1
|
Schiefer JL, Wergen NM, Grieb G, Bagheri M, Seyhan H, Badra M, Kopp M, Fuchs PC, Windolf J, Suschek CV. Experimental evidence for Parthanatos-like mode of cell death of heat-damaged human skin fibroblasts in a cell culture-based in vitro burn model. Burns 2024; 50:1562-1577. [PMID: 38570249 DOI: 10.1016/j.burns.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 03/06/2024] [Accepted: 03/10/2024] [Indexed: 04/05/2024]
Abstract
The cellular mechanisms of burn conversion of heat damaged tissue are center of many studies. Even if the molecular mechanisms of heat-induced cell death are controversially discussed in the current literature, it is widely accepted that caspase-mediated apoptosis plays a central role. In the current study we wanted to develop further information on the nature of the mechanism of heat-induced cell death of fibroblasts in vitro. We found that heating of human fibroblast cultures (a 10 s rise from 37 °C to 67 °C followed by a 13 s cool down to 37 °C) resulted in the death of about 50% of the cells. However, the increase in cell death started with a delay, about one hour after exposure to heat, and reached the maximum after about five hours. The lack of clear evidence for an active involvement of effector caspase in the observed cell death mechanism and the lack of observation of the occurrence of hypodiploid nuclei contradict heat-induced cell death by caspase-mediated apoptosis. Moreover, a dominant heat-induced increase in PARP1 protein expression, which correlated with a time-delayed ATP synthesis inhibition, appearance of double-strand breaks and secondary necrosis, indicate a different type of cell death than apoptosis. Indeed, increased translocation of Apoptosis Inducing Factor (AIF) and Macrophage Migration Inhibitory Factor (MIF) into cell nuclei, which correlates with the mentioned enhanced PARP1 protein expression, indicate PARP1-induced, AIF-mediated and MIF-activated cell death. With regard to the molecular actors involved, the cellular processes and temporal sequences, the mode of cell death observed in our model is very similar to the cell death mechanism via Parthanatos described in the literature.
Collapse
Affiliation(s)
- Jennifer Lynn Schiefer
- Department of Plastic Surgery, Hand Surgery, Burn Center, Merheim Hospital Cologne, University of Witten/Herdecke, Köln, Germany.
| | - Niklas M Wergen
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Gerrit Grieb
- Department of Plastic Surgery and Hand Surgery, Burn Center, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Mahsa Bagheri
- Department of Plastic Surgery, Hand Surgery, Burn Center, Merheim Hospital Cologne, University of Witten/Herdecke, Köln, Germany
| | - Harun Seyhan
- Department of Plastic Surgery, Hand Surgery, Burn Center, Merheim Hospital Cologne, University of Witten/Herdecke, Köln, Germany
| | - Maria Badra
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Marco Kopp
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Paul C Fuchs
- Department of Plastic Surgery, Hand Surgery, Burn Center, Merheim Hospital Cologne, University of Witten/Herdecke, Köln, Germany
| | - Joachim Windolf
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Christoph V Suschek
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| |
Collapse
|
2
|
Mostafavi Abdolmaleky H, Alam R, Nohesara S, Deth RC, Zhou JR. iPSC-Derived Astrocytes and Neurons Replicate Brain Gene Expression, Epigenetic, Cell Morphology and Connectivity Alterations Found in Autism. Cells 2024; 13:1095. [PMID: 38994948 PMCID: PMC11240613 DOI: 10.3390/cells13131095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
Excessive inflammatory reactions and oxidative stress are well-recognized molecular findings in autism and these processes can affect or be affected by the epigenetic landscape. Nonetheless, adequate therapeutics are unavailable, as patient-specific brain molecular markers for individualized therapies remain challenging. METHODS We used iPSC-derived neurons and astrocytes of patients with autism vs. controls (5/group) to examine whether they replicate the postmortem brain expression/epigenetic alterations of autism. Additionally, DNA methylation of 10 postmortem brain samples (5/group) was analyzed for genes affected in PSC-derived cells. RESULTS We found hyperexpression of TGFB1, TGFB2, IL6 and IFI16 and decreased expression of HAP1, SIRT1, NURR1, RELN, GPX1, EN2, SLC1A2 and SLC1A3 in the astrocytes of patients with autism, along with DNA hypomethylation of TGFB2, IL6, TNFA and EN2 gene promoters and a decrease in HAP1 promoter 5-hydroxymethylation in the astrocytes of patients with autism. In neurons, HAP1 and IL6 expression trended alike. While HAP1 promoter was hypermethylated in neurons, IFI16 and SLC1A3 promoters were hypomethylated and TGFB2 exhibited increased promoter 5-hydroxymethlation. We also found a reduction in neuronal arborization, spine size, growth rate, and migration, but increased astrocyte size and a reduced growth rate in autism. In postmortem brain samples, we found DNA hypomethylation of TGFB2 and IFI16 promoter regions, but DNA hypermethylation of HAP1 and SLC1A2 promoters in autism. CONCLUSION Autism-associated expression/epigenetic alterations in iPSC-derived cells replicated those reported in the literature, making them appropriate surrogates to study disease pathogenesis or patient-specific therapeutics.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Reza Alam
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Richard C. Deth
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| |
Collapse
|
3
|
Bhasin S, Seals D, Migaud M, Musi N, Baur JA. Nicotinamide Adenine Dinucleotide in Aging Biology: Potential Applications and Many Unknowns. Endocr Rev 2023; 44:1047-1073. [PMID: 37364580 DOI: 10.1210/endrev/bnad019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/28/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Recent research has unveiled an expansive role of NAD+ in cellular energy generation, redox reactions, and as a substrate or cosubstrate in signaling pathways that regulate health span and aging. This review provides a critical appraisal of the clinical pharmacology and the preclinical and clinical evidence for therapeutic effects of NAD+ precursors for age-related conditions, with a particular focus on cardiometabolic disorders, and discusses gaps in current knowledge. NAD+ levels decrease throughout life; age-related decline in NAD+ bioavailability has been postulated to be a contributor to many age-related diseases. Raising NAD+ levels in model organisms by administration of NAD+ precursors improves glucose and lipid metabolism; attenuates diet-induced weight gain, diabetes, diabetic kidney disease, and hepatic steatosis; reduces endothelial dysfunction; protects heart from ischemic injury; improves left ventricular function in models of heart failure; attenuates cerebrovascular and neurodegenerative disorders; and increases health span. Early human studies show that NAD+ levels can be raised safely in blood and some tissues by oral NAD+ precursors and suggest benefit in preventing nonmelanotic skin cancer, modestly reducing blood pressure and improving lipid profile in older adults with obesity or overweight; preventing kidney injury in at-risk patients; and suppressing inflammation in Parkinson disease and SARS-CoV-2 infection. Clinical pharmacology, metabolism, and therapeutic mechanisms of NAD+ precursors remain incompletely understood. We suggest that these early findings provide the rationale for adequately powered randomized trials to evaluate the efficacy of NAD+ augmentation as a therapeutic strategy to prevent and treat metabolic disorders and age-related conditions.
Collapse
Affiliation(s)
- Shalender Bhasin
- Department of Medicine, Harvard Medical School, Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Douglas Seals
- Department of Integrative Physiology and Medicine, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Marie Migaud
- Department of Pharmacology, Mitchell Cancer Institute, College of Medicine, University of Southern Alabama, Mobile, AL 36688, USA
| | - Nicolas Musi
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Joseph A Baur
- Department of Physiology, Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Opposing Roles of FACT for Euchromatin and Heterochromatin in Yeast. Biomolecules 2023; 13:biom13020377. [PMID: 36830746 PMCID: PMC9953268 DOI: 10.3390/biom13020377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
DNA is stored in the nucleus of a cell in a folded state; however, only the necessary genetic information is extracted from the required group of genes. The key to extracting genetic information is chromatin ambivalence. Depending on the chromosomal region, chromatin is characterized into low-density "euchromatin" and high-density "heterochromatin", with various factors being involved in its regulation. Here, we focus on chromatin regulation and gene expression by the yeast FACT complex, which functions in both euchromatin and heterochromatin. FACT is known as a histone H2A/H2B chaperone and was initially reported as an elongation factor associated with RNA polymerase II. In budding yeast, FACT activates promoter chromatin by interacting with the transcriptional activators SBF/MBF via the regulation of G1/S cell cycle genes. In fission yeast, FACT plays an important role in the formation of higher-order chromatin structures and transcriptional repression by binding to Swi6, an HP1 family protein, at heterochromatin. This FACT property, which refers to the alternate chromatin-regulation depending on the binding partner, is an interesting phenomenon. Further analysis of nucleosome regulation within heterochromatin is expected in future studies.
Collapse
|
5
|
Basova LV, Bortell N, Conti B, Fox HS, Milner R, Marcondes MCG. Age-associated changes in microglia activation and Sirtuin-1- chromatin binding patterns. Aging (Albany NY) 2022; 14:8205-8220. [PMID: 36227148 PMCID: PMC9648798 DOI: 10.18632/aging.204329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022]
Abstract
The aging process is associated with changes in mechanisms maintaining physiology, influenced by genetics and lifestyle, and impacting late life quality and longevity. Brain health is critical in healthy aging. Sirtuin 1 (Sirt1), a histone deacetylase with silencing properties, is one of the molecular determinants experimentally linked to health and longevity. We compared brain pathogenesis and Sirt1-chromatin binding dynamics in brain pre-frontal cortex from 2 groups of elder rhesus macaques, divided by age of necropsy: shorter-lived animals (18-20 years old (yo)), equivalent to 60-70 human yo; and longer-lived animals (23-29 yo), corresponding to 80-100 human yo and modeling successful aging. These were compared with young adult brains (4-7 yo). Our findings indicated drastic differences in the microglia marker Iba1, along with factors influencing Sirt1 levels and activity, such as CD38 (an enzyme limiting NAD that controls Sirt1 activity) and mir142 (a microRNA targeting Sirt1 transcription) between the elder groups. Iba1 was lower in shorter-lived animals than in the other groups, while CD38 was higher in both aging groups compared to young. mir142 and Sirt1 levels were inversely correlated in longer-lived brains (>23yo), but not in shorter-lived brains (18-20 yo). We also found that Sirt1 binding showed signs of better efficiency in longer-lived animals compared to shorter-lived ones, in genes associated with nuclear activity and senescence. Overall, differences in neuroinflammation and Sirt1 interactions with chromatin distinguished shorter- and longer-lived animals, suggesting the importance of preserving microglia and Sirt1 functional efficiency for longevity.
Collapse
Affiliation(s)
- Liana V. Basova
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | | | - Bruno Conti
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Howard S. Fox
- University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Richard Milner
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | | |
Collapse
|
6
|
Chakraborty S, Singh M, Pandita RK, Singh V, Lo CS, Leonard F, Horikoshi N, Moros EG, Guha D, Hunt CR, Chau E, Ahmed KM, Sethi P, Charaka V, Godin B, Makhijani K, Scherthan H, Deck J, Hausmann M, Mushtaq A, Altaf M, Ramos KS, Bhat KM, Taneja N, Das C, Pandita TK. Heat-induced SIRT1-mediated H4K16ac deacetylation impairs resection and SMARCAD1 recruitment to double strand breaks. iScience 2022; 25:104142. [PMID: 35434547 PMCID: PMC9010620 DOI: 10.1016/j.isci.2022.104142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/16/2022] [Accepted: 03/21/2022] [Indexed: 12/17/2022] Open
Abstract
Hyperthermia inhibits DNA double-strand break (DSB) repair that utilizes homologous recombination (HR) pathway by a poorly defined mechanism(s); however, the mechanisms for this inhibition remain unclear. Here we report that hyperthermia decreases H4K16 acetylation (H4K16ac), an epigenetic modification essential for genome stability and transcription. Heat-induced reduction in H4K16ac was detected in humans, Drosophila, and yeast, indicating that this is a highly conserved response. The examination of histone deacetylase recruitment to chromatin after heat-shock identified SIRT1 as the major deacetylase subsequently enriched at gene-rich regions. Heat-induced SIRT1 recruitment was antagonized by chromatin remodeler SMARCAD1 depletion and, like hyperthermia, the depletion of the SMARCAD1 or combination of the two impaired DNA end resection and increased replication stress. Altered repair protein recruitment was associated with heat-shock-induced γ-H2AX chromatin changes and DSB repair processing. These results support a novel mechanism whereby hyperthermia impacts chromatin organization owing to H4K16ac deacetylation, negatively affecting the HR-dependent DSB repair.
Collapse
Affiliation(s)
- Sharmistha Chakraborty
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Radiation Oncology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Mayank Singh
- Department of Radiation Oncology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Raj K. Pandita
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Radiation Oncology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Radiation Oncology, Washington University, St Louis, MO, USA
| | - Vipin Singh
- Biophysics & Structural Genomics Division Saha Institute of Nuclear Physics, Bidhan Nagar, Kolkata, West Bengal 700064, India
- Homi Bhaba National Institute, Mumbai, India
| | - Calvin S.C. Lo
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 Rotterdam, CA, the Netherlands
| | - Fransisca Leonard
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Nobuo Horikoshi
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Radiation Oncology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
- Departments of Radiation Oncology, Washington University, St Louis, MO, USA
| | - Eduardo G. Moros
- Departments of Radiation Oncology, Washington University, St Louis, MO, USA
- Departments of Radiation Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Deblina Guha
- Biophysics & Structural Genomics Division Saha Institute of Nuclear Physics, Bidhan Nagar, Kolkata, West Bengal 700064, India
| | - Clayton R. Hunt
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Radiation Oncology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
- Departments of Radiation Oncology, Washington University, St Louis, MO, USA
| | - Eric Chau
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Kazi M. Ahmed
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Prayas Sethi
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vijaya Charaka
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Biana Godin
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Kalpana Makhijani
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology Affiliated to the University of Ulm, Neuherbergstr. 11, 80937 Munich, Germany
| | - Jeanette Deck
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Michael Hausmann
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Arjamand Mushtaq
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Mohammad Altaf
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Kenneth S. Ramos
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX, USA
| | - Krishna M. Bhat
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Nitika Taneja
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 Rotterdam, CA, the Netherlands
| | - Chandrima Das
- Biophysics & Structural Genomics Division Saha Institute of Nuclear Physics, Bidhan Nagar, Kolkata, West Bengal 700064, India
- Homi Bhaba National Institute, Mumbai, India
| | - Tej K. Pandita
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Radiation Oncology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Radiation Oncology, Washington University, St Louis, MO, USA
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX, USA
| |
Collapse
|
7
|
Pandita TK, Hunt CR, Singh V, Adhikary S, Pandita S, Roy S, Ramos K, Das C. Role of the Histone Acetyl Transferase MOF and the Histone Deacetylase Sirtuins in Regulation of H4K16ac During DNA Damage Repair and Metabolic Programming: Implications in Cancer and Aging. Subcell Biochem 2022; 100:115-141. [PMID: 36301493 DOI: 10.1007/978-3-031-07634-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The accurate repair of genomic damage mediated by ionizing radiation (IR), chemo- or radiomimetic drugs, or other exogenous agents, is necessary for maintenance of genome integrity, preservation of cellular viability and prevention of oncogenic transformation. Eukaryotes have conserved mechanisms designed to perceive and repair the damaged DNA quite efficiently. Among the different types of DNA damage, double strand breaks (DSB) are the most detrimental. The cellular DNA DSB response is a hierarchical signaling network that integrates damage sensing and repair with chromatin structural changes that involve a range of pre-existing and induced covalent modifications. Recent studies have revealed that pre-existing histone modifications are important contributors within this signaling/repair network. This chapter discusses the role of a critical histone acetyl transferase (HAT) known as MOF (males absent on the first) and the histone deacetylases (HDACs) Sirtuins on histone H4K16 acetylation (H4K16ac) and DNA damage repair. We also discuss the role of this important histone modification in light of metabolic rewiring and its role in regulating human pathophysiologic states.
Collapse
Affiliation(s)
- Tej K Pandita
- The Houston Methodist Research Institute, Houston, TX, USA.
- Department of Cellular and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX, USA.
| | - Clayton R Hunt
- The Houston Methodist Research Institute, Houston, TX, USA
| | - Vipin Singh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| | - Santanu Adhikary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Shruti Pandita
- Department of Internal Medicine, Division of Hematology, Oncology and Cellular Therapy, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Siddhartha Roy
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Kenneth Ramos
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX, USA
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
8
|
Zheng M, Hu C, Wu M, Chin YE. Emerging role of SIRT2 in non-small cell lung cancer. Oncol Lett 2021; 22:731. [PMID: 34429771 PMCID: PMC8371967 DOI: 10.3892/ol.2021.12992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 04/16/2021] [Indexed: 11/14/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most devastating cancer types, accounting for >80% of lung cancer cases. The median relative survival time of patients with NSCLC is <1 year. Lysine acetylation is a major post-translational modification that is required for various biological processes, and abnormal protein acetylation is associated with various diseases, including NSCLC. Protein deacetylases are currently considered cancer permissive partly due to malignant cells being sensitive to deacetylase inhibition. Sirtuin 2 (SIRT2), a primarily cytosolic nicotinamide adenine dinucleotide-dependent class III protein deacetylase, has been shown to catalyze the removal of acetyl groups from a wide range of proteins, including tubulin, ribonucleotide reductase regulatory subunit M2 and glucose-6-phosphate dehydrogenase. In addition, SIRT2 is also known to possess lysine fatty deacylation activity. Physiologically, SIRT2 serves as a regulator of the cell cycle and of cellular metabolism. It has been shown to play important roles in proliferation, migration and invasion during carcinogenesis. It is notable that both oncogenic and tumor suppressive functions of SIRT2 have been described in NSCLC and other cancer types, suggesting a context-specific role of SIRT2 in cancer progression. In addition, inhibition of SIRT2 exhibits a broad anticancer effect, indicating its potential as a therapeutic for NSCLC tumors with high expression of SIRT2. However, due to the diverse molecular and genetic characteristics of NSCLC, the context-specific function of SIRT2 remains to be determined. The current review investigated the functions of SIRT2 during NSCLC progression with regard to its regulation of metabolism, stem cell-like features and autophagy.
Collapse
Affiliation(s)
- Mengge Zheng
- Institute of Biology and Medical Sciences, Soochow University Medical College, Suzhou, Jiangsu 215123, P.R. China
| | - Changyong Hu
- Institute of Biology and Medical Sciences, Soochow University Medical College, Suzhou, Jiangsu 215123, P.R. China
| | - Meng Wu
- Institute of Biology and Medical Sciences, Soochow University Medical College, Suzhou, Jiangsu 215123, P.R. China
| | - Yue Eugene Chin
- Institute of Biology and Medical Sciences, Soochow University Medical College, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
9
|
Zullo A, Mancini FP, Schleip R, Wearing S, Klingler W. Fibrosis: Sirtuins at the checkpoints of myofibroblast differentiation and profibrotic activity. Wound Repair Regen 2021; 29:650-666. [PMID: 34077595 DOI: 10.1111/wrr.12943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022]
Abstract
Fibrotic diseases are still a serious concern for public health, due to their high prevalence, complex etiology and lack of successful treatments. Fibrosis consists of excessive accumulation of extracellular matrix components. As a result, the structure and function of tissues are impaired, thus potentially leading to organ failure and death in several chronic diseases. Myofibroblasts represent the principal cellular mediators of fibrosis, due to their extracellular matrix producing activity, and originate from different types of precursor cells, such as mesenchymal cells, epithelial cells and fibroblasts. Profibrotic activation of myofibroblasts can be triggered by a variety of mechanisms, including the transforming growth factor-β signalling pathway, which is a major factor driving fibrosis. Interestingly, preclinical and clinical studies showed that fibrotic degeneration can stop and even reverse by using specific antifibrotic treatments. Increasing scientific evidence is being accumulated about the role of sirtuins in modulating the molecular pathways responsible for the onset and development of fibrotic diseases. Sirtuins are NAD+ -dependent protein deacetylases that play a crucial role in several molecular pathways within the cells, many of which at the crossroad between health and disease. In this context, we will report the current knowledge supporting the role of sirtuins in the balance between healthy and diseased myofibroblast activity. In particular, we will address the signalling pathways and the molecular targets that trigger the differentiation and profibrotic activation of myofibroblasts and can be modulated by sirtuins.
Collapse
Affiliation(s)
- Alberto Zullo
- Department of Sciences and Technologies, Benevento, Italy.,CEINGE Advanced Biotechnologies s.c.a.r.l. Naples, Italy
| | | | - Robert Schleip
- Department of Sport and Health Sciences, Technical University Munich, Germany.,Fascia Research Group, Department of Neurosurgery, Ulm University, Germany.,Diploma University of Applied Sciences, Bad Sooden-Allendorf, Germany
| | - Scott Wearing
- Department of Sport and Health Sciences, Technical University Munich, Germany.,Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Werner Klingler
- Department of Sport and Health Sciences, Technical University Munich, Germany.,Fascia Research Group, Department of Neurosurgery, Ulm University, Germany.,Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia.,Department of Anaesthesiology, SRH Hospital Sigmaringen, Germany
| |
Collapse
|
10
|
Soni SK, Basu P, Singaravel M, Sharma R, Pandi-Perumal SR, Cardinali DP, Reiter RJ. Sirtuins and the circadian clock interplay in cardioprotection: focus on sirtuin 1. Cell Mol Life Sci 2021; 78:2503-2515. [PMID: 33388853 PMCID: PMC11073088 DOI: 10.1007/s00018-020-03713-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/09/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
Chronic disruption of circadian rhythms which include intricate molecular transcription-translation feedback loops of evolutionarily conserved clock genes has serious health consequences and negatively affects cardiovascular physiology. Sirtuins (SIRTs) are nuclear, cytoplasmic and mitochondrial histone deacetylases that influence the circadian clock with clock-controlled oscillatory protein, NAMPT, and its metabolite NAD+. Sirtuins are linked to the multi-organ protective role of melatonin, particularly in acute kidney injury and in cardiovascular diseases, where melatonin, via upregulation of SIRT1 expression, inhibits the apoptotic pathway. This review focuses on SIRT1, an NAD+-dependent class III histone deacetylase which counterbalances the intrinsic histone acetyltransferase activity of one of the clock genes, CLOCK. SIRT1 is involved in the development of cardiomyocytes, regulation of voltage-gated cardiac sodium ion channels via deacetylation, prevention of atherosclerotic plaque formation in the cardiovascular system, protection against oxidative damage and anti-thrombotic actions. Overall, SIRT1 has a see-saw effect on cardioprotection, with low levels being cardioprotective and higher levels leading to cardiac hypertrophy.
Collapse
Affiliation(s)
- Sanjeev Kumar Soni
- Chronobiology Laboratory, Department of Zoology, Institute of Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Priyoneel Basu
- Chronobiology Laboratory, Department of Zoology, Institute of Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Muniyandi Singaravel
- Chronobiology Laboratory, Department of Zoology, Institute of Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | | | - Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
11
|
Tabassum W, Bhattacharyya S, Varunan SM, Bhattacharyya MK. Febrile temperature causes transcriptional downregulation of Plasmodium falciparum Sirtuins through Hsp90-dependent epigenetic modification. Mol Microbiol 2021; 115:1025-1038. [PMID: 33538363 DOI: 10.1111/mmi.14692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/30/2021] [Accepted: 01/30/2021] [Indexed: 11/28/2022]
Abstract
Sirtuins (PfSIR2A and PfSIR2B) are implicated to play pivotal roles in the silencing of sub-telomeric genes and the maintenance of telomere length in P. falciparum 3D7 strain. Here, we identify the key factors that regulate the cellular abundance and activity of these two histone deacetylases. Our results demonstrate that PfSIR2A and PfSIR2B are transcriptionally downregulated at the mid-ring stage in response to febrile temperature. We found that the molecular chaperone PfHsp90 acts as a repressor of PfSIR2A & B transcription. By virtue of its presence in the PfSIR2A & B promoter proximal regions PfHsp90 helps recruiting H3K9me3, conferring heterochromatic state, and thereby leading to the downregulation of PfSIR2A & B transcription. Such transcriptional downregulation can be reversed by the addition of 17-(allylamino)-17-demethoxygeldanamycin or Radicicol, two potent inhibitors of PfHsp90. The reduced occupancy of PfSir2 at sub-telomeric var promoters leads to the de-repression of var genes. Thus, here we uncover how exposure to febrile temperature, a hallmark of malaria, enables the parasites to manipulate the expression of the two prominent epigenetic modifiers PfSir2A and PfSir2B.
Collapse
Affiliation(s)
- Wahida Tabassum
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sunanda Bhattacharyya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Shalu M Varunan
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | |
Collapse
|
12
|
Lu J, Huang Q, Zhang D, Lan T, Zhang Y, Tang X, Xu P, Zhao D, Cong D, Zhao D, Sun L, Li X, Wang J. The Protective Effect of DiDang Tang Against AlCl 3-Induced Oxidative Stress and Apoptosis in PC12 Cells Through the Activation of SIRT1-Mediated Akt/Nrf2/HO-1 Pathway. Front Pharmacol 2020; 11:466. [PMID: 32372957 PMCID: PMC7179660 DOI: 10.3389/fphar.2020.00466] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
Aluminum (Al) is considered a pathological factor for various neurological and neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). The neurotoxicity of aluminum can cause oxidative brain damage, trigger apoptosis, and ultimately cause irreversible damage to neurons. DiDang Tang (DDT), a classic formula within traditional Chinese medicine for promoting blood circulation and removing blood stasis and collaterals, is widely used for the treatment of stroke and AD. In this study, models of oxidative stress and apoptosis were established using AlCl3, and the effects of DDT were evaluated. We found that DDT treatment for 48 h significantly increased cell viability and reduced the release of lactate dehydrogenase (LDH) in AlCl3-induced PC12 cells. Moreover, DDT attenuated AlCl3-induced oxidative stress damage by increasing antioxidant activities and apoptosis through mitochondrial apoptotic pathways. Additionally, DDT treatment significantly activated the Sirtuin 1 (SIRT1) -mediated Akt/nuclear factor E2 related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathways to limit AlCl3-mediated neurotoxicity. Our data indicated that DDT potently inhibited AlCl3-induced oxidative-stress damage and apoptosis in neural cells by activating the SIRT1-mediated Akt/Nrf2/HO-1 pathway, which provides further support for the beneficial effects of DDT on Al-induced neurotoxicity.
Collapse
Affiliation(s)
- Jing Lu
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China.,Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, China
| | - Qingxia Huang
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China.,Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, China
| | - Dongmei Zhang
- Scientific Research Office, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Tianye Lan
- Department of Encephalopathy, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Ying Zhang
- Department of Encephalopathy, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xiaolei Tang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Peng Xu
- Department of Encephalopathy, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Dexi Zhao
- Department of Encephalopathy, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Deyu Cong
- Department of Tuina, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, China.,Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, China
| | - Xiangyan Li
- Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, China.,Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Jian Wang
- Department of Encephalopathy, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
13
|
Anaizi N. Nicotinamide adenine dinucleotide, the sirtuins, and the secret of a long health span. IBNOSINA JOURNAL OF MEDICINE AND BIOMEDICAL SCIENCES 2020. [DOI: 10.4103/ijmbs.ijmbs_6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
Lin C, Liu M, Zhu X, Zhang M, Xu S, Wang D, Zhao Y. Cloning and expression of the lifespan-associated protein Sir2 from Daphnia pulex. Comp Biochem Physiol B Biochem Mol Biol 2019; 231:1-10. [DOI: 10.1016/j.cbpb.2019.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 11/15/2022]
|
15
|
Ghirotto B, Terra FF, Câmara NOS, Basso PJ. Sirtuins in B lymphocytes metabolism and function. World J Exp Med 2019; 9:1-13. [PMID: 30705866 PMCID: PMC6354076 DOI: 10.5493/wjem.v9.i1.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/29/2018] [Accepted: 01/05/2019] [Indexed: 02/06/2023] Open
Abstract
Sirtuins (SIRTs) are NAD+-dependent histone deacetylases and play a role in virtually all cell biological processes. As SIRTs functions vary according to their subtypes, they can either activate or inhibit signaling pathways upon different conditions or tissues. Recent studies have focused on metabolic effects performed by SIRTs in several cell types since specific metabolic pathways (e.g., aerobic glycolysis, oxidative phosphorylation, β-oxidation, glutaminolysis) are used to determine the cell fate. However, few efforts have been made to understand the role of SIRTs on B lymphocytes metabolism and function. These cells are associated with humoral immune responses by secreting larger amounts of antibodies after differentiating into antibody-secreting cells. Besides, both the SIRTs and B lymphocytes are potential targets to treat several immune-mediated disorders, including cancer. Here, we provide an outlook of recent studies regarding the role of SIRTs in general cellular metabolism and B lymphocytes functions, pointing out the future perspectives of this field.
Collapse
Affiliation(s)
- Bruno Ghirotto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Fernanda Fernandes Terra
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- Division of Nephrology, School of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
- Laboratory of Renal Physiology (LIM 16), School of Medicine, University of São Paulo, São Paulo 01246-903, Brazil
| | - Paulo José Basso
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
16
|
Warren JL, MacIver NJ. Regulation of Adaptive Immune Cells by Sirtuins. Front Endocrinol (Lausanne) 2019; 10:466. [PMID: 31354630 PMCID: PMC6637536 DOI: 10.3389/fendo.2019.00466] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/26/2019] [Indexed: 12/16/2022] Open
Abstract
It is now well-established that the pathways that control lymphocyte metabolism and function are intimately linked, and changes in lymphocyte metabolism can influence and direct cellular function. Interestingly, a number of recent advances indicate that lymphocyte identity and metabolism is partially controlled via epigenetic regulation. Epigenetic mechanisms, such as changes in DNA methylation or histone acetylation, have been found to alter immune function and play a role in numerous chronic disease states. There are several enzymes that can mediate epigenetic changes; of particular interest are sirtuins, protein deacetylases that mediate adaptive responses to a variety of stresses (including calorie restriction and metabolic stress) and are now understood to play a significant role in immunity. This review will focus on recent advances in the understanding of how sirtuins affect the adaptive immune system. These pathways are of significant interest as therapeutic targets for the treatment of autoimmunity, cancer, and transplant tolerance.
Collapse
Affiliation(s)
- Jonathan L. Warren
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| | - Nancie J. MacIver
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, United States
- *Correspondence: Nancie J. MacIver
| |
Collapse
|
17
|
Role of Forkhead Box O Transcription Factors in Oxidative Stress-Induced Chondrocyte Dysfunction: Possible Therapeutic Target for Osteoarthritis? Int J Mol Sci 2018. [PMID: 30487470 DOI: 10.3390/ijms19123794.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chondrocyte dysfunction occurs during the development of osteoarthritis (OA), typically resulting from a deleterious increase in oxidative stress. Accordingly, strategies for arresting oxidative stress-induced chondrocyte dysfunction may lead to new potential therapeutic targets for OA treatment. Forkhead box O (FoxO) transcription factors have recently been shown to play a protective role in chondrocyte dysfunction through the regulation of inflammation, autophagy, aging, and oxidative stress. They also regulate growth, maturation, and matrix synthesis in chondrocytes. In this review, we discuss the recent progress made in the field of oxidative stress-induced chondrocyte dysfunction. We also discuss the protective role of FoxO transcription factors as potential molecular targets for the treatment of OA. Understanding the function of FoxO transcription factors in the OA pathology may provide new insights that will facilitate the development of next-generation therapies to prevent OA development and to slow OA progression.
Collapse
|
18
|
Wang R, Zhang S, Previn R, Chen D, Jin Y, Zhou G. Role of Forkhead Box O Transcription Factors in Oxidative Stress-Induced Chondrocyte Dysfunction: Possible Therapeutic Target for Osteoarthritis? Int J Mol Sci 2018; 19:ijms19123794. [PMID: 30487470 PMCID: PMC6321605 DOI: 10.3390/ijms19123794] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/22/2018] [Accepted: 11/24/2018] [Indexed: 12/11/2022] Open
Abstract
Chondrocyte dysfunction occurs during the development of osteoarthritis (OA), typically resulting from a deleterious increase in oxidative stress. Accordingly, strategies for arresting oxidative stress-induced chondrocyte dysfunction may lead to new potential therapeutic targets for OA treatment. Forkhead box O (FoxO) transcription factors have recently been shown to play a protective role in chondrocyte dysfunction through the regulation of inflammation, autophagy, aging, and oxidative stress. They also regulate growth, maturation, and matrix synthesis in chondrocytes. In this review, we discuss the recent progress made in the field of oxidative stress-induced chondrocyte dysfunction. We also discuss the protective role of FoxO transcription factors as potential molecular targets for the treatment of OA. Understanding the function of FoxO transcription factors in the OA pathology may provide new insights that will facilitate the development of next-generation therapies to prevent OA development and to slow OA progression.
Collapse
Affiliation(s)
- Rikang Wang
- Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine, Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Medical Cell Biology and Genetics, Shenzhen University Health Science Center, Shenzhen 518060, China.
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China.
| | - Shuai Zhang
- Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine, Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Medical Cell Biology and Genetics, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Rahul Previn
- Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine, Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Medical Cell Biology and Genetics, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China.
| | - Guangqian Zhou
- Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine, Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Medical Cell Biology and Genetics, Shenzhen University Health Science Center, Shenzhen 518060, China.
| |
Collapse
|
19
|
Jeong W, Kim HJ. Biomarkers of chondrosarcoma. J Clin Pathol 2018; 71:579-583. [PMID: 29593061 PMCID: PMC6204964 DOI: 10.1136/jclinpath-2018-205071] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/01/2018] [Accepted: 03/06/2018] [Indexed: 01/03/2023]
Abstract
Clinical outcome prediction is major concern to patients with cancer. Various molecular markers in various carcinomas have been identified in the past few decades. However, accurate predictors in chondrosarcoma have not been developed, even though chondrosarcoma is the second most common primary bone tumour. Chondrosarcoma is the cartilage-forming malignancy and shows a wide spectrum of clinicopathological behaviours. The majority of chondrosarcoma grows slowly and rarely metastasises, and adequate surgery leads to a good prognosis. However, wide surgical excision is acquired in high-grade chondrosarcoma, because this tumour is highly resistant to chemotherapy and radiotherapy. To decide best therapy, accurate diagnostic markers are also necessary in chondrosarcoma. It is reported that angiogenesis and lymphangiogenesis increase by chondrosarcoma staging, and they are promoted by leptin and adiponectin. Several microRNAs to regulate vascular endothelial growth factor (VEGF)-A and VEGF-C are also reported. Alpha-methylacyl-CoA racemase and periostin are proposed as new biomarkers for differential diagnosis of enchondroma and chondrosarcoma. This review summarises that chondrosarcoma diagnostic markers are currently reported.
Collapse
Affiliation(s)
- Wonju Jeong
- Department of Orthopedic Surgery, Daegu Top Hospital, Daegu, The Republic of Korea
| | - Ha-Jeong Kim
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, The Republic of Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, The Republic of Korea
| |
Collapse
|
20
|
Shimizu M. NAD +/NADH homeostasis affects metabolic adaptation to hypoxia and secondary metabolite production in filamentous fungi. Biosci Biotechnol Biochem 2018; 82:216-224. [PMID: 29327656 DOI: 10.1080/09168451.2017.1422972] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Filamentous fungi are used to produce fermented foods, organic acids, beneficial secondary metabolites and various enzymes. During such processes, these fungi balance cellular NAD+:NADH ratios to adapt to environmental redox stimuli. Cellular NAD(H) status in fungal cells is a trigger of changes in metabolic pathways including those of glycolysis, fermentation, and the production of organic acids, amino acids and secondary metabolites. Under hypoxic conditions, high NADH:NAD+ ratios lead to the inactivation of various dehydrogenases, and the metabolic flow involving NAD+ is down-regulated compared with normoxic conditions. This review provides an overview of the metabolic mechanisms of filamentous fungi under hypoxic conditions that alter the cellular NADH:NAD+ balance. We also discuss the relationship between the intracellular redox balance (NAD/NADH ratio) and the production of beneficial secondary metabolites that arise from repressing the HDAC activity of sirtuin A via Nudix hydrolase A (NdxA)-dependent NAD+ degradation.
Collapse
Affiliation(s)
- Motoyuki Shimizu
- a Faculty of Agriculture, Department of Applied Biological Chemistry , Meijo University , Nagoya , Japan
| |
Collapse
|
21
|
Adamczyk J, Deregowska A, Skoneczny M, Skoneczna A, Kwiatkowska A, Potocki L, Rawska E, Pabian S, Kaplan J, Lewinska A, Wnuk M. Adaptive response to chronic mild ethanol stress involves ROS, sirtuins and changes in chromosome dosage in wine yeasts. Oncotarget 2017; 7:29958-76. [PMID: 27074556 PMCID: PMC5058656 DOI: 10.18632/oncotarget.8673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/03/2016] [Indexed: 12/23/2022] Open
Abstract
Industrial yeast strains of economic importance used in winemaking and beer production are genomically diverse and subjected to harsh environmental conditions during fermentation. In the present study, we investigated wine yeast adaptation to chronic mild alcohol stress when cells were cultured for 100 generations in the presence of non-cytotoxic ethanol concentration. Ethanol-induced reactive oxygen species (ROS) and superoxide signals promoted growth rate during passages that was accompanied by increased expression of sirtuin proteins, Sir1, Sir2 and Sir3, and DNA-binding transcription regulator Rap1. Genome-wide array-CGH analysis revealed that yeast genome was shaped during passages. The gains of chromosomes I, III and VI and significant changes in the gene copy number in nine functional gene categories involved in metabolic processes and stress responses were observed. Ethanol-mediated gains of YRF1 and CUP1 genes were the most accented. Ethanol also induced nucleolus fragmentation that confirms that nucleolus is a stress sensor in yeasts. Taken together, we postulate that wine yeasts of different origin may adapt to mild alcohol stress by shifts in intracellular redox state promoting growth capacity, upregulation of key regulators of longevity, namely sirtuins and changes in the dosage of genes involved in the telomere maintenance and ion detoxification.
Collapse
Affiliation(s)
- Jagoda Adamczyk
- Department of Genetics, University of Rzeszow, Rejtana, Rzeszow, Poland
| | - Anna Deregowska
- Department of Genetics, University of Rzeszow, Rejtana, Rzeszow, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Marek Skoneczny
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Adrianna Skoneczna
- Laboratory of Mutagenesis and DNA Repair, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Leszek Potocki
- Department of Genetics, University of Rzeszow, Rejtana, Rzeszow, Poland
| | - Ewa Rawska
- Department of Genetics, University of Rzeszow, Rejtana, Rzeszow, Poland
| | - Sylwia Pabian
- Department of Genetics, University of Rzeszow, Rejtana, Rzeszow, Poland
| | - Jakub Kaplan
- Department of Genetics, University of Rzeszow, Rejtana, Rzeszow, Poland
| | - Anna Lewinska
- Department of Biochemistry and Cell Biology, University of Rzeszow, Rzeszow, Poland
| | - Maciej Wnuk
- Department of Genetics, University of Rzeszow, Rejtana, Rzeszow, Poland
| |
Collapse
|
22
|
Chao SC, Chen YJ, Huang KH, Kuo KL, Yang TH, Huang KY, Wang CC, Tang CH, Yang RS, Liu SH. Induction of sirtuin-1 signaling by resveratrol induces human chondrosarcoma cell apoptosis and exhibits antitumor activity. Sci Rep 2017; 7:3180. [PMID: 28600541 PMCID: PMC5466619 DOI: 10.1038/s41598-017-03635-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023] Open
Abstract
Chondrosarcoma is a malignant primary bone tumor. Sirtuin-1 (SIRT1), which is a member of sirtuin family, plays a dual role either in cancer promotion or suppression. There is no report about the role of SIRT1 in the human chondrosarcoma cells. Resveratrol is a potent activator of SIRT1. However, its effects on chondrosarcoma have not been extensively studied. Here, we investigated the role of SIRT1 induction by resveratrol in human chondrosarcoma cell growth and tumor progression. Resveratrol significantly decreased cell viability and induced cell apoptosis in human chondrosarcoma cells in a dose-dependent manner. The protein expression and activity of SIRT1 were activated after treatment with resveratrol. Resveratrol significantly inhibited NF-κB signaling by deacetylating the p65 subunit of NF-κB complex, which could be reversed by siRNA-SIRT1 transfection or deacetylation inhibitor MS-275. Resveratrol induced-apoptosis involved a caspase-3-mediated mechanism. Both siRNA-SIRT1 transfection and MS-275 significantly inhibited the resveratrol-induced caspase-3 cleavage and activity in human chondrosarcoma cells. Moreover, in vivo chondrosarcoma xenograft study revealed a dramatic reduction in tumor volume and the increased SIRT1 and cleaved caspase-3 expressions in tumors by resveratrol treatment. These results suggest that resveratrol induces chondrosarcoma cell apoptosis via a SIRT1-activated NF-κB deacetylation and exhibits anti-chondrosarcoma activity in vivo.
Collapse
Affiliation(s)
- Sung-Chuan Chao
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Surgery, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Ying-Ju Chen
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-How Huang
- Urology, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Kuan-Lin Kuo
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Urology, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Ting-Hua Yang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuo-Yuan Huang
- Department of Orthopaedics, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Ching-Chia Wang
- Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Rong-Sen Yang
- Department of Orthopaedics, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan. .,Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
23
|
Sirt1 Inhibits Oxidative Stress in Vascular Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7543973. [PMID: 28546854 PMCID: PMC5435972 DOI: 10.1155/2017/7543973] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/15/2017] [Accepted: 03/22/2017] [Indexed: 12/15/2022]
Abstract
The vascular endothelium is a layer of cells lining the inner surface of vessels, serving as a barrier that mediates microenvironment homeostasis. Deterioration of either the structure or function of endothelial cells (ECs) results in a variety of cardiovascular diseases. Previous studies have shown that reactive oxygen species (ROS) is a key factor that contributes to the impairment of ECs and the subsequent endothelial dysfunction. The longevity regulator Sirt1 is a NAD+-dependent deacetylase that has a potential antioxidative stress activity in vascular ECs. The mechanisms underlying the protective effects involve Sirt1/FOXOs, Sirt1/NF-κB, Sirt1/NOX, Sirt1/SOD, and Sirt1/eNOs pathways. In this review, we summarize the most recent reports in this field to recapitulate the potent mechanisms involving the protective role of Sirt1 in oxidative stress and to highlight the beneficial effects of Sirt1 on cardiovascular functions.
Collapse
|
24
|
Mao Q, Gong X, Zhou C, Tu Z, Zhao L, Wang L, Wang X, Sun L, Xia J, Lian B, Chen J, Mu J, Yang D, Xie P. Up-regulation of SIRT6 in the hippocampus induced rats with depression-like behavior via the block Akt/GSK3β signaling pathway. Behav Brain Res 2017; 323:38-46. [DOI: 10.1016/j.bbr.2017.01.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/20/2017] [Accepted: 01/21/2017] [Indexed: 12/22/2022]
|
25
|
Viña J, Saez GT, Gambini J, Gomez-Cabrera MC, Borrás C. Role of NAD(+)/NADH redox ratio in cell metabolism: A tribute to Helmut Sies and Theodor Bücher and Hans A. Krebs. Arch Biochem Biophys 2016; 595:176-80. [PMID: 27095235 DOI: 10.1016/j.abb.2015.11.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/04/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Jose Viña
- Department of Physiology, Faculty of Medicine, University of Valencia, Valencia, Spain.
| | - Guillermo T Saez
- Department of Physiology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Juan Gambini
- Department of Physiology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | | | - Consuelo Borrás
- Department of Physiology, Faculty of Medicine, University of Valencia, Valencia, Spain.
| |
Collapse
|
26
|
Adamczyk J, Deregowska A, Potocki L, Kuna E, Kaplan J, Pabian S, Kwiatkowska A, Lewinska A, Wnuk M. Relationships between rDNA, Nop1 and Sir complex in biotechnologically relevant distillery yeasts. Arch Microbiol 2016; 198:715-23. [PMID: 27329282 PMCID: PMC4969353 DOI: 10.1007/s00203-016-1258-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/26/2016] [Accepted: 06/09/2016] [Indexed: 11/30/2022]
Abstract
Distillery yeasts are poorly characterized physiological group among the Saccharomyces sensu stricto complex. As industrial yeasts are under constant environmental stress during fermentation processes and the nucleolus is a stress sensor, in the present study, nucleolus-related parameters were evaluated in 22 commercially available distillery yeast strains. Distillery yeasts were found to be a heterogeneous group with a variable content and length of rDNA and degree of nucleolus fragmentation. The levels of rDNA were negatively correlated with Nop1 (r = -0.59, p = 0.0038). Moreover, the protein levels of Sir transcriptional silencing complex and longevity regulators, namely Sir1, Sir2, Sir3 and Fob1, were studied and negative correlations between Sir2 and Nop1 (r = -0.45, p = 0.0332), and between Sir2 and Fob1 (r = -0.49, p = 0.0211) were revealed. In general, S. paradoxus group of distillery yeasts with higher rDNA pools and Sir2 level than S. bayanus group was found to be more tolerant to fermentation-associated stress stimuli, namely mild cold/heat stresses and KCl treatment. We postulate that rDNA state may be considered as a novel factor that may modulate a biotechnological process.
Collapse
Affiliation(s)
- Jagoda Adamczyk
- Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959, Rzeszow, Poland
| | - Anna Deregowska
- Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959, Rzeszow, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Leszek Potocki
- Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959, Rzeszow, Poland
| | - Ewelina Kuna
- Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959, Rzeszow, Poland
| | - Jakub Kaplan
- Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959, Rzeszow, Poland
| | - Sylwia Pabian
- Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959, Rzeszow, Poland
| | | | - Anna Lewinska
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland.
| | - Maciej Wnuk
- Department of Genetics, University of Rzeszow, Rejtana 16C, 35-959, Rzeszow, Poland.
| |
Collapse
|
27
|
Lepetsos P, Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:576-591. [PMID: 26769361 DOI: 10.1016/j.bbadis.2016.01.003] [Citation(s) in RCA: 526] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/07/2015] [Accepted: 01/04/2016] [Indexed: 12/11/2022]
Abstract
Osteoarthritis is the most common joint disorder with increasing prevalence due to aging of the population. Its multi-factorial etiology includes oxidative stress and the overproduction of reactive oxygen species, which regulate intracellular signaling processes, chondrocyte senescence and apoptosis, extracellular matrix synthesis and degradation along with synovial inflammation and dysfunction of the subchondral bone. As disease-modifying drugs for osteoarthritis are rare, targeting the complex oxidative stress signaling pathways would offer a valuable perspective for exploration of potential therapeutic strategies in the treatment of this devastating disease.
Collapse
Affiliation(s)
- Panagiotis Lepetsos
- Fourth Department of Trauma and Orthopaedics, Medical School, National and Kapodistrian University of Athens, 'KAT' Hospital, 14561, Kifissia, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
28
|
Takada H, Kurisaki A. Emerging roles of nucleolar and ribosomal proteins in cancer, development, and aging. Cell Mol Life Sci 2015; 72:4015-25. [PMID: 26206377 PMCID: PMC11113460 DOI: 10.1007/s00018-015-1984-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/17/2015] [Accepted: 07/02/2015] [Indexed: 10/23/2022]
Abstract
Changes in nucleolar morphology and function are tightly associated with cellular activity, such as growth, proliferation, and cell cycle progression. Historically, these relationships have been extensively examined in cancer cells, which frequently exhibit large nucleoli and increased ribosome biogenesis. Recent findings indicate that alteration of nucleolar activity is a key regulator of development and aging. In this review, we have provided evidences that the nucleolus is not just a housekeeping factor but is actively involved in the regulation of cell proliferation, differentiation, and senescence both in vitro and in vivo. In addition, we have discussed how alteration of nucleolar function and nucleolar proteins induces specific physiological effects rather than widespread effects.
Collapse
Affiliation(s)
- Hitomi Takada
- Stem Cell Engineering Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8562, Japan
| | - Akira Kurisaki
- Stem Cell Engineering Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8562, Japan.
| |
Collapse
|
29
|
Abstract
The controversy around sirtuins and their functions in aging has drawn in the past few years as much attention, if not more, from the scientific community and the public as they did when first proposed as the key conserved aging regulators in eukaryotes. With some of the basic observations on sirtuin longevity promoting functions being questioned in popular model systems, researchers are wondering if this family of conserved enzymes still holds strong potential as therapeutic targets. This review examines the several controversial issues around sirtuins and their functions in aging, calorie restriction, as well as age-related diseases in light of recent studies in mammalian systems and discusses whether modulators of sirtuins still hold the secret of life.:
Collapse
Affiliation(s)
- Weiwei Dang
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
30
|
Ou X, Lee MR, Huang X, Messina-Graham S, Broxmeyer HE. SIRT1 positively regulates autophagy and mitochondria function in embryonic stem cells under oxidative stress. Stem Cells 2014; 32:1183-94. [PMID: 24449278 DOI: 10.1002/stem.1641] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 12/03/2013] [Indexed: 12/13/2022]
Abstract
SIRT1, an NAD-dependent deacetylase, plays a role in regulation of autophagy. SIRT1 increases mitochondrial function and reduces oxidative stress, and has been linked to age-related reactive oxygen species (ROS) generation, which is highly dependent on mitochondrial metabolism. H2O2 induces oxidative stress and autophagic cell death through interference with Beclin 1 and the mTOR signaling pathways. We evaluated connections between SIRT1 activity and induction of autophagy in murine (m) and human (h) embryonic stem cells (ESCs) upon ROS challenge. Exogenous H2 O2 (1 mM) induced apoptosis and autophagy in wild-type (WT) and Sirt1-/- mESCs. High concentrations of H2O2 (1 mM) induced more apoptosis in Sirt1-/-, than in WT mESCs. However, addition of 3-methyladenine, a widely used autophagy inhibitor, in combination with H2O2 induced more cell death in WT than in Sirt1-/- mESCs. Decreased induction of autophagy in Sirt1-/- mESCs was demonstrated by decreased conversion of LC3-I to LC3-II, lowered expression of Beclin-1, and decreased LC3 punctae and LysoTracker staining. H2O2 induced autophagy with loss of mitochondrial membrane potential and disruption of mitochondrial dynamics in Sirt1-/- mESCs. Increased phosphorylation of P70/85-S6 kinase and ribosomal S6 was noted in Sirt1-/- mESCs, suggesting that SIRT1 regulates the mTOR pathway. Consistent with effects in mESCs, inhibition of SIRT1 using Lentivirus-mediated SIRT1 shRNA in hESCs demonstrated that knockdown of SIRT1 decreased H2O2-induced autophagy. This suggests a role for SIRT1 in regulating autophagy and mitochondria function in ESCs upon oxidative stress, effects mediated at least in part by the class III PI3K/Beclin 1 and mTOR pathways.
Collapse
Affiliation(s)
- Xuan Ou
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | |
Collapse
|
31
|
Ma L, Li Y. SIRT1: role in cardiovascular biology. Clin Chim Acta 2014; 440:8-15. [PMID: 25444742 DOI: 10.1016/j.cca.2014.10.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 09/02/2014] [Accepted: 10/24/2014] [Indexed: 01/22/2023]
Abstract
SIRT1 (silent information regulator two protein) is a type III protein deacetylase that regulates a variety of important metabolic and physiologic processes including stress resistance, metabolism, apoptosis and energy balance. It reverses cholesterol transport and reduces risk for development of atherosclerosis and cardiovascular disease. The following review highlights the potential role of SIRT1 on cardiovascular biology and function.
Collapse
Affiliation(s)
- Lina Ma
- Department of Geriatrics, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China
| | - Yun Li
- Department of Geriatrics, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
32
|
Bell EL, Nagamori I, Williams EO, Del Rosario AM, Bryson BD, Watson N, White FM, Sassone-Corsi P, Guarente L. SirT1 is required in the male germ cell for differentiation and fecundity in mice. Development 2014; 141:3495-504. [PMID: 25142464 DOI: 10.1242/dev.110627] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sirtuins are NAD(+)-dependent deacylases that regulate numerous biological processes in response to the environment. SirT1 is the mammalian ortholog of yeast Sir2, and is involved in many metabolic pathways in somatic tissues. Whole body deletion of SirT1 alters reproductive function in oocytes and the testes, in part caused by defects in central neuro-endocrine control. To study the function of SirT1 specifically in the male germ line, we deleted this sirtuin in male germ cells and found that mutant mice had smaller testes, a delay in differentiation of pre-meiotic germ cells, decreased spermatozoa number, an increased proportion of abnormal spermatozoa and reduced fertility. At the molecular level, mutants do not have the characteristic increase in acetylation of histone H4 at residues K5, K8 and K12 during spermiogenesis and demonstrate corresponding defects in the histone to protamine transition. Our findings thus reveal a germ cell-autonomous role of SirT1 in spermatogenesis.
Collapse
Affiliation(s)
- Eric L Bell
- Massachusetts Institute of Technology, Department of Biology, Glenn Laboratory for the Science of Aging, Cambridge, MA 02139, USA
| | - Ippei Nagamori
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, University of California, Irvine, CA 92697, USA Osaka University, Graduate School of Medicine, Osaka 565-0871, Japan
| | - Eric O Williams
- Massachusetts Institute of Technology, Department of Biology, Glenn Laboratory for the Science of Aging, Cambridge, MA 02139, USA
| | - Amanda M Del Rosario
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bryan D Bryson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Massachusettes Institute of Technology, Department of Biological Engineering, Cambridge, MA 02139, USA
| | - Nicki Watson
- W. M. Keck Microscopy Facility Whitehead Institute, Cambridge, MA 02139, USA
| | - Forest M White
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Massachusettes Institute of Technology, Department of Biological Engineering, Cambridge, MA 02139, USA
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Leonard Guarente
- Massachusetts Institute of Technology, Department of Biology, Glenn Laboratory for the Science of Aging, Cambridge, MA 02139, USA Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
33
|
Resveratrol relieves hydrogen peroxide-induced premature senescence associated with SIRT1 in human mesenchymal stem cells. Mol Cell Toxicol 2014. [DOI: 10.1007/s13273-014-0004-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Abstract
Background Resveratrol is a polyphenolic compound commonly found in the
skins of red grapes. Sirtuin 1 (SIRT1) is a human gene that is activated
by resveratrol and has been shown to promote longevity and boost
mitochondrial metabolism. We examined the effect of resveratrol
on normal and osteoarthritic (OA) human chondrocytes. Methods Normal and OA chondrocytes were incubated with various concentrations
of resveratrol (1 µM, 10 µM, 25 µM and 50 µM) and cultured for 24,
48 or 72 hours or for six weeks. Cell proliferation, gene expression,
and senescence were evaluated. Results SIRT1 was significantly upregulated in normal chondrocytes with
resveratrol concentrations of 25 µM and 50 µM on both two- (2D)
(both p = 0.001) and three-dimensional (3D) cultures (p = 0.008
and 0.001, respectively). It was significantly upregulated in OA
chondrocytes treated with 10 µM, 25 µM and 50 µM resveratrol on
2D cultures (p = 0.036, 0.002 and 0.001, respectively) and at 50
µM concentration on 3D cultures (p = 0.001). At 72 hours, the expression
of collagen (COL)-10, aggrecan (AGG), and runt-related transcription
factor 2 (RUNX2) was significantly greater in both 25 µM (p = 0.011,
0.006 and 0.015, respectively) and 50 µM (p = 0.019, 0.004 and 0.002,
respectively) resveratrol-treated normal chondrocyte cultures. In
OA chondrocytes, expression of COL10 and RUNX2 was significantly
greater in 25 µM (p = 0.004 and 0.024) and 50 µM (p = 0.004 and
0.019) cultures at 72 hours on 3D cultures. Conclusions At concentrations of 25 µM and/or 50 µM, resveratrol treatment
significantly upregulates SIRT1 gene expression in normal and osteoarthritic
chondrocytes. Resveratrol induces chondrocytes into a hypertrophic
state through upregulation of COL1, COL10, and RUNX2. Cite this article: Bone Joint Res 2014;3:51–9.
Collapse
Affiliation(s)
- H J Kim
- Stanford University, 450 BroadwayStreet Pavilion C, 4th floor, RedwoodCity, California, 94063-6342, USA
| | | | | |
Collapse
|
35
|
Abstract
Context: Articular cartilage has a unique functional architecture capable of providing a lifetime of pain-free joint motion. This tissue, however, undergoes substantial age-related physiologic, mechanical, biochemical, and functional changes that reduce its ability to overcome the effects of mechanical stress and injury. Many factors affect joint function in the maturing athlete—from chondrocyte survival and metabolism to structural composition and genetic/epigenetic factors governing cartilage and synovium. An evaluation of age-related changes for joint homeostasis and risk for osteoarthritis is important to the development of new strategies to rejuvenate aging joints. Objective: This review summarizes the current literature on the biochemical, cellular, and physiologic changes occurring in aging articular cartilage. Data Sources: PubMed (1969-2013) and published books in sports health, cartilage biology, and aging. Study Selection: Keywords included aging, athlete, articular cartilage, epigenetics, and functional performance with age. Study Design: Systematic review. Level of Evidence: Level 3. Data Extraction: To be included, research questions addressed the effect of age-related changes on performance, articular cartilage biology, molecular mechanism, and morphology. Results: The mature athlete faces challenges in maintaining cartilage health and joint function due to age-related changes to articular cartilage biology, morphology, and physiology. These changes include chondrocyte loss and a decline in metabolic response, alterations to matrix and synovial tissue composition, and dysregulation of reparative responses. Conclusion: Although physical decline has been regarded as a normal part of aging, many individuals maintain overall fitness and enjoy targeted improvement to their athletic capacity throughout life. Healthy articular cartilage and joints are needed to maintain athletic performance and general activities. Genetic and potentially reversible epigenetic factors influence cartilage physiology and its response to mechanical and injurious stimuli. Improved understandings of the physical and molecular changes to articular cartilage with aging are important to develop successful strategies for joint rejuvenation.
Collapse
Affiliation(s)
- Ayala Luria
- Department of Orthopaedic Surgery, Stanford School of Medicine, Stanford, California
| | - Constance R Chu
- Department of Orthopaedic Surgery, Stanford School of Medicine, Stanford, California
| |
Collapse
|
36
|
Borriello A, Bencivenga D, Caldarelli I, Tramontano A, Borgia A, Zappia V, Della Ragione F. Resveratrol: from basic studies to bedside. Cancer Treat Res 2014; 159:167-184. [PMID: 24114480 DOI: 10.1007/978-3-642-38007-5_10] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Plants produce a remarkable amount of low molecular mass natural products endowed with a large array of pivotal biological activities. Among these molecules, resveratrol (3,5,4'-trihydroxystilbene) has been identified as an important modulator of cell phenotype with a complex and pleiotropic mode of action. Extensive literature regarding its activity, mainly employing cellular models, suggests that this polyphenol controls cell proliferation, induces differentiation, and activates apoptosis and autophagy. The compound also modulates angiogenesis and inflammation. Similarly, studies on implanted cancers and chemical-induced tumors confirm the potential chemotherapeutical interest of the compound. Likewise, several reports clearly demonstrated, in animal models, that the compound might positively affect the development and evolution of chronic diseases including type 2 diabetes, obesity, coronary heart disease, metabolic syndrome, and neurogenerative pathologies. Finally, a number of investigations stated that the toxicity of the molecule is scarce. Despite these promising observations, few clinical trials have yet been performed to evaluate the effectiveness of the molecule both in prevention and treatment of human chronic disease. Preliminary findings therefore suggest the need for more extensive clinical investigations.
Collapse
Affiliation(s)
- Adriana Borriello
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via De Crecchio 7, 80138, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
37
|
A pharmaco-epistasis strategy reveals a new cell size controlling pathway in yeast. Mol Syst Biol 2013; 9:707. [PMID: 24217298 PMCID: PMC4039374 DOI: 10.1038/msb.2013.60] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/27/2013] [Indexed: 01/03/2023] Open
Abstract
Pharmaco-epistasis analyses using drugs mimicking cell size mutations in yeast uncovered a novel pathway in cell size homeostasis regulation. This pathway involves the sirtuin Sir2, the large ribosomal subunit (60S) and the Swi4/Swi6 transcription factors. ![]()
Drug–gene epistatic interactions with nicotinamide and diazaborine were analyzed using 189 previously identified small and 155 large mutants, showing that cell size homeostasis is the result of signals emanating from several independent pathways. Ribosome biogenesis affects cell size homeostasis in different ways. Modulation of cell size by Sir2 correlates with NAD+ intracellular variation. No simple causal relationship was found between cell size and replicative aging even though both Sir2 and the 60S ribosomal subunit are contributing to these two complex traits.
Cell size is a complex quantitative trait resulting from interactions between intricate genetic networks and environmental conditions. Here, taking advantage of previous studies that uncovered hundreds of genes affecting budding yeast cell size homeostasis, we performed a wide pharmaco-epistasis analysis using drugs mimicking cell size mutations. Simple epistasis relationship emerging from this approach allowed us to characterize a new cell size homeostasis pathway comprising the sirtuin Sir2, downstream effectors including the large ribosomal subunit (60S) and the transcriptional regulators Swi4 and Swi6. We showed that this Sir2/60S signaling route acts independently of other previously described cell size controlling pathways and may integrate the metabolic status of the cell through NAD+ intracellular concentration. Finally, although Sir2 and the 60S subunits regulate both cell size and replicative aging, we found that there is no clear causal relationship between these two complex traits. This study sheds light on a pathway of >50 genes and illustrates how pharmaco-epistasis applied to yeast offers a potent experimental framework to explore complex genotype/phenotype relationships.
Collapse
|
38
|
Abstract
Sirtuins play an essential role in the cellular response to environmental stress, promoting DNA repair, telomere stability, cell cycle arrest, cellular senescence, and apoptosis. Much attention has been given to the role of sirtuins in aging and cancer development; however, less is known about their role in stem cell regulation. This review focuses in this topic and discusses the possible implications in adult stem cell aging.
Collapse
Affiliation(s)
- R M Rodriguez
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA-HUCA), Universidad de Oviedo, Oviedo, Spain
| | | | | |
Collapse
|
39
|
Sirtuin and pan-class I/II deacetylase (DAC) inhibition is synergistic in preclinical models and clinical studies of lymphoma. Blood 2013; 122:2104-13. [PMID: 23913470 DOI: 10.1182/blood-2013-02-485441] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Understanding the molecular pathogenesis of lymphoma has led to paradigm-changing treatment opportunities. One example involves tailoring specific agents based on the cell of origin in aggressive lymphomas. Germinal center (GC)-derived diffuse large B-cell lymphoma (DLBCL) is known to be driven by an addiction to Bcl6, whereas the activated B-cell (ABC) subtype is driven by nuclear factor κB. In the GC subtype, there is a critical inverse relationship between Bcl6 and p53, the functional status of which is linked to each transcription factor's degree of acetylation. Deacetylation of Bcl6 is required for its transcriptional repressor effects allowing for the oncogene to drive lymphomagenesis. Conversely, acetylation of p53 is activating when class III deacetylases (DACs), or sirtuins, are inhibited by niacinamide. Treatment of DLBCL cell lines with pan-DAC inhibitors in combination with niacinamide produces synergistic cytotoxicity in GC over ABC subtypes. This correlated with acetylation of both Bcl6 and p53. This combination also produced remissions in a spontaneous aggressive B-cell lymphoma mouse model expressing Bcl6. In a phase 1 proof-of-principle clinical trial, 24% of patients with relapsed or refractory lymphoma attained a response to vorinostat and niacinamide, and 57% experienced disease stabilization. We report herein on the preclinical and clinical activity of this targeted strategy in aggressive lymphomas. This trial was registered at www.clinicaltrials.gov as #NCT00691210.
Collapse
|
40
|
The role of SIRT1 in ocular aging. Exp Eye Res 2013; 116:17-26. [PMID: 23892278 DOI: 10.1016/j.exer.2013.07.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 07/13/2013] [Accepted: 07/16/2013] [Indexed: 12/27/2022]
Abstract
The sirtuins are a highly conserved family of nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases that helps regulate the lifespan of diverse organisms. The human genome encodes seven different sirtuins (SIRT1-7), which share a common catalytic core domain but possess distinct N- and C-terminal extensions. Dysfunction of some sirtuins have been associated with age-related diseases, such as cancer, type II diabetes, obesity-associated metabolic diseases, neurodegeneration, and cardiac aging, as well as the response to environmental stress. SIRT1 is one of the targets of resveratrol, a polyphenolic SIRT1 activator that has been shown to increase the lifespan and to protect various organs against aging. A number of animal studies have been conducted to examine the role of sirtuins in ocular aging. Here we review current knowledge about SIRT1 and ocular aging. The available data indicate that SIRT1 is localized in the nucleus and cytoplasm of cells forming all normal ocular structures, including the cornea, lens, iris, ciliary body, and retina. Upregulation of SIRT1 has been shown to have an important protective effect against various ocular diseases, such as cataract, retinal degeneration, optic neuritis, and uveitis, in animal models. These results suggest that SIRT1 may provide protection against diseases related to oxidative stress-induced ocular damage, including cataract, age-related macular degeneration, and optic nerve degeneration in glaucoma patients.
Collapse
|
41
|
The age-related changes in cartilage and osteoarthritis. BIOMED RESEARCH INTERNATIONAL 2013; 2013:916530. [PMID: 23971049 PMCID: PMC3736507 DOI: 10.1155/2013/916530] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/07/2013] [Accepted: 06/09/2013] [Indexed: 12/29/2022]
Abstract
Osteoarthritis (OA) is closely associated with aging, but its underlying mechanism is unclear. Recent publications were reviewed to elucidate the connection between aging and OA. With increasing OA incidence, more senior people are facing heavy financial and social burdens. Age-related OA pathogenesis is not well understood. Recently, it has been realized that age-related changes in other tissues besides articular cartilage may also contribute to OA development. Many factors including senescence-related secretory phenotypes, chondrocytes' low reactivity to growth factors, mitochondrial dysfunction and oxidative stress, and abnormal accumulation of advanced glycation end products (AGEs) may all play key roles in the pathogenesis of age-related OA. Lately, epigenetic regulation of gene expression was recognized for its impact on age-related OA pathogenesis. Up to now, few studies have been reported about the role of miRNA and long-noncoding RNA (lncRNA) in age-related OA. Research focusing on this area may provide valuable insights into OA pathogenesis. OA-induced financial and social burdens have become an increasingly severe threat to older population. Age-related changes in noncartilage tissue should be incorporated in the understanding of OA development. Growing attention on oxidative stress and epigenetics will provide more important clues for the better understanding of the age-related OA.
Collapse
|
42
|
Linke C, Klipp E, Lehrach H, Barberis M, Krobitsch S. Fkh1 and Fkh2 associate with Sir2 to control CLB2 transcription under normal and oxidative stress conditions. Front Physiol 2013; 4:173. [PMID: 23874301 PMCID: PMC3709100 DOI: 10.3389/fphys.2013.00173] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 06/20/2013] [Indexed: 01/22/2023] Open
Abstract
The Forkhead (Fkh) box family of transcription factors is evolutionary conserved from yeast to higher eukaryotes and its members are involved in many physiological processes including metabolism, DNA repair, cell cycle, stress resistance, apoptosis, and aging. In budding yeast, four Fkh transcription factors were identified, namely Fkh1, Fkh2, Fhl1, and Hcm1, which are implicated in chromatin silencing, cell cycle regulation, and stress response. These factors impinge transcriptional regulation during cell cycle progression, and histone deacetylases (HDACs) play an essential role in this process, e.g., the nuclear localization of Hcm1 depends on Sir2 activity, whereas Sin3/Rpd3 silence cell cycle specific gene transcription in G2/M phase. However, a direct involvement of Sir2 in Fkh1/Fkh2-dependent regulation of target genes is at present unknown. Here, we show that Fkh1 and Fkh2 associate with Sir2 in G1 and M phase, and that Fkh1/Fkh2-mediated activation of reporter genes is antagonized by Sir2. We further report that Sir2 overexpression strongly affects cell growth in an Fkh1/Fkh2-dependent manner. In addition, Sir2 regulates the expression of the mitotic cyclin Clb2 through Fkh1/Fkh2-mediated binding to the CLB2 promoter in G1 and M phase. We finally demonstrate that Sir2 is also enriched at the CLB2 promoter under stress conditions, and that the nuclear localization of Sir2 is dependent on Fkh1 and Fkh2. Taken together, our results show a functional interplay between Fkh1/Fkh2 and Sir2 suggesting a novel mechanism of cell cycle repression. Thus, in budding yeast, not only the regulation of G2/M gene expression but also the protective response against stress could be directly coordinated by Fkh1 and Fkh2.
Collapse
Affiliation(s)
- Christian Linke
- Otto Warburg Laboratory, Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics Berlin, Germany ; Department of Biology, Chemistry and Pharmacy, Free University Berlin Berlin, Germany
| | | | | | | | | |
Collapse
|
43
|
Lee SH, Um SJ, Kim EJ. CBX8 suppresses Sirtinol-induced premature senescence in human breast cancer cells via cooperation with SIRT1. Cancer Lett 2013; 335:397-403. [PMID: 23474493 DOI: 10.1016/j.canlet.2013.02.051] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/22/2013] [Accepted: 02/24/2013] [Indexed: 12/14/2022]
Abstract
Stress-induced premature senescence (SIPS) has been implicated in the suppression of carcinogenesis. We identified chromodomain protein 8 (CBX8), a Polycomb group (PcG) protein, as a novel binding partner of SIRT1. The interaction between CBX8 and SIRT1 was demonstrated by immunoprecipitation, GST pull-down, fluorescence microscopy, and cooperation for transcriptional repression. Like SIRT1, CBX8 repressed premature senescence and growth arrest induced by the SIRT1 inhibitor Sirtinol in MCF7 cells, which was reversed by depleting CBX8. CBX8 cooperated with SIRT1 for suppressing p53 acetylation induced by Sirtinol and etoposide/TSA. Upon ectopic expression, CBX8 or SIRT1 repressed the expression of p21(WAF1) by inhibiting p53 binding to the promoter. We provide the first evidence that CBX8 plays a potential role in regulating premature senescence in human breast cancer cells through cooperation with SIRT1.
Collapse
Affiliation(s)
- Sang Hyup Lee
- Department of Molecular Biology, BK21 Graduate Program, Dankook University, Yongin-si, Gyeonggi-do 448-701, Republic of Korea
| | | | | |
Collapse
|
44
|
Methods to study the role of sirtuins in genome stability. Methods Mol Biol 2013; 1077:273-83. [PMID: 24014413 DOI: 10.1007/978-1-62703-637-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
One of the most important roles of Sirtuins is to ensure the maintenance of genome integrity under stress conditions. In this chapter, we provide a methodology to study this role of Sirtuins at two different levels: detection of genomic instability (with the Neutral Comet Assay) and study of Sirtuin dynamics in chromatin under stress conditions (by isolating insoluble chromatin fractions).
Collapse
|
45
|
Xie J, Zhang X, Zhang L. Negative regulation of inflammation by SIRT1. Pharmacol Res 2012; 67:60-7. [PMID: 23098819 DOI: 10.1016/j.phrs.2012.10.010] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 09/29/2012] [Accepted: 10/15/2012] [Indexed: 12/13/2022]
Abstract
Sirtuin 1 (SIRT1), the mammalian Sir2 homologue, is a class III histone deacetylase shown to act on a wide range of histones and non-histone substrates. Numerous studies have demonstrated that SIRT1 regulates critical metabolic and physiological processes including senescence, stress resistance, metabolism and apoptosis. Recently, SIRT1 was also found to play an important role in modulating the development and progression of inflammation through deacetylating histones and critical transcription factor such as nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1), thus leading to transcriptional repression of various inflammation-related genes. There is increasing evidence that reduction of SIRT1 levels is closely correlated with many inflammatory diseases while pharmacologic activation of SIRT1 would be a promising therapeutic strategy for inflammation-related diseases.
Collapse
Affiliation(s)
- Jun Xie
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | | | | |
Collapse
|
46
|
Shimizu M, Masuo S, Fujita T, Doi Y, Kamimura Y, Takaya N. Hydrolase controls cellular NAD, sirtuin, and secondary metabolites. Mol Cell Biol 2012; 32:3743-55. [PMID: 22801369 PMCID: PMC3430197 DOI: 10.1128/mcb.00032-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 07/09/2012] [Indexed: 12/21/2022] Open
Abstract
Cellular levels of NAD(+) and NADH are thought to be controlled by de novo and salvage mechanisms, although evidence has not yet indicated that they are regulated by NAD(+) degradation. Here we show that the conserved nudix hydrolase isozyme NdxA hydrolyzes and decreases cellular NAD(+) and NADH in Aspergillus nidulans. The NdxA-deficient fungus accumulated more NAD(+) during the stationary growth phase, indicating that NdxA maintains cellular NAD(+)/NADH homeostasis. The deficient strain also generated less of the secondary metabolites sterigmatocystin and penicillin G and of their gene transcripts than did the wild type. These defects were associated with a reduction in acetylated histone H4 on the gene promoters of aflR and ipnA that are involved in synthesizing secondary metabolites. Thus, NdxA increases acetylation levels of histone H4. We discovered that the novel fungal sirtuin isozyme SirA uses NAD(+) as a cosubstrate to deacetylate the lysine 16 residue of histone H4 on the gene promoter and represses gene expression. The impaired acetylation of histone and secondary metabolite synthesis in the NdxA-deficient strain were restored by eliminating functional SirA, indicating that SirA mediates NdxA-dependent regulation. These results indicated that NdxA controls total levels of NAD(+)/NADH and negatively regulates sirtuin function and chromatin structure.
Collapse
Affiliation(s)
- Motoyuki Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Huidobro C, Fernandez AF, Fraga MF. Aging epigenetics: causes and consequences. Mol Aspects Med 2012; 34:765-81. [PMID: 22771540 DOI: 10.1016/j.mam.2012.06.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/27/2012] [Indexed: 12/26/2022]
Abstract
Growth and development of higher organisms are regulated by the orchestrated change of epigenetic marks over time. In addition, there is also an epigenetic variation without any apparent role in development that is thought to be the result of the stochastic accumulation of epigenetic errors. The process depends on genetic and environmental factors and, when it takes place in adult stem cells, it could play an important role in aging, although the underlying molecular mechanisms are still largely unknown.
Collapse
Affiliation(s)
- Covadonga Huidobro
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | | | | |
Collapse
|
48
|
Ralser M, Michel S, Breitenbach M. Sirtuins as regulators of the yeast metabolic network. Front Pharmacol 2012; 3:32. [PMID: 22408620 PMCID: PMC3296958 DOI: 10.3389/fphar.2012.00032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/17/2012] [Indexed: 11/29/2022] Open
Abstract
There is growing evidence that the metabolic network is an integral regulator of cellular physiology. Dynamic changes in metabolite concentrations, metabolic flux, or network topology act as reporters of biological or environmental signals, and are required for the cell to trigger an appropriate biological reaction. Changes in the metabolic network are recognized by specific sensory macromolecules and translated into a transcriptional or translational response. The protein family of sirtuins, discovered more than 30 years ago as regulators of silent chromatin, seems to fulfill the role of a metabolic sensor during aging and conditions of caloric restriction. The archetypal sirtuin, yeast silentinformationregulator2 (SIR2), is an NAD+ dependent protein deacetylase that interacts with metabolic enzymes glyceraldehyde-3-phosphate dehydrogenase and alcohol dehydrogenase, as well as enzymes involved in NAD(H) synthesis, that provide or deprive NAD+ in its close proximity. This influences sirtuin activity, and facilitates a dynamic response of the metabolic network to changes in metabolism with effects on physiology and aging. The molecular network downstream Sir2, however, is complex. In just two orders, Sir2’s metabolism related interactions span half of the yeast proteome, and are connected with virtually every physiological process. Thus, although it is fundamental to analyze single molecular mechanisms, it is at the same time crucial to consider this genome-scale complexity when correlating single molecular events with complex phenotypes such as aging, cell growth, or stress resistance.
Collapse
Affiliation(s)
- Markus Ralser
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge Cambridge, UK
| | | | | |
Collapse
|
49
|
Bhat S, Shim JS, Zhang F, Chong CR, Liu JO. Substituted oxines inhibit endothelial cell proliferation and angiogenesis. Org Biomol Chem 2012; 10:2979-92. [PMID: 22391578 DOI: 10.1039/c2ob06978d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two substituted oxines, nitroxoline (5) and 5-chloroquinolin-8-yl phenylcarbamate (22), were identified as hits in a high-throughput screen aimed at finding new anti-angiogenic agents. In a previous study, we have elucidated the molecular mechanism of antiproliferative activity of nitroxoline in endothelial cells, which comprises of a dual inhibition of type 2 human methionine aminopeptidase (MetAP2) and sirtuin 1 (SIRT1). Structure-activity relationship study (SAR) of nitroxoline offered many surprises where minor modifications yielded oxine derivatives with increased potency against human umbilical vein endothelial cells (HUVEC), but with entirely different as yet unknown mechanisms. For example, 5-nitrosoquinolin-8-ol (33) inhibited HUVEC growth with sub-micromolar IC(50), but did not affect MetAP2 or MetAP1, and it only showed weak inhibition against SIRT1. Other sub-micromolar inhibitors were derivatives of 5-aminoquinolin-8-ol (34) and 8-sulfonamidoquinoline (32). A sulfamate derivative of nitroxoline (48) was found to be more potent than nitroxoline with the retention of activities against MetAP2 and SIRT1. The bioactivity of the second hit, micromolar HUVEC and MetAP2 inhibitor carbamate 22 was improved further with an SAR study culminating in carbamate 24 which is a nanomolar inhibitor of HUVEC and MetAP2.
Collapse
Affiliation(s)
- Shridhar Bhat
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
50
|
Mikulik K, Felsberg J, Kudrnáčová E, Bezoušková S, Setinová D, Stodůlková E, Zídková J, Zídek V. CobB1 deacetylase activity in Streptomyces coelicolor. Biochem Cell Biol 2012; 90:179-87. [PMID: 22300453 DOI: 10.1139/o11-086] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Silent information regulators are NAD(+)-dependent enzymes that display differential specificity toward acetylated substrates. This report provides first evidence for deacetylation activity of CobB1 in Streptomyces coelicolor. The protein is highly conserved in streptomycetes. The CobB1 protein catalytically removes the acetyl group from acetylated bovine serum albumin. In the absence of NAD+ or when NAD+ was substituted with nicotinamide, deacetylation was stopped. We isolated gene encoding AcetylCoA synthetaseA. The recombinant enzyme produces Acetyl-CoA from acetate. The highest acsA-mRNA level was detected in cells from the exponential phase of growth, and then decreased in transition and stationary phases of growth. Acetylated acsA loses the ability to transfer acetate to CoA. Deacetylation of the enzyme required CobB1, ATP-Mg2, and NAD+. Using specific antibodies against acetylated lys, CobB1, and acsA, we found relationship between level of CobB1 and acetylation of acsA, indicating that CobB1 is involved in regulating the acetylation level of acsA and consequently its activity. It was found that 1-acetyl-tetrahydroxy and 1-acetyl pentahydroxy antraquinone inhibit the deacetylation activity of CobB1.
Collapse
Affiliation(s)
- Karel Mikulik
- Institute of Microbiology of the Czech Academy of Sciences Vídenska 1083, Praha 4 14220, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|