems with the BioRS functions, simple heuristic algorithms, which turned out to be very effective for preserving BBs in GA, can be very effective in in vitro evolution approaches. We are convinced that such algorithms can be implemented in modern methods of in vitro evolution to achieve significant savings in time and resources and a significant increase in the efficiency of evolutionary search.
Collapse
Affiliation(s)
- Alexander V. Spirov
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences, St. Petersburg, Russia
- The Institute of Scientific Information for Social Sciences RAS, Moscow, Russia
| | | |
Collapse
|
11
|
Svehlova K, Lukšan O, Jakubec M, Curtis EA. Supernova: A Deoxyribozyme that Catalyzes a Chemiluminescent Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202109347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Katerina Svehlova
- Institute of Organic Chemistry and Biochemistry ASCR Prague Czech Republic
- Faculty of Science Charles University in Prague Prague Czech Republic
| | - Ondřej Lukšan
- Institute of Organic Chemistry and Biochemistry ASCR Prague Czech Republic
| | - Martin Jakubec
- Institute of Organic Chemistry and Biochemistry ASCR Prague Czech Republic
- Faculty of Science Charles University in Prague Prague Czech Republic
| | - Edward A. Curtis
- Institute of Organic Chemistry and Biochemistry ASCR Prague Czech Republic
| |
Collapse
|
12
|
Darrah KE, Deiters A. Translational control of gene function through optically regulated nucleic acids. Chem Soc Rev 2021; 50:13253-13267. [PMID: 34739027 DOI: 10.1039/d1cs00257k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Translation of mRNA into protein is one of the most fundamental processes within biological systems. Gene expression is tightly regulated both in space and time, often involving complex signaling or gene regulatory networks, as most prominently observed in embryo development. Thus, studies of gene function require tools with a matching level of external control. Light is an excellent conditional trigger as it is minimally invasive, can be easily tuned in wavelength and amplitude, and can be applied with excellent spatial and temporal resolution. To this end, modification of established oligonucleotide-based technologies with optical control elements, in the form of photocaging groups and photoswitches, has rendered these tools capable of navigating the dynamic regulatory pathways of mRNA translation in cellular and in vivo models. In this review, we discuss the different optochemical approaches used to generate photoresponsive nucleic acids that activate and deactivate gene expression and function at the translational level.
Collapse
Affiliation(s)
- Kristie E Darrah
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA.
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA.
| |
Collapse
|
13
|
Svehlova K, Lukšan O, Jakubec M, Curtis EA. Supernova: A Deoxyribozyme that Catalyzes a Chemiluminescent Reaction. Angew Chem Int Ed Engl 2021; 61:e202109347. [PMID: 34559935 PMCID: PMC9298802 DOI: 10.1002/anie.202109347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/17/2021] [Indexed: 11/10/2022]
Abstract
Functional DNA molecules are useful components in nanotechnology and synthetic biology. To expand the toolkit of functional DNA parts, in this study we used artificial evolution to identify a glowing deoxyribozyme called Supernova. This deoxyribozyme transfers a phosphate from a 1,2-dioxetane substrate to its 5' hydroxyl group, which triggers a chemiluminescent reaction and a flash of blue light. An engineered version of Supernova is only catalytically active in the presence of an oligonucleotide complementary to its 3' end, demonstrating that light production can be coupled to ligand binding. We anticipate that Supernova will be useful in a wide variety of applications, including as a signaling component in allosterically regulated sensors and in logic gates of molecular computers.
Collapse
Affiliation(s)
- Katerina Svehlova
- Institute of Organic Chemistry and Biochemistry ASCR, Prague, Czech Republic.,Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Ondřej Lukšan
- Institute of Organic Chemistry and Biochemistry ASCR, Prague, Czech Republic
| | - Martin Jakubec
- Institute of Organic Chemistry and Biochemistry ASCR, Prague, Czech Republic.,Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Edward A Curtis
- Institute of Organic Chemistry and Biochemistry ASCR, Prague, Czech Republic
| |
Collapse
|
14
|
Tickner ZJ, Farzan M. Riboswitches for Controlled Expression of Therapeutic Transgenes Delivered by Adeno-Associated Viral Vectors. Pharmaceuticals (Basel) 2021; 14:ph14060554. [PMID: 34200913 PMCID: PMC8230432 DOI: 10.3390/ph14060554] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
Vectors developed from adeno-associated virus (AAV) are powerful tools for in vivo transgene delivery in both humans and animal models, and several AAV-delivered gene therapies are currently approved for clinical use. However, AAV-mediated gene therapy still faces several challenges, including limited vector packaging capacity and the need for a safe, effective method for controlling transgene expression during and after delivery. Riboswitches, RNA elements which control gene expression in response to ligand binding, are attractive candidates for regulating expression of AAV-delivered transgene therapeutics because of their small genomic footprints and non-immunogenicity compared to protein-based expression control systems. In addition, the ligand-sensing aptamer domains of many riboswitches can be exchanged in a modular fashion to allow regulation by a variety of small molecules, proteins, and oligonucleotides. Riboswitches have been used to regulate AAV-delivered transgene therapeutics in animal models, and recently developed screening and selection methods allow rapid isolation of riboswitches with novel ligands and improved performance in mammalian cells. This review discusses the advantages of riboswitches in the context of AAV-delivered gene therapy, the subsets of riboswitch mechanisms which have been shown to function in human cells and animal models, recent progress in riboswitch isolation and optimization, and several examples of AAV-delivered therapeutic systems which might be improved by riboswitch regulation.
Collapse
Affiliation(s)
- Zachary J. Tickner
- Department of Immunology and Microbiology, the Scripps Research Institute, Jupiter, FL 33458, USA;
- Correspondence:
| | - Michael Farzan
- Department of Immunology and Microbiology, the Scripps Research Institute, Jupiter, FL 33458, USA;
- Emmune, Inc., Jupiter, FL 33458, USA
| |
Collapse
|
15
|
Secondary Structure Libraries for Artificial Evolution Experiments. Molecules 2021; 26:molecules26061671. [PMID: 33802780 PMCID: PMC8002575 DOI: 10.3390/molecules26061671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/20/2022] Open
Abstract
Methods of artificial evolution such as SELEX and in vitro selection have made it possible to isolate RNA and DNA motifs with a wide range of functions from large random sequence libraries. Once the primary sequence of a functional motif is known, the sequence space around it can be comprehensively explored using a combination of random mutagenesis and selection. However, methods to explore the sequence space of a secondary structure are not as well characterized. Here we address this question by describing a method to construct libraries in a single synthesis which are enriched for sequences with the potential to form a specific secondary structure, such as that of an aptamer, ribozyme, or deoxyribozyme. Although interactions such as base pairs cannot be encoded in a library using conventional DNA synthesizers, it is possible to modulate the probability that two positions will have the potential to pair by biasing the nucleotide composition at these positions. Here we show how to maximize this probability for each of the possible ways to encode a pair (in this study defined as A-U or U-A or C-G or G-C or G.U or U.G). We then use these optimized coding schemes to calculate the number of different variants of model stems and secondary structures expected to occur in a library for a series of structures in which the number of pairs and the extent of conservation of unpaired positions is systematically varied. Our calculations reveal a tradeoff between maximizing the probability of forming a pair and maximizing the number of possible variants of a desired secondary structure that can occur in the library. They also indicate that the optimal coding strategy for a library depends on the complexity of the motif being characterized. Because this approach provides a simple way to generate libraries enriched for sequences with the potential to form a specific secondary structure, we anticipate that it should be useful for the optimization and structural characterization of functional nucleic acid motifs.
Collapse
|
16
|
Du X, Cheng X, Li W, Ge Z, Zhong C, Fan C, Gu H. Engineering Allosteric Ribozymes to Detect Thiamine Pyrophosphate in Whole Blood. Anal Chem 2021; 93:4277-4284. [PMID: 33635634 DOI: 10.1021/acs.analchem.0c05276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thiamine deficiency contributes to several human diseases including Alzheimer's. As its biologically active form, thiamine pyrophosphate (TPP) has been considered as a potential biomarker for Alzheimer's disease (AD) based on several clinical reports that apparently lower blood TPP levels were found in patients with mild cognitive impairment to AD. However, highly sensitive and high-throughput detection of TPP in biological fluids remains an analytical challenge. Here, we report engineering RNA-based sensors to quantitatively measure TPP concentrations in whole blood samples with a detection limit down to a few nM. By fusing a TPP-specific aptamer with the hammerhead ribozyme for in vitro selection, we isolated an allosteric ribozyme with an EC50 value (68 nM) similar to the aptamer's KD value (50 nM) for TPP, which for the first time demonstrates the possibility to maintain the effector binding affinity of the aptamer in such engineered allosteric RNA constructs. Meanwhile, we developed a new blood sample preparation protocol to be compatible with RNA. By coupling the TPP-induced ribozyme cleavage event with isothermal amplification, we achieved fluorescence monitoring of whole blood TPP levels through the "mix-and-read" operation with high-throughput potential. We expect that the engineered TPP-sensing RNAs will facilitate clinical research on AD as well as other thiamine-related diseases.
Collapse
Affiliation(s)
- Xinyu Du
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China.,Department of Neurology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaoqin Cheng
- Department of Neurology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Li
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China.,Department of Neurology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhilei Ge
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunjiu Zhong
- Department of Neurology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongzhou Gu
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, China.,Department of Neurology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
17
|
Townshend B, Xiang JS, Manzanarez G, Hayden EJ, Smolke CD. A multiplexed, automated evolution pipeline enables scalable discovery and characterization of biosensors. Nat Commun 2021; 12:1437. [PMID: 33664255 PMCID: PMC7933316 DOI: 10.1038/s41467-021-21716-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 02/08/2021] [Indexed: 02/08/2023] Open
Abstract
Biosensors are key components in engineered biological systems, providing a means of measuring and acting upon the large biochemical space in living cells. However, generating small molecule sensing elements and integrating them into in vivo biosensors have been challenging. Here, using aptamer-coupled ribozyme libraries and a ribozyme regeneration method, de novo rapid in vitro evolution of RNA biosensors (DRIVER) enables multiplexed discovery of biosensors. With DRIVER and high-throughput characterization (CleaveSeq) fully automated on liquid-handling systems, we identify and validate biosensors against six small molecules, including five for which no aptamers were previously found. DRIVER-evolved biosensors are applied directly to regulate gene expression in yeast, displaying activation ratios up to 33-fold. DRIVER biosensors are also applied in detecting metabolite production from a multi-enzyme biosynthetic pathway. This work demonstrates DRIVER as a scalable pipeline for engineering de novo biosensors with wide-ranging applications in biomanufacturing, diagnostics, therapeutics, and synthetic biology.
Collapse
Affiliation(s)
- Brent Townshend
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Joy S Xiang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Eric J Hayden
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Biological Science, Boise State University, Boise, ID, USA
| | - Christina D Smolke
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
18
|
Dagenais P, Legault P. In Vitro Selection of Varkud Satellite Ribozyme Variants that Cleave a Modified Stem-Loop Substrate. Methods Mol Biol 2021; 2167:61-77. [PMID: 32712915 DOI: 10.1007/978-1-0716-0716-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In vitro selection is an established approach to create artificial ribozymes with defined activities or to modify the properties of naturally occurring ribozymes. For the Varkud satellite ribozyme of Neurospora, an in vitro selection protocol based on its phosphodiester bond cleavage activity has not been previously reported. Here, we describe a simple protocol for cleavage-based in vitro selection that we recently used to identify variants of the Varkud satellite ribozyme able to target and cleave a non-natural stem-loop substrate derived from the HIV-1 TAR RNA. It allows quick selection of active ribozyme variants from the transcription reaction based on the size of the self-cleavage product without the need for RNA labeling. This results in a streamlined procedure that is easily adaptable to engineer ribozymes with new activities.
Collapse
Affiliation(s)
- Pierre Dagenais
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montreal, QC, Canada
| | - Pascale Legault
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
19
|
Modeling SELEX for regulatory regions using Royal Road and Royal Staircase fitness functions. Biosystems 2020; 200:104312. [PMID: 33278501 DOI: 10.1016/j.biosystems.2020.104312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/11/2020] [Accepted: 11/23/2020] [Indexed: 01/24/2023]
Abstract
The field of evolutionary algorithms (EAs) emerged in the area of computer science due to transfer of ideas from biology and developed independently for several decades, enriched with techniques from probability theory, complexity theory and optimization methods. In this paper, we consider some recent results form the EAs theory transferred back into biology. The well-known biotechnological procedure SELEX (Systematic Evolution of Ligands by EXponential enrichment) is viewed as an experimental implementation of an evolutionary algorithm. Theoretical bounds on EAs runtime are applied to model SELEX search for a regulatory region consisting of promoter and enhancer sequences. A comparison of theoretical bounds to the results of computational simulation indicates some cases where the theoretical bounds give favorable prediction, while simulation requires prohibitive computational resource.
Collapse
|
20
|
Mao X, Li Q, Zuo X, Fan C. Catalytic Nucleic Acids for Bioanalysis. ACS APPLIED BIO MATERIALS 2019; 3:2674-2685. [PMID: 35025402 DOI: 10.1021/acsabm.9b00928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiuhai Mao
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
21
|
Haines MC, Storch M, Oyarzún DA, Stan GB, Baldwin GS. Riboswitch identification using Ligase-Assisted Selection for the Enrichment of Responsive Ribozymes (LigASERR). Synth Biol (Oxf) 2019; 4:ysz019. [PMID: 32995542 PMCID: PMC7445825 DOI: 10.1093/synbio/ysz019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022] Open
Abstract
In vitro selection of ligand-responsive ribozymes can identify rare, functional sequences from large libraries. While powerful, key caveats of this approach include lengthy and demanding experimental workflows; unpredictable experimental outcomes and unknown functionality of enriched sequences in vivo. To address the first of these limitations, we developed Ligase-Assisted Selection for the Enrichment of Responsive Ribozymes (LigASERR). LigASERR is scalable, amenable to automation and requires less time to implement compared to alternative methods. To improve the predictability of experiments, we modeled the underlying selection process, predicting experimental outcomes based on sequence and population parameters. We applied this new methodology and model to the enrichment of a known, in vitro-selected sequence from a bespoke library. Prior to implementing selection, conditions were optimized and target sequence dynamics accurately predicted for the majority of the experiment. In addition to enriching the target sequence, we identified two new, theophylline-activated ribozymes. Notably, all three sequences yielded riboswitches functional in Escherichia coli, suggesting LigASERR and similar in vitro selection methods can be utilized for generating functional riboswitches in this organism.
Collapse
Affiliation(s)
- Matthew C Haines
- Department of Life Sciences, Imperial College London, London, UK.,Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Marko Storch
- Department of Life Sciences, Imperial College London, London, UK.,Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.,London BioFoundry, Imperial College Translation & Innovation Hub, London, UK
| | - Diego A Oyarzún
- School of Informatics, University of Edinburgh, Edinburgh, UK.,School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Guy-Bart Stan
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.,Department of Bioengineering, Imperial College London, London, UK
| | - Geoff S Baldwin
- Department of Life Sciences, Imperial College London, London, UK.,Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| |
Collapse
|
22
|
Abstract
Riboswitches are RNA elements that recognize diverse chemical and biomolecular inputs, and transduce this recognition process to genetic, fluorescent, and other engineered outputs using RNA conformational changes. These systems are pervasive in cellular biology and are a promising biotechnology with applications in genetic regulation and biosensing. Here, we derive a simple expression bounding the activation ratio-the proportion of RNA in the active vs. inactive states-for both ON and OFF riboswitches that operate near thermodynamic equilibrium: 1+[I]/KdI, where [I] is the input ligand concentration and KdI is the intrinsic dissociation constant of the aptamer module toward the input ligand. A survey of published studies of natural and synthetic riboswitches confirms that the vast majority of empirically measured activation ratios have remained well below this thermodynamic limit. A few natural and synthetic riboswitches achieve activation ratios close to the limit, and these molecules highlight important principles for achieving high riboswitch performance. For several applications, including "light-up" fluorescent sensors and chemically-controlled CRISPR/Cas complexes, the thermodynamic limit has not yet been achieved, suggesting that current tools are operating at suboptimal efficiencies. Future riboswitch studies will benefit from comparing observed activation ratios to this simple expression for the optimal activation ratio. We present experimental and computational suggestions for how to make these quantitative comparisons and suggest new molecular mechanisms that may allow non-equilibrium riboswitches to surpass the derived limit.
Collapse
Affiliation(s)
| | - Michelle Wu
- Program in Biomedical Informatics, Stanford University, Stanford, CA, United States
| | - Michael Gotrik
- Department of Biochemistry, Stanford University, Stanford, CA, United States
| | - Rhiju Das
- Department of Biochemistry, Stanford University, Stanford, CA, United States; Department of Physics, Stanford University, Stanford, CA, United States.
| |
Collapse
|
23
|
You M, Litke JL, Wu R, Jaffrey SR. Detection of Low-Abundance Metabolites in Live Cells Using an RNA Integrator. Cell Chem Biol 2019; 26:471-481.e3. [PMID: 30773480 DOI: 10.1016/j.chembiol.2019.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/05/2018] [Accepted: 01/10/2019] [Indexed: 01/05/2023]
Abstract
Genetically encoded biosensors are useful tools for detecting the presence and levels of diverse biomolecules in living cells. However, low-abundance targets are difficult to detect because they are often unable to bind and activate enough biosensors to detect using standard microscopic imaging approaches. Here we describe a type of RNA-based biosensor, an RNA integrator, which enables detection of low-abundance targets in vitro and in living cells. The RNA integrator is an RNA sequence comprising a ribozyme and an unfolded form of the fluorogenic aptamer Broccoli. Upon binding its target, the ribozyme undergoes cleavage and releases Broccoli, which subsequently folds and becomes fluorescent. Importantly, each target molecule can bind and induce cleavage of multiple copies of the integrator sensor, resulting in an amplified signal. We show that this approach can be generalized to numerous different ribozyme types for the detection of various small molecules.
Collapse
Affiliation(s)
- Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA; Department of Pharmacology, Weill Medical College, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Jacob L Litke
- Department of Pharmacology, Weill Medical College, Weill Cornell Medicine, New York, NY 10065, USA
| | - Rigumula Wu
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Medical College, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
24
|
Morse DP, Nevins CE, Aggrey-Fynn J, Bravo RJ, Pfaeffle HOI, Laney JE. Sensitive and specific detection of ligands using engineered riboswitches. J Biotechnol 2018. [PMID: 29518463 DOI: 10.1016/j.jbiotec.2018.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Riboswitches are RNA elements found in non-coding regions of messenger RNAs that regulate gene expression through a ligand-triggered conformational change. Riboswitches typically bind tightly and specifically to their ligands, so they have the potential to serve as highly effective sensors in vitro. In B. subtilis and other gram-positive bacteria, purine nucleotide synthesis is regulated by riboswitches that bind to guanine. We modified the xpt-pbuX guanine riboswitch for use in a fluorescence quenching assay that allowed us to specifically detect and quantify guanine in vitro. Using this assay, we reproducibly detected as little as 5 nM guanine. We then produced sensors for 2'-deoxyguanosine and cyclic diguanylate (c-diGMP) by appending the P1 stem of the guanine riboswitch to the ligand-binding domains of a 2'-deoxyguanosine riboswitch and a c-diGMP riboswitch. These hybrid sensors could detect 15 nM 2'-deoxyguanosine and 3 nM c-diGMP, respectively. Each sensor retained the ligand specificity of its corresponding natural riboswitch. In order to extend the utility of our approach, we developed a strategy for the in vitro selection of sensors with novel ligand specificity. Here we report a proof-of-principle experiment that demonstrated the feasibility of our selection strategy.
Collapse
Affiliation(s)
- Daniel P Morse
- Department of Chemistry, United States Naval Academy, Annapolis, MD 21402, USA.
| | - Colin E Nevins
- Department of Chemistry, United States Naval Academy, Annapolis, MD 21402, USA
| | - Joana Aggrey-Fynn
- Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
| | - Rick J Bravo
- Department of Chemistry, United States Naval Academy, Annapolis, MD 21402, USA
| | - Herman O I Pfaeffle
- Department of Chemistry, United States Naval Academy, Annapolis, MD 21402, USA
| | - Jess E Laney
- Department of Chemistry, United States Naval Academy, Annapolis, MD 21402, USA
| |
Collapse
|
25
|
Filonov GS. Rapid Selection of RNA Aptamers that Activate Fluorescence of Small Molecules. Methods Mol Biol 2018; 1575:273-289. [PMID: 28255887 DOI: 10.1007/978-1-4939-6857-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RNA aptamers can serve as valuable tools for studying and manipulating live cells. Fluorescent aptamers are the ones that bind to and turn on fluorescence of small-molecule dyes (fluorogens). Similarly to fluorescent proteins, fluorescent RNA aptamers can be used to image spatial and temporal RNA dynamics in live cells. Additionally, these aptamers can serve as a basis for engineering genetically encoded fluorescent biosensors. This chapter presents a protocol for rapid and efficient screening of RNA aptamer libraries to isolate fluorescent aptamers. The protocol describes how to design, clone, and express RNA aptamer library in bacterial cells and how to screen the bacteria to find aptamers with the desired fluorescent properties.
Collapse
Affiliation(s)
- Grigory S Filonov
- Essen Bioscience, Ann Arbor, MI, USA. .,Department of Pharmacology, Weill Medical College, Cornell University, New York, NY, USA.
| |
Collapse
|
26
|
RNA-Based Fluorescent Biosensors for Detecting Metabolites in vitro and in Living Cells. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 82:187-203. [PMID: 29413520 DOI: 10.1016/bs.apha.2017.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Genetically encoded sensors are important tools for measuring metabolites and other small molecules in vitro and in live cells. Until recently, genetically encoded sensors exclusively comprised fluorescent proteins that undergo changes in Förster resonance energy transfer upon binding a target analyte. However, recently a new class of fluorescent sensor has been developed composed of RNA. These RNA-based sensors rely on Spinach and other RNA mimics of green fluorescent protein. In each case, the RNA-based sensors contain an analyte-binding aptamer domain which transduces binding of the analyte into a conformational change in Spinach. Two types of sensors have been developed: allosteric Spinach sensors and Spinach riboswitches. Allosteric Spinach sensors exhibit metabolite-induced folding and subsequent fluorescence. Spinach riboswitches are naturally occurring riboswitches that have been modified to contain the Spinach aptamer. The resulting RNA is a fluorogenic riboswitch, and produces fluorescence upon binding its cognate analyte. We describe the development of this new technology, its uses, and future directions to facilitate the use of this assay technology in mammalian cells and in high-throughput applications.
Collapse
|
27
|
Abstract
The possibility of an RNA World is based on the notion that life on Earth passed through a primitive phase without proteins, a time when all genomes and enzymes were composed of ribonucleic acids. Numerous apparent vestiges of this ancient RNA World remain today, including many nucleotide-derived coenzymes, self-processing ribozymes, metabolite-binding riboswitches, and even ribosomes. Many of the most common signaling molecules and second messengers used by modern organisms are also formed from RNA nucleotides or their precursors. For example, nucleotide derivatives such as cAMP, ppGpp, and ZTP, as well as the cyclic dinucleotides c-di-GMP and c-di-AMP, are intimately involved in signaling diverse physiological or metabolic changes in bacteria and other organisms. We describe the potential diversity of this "lost language" of the RNA World and speculate on whether additional components of this ancient communication machinery might remain hidden though still very much relevant to modern cells.
Collapse
Affiliation(s)
- James W Nelson
- Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, CT 06520, USA
| | - Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, CT 06520, USA. .,Department of Molecular Biophysics and Biochemistry, Yale University, P.O. Box 208103, New Haven, CT 06520, USA.,Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
28
|
Zhong G, Wang H, Bailey CC, Gao G, Farzan M. Rational design of aptazyme riboswitches for efficient control of gene expression in mammalian cells. eLife 2016; 5. [PMID: 27805569 PMCID: PMC5130294 DOI: 10.7554/elife.18858] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/01/2016] [Indexed: 12/21/2022] Open
Abstract
Efforts to control mammalian gene expression with ligand-responsive riboswitches have been hindered by lack of a general method for generating efficient switches in mammalian systems. Here we describe a rational-design approach that enables rapid development of efficient cis-acting aptazyme riboswitches. We identified communication-module characteristics associated with aptazyme functionality through analysis of a 32-aptazyme test panel. We then developed a scoring system that predicts an aptazymes’s activity by integrating three characteristics of communication-module bases: hydrogen bonding, base stacking, and distance to the enzymatic core. We validated the power and generality of this approach by designing aptazymes responsive to three distinct ligands, each with markedly wider dynamic ranges than any previously reported. These aptayzmes efficiently regulated adeno-associated virus (AAV)-vectored transgene expression in cultured mammalian cells and mice, highlighting one application of these broadly usable regulatory switches. Our approach enables efficient, protein-independent control of gene expression by a range of small molecules. DOI:http://dx.doi.org/10.7554/eLife.18858.001
Collapse
Affiliation(s)
- Guocai Zhong
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, Jupiter, United States
| | - Haimin Wang
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, Jupiter, United States
| | - Charles C Bailey
- Department of Molecular and Comparative Pathology, Johns Hopkins School of Medicine, Baltimore, United States
| | - Guangping Gao
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, United States
| | - Michael Farzan
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, Jupiter, United States
| |
Collapse
|
29
|
Reprogramming eukaryotic translation with ligand-responsive synthetic RNA switches. Nat Methods 2016; 13:453-8. [PMID: 26999002 PMCID: PMC4850110 DOI: 10.1038/nmeth.3807] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 02/13/2016] [Indexed: 01/01/2023]
Abstract
Protein synthesis in eukaryotes is regulated by diverse reprogramming mechanisms that expand the coding capacity of individual genes. Here, we exploit one such mechanism termed −1 programmed ribosomal frameshifting (−1 PRF) to engineer ligand-responsive RNA switches that regulate protein expression. First, efficient −1 PRF stimulatory RNA elements were discovered by in vitro selection; then, ligand-responsive switches were constructed by coupling −1 PRF stimulatory elements to RNA aptamers using rational design and in vivo directed evolution. We demonstrate that −1 PRF switches tightly control the relative stoichiometry of two distinct protein outputs from a single mRNA, exhibiting consistent ligand response across whole populations of cells. Furthermore, −1 PRF switches were applied to build single-mRNA logic gates and an apoptosis module in yeast. Together, these results showcase the potential for harnessing translation-reprogramming mechanisms for synthetic biology, and establish −1 PRF switches as powerful RNA tools for controlling protein synthesis in eukaryotes.
Collapse
|
30
|
Identification of the Same Na(+)-Specific DNAzyme Motif from Two In Vitro Selections Under Different Conditions. J Mol Evol 2015; 81:225-34. [PMID: 26577294 DOI: 10.1007/s00239-015-9715-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/03/2015] [Indexed: 12/27/2022]
Abstract
We report an investigation of the functional relationship between two independently selected RNA-cleaving DNAzymes, NaA43, and Ce13, through in vitro selection. The NaA43 DNAzyme was obtained through a combination of gel-based and column-based in vitro selection in the presence of Na(+) and reported to be highly selective for Na(+) over other metal ions. The Ce13 DNAzyme was isolated via a gel-based method in the presence of Ce(4+) and found to be active with trivalent lanthanides, Y(3+) and Pb(2+). Despite completely different activities reported for the two DNAzymes, they share a high level of sequence similarity (~60% sequence identity). In this work, we systematically analyzed the activity of both DNAzymes to elucidate their potential functional relationship. We found that Na(+) is an obligate cofactor of the Ce13 DNAzyme and lanthanides cannot initiate the cleavage reaction in the absence of Na(+). Hence, we conclude that the Ce13 DNAzyme is a variant of the NaA43 DNAzyme that catalyzes reaction in the presence Na(+) and also utilizes lanthanides in a potentially allosteric manner. These results have identified a new DNAzyme motif that is not only remarkably Na(+)-specific, but also allows for design of novel allosteric DNAzymes for different biotechnological applications.
Collapse
|
31
|
Paramonov VM, Mamaeva V, Sahlgren C, Rivero-Müller A. Genetically-encoded tools for cAMP probing and modulation in living systems. Front Pharmacol 2015; 6:196. [PMID: 26441653 PMCID: PMC4569861 DOI: 10.3389/fphar.2015.00196] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/28/2015] [Indexed: 11/19/2022] Open
Abstract
Intracellular 3′-5′-cyclic adenosine monophosphate (cAMP) is one of the principal second messengers downstream of a manifold of signal transduction pathways, including the ones triggered by G protein-coupled receptors. Not surprisingly, biochemical assays for cAMP have been instrumental for basic research and drug discovery for decades, providing insights into cellular physiology and guiding pharmaceutical industry. However, despite impressive track record, the majority of conventional biochemical tools for cAMP probing share the same fundamental shortcoming—all the measurements require sample disruption for cAMP liberation. This common bottleneck, together with inherently low spatial resolution of measurements (as cAMP is typically analyzed in lysates of thousands of cells), underpin the ensuing limitations of the conventional cAMP assays: (1) genuine kinetic measurements of cAMP levels over time in a single given sample are unfeasible; (2) inability to obtain precise information on cAMP spatial distribution and transfer at subcellular levels, let alone the attempts to pinpoint dynamic interactions of cAMP and its effectors. At the same time, tremendous progress in synthetic biology over the recent years culminated in drastic refinement of our toolbox, allowing us not only to bypass the limitations of conventional assays, but to put intracellular cAMP life-span under tight control—something, that seemed scarcely attainable before. In this review article we discuss the main classes of modern genetically-encoded tools tailored for cAMP probing and modulation in living systems. We examine the capabilities and weaknesses of these different tools in the context of their operational characteristics and applicability to various experimental set-ups involving living cells, providing the guidance for rational selection of the best tools for particular needs.
Collapse
Affiliation(s)
- Valeriy M Paramonov
- Department of Physiology, Institute of Biomedicine, University of Turku , Turku, Finland ; Turku Center for Biotechnology, University of Turku and Åbo Akademi University , Turku, Finland
| | - Veronika Mamaeva
- Department of Clinical Science, University of Bergen , Bergen, Norway
| | - Cecilia Sahlgren
- Turku Center for Biotechnology, University of Turku and Åbo Akademi University , Turku, Finland ; Department of Biomedical Engineering, Eindhoven University of Technology , Eindhoven, Netherlands
| | - Adolfo Rivero-Müller
- Department of Physiology, Institute of Biomedicine, University of Turku , Turku, Finland ; Faculty of Natural Sciences and Technology, Åbo Akademi University , Turku, Finland ; Department of Biochemistry and Molecular Biology, Medical University of Lublin , Lublin, Poland
| |
Collapse
|
32
|
Abstract
We describe design parameters for the synthesis and analytical application of a label-free RNA molecular beacon, termed Spinach.ST. The RNA aptamer Spinach fluoresces upon binding the small-molecule fluorophore DFHBI ((Z)-4-(3,5-difluoro-4-hydroxybenzylidene)-1,2-dimethyl-1H-imidazol-5(4H)-one). Spinach has been reengineered by extending its 5'- and 3'-ends to create Spinach.ST, which is predicted to fold into an inactive conformation that fails to bind DHFBI. Hybridization of a trigger oligonucleotide to a designed toehold on Spinach.ST initiates toehold-mediated strand displacement and restores the DFHBI-binding, fluorescence-enhancing conformation of Spinach. The versatile Spinach.ST sensor can detect DNA or RNA trigger sequences and can readily distinguish single-nucleotide mismatches in the trigger toehold. Primer design techniques are described that augment amplicons produced by enzymatic amplification with Spinach.ST triggers. Interaction between these triggers and Spinach.ST molecular beacons leads to the real-time, sequence-specific quantitation of these amplicons. The use of Spinach.ST with isothermal amplification reactions such as nucleic acid sequence-based amplification (NASBA) may enable point-of-care applications. The same design principles could also be used to adapt Spinach reporters to the assay of nonnucleic acid analytes in trans.
Collapse
|
33
|
Trausch JJ, Batey RT. Design of Modular “Plug-and-Play” Expression Platforms Derived from Natural Riboswitches for Engineering Novel Genetically Encodable RNA Regulatory Devices. Methods Enzymol 2015; 550:41-71. [DOI: 10.1016/bs.mie.2014.10.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
34
|
Lewis DD, Villarreal FD, Wu F, Tan C. Synthetic biology outside the cell: linking computational tools to cell-free systems. Front Bioeng Biotechnol 2014; 2:66. [PMID: 25538941 PMCID: PMC4260521 DOI: 10.3389/fbioe.2014.00066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/23/2014] [Indexed: 12/22/2022] Open
Abstract
As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo synthetic biological systems, with only a few examples of prominent work done on predicting the dynamics of cell-free synthetic systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems.
Collapse
Affiliation(s)
- Daniel D. Lewis
- Integrative Genetics and Genomics, University of California Davis, Davis, CA, USA
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | | | - Fan Wu
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| |
Collapse
|
35
|
Walsh S, Gardner L, Deiters A, Williams GJ. Intracellular light-activation of riboswitch activity. Chembiochem 2014; 15:1346-51. [PMID: 24861567 DOI: 10.1002/cbic.201400024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Indexed: 12/18/2022]
Abstract
By combining a riboswitch with a cell-permeable photocaged small-molecule ligand, an optochemical gene control element was constructed that enabled spatial and temporal control of gene expression in bacterial cells. The simplicity of this strategy, coupled with the ability to create synthetic riboswitches with tailored ligand specificities and output in a variety of microorganisms, plants, and fungi might afford a general strategy to photocontrol gene expression in vivo. The ability to activate riboswitches by using light enables the interrogation and manipulation of a wide range of biological processes with high precision, and will have broad utility in the regulation of artificial genetic circuits.
Collapse
Affiliation(s)
- Steven Walsh
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204 (USA)
| | | | | | | |
Collapse
|
36
|
Groher F, Suess B. Synthetic riboswitches - A tool comes of age. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:964-973. [PMID: 24844178 DOI: 10.1016/j.bbagrm.2014.05.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/29/2014] [Accepted: 05/08/2014] [Indexed: 12/14/2022]
Abstract
Within the last decade, it has become obvious that RNA plays an important role in regulating gene expression. This has led to a plethora of approaches aiming at exploiting the outstanding chemical properties of RNA to develop synthetic RNA regulators for conditional gene expression systems. Consequently, many different regulators have been developed to act on various stages of gene expression. They can be engineered to respond to almost any ligand of choice and are, therefore, of great interest for applications in synthetic biology. This review presents an overview of such engineered riboswitches, discusses their applicability and points out recent trends in their development. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Florian Groher
- Department of Biology, Technical University Darmstadt, 64287 Darmstadt, Germany
| | - Beatrix Suess
- Department of Biology, Technical University Darmstadt, 64287 Darmstadt, Germany.
| |
Collapse
|
37
|
Ramesh A, Winkler WC. Metabolite-binding ribozymes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:989-994. [PMID: 24769284 DOI: 10.1016/j.bbagrm.2014.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/08/2014] [Accepted: 04/13/2014] [Indexed: 12/22/2022]
Abstract
Catalysis in the biological context was largely thought to be a protein-based phenomenon until the discovery of RNA catalysts called ribozymes. These discoveries demonstrated that many RNA molecules exhibit remarkable structural and functional versatility. By virtue of these features, naturally occurring ribozymes have been found to be involved in catalyzing reactions for fundamentally important cellular processes such as translation and RNA processing. Another class of RNAs called riboswitches directly binds ligands to control downstream gene expression. Most riboswitches regulate downstream gene expression by controlling premature transcription termination or by affecting the efficiency of translation initiation. However, one riboswitch class couples ligand-sensing to ribozyme activity. Specifically, the glmS riboswitch is a nucleolytic ribozyme, whose self-cleavage activity is triggered by the binding of GlcN6P. The products of this self-cleavage reaction are then targeted by cellular RNases for rapid degradation, thereby reducing glmS expression under conditions of sufficient GlcN6P. Since the discovery of the glmS ribozyme, other metabolite-binding ribozymes have been identified. Together, these discoveries have expanded the general understanding of noncoding RNAs and provided insights that will assist future development of synthetic riboswitch-ribozymes. A very broad overview of natural and synthetic ribozymes is presented herein with an emphasis on the structure and function of the glmS ribozyme as a paradigm for metabolite-binding ribozymes that control gene expression. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Arati Ramesh
- The University of Texas Southwestern Medical Center, Department of Biophysics, 6001 Forest Park Rd, Dallas, USA.
| | - Wade C Winkler
- The University of Maryland, Department of Cell Biology and Molecular Genetics, 3112 Biosciences Research Building, College Park, MD, USA.
| |
Collapse
|
38
|
Stovall GM, Bedenbaugh RS, Singh S, Meyer AJ, Hatala PJ, Ellington AD, Hall B. In vitro selection using modified or unnatural nucleotides. ACTA ACUST UNITED AC 2014; 56:9.6.1-33. [PMID: 25606981 DOI: 10.1002/0471142700.nc0906s56] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Incorporation of modified nucleotides into in vitro RNA or DNA selections offers many potential advantages, such as the increased stability of selected nucleic acids against nuclease degradation, improved affinities, expanded chemical functionality, and increased library diversity. This unit provides useful information and protocols for in vitro selection using modified nucleotides. It includes a discussion of when to use modified nucleotides; protocols for evaluating and optimizing transcription reactions, as well as confirming the incorporation of the modified nucleotides; protocols for evaluating modified nucleotide transcripts as template in reverse transcription reactions; protocols for the evaluation of the fidelity of modified nucleotides in the replication and the regeneration of the pool; and a protocol to compare modified nucleotide pools and selection conditions.
Collapse
Affiliation(s)
- Gwendolyn M Stovall
- The University of Texas at Austin, Austin, Texas; Altermune Technologies LLC, Austin, Texas
| | | | | | | | | | | | | |
Collapse
|
39
|
Liu Q, Deiters A. Optochemical control of deoxyoligonucleotide function via a nucleobase-caging approach. Acc Chem Res 2014; 47:45-55. [PMID: 23981235 PMCID: PMC3946944 DOI: 10.1021/ar400036a] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthetic oligonucleotides have been extensively applied tocontrol a wide range of biological processes such as gene expression, gene repair, DNA replication, and protein activity. Based on well-established sequence design rules that typically rely on Watson-Crick base pairing interactions researchers can readily program the function of these oligonucleotides. Therefore oligonucleotides provide a flexible platform for targeting a wide range of biological molecules, including DNA, RNA, and proteins. In addition, oligonucleotides are commonly used research tools in cell biology and developmental biology. However, a lack of conditional control methods has hampered the precise spatial and temporal regulation of oligonucleotide activity, which limits the application of these reagents to investigate complex biological questions. Nature controls biological function with a high level of spatial and temporal resolution and in order to elucidate the molecular mechanisms of biological processes, researchers need tools that allow for the perturbation of these processes with Nature's precision. Light represents an excellent external regulatory element since irradiation can be easily controlled spatially and temporally. Thus, researchers have developed several different methods to conditionally control oligonucleotide activity with light. One of the most versatile strategies is optochemical regulation through the installation and removal of photolabile caging groups on oligonucleotides. To produce switches that can control nucleic acid function with light, chemists introduce caging groups into the oligomer backbone or on specific nucleobases to block oligonucleotide function until the caging groups are removed by light exposure. In this Account, we focus on the application of caged nucleobases to the photoregulation of DNA function. Using this approach, we have both activated and deactivated gene expression optochemically at the transcriptional and translational level with spatial and temporal control. Specifically, we have used caged triplex-forming oligomers and DNA decoys to regulate transcription, and we have regulated translation with light-activated antisense agents. Moreover, we also discuss strategies that can trigger DNA enzymatic activity, DNA amplification, and DNA mutagenesis by light illumination. More recently, we have developed light-activated DNA logic operations, an advance that may lay the foundation for the optochemical control of complex DNA calculations.
Collapse
Affiliation(s)
- Qingyang Liu
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | | |
Collapse
|
40
|
Furukawa K, Gu H, Breaker RR. In vitro selection of allosteric ribozymes that sense the bacterial second messenger c-di-GMP. Methods Mol Biol 2014; 1111:209-20. [PMID: 24549622 PMCID: PMC5325115 DOI: 10.1007/978-1-62703-755-6_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Recently, a number of study have shown the ligand-dependent allosteric ribozymes can be harnessed as biosensors, high-throughput screening, and agents for the control of gene expression in vivo, called artificial riboswitches. In this chapter, we describe how in vitro selection can be used to create an allosteric ribozyme that senses bacterial second messenger cyclic-di-GMP (c-di-GMP). A hammerhead ribozyme was joined to a natural c-di-GMP class I riboswitch aptamer via communication modules. Both c-di-GMP-activating and -inhibiting ribozyme can be obtained by this approach.
Collapse
Affiliation(s)
- Kazuhiro Furukawa
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | | | | |
Collapse
|
41
|
Oh SS, Plakos K, Xiao Y, Eisenstein M, Soh HT. In vitro selection of shape-changing DNA nanostructures capable of binding-induced cargo release. ACS NANO 2013; 7:9675-9683. [PMID: 24168267 PMCID: PMC3919467 DOI: 10.1021/nn404079v] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Many biological systems employ allosteric regulatory mechanisms, which offer a powerful means of directly linking a specific binding event to a wide spectrum of molecular functionalities. There is considerable interest in generating synthetic allosteric regulators that can perform useful molecular functions for applications in diagnostics, imaging and targeted therapies, but generating such molecules through either rational design or directed evolution has proven exceptionally challenging. To address this need, we present an in vitro selection strategy for generating conformation-switching DNA nanostructures that selectively release a small-molecule payload in response to binding of a specific trigger molecule. As an exemplar, we have generated a DNA nanostructure that hybridizes with a separate 'cargo strand' containing an abasic site. This abasic site stably sequesters a fluorescent cargo molecule in an inactive state until the DNA nanostructure encounters an ATP trigger molecule. This ATP trigger causes the nanostructure to release the cargo strand, thereby liberating the fluorescent payload and generating a detectable fluorescent readout. Our DNA nanostructure is highly sensitive, with an EC50 of 30 μM, and highly specific, releasing its payload in response to ATP but not to other chemically similar nucleotide triphosphates. We believe that this selection approach could be generalized to generate synthetic nanostructures capable of selective and controlled release of other small-molecule cargos in response to a variety of triggers, for both research and clinical applications.
Collapse
Affiliation(s)
- Seung Soo Oh
- Materials Department, University of California, Santa Barbara, CA 93106
| | - Kory Plakos
- Materials Department, University of California, Santa Barbara, CA 93106
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106
| | - Yi Xiao
- Materials Department, University of California, Santa Barbara, CA 93106
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106
| | - Michael Eisenstein
- Materials Department, University of California, Santa Barbara, CA 93106
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106
| | - Hyongsok Tom Soh
- Materials Department, University of California, Santa Barbara, CA 93106
- Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106
| |
Collapse
|
42
|
Kobori S, Ichihashi N, Kazuta Y, Matsuura T, Yomo T. Kinetic analysis of aptazyme-regulated gene expression in a cell-free translation system: modeling of ligand-dependent and -independent expression. RNA (NEW YORK, N.Y.) 2012; 18:1458-1465. [PMID: 22733807 PMCID: PMC3404367 DOI: 10.1261/rna.032748.112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/26/2012] [Indexed: 06/01/2023]
Abstract
Aptazymes are useful as RNA-based switches of gene expression responsive to several types of compounds. One of the most important properties of the switching ability is the signal/noise (S/N) ratio, i.e., the ratio of gene expression in the presence of ligand to that in the absence of ligand. The present study was performed to gain a quantitative understanding of how the aptazyme S/N ratio is determined by factors involved in gene expression, such as transcription, RNA self-cleavage, RNA degradation, protein translation, and their ligand dependencies. We performed switching of gene expression using two on-switch aptazymes with different properties in a cell-free translation system, and constructed a kinetic model that quantitatively describes the dynamics of RNA and protein species involved in switching. Both theoretical and experimental analyses consistently demonstrated that factors determining both the absolute value and the dynamics of the S/N ratio are highly dependent on the routes of translation in the absence of ligand: translation from the ligand-independently cleaved RNA or leaky translation from the noncleaved RNA. The model obtained here is useful to assess the factors that restrict the S/N ratio and to improve aptazymes more efficiently.
Collapse
Affiliation(s)
- Shungo Kobori
- Graduate School of Information Science and Technology, Osaka University, Osaka 565-0871, Japan
| | - Norikazu Ichihashi
- Graduate School of Information Science and Technology, Osaka University, Osaka 565-0871, Japan
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Osaka 565-0871, Japan
| | - Yasuaki Kazuta
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Osaka 565-0871, Japan
| | - Tomoaki Matsuura
- Graduate School of Information Science and Technology, Osaka University, Osaka 565-0871, Japan
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Osaka 565-0871, Japan
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Tetsuya Yomo
- Graduate School of Information Science and Technology, Osaka University, Osaka 565-0871, Japan
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Osaka 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
43
|
Genetically encoded RNA photoswitches as tools for the control of gene expression. FEBS Lett 2012; 586:2106-11. [PMID: 22659185 DOI: 10.1016/j.febslet.2012.05.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 05/22/2012] [Accepted: 05/22/2012] [Indexed: 11/22/2022]
Abstract
An important goal in chemical and synthetic biology is controlling the expression of defined sets of genes by external stimuli, and one of the most attractive stimuli is light. Current approaches to the photocontrol of biological processes utilize photoresponsive proteins. In this article, I will illustrate the prospects of synthetic systems in which the receptor is a photoresponsive nucleic acid, and will review the different tools already in place to develop photoresponsive systems based on RNA. A particular focus is on genetically encoded photoswitches that can be expressed in prokaryotic or eukaryotic cells, and respond to photoisomerizable, cell-permeable small molecules.
Collapse
|
44
|
Gu H, Furukawa K, Breaker RR. Engineered allosteric ribozymes that sense the bacterial second messenger cyclic diguanosyl 5'-monophosphate. Anal Chem 2012; 84:4935-41. [PMID: 22519888 DOI: 10.1021/ac300415k] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A series of allosteric ribozymes that respond to the bacterial second messenger cyclic diguanosyl-5'-monophosphate (c-di-GMP) have been created by using in vitro selection. An RNA library was generated by using random-sequence bridges to join a hammerhead self-cleaving ribozyme to an aptamer from a natural c-di-GMP riboswitch. Specific bridge sequences, called communication modules, emerged through two in vitro selection efforts that either activate or inhibit ribozyme self-cleavage upon ligand binding to the aptamer. Representative RNAs were found that exhibit EC(50) (half-maximal effective concentration) values for c-di-GMP as low as 90 nM and IC(50) (half-maximal inhibitory concentration) values as low as 180 nM. The allosteric RNAs display molecular recognition characteristics that mimic the high discriminatory ability of the natural aptamer. Some engineered RNAs operate with ribozyme rate constants approaching that of the parent hammerhead ribozyme. By use of these allosteric ribozymes, cytoplasmic concentrations of c-di-GMP in three mutant strains of Escherichia coli were quantitatively estimated from cell lysates. Our findings demonstrate that engineered c-di-GMP-sensing ribozymes can be used as convenient tools to monitor c-di-GMP levels from complex biological or chemical samples. Moreover, these ribozymes could be employed in high-throughput screens to identify compounds that trigger c-di-GMP riboswitch function.
Collapse
Affiliation(s)
- Hongzhou Gu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States
| | | | | |
Collapse
|
45
|
Wittmann A, Suess B. Engineered riboswitches: Expanding researchers' toolbox with synthetic RNA regulators. FEBS Lett 2012; 586:2076-83. [PMID: 22710175 DOI: 10.1016/j.febslet.2012.02.038] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/20/2012] [Accepted: 02/20/2012] [Indexed: 12/22/2022]
Abstract
Riboswitches are natural RNA-based genetic switches that sense small-molecule metabolites and regulate in response the expression of the corresponding metabolic genes. Within the last years, several engineered riboswitches have been developed that act on various stages of gene expression. These switches can be engineered to respond to any ligand of choice and are therefore of great interest for synthetic biology. In this review, we present an overview of engineered riboswitches and discuss their application in conditional gene expression systems. We will provide structural and mechanistic insights and point out problems and recent trends in the development of engineered riboswitches.
Collapse
Affiliation(s)
- Alexander Wittmann
- Institute of Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| | | |
Collapse
|
46
|
Wieland M, Ausländer D, Fussenegger M. Engineering of ribozyme-based riboswitches for mammalian cells. Methods 2012; 56:351-7. [PMID: 22305857 DOI: 10.1016/j.ymeth.2012.01.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/13/2012] [Accepted: 01/17/2012] [Indexed: 12/15/2022] Open
Abstract
Artificial RNA riboswitches--apart from protein-based gene regulation systems, which have been known about for a long time--have become increasingly important in biotechnology and synthetic biology. Aptamer-controlled hammerhead ribozymes (so-called aptazymes) have been shown to be a versatile platform for the engineering of novel gene regulators. Since aptazymes are cis-acting elements that are located in the untranslated regions of a gene of interest, their application does not need any further protein co-factor. This presents the opportunity to simplify complex gene networks while simultaneously expanding the repertoire of available parts. Nevertheless, the generation of novel aptazymes requires a functional aptamer-ribozyme connection, which can be difficult to engineer. This article describes a novel approach for using fluorescence activated cell sorting (FACS) in order to identify functional aptazymes in bacteria and their subsequent transfer into mammalian cells.
Collapse
Affiliation(s)
- Markus Wieland
- ETH Zurich, Department of Biosystems Science and Bioengineering (D-BSSE), Mattenstrasse 26, CH-4058 Basel, Switzerland
| | | | | |
Collapse
|
47
|
Ferré-D'Amaré AR. Use of a coenzyme by the glmS ribozyme-riboswitch suggests primordial expansion of RNA chemistry by small molecules. Philos Trans R Soc Lond B Biol Sci 2012; 366:2942-8. [PMID: 21930586 DOI: 10.1098/rstb.2011.0131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The glmS ribozyme-riboswitch is the first known example of a naturally occurring catalytic RNA that employs a small molecule as a coenzyme. Binding of glucosamine-6-phosphate (GlcN6P) activates self-cleavage of the bacterial ribozyme, which is part of the mRNA encoding the metabolic enzyme GlcN6P-synthetase. Cleavage leads to negative feedback regulation. GlcN6P binds in the active site of the ribozyme, where its amine could function as a general acid and electrostatic catalyst. The ribozyme is pre-folded but inactive in the absence of GlcN6P, demonstrating it has evolved strict dependence on the exogenous small molecule. The ribozyme showcases the ability of RNA to co-opt non-covalently bound small molecules to expand its chemical repertoire. Analogue studies demonstrate that some molecules other than GlcN6P, such as l-serine (but not d-serine), can function as weak activators. This suggests how coenzyme use by RNA world ribozymes may have led to evolution of proteins. Primordial cofactor-dependent ribozymes may have evolved to bind their cofactors covalently. If amino acids were used as cofactors, this could have driven the evolution of RNA aminoacylation. The ability to make covalently bound peptide coenzymes may have further increased the fitness of such primordial ribozymes, providing a selective pressure for the invention of translation.
Collapse
Affiliation(s)
- Adrian R Ferré-D'Amaré
- Laboratory of RNA Biophysics and Cellular Physiology, National Heart, Lung and Blood Institute, 50 South Drive, MSC-8012, Bethesda, MD 20892-8012, USA.
| |
Collapse
|
48
|
Abstract
Allosteric ribozymes can be designed to respond to virtually any molecule of choice. The resulting species may be used for example as synthetic regulators of gene expression or alternatively as biosensors. In vitro selection techniques allow the isolation of active molecules from libraries as large as 10(15) different molecules. The present protocol describes an in vitro selection strategy for the de novo selection of allosteric self-cleaving ribozymes responding to virtually any drug of choice. We applied this method to select hammerhead ribozymes inhibited specifically by doxycycline or pefloxacin in the sub-micromolar range. The selected ribozymes can be converted into classical aptamers via insertion of a point mutation in the catalytic center of the ribozyme.
Collapse
Affiliation(s)
- Nicolas Piganeau
- Institut für Biochemie und Molekularbiologie, Universität Hamburg, Hamburg, Germany.
| |
Collapse
|
49
|
Wulffen B, Buff MCR, Pofahl M, Mayer G, Heckel A. Caged glucosamine-6-phosphate for the light-control of riboswitch activity. Photochem Photobiol Sci 2012; 11:489-92. [DOI: 10.1039/c1pp05242j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Abstract
Aptamers are useful for allosteric regulation because they are nucleic acid-based structures in which ligand binding induces conformational changes that may alter the function of a connected oligonucleotide at a distant site. Through this approach, a specific input is efficiently converted into an altered output. This property makes these biomolecules ideally suited to function as sensors or switches in biochemical assays or inside living cells. The ability to select oligonucleotide-based recognition elements in vitro in combination with the availability of nucleic acids with enzymatic activity has led to the development of a wide range of engineered allosteric aptasensors and aptazymes. Here, we discuss recent progress in the screening, design and diversity of these conformational switching oligonucleotides. We cover their application in vitro and for regulating gene expression in both prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Jan L Vinkenborg
- Life & Medical Sciences Institute, Chemical Biology & Medicinal Chemistry Unit, Laboratory of Chemical Biology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | | | |
Collapse
|