1
|
Eleveld MJ, Geiger Y, Wu J, Kiani A, Schaeffer G, Otto S. Competitive exclusion among self-replicating molecules curtails the tendency of chemistry to diversify. Nat Chem 2024:10.1038/s41557-024-01664-0. [PMID: 39613869 DOI: 10.1038/s41557-024-01664-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/04/2024] [Indexed: 12/01/2024]
Abstract
The transition of chemistry into biology is poorly understood. Key questions include how the inherently divergent nature of chemical reactions can be curtailed, and whether Darwinian principles from biology extend to chemistry. Addressing both questions simultaneously, we now show that the evolutionary principle of competitive exclusion, which states that a single niche can be stably occupied by only one species, also applies to self-replicating chemical systems, and that this principle diminishes the tendency of chemistry to diversify. Specifically, we report two systems in which three different self-replicator quasi-species emerge in a largely stochastic fashion from a mixture of two building blocks (resources). Competitive exclusion leads to the selection of only a single quasi-species when all replicators rely to the same extent on both resources. When one of the quasi-species preferentially uses one resource and another quasi-species specializes in the other (resource partitioning), these replicator quasi-species effectively occupy different niches and were found to coexist in an evolutionary stable steady state.
Collapse
Affiliation(s)
- Marcel J Eleveld
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, The Netherlands
| | - Yannick Geiger
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, The Netherlands
| | - Juntian Wu
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, The Netherlands
| | - Armin Kiani
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, The Netherlands
| | - Gaël Schaeffer
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, The Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
2
|
Cochrane WG, Bare GAL, Joyce GF, Horning DP. Cross-chiral exponential amplification of an RNA enzyme. Proc Natl Acad Sci U S A 2024; 121:e2413668121. [PMID: 39436654 PMCID: PMC11536142 DOI: 10.1073/pnas.2413668121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
An RNA ligase ribozyme that catalyzes the joining of RNA molecules of the opposite chiral handedness was optimized for the ability to synthesize its own enantiomer from two component fragments. The mirror-image D- and L-ligases operate in concert to provide a system for cross-chiral replication, whereby they catalyze each other's synthesis and undergo mutual amplification at constant temperature, with apparent exponential growth and a doubling time of about 1 h. Neither the D- nor the L-RNA components alone can achieve autocatalytic self-replication. Cross-chiral exponential amplification can be continued indefinitely through a serial-transfer process that provides an ongoing supply of the component D- and L-substrates. Unlike the familiar paradigm of semiconservative nucleic acid replication that relies on Watson-Crick pairing between complementary strands, cross-chiral replication relies on tertiary interactions between structured nucleic acids "across the mirror." There are few examples, outside of biology, of autocatalytic self-replication systems that undergo exponential amplification and there are no prior examples, in either biological or chemical systems, of cross-chiral replication enabling exponential amplification.
Collapse
|
3
|
Ams MR, McAuliffe JR, Semenick RS, Zeller M. Self-Replication Without Hydrogen-Bonds: An Exobiotic Design. Chemistry 2024; 30:e202401446. [PMID: 38958604 DOI: 10.1002/chem.202401446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Life on Earth uses DNA as the central template for self-replication, genetic encoding, and information transfer. However, there are no physical laws precluding life's existence elsewhere in space, and alternative life forms may not need DNA. In the search for exobiology, knowing what to look for as a biosignature remains a challenge - especially if it is not from the obvious list of biologic building blocks. Clues from chemicals recently discovered on Mars and in the Taurus Molecular Cloud 1 (TMC-1), show that intriguing organic compounds exist beyond Earth, which could provide a starting point for unconventional exobiotic designs. Here we present a new potential self-replicating system with structural similarities to recently discovered compounds on Mars and TMC-1. Rather than using DNA's hydrogen-bonding motif for reliable base-paring, our design employs sulfur-nitrogen interactions to selectively template unique benzothiadiazole units in sequence. We synthesized and studied two versions of this system, one reversible and the other irreversible, and found experimental evidence of self-replication in d-chloroform solvent. These results are part of a larger pursuit in our lab for developing a basis for a potential exobiological system using starting blocks closely related to these cosmic compounds.
Collapse
Affiliation(s)
- Mark R Ams
- Department of Chemistry, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM, 87801, USA
| | - Joseph R McAuliffe
- Department of Chemistry, Allegheny College, 520 North Main Street, Meadville, PA, 16335, USA
| | - Raina S Semenick
- Department of Chemistry, Allegheny College, 520 North Main Street, Meadville, PA, 16335, USA
| | - Matt Zeller
- X-ray Crystallography, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| |
Collapse
|
4
|
Vibhute MA, Mutschler H. A Primer on Building Life‐Like Systems. CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202200033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mahesh A. Vibhute
- TU Dortmund University Department of Chemistry and Chemical Biology Otto-Hahn-Str. 4a 44227 Dortmund Germany
| | - Hannes Mutschler
- TU Dortmund University Department of Chemistry and Chemical Biology Otto-Hahn-Str. 4a 44227 Dortmund Germany
| |
Collapse
|
5
|
Slootbeek AD, van Haren MHI, Smokers IBA, Spruijt E. Growth, replication and division enable evolution of coacervate protocells. Chem Commun (Camb) 2022; 58:11183-11200. [PMID: 36128910 PMCID: PMC9536485 DOI: 10.1039/d2cc03541c] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022]
Abstract
Living and proliferating cells undergo repeated cycles of growth, replication and division, all orchestrated by complex molecular networks. How a minimal cell cycle emerged and helped primitive cells to evolve remains one of the biggest mysteries in modern science, and is an active area of research in chemistry. Protocells are cell-like compartments that recapitulate features of living cells and may be seen as the chemical ancestors of modern life. While compartmentalization is not strictly required for primitive, open-ended evolution of self-replicating systems, it gives such systems a clear identity by setting the boundaries and it can help them overcome three major obstacles of dilution, parasitism and compatibility. Compartmentalization is therefore widely considered to be a central hallmark of primitive life, and various types of protocells are actively investigated, with the ultimate goal of developing a protocell capable of autonomous proliferation by mimicking the well-known cell cycle of growth, replication and division. We and others have found that coacervates are promising protocell candidates in which chemical building blocks required for life are naturally concentrated, and chemical reactions can be selectively enhanced or suppressed. This feature article provides an overview of how growth, replication and division can be realized with coacervates as protocells and what the bottlenecks are. Considerations are given for designing chemical networks in coacervates that can lead to sustained growth, selective replication and controlled division, in a way that they are linked together like in the cell cycle. Ultimately, such a system may undergo evolution by natural selection of certain phenotypes, leading to adaptation and the gain of new functions, and we end with a brief discussion of the opportunities for coacervates to facilitate this.
Collapse
Affiliation(s)
- Annemiek D Slootbeek
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Merlijn H I van Haren
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Iris B A Smokers
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Soai K. The Soai reaction and its implications with the life's characteristic features of self-replication and homochirality. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Göppel T, Rosenberger JH, Altaner B, Gerland U. Thermodynamic and Kinetic Sequence Selection in Enzyme-Free Polymer Self-Assembly Inside a Non-Equilibrium RNA Reactor. Life (Basel) 2022; 12:life12040567. [PMID: 35455058 PMCID: PMC9032526 DOI: 10.3390/life12040567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 11/18/2022] Open
Abstract
The RNA world is one of the principal hypotheses to explain the emergence of living systems on the prebiotic Earth. It posits that RNA oligonucleotides acted as both carriers of information as well as catalytic molecules, promoting their own replication. However, it does not explain the origin of the catalytic RNA molecules. How could the transition from a pre-RNA to an RNA world occur? A starting point to answer this question is to analyze the dynamics in sequence space on the lowest level, where mononucleotide and short oligonucleotides come together and collectively evolve into larger molecules. To this end, we study the sequence-dependent self-assembly of polymers from a random initial pool of short building blocks via templated ligation. Templated ligation requires two strands that are hybridized adjacently on a third strand. The thermodynamic stability of such a configuration crucially depends on the sequence context and, therefore, significantly influences the ligation probability. However, the sequence context also has a kinetic effect, since non-complementary nucleotide pairs in the vicinity of the ligation site stall the ligation reaction. These sequence-dependent thermodynamic and kinetic effects are explicitly included in our stochastic model. Using this model, we investigate the system-level dynamics inside a non-equilibrium ‘RNA reactor’ enabling a fast chemical activation of the termini of interacting oligomers. Moreover, the RNA reactor subjects the oligomer pool to periodic temperature changes inducing the reshuffling of the system. The binding stability of strands typically grows with the number of complementary nucleotides forming the hybridization site. While shorter strands unbind spontaneously during the cold phase, larger complexes only disassemble during the temperature peaks. Inside the RNA reactor, strand growth is balanced by cleavage via hydrolysis, such that the oligomer pool eventually reaches a non-equilibrium stationary state characterized by its length and sequence distribution. How do motif-dependent energy and stalling parameters affect the sequence composition of the pool of long strands? As a critical factor for self-enhancing sequence selection, we identify kinetic stalling due to non-complementary base pairs at the ligation site. Kinetic stalling enables cascades of self-amplification that result in a strong reduction of occupied states in sequence space. Moreover, we discuss the significance of the symmetry breaking for the transition from a pre-RNA to an RNA world.
Collapse
|
8
|
Sevim İ. Design of Subreplicating Systems from an Existing Self-Replicating Diels-Alder Reaction System by Isosteric Replacement. J Org Chem 2021; 86:14964-14973. [PMID: 34633828 DOI: 10.1021/acs.joc.1c01695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The key feature of non-enzymatic self-replicating systems is the formation of catalytically active ternary complexes in which product templates direct precursors into spatial proximity to allow the formation of new covalent bonds. It is possible to create new replicating species by simply evaluating the ternary active complex of an existing replicating system and applying proper isosteric replacements. In this study, we have evaluated the formerly reported self-replicating Diels-Alder reaction having 61 and 33% selectivity for two diastereomeric replicators. An isosteric replacement on the spacer part connecting recognition and reactive sites of the maleimide component was applied by considering the symmetry of catalytically active ternary complexes, and it was shown that self-replication was conserved. Analysis of the new system showed 77 and 21% diastereoselectivity for the two new replicating species. Seeding experiments indicated autocatalytic activity of both replicators. In other words, both replicators compete with each other by catalyzing their own formation from the same reagent source. Another modification was applied by aiming selective blocking of the autocatalytic cycle of the competing diastereomer. The new system showed a diastereoselectivity of about 94% for the favored replicator. The kinetic data of both systems were analyzed by modeling with SimFit simulations.
Collapse
Affiliation(s)
- İlhan Sevim
- Lehrstuhl für Organische Chemie I, Ruhr-Universität Bochum, Universitätsstrasse 150, Bochum 44801, Germany
| |
Collapse
|
9
|
Rolling-circle and strand-displacement mechanisms for non-enzymatic RNA replication at the time of the origin of life. J Theor Biol 2021; 527:110822. [PMID: 34214567 DOI: 10.1016/j.jtbi.2021.110822] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/11/2021] [Accepted: 06/26/2021] [Indexed: 11/21/2022]
Abstract
It is likely that RNA replication began non-enzymatically, and that polymerases were later selected to speed up the process. We consider replication mechanisms in modern viruses and ask which of these is possible non-enzymatically, using mathematical models and experimental data found in the literature to estimate rates of RNA synthesis and replication. Replication via alternating plus and minus strands is found in some single-stranded RNA viruses. However, if this occurred non-enzymatically it would lead to double-stranded RNA that would not separate. With some form of environmental cycling, such as temperature, salinity, or pH cycling, double-stranded RNA can be melted to form single-stranded RNA, although re-annealing of existing strands would then occur much faster than synthesis of new strands. We show that re-annealing blocks this form of replication at a very low concentration of strands. Other kinds of viruses synthesize linear double strands from single strands and then make new single strands from double strands via strand-displacement. This does not require environmental cycling and is not blocked by re-annealing. However, under non-enzymatic conditions, if strand-displacement occurs from a linear template, we expect the incomplete new strand to be almost always displaced by the tail end of the old strand through toehold-mediated displacement. A third kind of replication in viruses and viroids is rolling-circle replication which occurs via strand-displacement on a circular template. Rolling-circle replication does not require environmental cycling and is not prevented by toehold-mediated displacement. Rolling-circle replication is therefore expected to occur non-enzymatically and is a likely starting point for the evolution of polymerase-catalysed replication.
Collapse
|
10
|
Ameta S, Matsubara YJ, Chakraborty N, Krishna S, Thutupalli S. Self-Reproduction and Darwinian Evolution in Autocatalytic Chemical Reaction Systems. Life (Basel) 2021; 11:308. [PMID: 33916135 PMCID: PMC8066523 DOI: 10.3390/life11040308] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 11/18/2022] Open
Abstract
Understanding the emergence of life from (primitive) abiotic components has arguably been one of the deepest and yet one of the most elusive scientific questions. Notwithstanding the lack of a clear definition for a living system, it is widely argued that heredity (involving self-reproduction) along with compartmentalization and metabolism are key features that contrast living systems from their non-living counterparts. A minimal living system may be viewed as "a self-sustaining chemical system capable of Darwinian evolution". It has been proposed that autocatalytic sets of chemical reactions (ACSs) could serve as a mechanism to establish chemical compositional identity, heritable self-reproduction, and evolution in a minimal chemical system. Following years of theoretical work, autocatalytic chemical systems have been constructed experimentally using a wide variety of substrates, and most studies, thus far, have focused on the demonstration of chemical self-reproduction under specific conditions. While several recent experimental studies have raised the possibility of carrying out some aspects of experimental evolution using autocatalytic reaction networks, there remain many open challenges. In this review, we start by evaluating theoretical studies of ACSs specifically with a view to establish the conditions required for such chemical systems to exhibit self-reproduction and Darwinian evolution. Then, we follow with an extensive overview of experimental ACS systems and use the theoretically established conditions to critically evaluate these empirical systems for their potential to exhibit Darwinian evolution. We identify various technical and conceptual challenges limiting experimental progress and, finally, conclude with some remarks about open questions.
Collapse
Affiliation(s)
- Sandeep Ameta
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Yoshiya J. Matsubara
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Nayan Chakraborty
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Sandeep Krishna
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Shashi Thutupalli
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560089, India
| |
Collapse
|
11
|
From self-replication to replicator systems en route to de novo life. Nat Rev Chem 2020; 4:386-403. [PMID: 37127968 DOI: 10.1038/s41570-020-0196-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2020] [Indexed: 01/01/2023]
Abstract
The process by which chemistry can give rise to biology remains one of the biggest mysteries in contemporary science. The de novo synthesis and origin of life both require the functional integration of three key characteristics - replication, metabolism and compartmentalization - into a system that is maintained out of equilibrium and is capable of open-ended Darwinian evolution. This Review takes systems of self-replicating molecules as starting points and describes the steps necessary to integrate additional characteristics of life. We analyse how far experimental self-replicators have come in terms of Darwinian evolution. We also cover models of replicator communities that attempt to solve Eigen's paradox, whereby accurate replication needs complex machinery yet obtaining such complex self-replicators through evolution requires accurate replication. Successful models rely on a collective metabolism and a way of (transient) compartmentalization, suggesting that the invention and integration of these two characteristics is driven by evolution. Despite our growing knowledge, there remain numerous key challenges that may be addressed by a combined theoretical and experimental approach.
Collapse
|
12
|
Robertson CC, Kosikova T, Philp D. Encoding Multiple Reactivity Modes within a Single Synthetic Replicator. J Am Chem Soc 2020; 142:11139-11152. [PMID: 32414236 DOI: 10.1021/jacs.0c03527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Establishing programmable and self-sustaining replication networks in pools of chemical reagents is a key challenge in systems chemistry. Self-replicating templates are formed from two constituent components with complementary recognition and reactive sites via a slow bimolecular pathway and a fast template-directed pathway. Here, we re-engineer one of the components of a synthetic replicator to encode an additional recognition function, permitting the assembly of a binary complex between the components that mediates replicator formation through a template-independent pathway, which achieves maximum rate acceleration at early time points in the replication process. The complementarity between recognition sites creates a key conformational equilibrium between the catalytically inert product, formed via the template-independent pathway, and the catalytically active replicator that mediates the template-directed pathway. Consequently, the rapid formation of the catalytically inert isomer kick-starts replication through the template-directed pathway. Through kinetic analyses, we demonstrate that the presence of the two recognition-mediated reactivity modes results in enhanced template formation in comparison to that of systems capable of exploiting only a single recognition-mediated pathway. Finally, kinetic simulations reveal that the conformational equilibrium and both the relative and absolute efficiencies of the recognition-mediated pathways affect the extent to which self-replicating systems can benefit from this additional template-independent reactivity mode. These results allow us to formulate the rules that govern the coupling of replication processes to alternative recognition-mediated reactivity modes. The interplay between template-directed and template-independent pathways for replicator formation has significant relevance to ongoing efforts to design programmable and adaptable replicator networks.
Collapse
Affiliation(s)
- Craig C Robertson
- School of Chemistry and EaStCHEM, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, United Kingdom
| | - Tamara Kosikova
- School of Chemistry and EaStCHEM, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, United Kingdom.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Douglas Philp
- School of Chemistry and EaStCHEM, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, United Kingdom.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
13
|
MacCulloch T, Buchberger A, Stephanopoulos N. Emerging applications of peptide-oligonucleotide conjugates: bioactive scaffolds, self-assembling systems, and hybrid nanomaterials. Org Biomol Chem 2019; 17:1668-1682. [PMID: 30483688 DOI: 10.1039/c8ob02436g] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Peptide-oligonucleotide conjugates (POCs) are covalent constructs that link a molecule like DNA to a synthetic peptide sequences. These materials merge the programmable self-assembly of oligonucleotides with the bioactivity and chemical diversity of polypeptides. Recent years have seen the widespread use of POCs in a range of fields, driven the by relative advantages of each molecular type. In this review, we will present an overview of the synthesis and application of POCs, with an emphasis on emerging areas where these molecules will have a unique impact. We first discuss two main strategies for synthesizing POCs from synthetic monomers such as phosphoramidites and functionalized amino acids. We then describe four key fields of research in POCs: (1) biomaterials for interfacing with, and controlling the behavior of cells; (2) hybrid self-assembling systems that balance peptide and oligonucleotide intermolecular forces; (3) template-enhanced coupling of POCs into larger molecules; and (4) display of peptides on self-assembled oligonucleotide scaffolds. We also highlight several promising areas for future applications in each of these four directions, and anticipate ever increasing uses of POCs in interdisciplinary research.
Collapse
Affiliation(s)
- Tara MacCulloch
- School of Molecular Sciences, Arizona State University, Tempe AZ, USA.
| | | | | |
Collapse
|
14
|
Strazewski P. The Beginning of Systems Chemistry. Life (Basel) 2019; 9:life9010011. [PMID: 30678368 PMCID: PMC6463181 DOI: 10.3390/life9010011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/17/2019] [Indexed: 11/16/2022] Open
Abstract
Systems Chemistry has its roots in the research on the autocatalytic self-replication of biological macromolecules, first of all of synthetic deoxyribonucleic acids. A personal tour through the early works of the founder of Systems Chemistry, and of his first followers, recalls what's most important in this new era of chemistry: the growth and evolution of compartmented macromolecular populations, when provided with "food" and "fuel" and disposed of "waste".
Collapse
Affiliation(s)
- Peter Strazewski
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (Unité Mixte de Recherche 5246), Université de Lyon, Claude Bernard Lyon 1, 43 bvd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France.
| |
Collapse
|
15
|
Abstract
Self-replication and exponential growth are ubiquitous in nature but until recently there were few examples of artificial self-replication. Often replication is a templated process where a parent produces a single offspring, doubling the population in each generation. Many species however produce more than one offspring at a time, enabling faster population growth and higher probability of species perpetuation. We have made a system of cross-shaped origami tiles that yields a number of offspring, four to eight or more, depending on the concentration of monomer units to be assembled. The parent dimer template serves as a seed to crystallize a one-dimensional crystal, a ladder. The ladder rungs are then UV-cross-linked and the offspring are then released by heating, to yield a litter of autonomous daughters. In the complement study, we also optimize the growth conditions to speed up the process and yield a 103 increase in the growth rate for the single-offspring replication system. Self-replication and exponential growth of autonomous motifs is useful for fundamental studies of selection and evolution as well as for materials design, fabrication, and directed evolution. Methods that increase the growth rate, the primary evolutionary drive, not only speed up experiments but provide additional mechanisms for evolving materials toward desired functionalities.
Collapse
|
16
|
Affiliation(s)
- Meniz Altay
- Centre for Systems ChemistryStratingh InstituteUniversity of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Yigit Altay
- Centre for Systems ChemistryStratingh InstituteUniversity of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Sijbren Otto
- Centre for Systems ChemistryStratingh InstituteUniversity of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
17
|
Altay M, Altay Y, Otto S. Parasitic Behavior of Self-Replicating Molecules. Angew Chem Int Ed Engl 2018; 57:10564-10568. [PMID: 29856109 DOI: 10.1002/anie.201804706] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Indexed: 12/16/2022]
Abstract
Self-replication plays a central role in the origin of life and in strategies to synthesize life de novo. Studies on self-replication have focused mostly on isolated systems, while the dynamics of systems containing multiple replicators have received comparatively little attention. Yet most evolutionary scenarios involve the interplay between different replicators. Here we report the emergence of parasitic behavior in a system containing self-replicators derived from two subtly different building blocks 1 and 2. Replicators from 2 form readily through cross-catalysis by pre-existing replicators made from 1. Once formed, the new replicators consume the original replicators to which they owe their existence. These results resemble parasitic and predatory behavior that is normally associated with living systems and show how such lifelike behavior has its roots in relatively simple systems of self-replicating molecules.
Collapse
Affiliation(s)
- Meniz Altay
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Yigit Altay
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| |
Collapse
|
18
|
Affiliation(s)
- Elena Hänle
- Institut für Organische Chemie; Universität Stuttgart; 70569 Stuttgart Germany
| | - Clemens Richert
- Institut für Organische Chemie; Universität Stuttgart; 70569 Stuttgart Germany
| |
Collapse
|
19
|
Hänle E, Richert C. Enzyme-Free Replication with Two or Four Bases. Angew Chem Int Ed Engl 2018; 57:8911-8915. [PMID: 29779237 DOI: 10.1002/anie.201803074] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/27/2018] [Indexed: 11/10/2022]
Abstract
All known forms of life encode their genetic information in a sequence of bases of a genetic polymer and produce copies through replication. How this process started before polymerase enzymes had evolved is unclear. Enzyme-free copying of short stretches of DNA or RNA has been demonstrated using activated nucleotides, but not replication. We have developed a method for enzyme-free replication. It involves extension with reversible termination, enzyme-free ligation, and strand capture. We monitored nucleotide incorporation for a full helical turn of DNA, during both a first and a second round of copying, by using mass spectrometry. With all four bases (A/C/G/T), an "error catastrophe" occurred, with the correct sequence being "overwhelmed" by incorrect ones. When only C and G were used, approximately half of the daughter strands had the mass of the correct sequence after 20 copying steps. We conclude that enzyme-free replication is more likely to be successful with just the two strongly pairing bases than with all four bases of the genetic alphabet.
Collapse
Affiliation(s)
- Elena Hänle
- Institut für Organische Chemie, Universität Stuttgart, 70569, Stuttgart, Germany
| | - Clemens Richert
- Institut für Organische Chemie, Universität Stuttgart, 70569, Stuttgart, Germany
| |
Collapse
|
20
|
Robertson CC, Mackenzie HW, Kosikova T, Philp D. An Environmentally Responsive Reciprocal Replicating Network. J Am Chem Soc 2018; 140:6832-6841. [DOI: 10.1021/jacs.7b13576] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Craig C. Robertson
- School of Chemistry and EaStCHEM, University of St Andrews, North Haugh St Andrews, Fife KY16 9ST, United Kingdom
| | - Harold W. Mackenzie
- School of Chemistry and EaStCHEM, University of St Andrews, North Haugh St Andrews, Fife KY16 9ST, United Kingdom
| | - Tamara Kosikova
- School of Chemistry and EaStCHEM, University of St Andrews, North Haugh St Andrews, Fife KY16 9ST, United Kingdom
| | - Douglas Philp
- School of Chemistry and EaStCHEM, University of St Andrews, North Haugh St Andrews, Fife KY16 9ST, United Kingdom
| |
Collapse
|
21
|
Abstract
The emergence of functional cooperation between the three main classes of biomolecules - nucleic acids, peptides and lipids - defines life at the molecular level. However, how such mutually interdependent molecular systems emerged from prebiotic chemistry remains a mystery. A key hypothesis, formulated by Crick, Orgel and Woese over 40 year ago, posits that early life must have been simpler. Specifically, it proposed that an early primordial biology lacked proteins and DNA but instead relied on RNA as the key biopolymer responsible not just for genetic information storage and propagation, but also for catalysis, i.e. metabolism. Indeed, there is compelling evidence for such an 'RNA world', notably in the structure of the ribosome as a likely molecular fossil from that time. Nevertheless, one might justifiably ask whether RNA alone would be up to the task. From a purely chemical perspective, RNA is a molecule of rather uniform composition with all four bases comprising organic heterocycles of similar size and comparable polarity and pK a values. Thus, RNA molecules cover a much narrower range of steric, electronic and physicochemical properties than, e.g. the 20 amino acid side-chains of proteins. Herein we will examine the functional potential of RNA (and other nucleic acids) with respect to self-replication, catalysis and assembly into simple protocellular entities.
Collapse
|
22
|
Kosikova T, Philp D. Exploring the emergence of complexity using synthetic replicators. Chem Soc Rev 2018; 46:7274-7305. [PMID: 29099123 DOI: 10.1039/c7cs00123a] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A significant number of synthetic systems capable of replicating themselves or entities that are complementary to themselves have appeared in the last 30 years. Building on an understanding of the operation of synthetic replicators in isolation, this field has progressed to examples where catalytic relationships between replicators within the same network and the extant reaction conditions play a role in driving phenomena at the level of the whole system. Systems chemistry has played a pivotal role in the attempts to understand the origin of biological complexity by exploiting the power of synthetic chemistry, in conjunction with the molecular recognition toolkit pioneered by the field of supramolecular chemistry, thereby permitting the bottom-up engineering of increasingly complex reaction networks from simple building blocks. This review describes the advances facilitated by the systems chemistry approach in relating the expression of complex and emergent behaviour in networks of replicators with the connectivity and catalytic relationships inherent within them. These systems, examined within well-stirred batch reactors, represent conceptual and practical frameworks that can then be translated to conditions that permit replicating systems to overcome the fundamental limits imposed on selection processes in networks operating under closed conditions. This shift away from traditional spatially homogeneous reactors towards dynamic and non-equilibrium conditions, such as those provided by reaction-diffusion reaction formats, constitutes a key change that mimics environments within cellular systems, which possess obvious compartmentalisation and inhomogeneity.
Collapse
Affiliation(s)
- Tamara Kosikova
- School of Chemistry and EaStCHEM, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK.
| | | |
Collapse
|
23
|
Sadownik JW, Kosikova T, Philp D. Generating System-Level Responses from a Network of Simple Synthetic Replicators. J Am Chem Soc 2017; 139:17565-17573. [PMID: 29087701 DOI: 10.1021/jacs.7b09735] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The creation of reaction networks capable of exhibiting responses that are properties of entire systems represents a significant challenge for the chemical sciences. The system-level behavior of a reaction network is linked intrinsically to its topology and the functional connections between its nodes. A simple network of chemical reactions constructed from four reagents, in which each reagent reacts with exactly two others, can exhibit up-regulation of two products even when only a single chemical reaction is addressed catalytically. We implement a system with this topology using two maleimides and two nitrones of different sizes-either short or long and each bearing complementary recognition sites-that react pairwise through 1,3-dipolar cycloaddition reactions to create a network of four length-segregated replicating templates. Comprehensive 1H NMR spectroscopy experiments unravel the network topology, confirming that, in isolation, three out of four templates self-replicate, with the shortest template exhibiting the highest efficiency. The strongest template effects within the network are the mutually cross-catalytic relationships between the two templates of intermediate size. The network topology is such that the addition of different preformed templates as instructions to a mixture of all starting materials elicits system-level behavior. Instruction with a single template up-regulates the formation of two templates in a predictable manner. These results demonstrate that the rules governing system-level behavior can be unraveled through the application of wholly synthetic networks with well-defined chemistries and interactions.
Collapse
Affiliation(s)
- Jan W Sadownik
- School of Chemistry and EaStCHEM, University of St Andrews , North Haugh, St Andrews, Fife KY16 9ST, United Kingdom
| | - Tamara Kosikova
- School of Chemistry and EaStCHEM, University of St Andrews , North Haugh, St Andrews, Fife KY16 9ST, United Kingdom
| | - Douglas Philp
- School of Chemistry and EaStCHEM, University of St Andrews , North Haugh, St Andrews, Fife KY16 9ST, United Kingdom
| |
Collapse
|
24
|
Middel S, Panse CH, Nawratil S, Diederichsen U. Native Chemical Ligation Directed by Photocleavable Peptide Nucleic Acid (PNA) Templates. Chembiochem 2017; 18:2328-2332. [PMID: 28987009 DOI: 10.1002/cbic.201700487] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Indexed: 11/10/2022]
Abstract
A novel peptide-peptide ligation strategy is introduced that has the potential to provide peptide libraries of linearly or branched coupled fragments and will be suited to introduce simultaneous protein modifications at different ligation sites. Ligation is assisted by templating peptide nucleic acid (PNA) strands, and therefore, ligation specificity is solely encoded by the PNA sequence. PNA templating, in general, allows for various kinds of covalent ligation reactions. As a proof of principle, a native chemical ligation strategy was elaborated. This PNA-templated ligation includes easy on-resin procedures to couple linkers and PNA to the respective peptides, and a traceless photocleavage of the linker/PNA oligomer after the ligation step. A 4,5-dimethoxy-2-nitrobenzaldehyde-based linker that allowed the photocleavable linkage of two bio-oligomers was developed.
Collapse
Affiliation(s)
- Stephen Middel
- Georg-August-Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Cornelia H Panse
- Georg-August-Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Swantje Nawratil
- Georg-August-Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Ulf Diederichsen
- Georg-August-Universität Göttingen, Institut für Organische und Biomolekulare Chemie, Tammannstrasse 2, 37077, Göttingen, Germany
| |
Collapse
|
25
|
He X, Sha R, Zhuo R, Mi Y, Chaikin PM, Seeman NC. Exponential growth and selection in self-replicating materials from DNA origami rafts. NATURE MATERIALS 2017; 16:993-997. [PMID: 28920942 DOI: 10.1038/nmat4986] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 08/15/2017] [Indexed: 06/07/2023]
Abstract
Self-replication and evolution under selective pressure are inherent phenomena in life, and but few artificial systems exhibit these phenomena. We have designed a system of DNA origami rafts that exponentially replicates a seed pattern, doubling the copies in each diurnal-like cycle of temperature and ultraviolet illumination, producing more than 7 million copies in 24 cycles. We demonstrate environmental selection in growing populations by incorporating pH-sensitive binding in two subpopulations. In one species, pH-sensitive triplex DNA bonds enable parent-daughter templating, while in the second species, triplex binding inhibits the formation of duplex DNA templating. At pH 5.3, the replication rate of species I is ∼1.3-1.4 times faster than that of species II. At pH 7.8, the replication rates are reversed. When mixed together in the same vial, the progeny of species I replicate preferentially at pH 7.8; similarly at pH 5.3, the progeny of species II take over the system. This addressable selectivity should be adaptable to the selection and evolution of multi-component self-replicating materials in the nanoscopic-to-microscopic size range.
Collapse
Affiliation(s)
- Xiaojin He
- Department of Chemistry, New York University, New York, New York 10003, USA
- Center for Soft Matter Research, New York University, New York, New York 10003, USA
- Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Department of Chemistry, Tongji University, Shanghai, 100024, China
| | - Ruojie Sha
- Department of Chemistry, New York University, New York, New York 10003, USA
| | - Rebecca Zhuo
- Department of Chemistry, New York University, New York, New York 10003, USA
- Center for Soft Matter Research, New York University, New York, New York 10003, USA
| | - Yongli Mi
- Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Department of Chemistry, Tongji University, Shanghai, 100024, China
| | - Paul M Chaikin
- Center for Soft Matter Research, New York University, New York, New York 10003, USA
| | - Nadrian C Seeman
- Department of Chemistry, New York University, New York, New York 10003, USA
| |
Collapse
|
26
|
Altay Y, Tezcan M, Otto S. Emergence of a New Self-Replicator from a Dynamic Combinatorial Library Requires a Specific Pre-Existing Replicator. J Am Chem Soc 2017; 139:13612-13615. [PMID: 28910535 PMCID: PMC5632813 DOI: 10.1021/jacs.7b07346] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Our
knowledge regarding the early steps in the formation of evolvable
life and what constitutes the minimal molecular basis of life remains
far from complete. The recent emergence of systems chemistry reinvigorated
the investigation of systems of self-replicating molecules to address
these questions. Most of these studies focus on single replicators
and the effects of replicators on the emergence of other replicators
remains under-investigated. Here we show the cross-catalyzed emergence
of a novel self-replicator from a dynamic combinatorial library made
from a threonine containing peptide building block, which, by itself,
only forms trimers and tetramers that do not replicate. Upon seeding
of this library with different replicators of different macrocycle
size (hexamers and octamers), we observed the emergence of hexamer
replicator consisting of six units of the threonine peptide only when
it is seeded with an octamer replicator containing eight units of
a serine building block. These results reveal for the first time how
a new replicator can emerge in a process that relies critically on
the assistance by another replicator through cross-catalysis and that
replicator composition is history dependent.
Collapse
Affiliation(s)
- Yigit Altay
- Centre for Systems Chemistry, Stratingh Institute , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Meniz Tezcan
- Centre for Systems Chemistry, Stratingh Institute , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry, Stratingh Institute , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
27
|
Kosikova T, Philp D. A Critical Cross-Catalytic Relationship Determines the Outcome of Competition in a Replicator Network. J Am Chem Soc 2017; 139:12579-12590. [DOI: 10.1021/jacs.7b06270] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tamara Kosikova
- School of Chemistry and EaStCHEM, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, United Kingdom
| | - Douglas Philp
- School of Chemistry and EaStCHEM, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, United Kingdom
| |
Collapse
|
28
|
Szostak N, Synak J, Borowski M, Wasik S, Blazewicz J. Simulating the origins of life: The dual role of RNA replicases as an obstacle to evolution. PLoS One 2017; 12:e0180827. [PMID: 28700697 PMCID: PMC5507279 DOI: 10.1371/journal.pone.0180827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/21/2017] [Indexed: 01/08/2023] Open
Abstract
Despite years of study, it is still not clear how life emerged from inanimate matter and evolved into the complex forms that we observe today. One of the most recognized hypotheses for the origins of life, the RNA World hypothesis, assumes that life was sparked by prebiotic replicating RNA chains. In this paper, we address the problems caused by the interplay between hypothetical prebiotic RNA replicases and RNA parasitic species. We consider the coexistence of parasite RNAs and RNA replicases as well as the impact of parasites on the further evolution of replicases. For these purposes, we used multi-agent modeling techniques that allow for realistic assumptions regarding the movement and spatial interactions of modeled species. The general model used in this study is based on work by Takeuchi and Hogeweg. Our results confirm that the coexistence of parasite RNAs and replicases is possible in a spatially extended system, even if we take into consideration more realistic assumptions than Takeuchi and Hogeweg. However, we also showed that the presence of trade-off that takes into the account an RNA folding process could still pose a serious obstacle to the evolution of replication. We conclude that this might be a cause for one of the greatest transitions in life that took place early in evolution-the separation of the function between DNA templates and protein enzymes, with a central role for RNA species.
Collapse
Affiliation(s)
- Natalia Szostak
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- European Centre for Bioinformatics and Genomics, Poznan, Poland
| | - Jaroslaw Synak
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Marcin Borowski
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
- European Centre for Bioinformatics and Genomics, Poznan, Poland
| | - Szymon Wasik
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- European Centre for Bioinformatics and Genomics, Poznan, Poland
| | - Jacek Blazewicz
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- European Centre for Bioinformatics and Genomics, Poznan, Poland
| |
Collapse
|
29
|
Duim H, Otto S. Towards open-ended evolution in self-replicating molecular systems. Beilstein J Org Chem 2017; 13:1189-1203. [PMID: 28694865 PMCID: PMC5496545 DOI: 10.3762/bjoc.13.118] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/18/2017] [Indexed: 01/24/2023] Open
Abstract
In this review we discuss systems of self-replicating molecules in the context of the origin of life and the synthesis of de novo life. One of the important aspects of life is the ability to reproduce and evolve continuously. In this review we consider some of the prerequisites for obtaining unbounded evolution of self-replicating molecules and describe some recent advances in this field. While evolution experiments involving self-replicating molecules have shown promising results, true open-ended evolution has not been realized so far. A full understanding of the requirements for open-ended evolution would provide a better understanding of how life could have emerged from molecular building blocks and what is needed to create a minimal form of life in the laboratory.
Collapse
Affiliation(s)
- Herman Duim
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sijbren Otto
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
30
|
Ouldridge TE, Rein Ten Wolde P. Fundamental Costs in the Production and Destruction of Persistent Polymer Copies. PHYSICAL REVIEW LETTERS 2017; 118:158103. [PMID: 28452507 DOI: 10.1103/physrevlett.118.158103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Indexed: 05/18/2023]
Abstract
Producing a polymer copy of a polymer template is central to biology, and effective copies must persist after template separation. We show that this separation has three fundamental thermodynamic effects. First, polymer-template interactions do not contribute to overall reaction thermodynamics and hence cannot drive the process. Second, the equilibrium state of the copied polymer is template independent and so additional work is required to provide specificity. Finally, the mixing of copies from distinct templates makes correlations between template and copy sequences unexploitable, combining with copying inaccuracy to reduce the free energy stored in a polymer ensemble. These basic principles set limits on the underlying costs and resource requirements, and suggest design principles, for autonomous copying and replication in biological and synthetic systems.
Collapse
Affiliation(s)
- Thomas E Ouldridge
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | | |
Collapse
|
31
|
He C, Gállego I, Laughlin B, Grover MA, Hud NV. A viscous solvent enables information transfer from gene-length nucleic acids in a model prebiotic replication cycle. Nat Chem 2016; 9:318-324. [PMID: 28338690 DOI: 10.1038/nchem.2628] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/23/2016] [Indexed: 11/09/2022]
Abstract
Many hypotheses concerning the nature of early life assume that genetic information was once transferred through the template-directed synthesis of RNA, before the emergence of coded enzymes. However, attempts to demonstrate enzyme-free, template-directed synthesis of nucleic acids have been limited by 'strand inhibition', whereby transferring information from a template strand in the presence of its complementary strand is inhibited by the stability of the template duplex. Here, we use solvent viscosity to circumvent strand inhibition, demonstrating information transfer from a gene-length template (>300 nt) within a longer (545 bp or 3 kb) duplex. These results suggest that viscous environments on the prebiotic Earth, generated periodically by water evaporation, could have facilitated nucleic acid replication-particularly of long, structured sequences such as ribozymes. Our approach works with DNA and RNA, suggesting that viscosity-mediated replication is possible for a range of genetic polymers, perhaps even for informational polymers that may have preceded RNA.
Collapse
Affiliation(s)
- Christine He
- School of Chemical &Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Isaac Gállego
- School of Chemistry &Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Brandon Laughlin
- School of Chemistry &Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Martha A Grover
- School of Chemical &Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Nicholas V Hud
- School of Chemistry &Biochemistry, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
32
|
Dass AV, Hickman-Lewis K, Brack A, Kee TP, Westall F. Stochastic Prebiotic Chemistry within Realistic Geological Systems. ChemistrySelect 2016. [DOI: 10.1002/slct.201600829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | | | - André Brack
- CNRS Centre de Biophysique Moléculaire; Rue Charles Sadron 45071 Orléans France
| | - Terence P. Kee
- School of Chemistry; University of Leeds; Leeds LS2 9JT UK
| | - Frances Westall
- CNRS Centre de Biophysique Moléculaire; Rue Charles Sadron 45071 Orléans France
| |
Collapse
|
33
|
Avinash MB, Sandeepa KV, Govindaraju T. Emergent Behaviors in Kinetically Controlled Dynamic Self-Assembly of Synthetic Molecular Systems. ACS OMEGA 2016; 1:378-387. [PMID: 31457135 PMCID: PMC6640818 DOI: 10.1021/acsomega.6b00155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/05/2016] [Indexed: 05/29/2023]
Abstract
Living systems are categorically a kinetic state of matter that exhibits complex functions and emergent behaviors. By contrast, synthetic systems are relatively simple and are typically controlled by the thermodynamic parameters. To understand this inherent difference between the biological and synthetic systems, novel approaches are of vital importance. In this regard, we have designed a three-component molecular system (a triad) by conjugating an amino acid with two functional molecules (naphthalenediimide and pyrene), which facilitates kinetically controlled self-assemblies. Herein, we describe three different molecular aggregation states of triads (entitled State I, State II, and State III) and also the dynamic pathway complexities associated with their transformations from one state to another. By meticulously employing the triads of different molecular aggregation states and the stereochemical information of the amino acid, we report emergent behaviors termed "supramolecular speciation" and "supramolecular regulation". Further, we present a hitherto unknown emergent property in a self-assembled state under the majority-rules experiment, which has been termed "super-nonlinearity". This work provides novel insights into complex synthetic systems having unprecedented functions and properties. Such emergent behaviors of synthetic triads that involve an interplay among complex interactions may find relevance in the context of prebiotic chemical evolution.
Collapse
|
34
|
Aleman Garcia MA, Hu Y, Willner I. Switchable supramolecular catalysis using DNA-templated scaffolds. Chem Commun (Camb) 2016; 52:2153-6. [PMID: 26701068 DOI: 10.1039/c5cc08873a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Switchable β-cyclodextrin (β-CD)-induced hydrolysis of m-tert-butylphenyl acetate is demonstrated in the presence of supramolecular β-CD/adamantane oligonucleotide scaffolds. In one system, a duplex between a β-CD-functionalized nucleic acid and an adamantane-nucleic acid leads to a switchable catalytic system. In a second system, a β-CD/adamantane duplex is cooperatively generated by K(+)-stabilized G-quadruplex units. The binding of hemin to the second system yields a bifunctional DNA scaffold with alternate catalytic functions.
Collapse
Affiliation(s)
- Miguel Angel Aleman Garcia
- Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Yuwei Hu
- Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Itamar Willner
- Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
35
|
Abstract
A review covering the previous 25 years study into self-replicating systems.
Collapse
Affiliation(s)
- Gregory Clixby
- University of Sheffield
- Department of Chemistry
- Sheffield
- UK
| | - Lance Twyman
- University of Sheffield
- Department of Chemistry
- Sheffield
- UK
| |
Collapse
|
36
|
Exponential self-replication enabled through a fibre elongation/breakage mechanism. Nat Commun 2015; 6:7427. [PMID: 26081104 PMCID: PMC4557357 DOI: 10.1038/ncomms8427] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 05/05/2015] [Indexed: 11/09/2022] Open
Abstract
Self-replicating molecules are likely to have played a central role in the origin of life. Most scenarios of Darwinian evolution at the molecular level require self-replicators capable of exponential growth, yet only very few exponential replicators have been reported to date and general design criteria for exponential replication are lacking. Here we show that a peptide-functionalized macrocyclic self-replicator exhibits exponential growth when subjected to mild agitation. The replicator self-assembles into elongated fibres of which the ends promote replication and fibre growth. Agitation results in breakage of the growing fibres, generating more fibre ends. Our data suggest a mechanism in which mechanical energy promotes the liberation of the replicator from the inactive self-assembled state, thereby overcoming self-inhibition that prevents the majority of self-replicating molecules developed to date from attaining exponential growth.
Collapse
|
37
|
Singhal A, Nielsen PE. Cross-catalytic peptide nucleic acid (PNA) replication based on templated ligation. Org Biomol Chem 2015; 12:6901-7. [PMID: 25057801 DOI: 10.1039/c4ob01158a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the first PNA self-replicating system based on template directed cross-catalytic ligation, a process analogous to biological replication. Using two template PNAs and four pentameric precursor PNAs, all four possible carbodiimide assisted amide ligation products were detected and identified by HPLC and MALDI-TOF analysis. We conclude that the two template complementary reaction products are generated via cross-catalysis, while the other two self-complementary (and in principle auto-catalytic) products are formed via intra-complex coupling between the two sets of complementary PNA precursors. Cross-catalytic product formation followed product inhibited kinetics, but approximately two replication rounds were observed. Analogous but less efficient replication was found for a similar tetrameric system. These results demonstrate that simpler nucleobase replication systems than natural oligonucleotides are feasible, thereby strengthening the foundation for the discussion of a possible role for PNA (like) genetic material in the prebiotic evolution of life and lay the ground for further studies into evolution of such potentially prebiotic systems.
Collapse
Affiliation(s)
- Abhishek Singhal
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, The Panum Institute, Blegdamsvej 3c, DK-2200 Copenhagen N, Denmark.
| | | |
Collapse
|
38
|
|
39
|
Shigeno M, Kushida Y, Yamaguchi M. Self-catalysis in thermal hysteresis during random-coil to helix-dimer transition of the sulfonamidohelicene tetramer. Chem Commun (Camb) 2015; 51:4040-3. [DOI: 10.1039/c4cc10418h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The sulfonamidohelicene tetramer changes its structure between a random-coil and a helix-dimer, by which molecular thermal hysteresis appears.
Collapse
Affiliation(s)
- Masanori Shigeno
- Department of Organic Chemistry
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Aoba
- Japan
| | - Yo Kushida
- Department of Organic Chemistry
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Aoba
- Japan
| | - Masahiko Yamaguchi
- Department of Organic Chemistry
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Aoba
- Japan
| |
Collapse
|
40
|
Karev GP. Non-linearity and heterogeneity in modeling of population dynamics. Math Biosci 2014; 258:85-92. [DOI: 10.1016/j.mbs.2014.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 06/27/2014] [Accepted: 09/17/2014] [Indexed: 10/24/2022]
|
41
|
Morozov M, Motiei L, Choudhury J, Gulino A, Lahav M, van der Boom ME. Interfacial mass transfer by controlled multilayer disassembly. Chem Commun (Camb) 2014; 50:8154-6. [PMID: 24926481 DOI: 10.1039/c4cc00495g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We demonstrated the one-pot disassembly of self-propagating molecular assemblies (SPMAs) by ligand exchange and the subsequent covalent binding of the molecular components to other surfaces. These functionalized surfaces are suitable for regenerating the SPMAs.
Collapse
Affiliation(s)
- Michael Morozov
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| | | | | | | | | | | |
Collapse
|
42
|
Rouch DA. Evolution of the first genetic cells and the universal genetic code: a hypothesis based on macromolecular coevolution of RNA and proteins. J Theor Biol 2014; 357:220-44. [PMID: 24931677 DOI: 10.1016/j.jtbi.2014.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 11/19/2022]
Abstract
A qualitative hypothesis based on coevolution of protein and nucleic acid macromolecules was developed to explain the evolution of the first genetic cells, from the likely organic chemical-rich environment of early earth, through to the Last Universal Common Ancestor (LUCA). The evolution of the first genetic cell was divided into three phases, proto-genetic cells I, II and III, and the transition to each milestone is described, based on development of chemical cross-catalysis, bio-cross-catalysis, and the universal genetic code, respectively. Selection of macromolecular properties of both peptides and nucleic acids, in response to environmental factors, was likely to be a key aspect of early evolution. The development of hereditable nucleic acids with various key functions; translation, transcription and replication, is described. These functions are envisaged to have coevolved with protein enzymes, from simple organic precursors. Genetically heritable nucleotides may have developed after the local earth environment had cooled below 63 °C. Around this temperature G-C bases would have been preferentially utilized for nucleotide synthesis. Under these conditions RNA type nucleotides were then likely selected from a range of different types of nucleotide backbones through template-based synthesis. Initial development of the genetic coding system was simplified by the availability of proto-messenger RNA sequences that contained only G and C bases, and the need to encode only four amino acids. The step-wise addition of further amino acids to the code was predicted to parallel the growing metabolic complexity of the proto-genetic cell. On completion of this evolutionary process the proto-genetic cell is envisaged to have become the LUCA, the last common ancestor of bacteria, eukaryote and archaea domains. Key issues addressed by the model include: (a) the transition from non-hereditable random sequences of peptides and nucleic acids to specific proteins coded by hereditable nucleotide sequences, (b) the origin of homochiral amino acids and sugars, and (c) the mutation limits on the sizes of early nucleic acid genomes. The first genome was limited to a size of about 200 base pairs.
Collapse
Affiliation(s)
- Duncan A Rouch
- Biotechnology and Environmental Biology, RMIT University, PO Box 71, Bundoora, Melbourne, Vic 3083, Australia.
| |
Collapse
|
43
|
Ball R, Brindley J. Hydrogen peroxide thermochemical oscillator as driver for primordial RNA replication. J R Soc Interface 2014; 11:20131052. [PMID: 24647902 PMCID: PMC4006232 DOI: 10.1098/rsif.2013.1052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/25/2014] [Indexed: 12/24/2022] Open
Abstract
This paper presents and tests a previously unrecognized mechanism for driving a replicating molecular system on the prebiotic earth. It is proposed that cell-free RNA replication in the primordial soup may have been driven by self-sustained oscillatory thermochemical reactions. To test this hypothesis, a well-characterized hydrogen peroxide oscillator was chosen as the driver and complementary RNA strands with known association and melting kinetics were used as the substrate. An open flow system model for the self-consistent, coupled evolution of the temperature and concentrations in a simple autocatalytic scheme is solved numerically, and it is shown that thermochemical cycling drives replication of the RNA strands. For the (justifiably realistic) values of parameters chosen for the simulated example system, the mean amount of replicant produced at steady state is 6.56 times the input amount, given a constant supply of substrate species. The spontaneous onset of sustained thermochemical oscillations via slowly drifting parameters is demonstrated, and a scheme is given for prebiotic production of complementary RNA strands on rock surfaces.
Collapse
Affiliation(s)
- Rowena Ball
- Mathematical Sciences Institute, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - John Brindley
- School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
44
|
Patzke V, McCaskill JS, von Kiedrowski G. DNA mit 3′-5′-Disulfid-Verknüpfung - schnelle chemische Ligation durch isosteren Ersatz. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310644] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Patzke V, McCaskill JS, von Kiedrowski G. DNA with 3'-5'-disulfide links--rapid chemical ligation through isosteric replacement. Angew Chem Int Ed Engl 2014; 53:4222-6. [PMID: 24623660 DOI: 10.1002/anie.201310644] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/28/2014] [Indexed: 11/11/2022]
Abstract
Efforts to chemically ligate oligonucleotides, without resorting to biochemical enzymes, have led to a multitude of synthetic analogues, and have extended oligomer ligation to reactions of novel oligonucleotides, peptides, and hybrids such as PNA.1 Key requirements for potential diagnostic tools not based on PCR include a fast templated chemical DNA ligation method that exhibits high pairing selectivity, and a sensitive detection method. Here we report on a solid-phase synthesis of oligonucleotides containing 5'- or 3'-mercapto-dideoxynucleotides and their chemical ligations, yielding 3'-5'-disulfide bonds as a replacement for 3'-5'-phosphodiester units. Employing a system designed for fluorescence monitoring, we demonstrate one of the fastest ligation reactions with half-lives on the order of seconds. The nontemplated ligation reaction is efficiently suppressed by the choice of DNA modification and the 3'-5' orientation of the activation site. The influence of temperature on the templated reaction is shown.
Collapse
Affiliation(s)
- Volker Patzke
- Lehrstuhl für Bioorganische Chemie, Ruhr-Universität Bochum, 44780 Bochum (Germany).
| | | | | |
Collapse
|
46
|
Wang F, Lu CH, Willner I. From cascaded catalytic nucleic acids to enzyme-DNA nanostructures: controlling reactivity, sensing, logic operations, and assembly of complex structures. Chem Rev 2014; 114:2881-941. [PMID: 24576227 DOI: 10.1021/cr400354z] [Citation(s) in RCA: 507] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fuan Wang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | | | | |
Collapse
|
47
|
Michaelis J, Roloff A, Seitz O. Amplification by nucleic acid-templated reactions. Org Biomol Chem 2014; 12:2821-33. [DOI: 10.1039/c4ob00096j] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nucleic acid-templated reactions that proceed with turnover provide a means for signal amplification, which facilitates the use and detection of biologically occurring DNA/RNA molecules.
Collapse
Affiliation(s)
- Julia Michaelis
- Institut für Chemie der Humboldt-Universität zu Berlin
- 12489-Berlin, Germany
| | - Alexander Roloff
- Institut für Chemie der Humboldt-Universität zu Berlin
- 12489-Berlin, Germany
| | - Oliver Seitz
- Institut für Chemie der Humboldt-Universität zu Berlin
- 12489-Berlin, Germany
| |
Collapse
|
48
|
|
49
|
Bissette AJ, Fletcher SP. Mechanisms of Autocatalysis. Angew Chem Int Ed Engl 2013; 52:12800-26. [DOI: 10.1002/anie.201303822] [Citation(s) in RCA: 273] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Indexed: 12/17/2022]
|
50
|
Roloff A, Seitz O. Reducing product inhibition in nucleic acid-templated ligation reactions: DNA-templated cycligation. Chembiochem 2013; 14:2322-8. [PMID: 24243697 DOI: 10.1002/cbic.201300516] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Indexed: 01/19/2023]
Abstract
Programmable interactions allow nucleic acid molecules to template chemical reactions by increasing the effective molarities of appended reactive groups. DNA/RNA-triggered reactions can proceed, in principle, with turnover in the template. The amplification provided by the formation of many product molecules per template is a valuable asset when the availability of the DNA or RNA target is limited. However, turnover is usually impeded by reaction products that block access to the template. Product inhibition is most severe in ligation reactions, where products after ligation have dramatically increased template affinities. We introduce a potentially generic approach to reduce product inhibition in nucleic acid-programmed ligation reactions. A DNA-triggered ligation-cyclization sequence ("cycligation") of bifunctional peptide nucleic acid (PNA) conjugates affords cyclic ligation products. Melting experiments revealed that product cyclization is accompanied by a pronounced decrease in template affinity compared to linear ligation products. The reaction system relies upon haloacetylated PNA-thioesters and isocysteinyl-PNA-cysteine conjugates, which were ligated on a DNA template according to a native chemical ligation mechanism. Dissociation of the resulting linear product-template duplex (induced by, for example, thermal cycling) enabled product cyclization through sulfur-halide substitution. Both ligation and cyclization are fast reactions (ligation: 86 % yield after 20 min, cyclization: quantitative after 5 min). Under thermocycling conditions, the DNA template was able to trigger the formation of new product molecules when fresh reactants were added. Furthermore, cycligation produced 2-3 times more product than a conventional ligation reaction with substoichiometric template loads (0.25-0.01 equiv). We believe that cyclization of products from DNA-templated reactions could ultimately afford systems that completely overcome product inhibition.
Collapse
Affiliation(s)
- Alexander Roloff
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489-Berlin (Germany)
| | | |
Collapse
|