1
|
Cutiño AM, Del Carmen Sánchez-Aguilar M, Ruiz-Sáinz JE, Del Rosario Espuny M, Ollero FJ, Medina C. A Novel System to Selective Tagging of Sinorhizobium fredii Symbiotic Plasmids. Methods Mol Biol 2024; 2751:247-259. [PMID: 38265722 DOI: 10.1007/978-1-0716-3617-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Conventional systems used to tag and transfer symbiotic plasmids (pSyms) of rhizobial strains are based in mutagenesis with transposons. In those processes, numerous clones must be analyzed to find one of them with the transposon inserted in the pSym. Following this strategy, the insertion might interrupt a gene that can affect the symbiotic phenotype of the bacteria tagged. Here, we have developed a new system based in homologous recombination that generates Sinorhizobium fredii strains with pSyms tagged by the insertion of a suicide vector which harbor a truncated copy of S. fredii HH103 nodZ gene, a mob site, and a kanamycin-resistant gene. When it is introduced by conjugation in a S. fredii strain, the vector integrates in pSym by only one recombination event. This pSym tagged can be transferred in matting experiments to other strains in the presence of a helper plasmid. Following this method, we have tagged several strains and transferred their pSyms to a recipient strain demonstrating the potential of this new system.
Collapse
Affiliation(s)
- Ana María Cutiño
- Department of Microbiology, University of Seville, Seville, Spain
| | | | | | | | | | - Carlos Medina
- Department of Microbiology, University of Seville, Seville, Spain.
| |
Collapse
|
2
|
Hooykaas PJJ. The Ti Plasmid, Driver of Agrobacterium Pathogenesis. PHYTOPATHOLOGY 2023; 113:594-604. [PMID: 37098885 DOI: 10.1094/phyto-11-22-0432-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The phytopathogenic bacterium Agrobacterium tumefaciens causes crown gall disease in plants, characterized by the formation of tumor-like galls where wounds were present. Nowadays, however, the bacterium and its Ti (tumor-inducing) plasmid is better known as an effective vector for the genetic manipulation of plants and fungi. In this review, I will briefly summarize some of the major discoveries that have led to this bacterium now playing such a prominent role worldwide in plant and fungal research at universities and research institutes and in agricultural biotechnology for the production of genetically modified crops. I will then delve a little deeper into some aspects of Agrobacterium biology and discuss the diversity among agrobacteria and the taxonomic position of these bacteria, the diversity in Ti plasmids, the molecular mechanism used by the bacteria to transform plants, and the discovery of protein translocation from the bacteria to host cells as an essential feature of Agrobacterium-mediated transformation.
Collapse
|
3
|
Bañuelos-Vazquez LA, Torres Tejerizo G, Cervantes-De La Luz L, Girard L, Romero D, Brom S. Conjugative transfer between Rhizobium etli endosymbionts inside the root nodule. Environ Microbiol 2019; 21:3430-3441. [PMID: 31037804 DOI: 10.1111/1462-2920.14645] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/05/2019] [Accepted: 04/26/2019] [Indexed: 11/30/2022]
Abstract
Since the discovery that biological nitrogen fixation ensues in nodules resulting from the interaction of rhizobia with legumes, nodules were thought to be exclusive for hosting nitrogen-fixing and plant growth promoting bacteria. In this work, we uncover a novel function of nodules, as a niche permissive to acquisition of plasmids via conjugative transfer. We used Rhizobium etli CFN42, which nodulates Phaseolus vulgaris. The genome of R. etli CFN42 contains a chromosome and six plasmids. pRet42a is a conjugative plasmid regulated by Quorum-Sensing (QS), and pRet42d is the symbiotic plasmid. Here, using confocal microscopy and flow cytometry, we show that pRet42a transfers on the root's surface, and unexpectedly, inside the nodules. Conjugation still took place inside nodules, even when it was restricted on the plant surface by placing the QS traI regulator under the promoter of the nitrogenase gene, which is only expressed inside the nodules, or by inhibiting the QS transcriptional induction of transfer genes with a traM antiactivator on an unstable vector maintained on the plant surface and lost inside the nodules. These results conclusively confirm the occurrence of conjugation in these structures, defining them as a protected environment for bacterial diversification.
Collapse
Affiliation(s)
- Luis Alfredo Bañuelos-Vazquez
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Gonzalo Torres Tejerizo
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Laura Cervantes-De La Luz
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Lourdes Girard
- Programa de Biología de Sistemas y Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - David Romero
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Susana Brom
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
4
|
Torres Tejerizo G, Pistorio M, Althabegoiti MJ, Cervantes L, Wibberg D, Schlüter A, Pühler A, Lagares A, Romero D, Brom S. Rhizobial plasmid pLPU83a is able to switch between different transfer machineries depending on its genomic background. FEMS Microbiol Ecol 2014; 88:565-78. [PMID: 24646299 DOI: 10.1111/1574-6941.12325] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/20/2014] [Accepted: 03/07/2014] [Indexed: 12/01/2022] Open
Abstract
Plasmids have played a major role in bacterial evolution, mainly by their capacity to perform horizontal gene transfer (HGT). Their conjugative transfer (CT) properties are usually described in terms of the plasmid itself. In this work, we analyzed structural and functional aspects of the CT of pLPU83a, an accessory replicon from Rhizobium sp. LPU83, able to transfer from its parental strain, from Ensifer meliloti, or from Rhizobium etli. pLPU83a contains a complete set of transfer genes, featuring a particular organization, shared with only two other rhizobial plasmids. These plasmids contain a TraR quorum-sensing (QS) transcriptional regulator, but lack an acyl-homoserine lactone (AHL) synthase gene. We also determined that the ability of pLPU83a to transfer from R. etli CFN42 genomic background was mainly achieved through mobilization, employing the machinery of the endogenous plasmid pRetCFN42a, falling under control of the QS regulators from pRetCFN42a. In contrast, from its native or from the E. meliloti background, pLPU83a utilized its own machinery for conjugation, requiring the plasmid-encoded traR. Activation of TraR seemed to be AHL independent. The results obtained indicate that the CT phenotype of a plasmid is dictated not only by the genes it carries, but by their interaction with its genomic context.
Collapse
Affiliation(s)
- Gonzalo Torres Tejerizo
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México; Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Near-full length sequencing of 16S rDNA and RFLP indicates that Rhizobium etli is the dominant species nodulating Egyptian winter Berseem clover (Trifolium alexandrinum L.). Syst Appl Microbiol 2014; 37:121-8. [DOI: 10.1016/j.syapm.2013.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/10/2013] [Accepted: 08/16/2013] [Indexed: 11/23/2022]
|
6
|
García-de Los Santos A, Brom S, Romero D. Rhizobium plasmids in bacteria-legume interactions. World J Microbiol Biotechnol 2014; 12:119-25. [PMID: 24415159 DOI: 10.1007/bf00364676] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The functional analysis of plasmids in Rhizobium strains has concentrated mainly on the symbiotic plasmid (pSym). However, genetic information relevant to both symbiotic and saprophytic Rhizobium life cycles, localized on other 'cryptic' replicons, has also been reported. Information is reviewed which concerns functional features encoded in plasmids other than the pSym: biosynthesis of cell surface polysaccharides, metabolic processes, the utilization of plant exudates, aromatic compounds and diverse sugars, and features involved symbiotic performance. In addition, factors which affect plasmid evolution through their influence on structural features of the plasmids, such as conjugative transfer and genomic rearrangements, is discussed. Based on the overall data, we propose that together the plasmids and the chromosome constitute a fully integrated genomic complex, entailing structural features as well as saprophytic and cellular functions.
Collapse
|
7
|
Abstract
We isolated a novel strain D5 from nodules of Acacia confusa. Under strict sterile conditions the strain could successfully nodulate Acacia confusa, A. crassicarpa and A. mangium, with nitrogenase activity ranging from 18.90 to 19.86 nmol·g(-1)·min(-1). In the phylogenetic tree based on a complete 16S rRNA gene sequence, the sequence of strain D5 shared 99% homology with that of four species of genus Pseudomonas. The 685 bp nodA fragment amplified from strain D5 shared 95% homology with the nodA sequence of 9 species of genus Bradyrhizobium, with a genetic distance of 0.01682. The 740 bp nifH gene fragment was amplified from strain D5. This strain D5 nifH gene and Bradyrhizobium spp. formed a branch, showing 98% homology and a genetic distance of 0. The homology between this branch and the Bradyrhizobium spp. DG in another branch was 99%, with a genetic distance of 0.007906. These results indicate that this strain D5 is a new type of nitrogen-fixing bacterium.
Collapse
|
8
|
Genetic characterization of a novel rhizobial plasmid conjugation system in Rhizobium leguminosarum bv. viciae strain VF39SM. J Bacteriol 2012; 195:328-39. [PMID: 23144250 DOI: 10.1128/jb.01234-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobium leguminosarum strain VF39SM contains two plasmids that have previously been shown to be self-transmissible by conjugation. One of these plasmids, pRleVF39b, is shown in this study to carry a set of plasmid transfer genes that differs significantly from conjugation systems previously studied in the rhizobia but is similar to an uncharacterized set of genes found in R. leguminosarum bv. trifolii strain WSM2304. The entire sequence of the transfer region on pRleVF39b was determined as part of a genome sequencing project, and the roles of the various genes were examined by mutagenesis. The transfer region contains a complete set of mating pair formation (Mpf) genes, a traG gene, and a relaxase gene, traA, all of which appear to be necessary for plasmid transfer. Experimental evidence suggested the presence of two putative origins of transfer within the gene cluster. A regulatory gene, trbR, was identified in the region between traA and traG and was mutated. TrbR was shown to function as a repressor of both trb gene expression and plasmid transfer.
Collapse
|
9
|
Ollero FJ, Espuny MR, Perez-Silva J, Bellogin RA. Behaviour of a sym plasmid from Rhizobium ‘hedysari’ in different Rhizobium species. FEMS Microbiol Ecol 2011. [DOI: 10.1111/j.1574-6941.1991.tb01745.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
10
|
Plasmids of the Rhizobiaceae and Their Role in Interbacterial and Transkingdom Interactions. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/978-3-642-14512-4_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
11
|
Baimiev AK, Gubaidullin II, Baimiev AK, Chemeris AV. The effects of natural and hybrid lectins on the legume-rhizobium interactions. APPL BIOCHEM MICRO+ 2009. [DOI: 10.1134/s000368380901013x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
|
13
|
Cell-cell signaling and the Agrobacterium tumefaciens Ti plasmid copy number fluctuations. Plasmid 2008; 60:89-107. [PMID: 18664372 DOI: 10.1016/j.plasmid.2008.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 05/15/2008] [Indexed: 11/20/2022]
Abstract
The Agrobacterium tumefaciens oncogenic Ti plasmids replicate and segregate to daughter cells via repABC cassettes, in which repA and repB are plasmid partitioning genes and repC encodes the replication initiator protein. repABC cassettes are encountered in a growing number of plasmids and chromosomes of the alpha-proteobacteria, and findings from particular representatives of agrobacteria, rhizobia and Paracoccus have began to shed light on their structure and functions. Amongst repABC replicons, Ti plasmids and particularly the octopine-type Ti have recently stood as model in regulation of repABC basal expression, which acts in plasmid copy number control, but also appear to undergo pronounced up-regulation of repABC, upon interbacterial and host-bacterial signaling. The last results in considerable Ti copy number increase and collective elevation of Ti gene expression. Inhibition of the Ti repABC is in turn conferred by a plant defense compound, which primarily affects Agrobacterium virulence and interferes with cell-density perception. Altogether, the above suggest that the entire Ti gene pool is subjected to the bacterium-eukaryote signaling network, a phenomenon quite unprecedented for replicons thought of as stringently controlled. It remains to be seen whether similar copy number variations characterize related replicons or if they are of even broader significance in plasmid biology.
Collapse
|
14
|
LAW R, LEWIS DH. Biotic environments and the maintenance of sex-some evidence from mutualistic symbioses. Biol J Linn Soc Lond 2008. [DOI: 10.1111/j.1095-8312.1983.tb01876.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Ruiz-Sainz J, Beringer J, Gutierrez-Navarro A. Effect of the fungicide captafol on the survival and symbiotic properties ofRhizobium trifolii. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1365-2672.1984.tb01402.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Espuny MR, Ollero FJ, Bellogin RA, Ruiz-Sainz JE, Perez-Silva J. Transfer of theRhizobium leguminosarumbiovartrifoliisymbiotic plasmid pRtr5a to a strain ofRhizobiumsp. that nodulates onHedysarum coronarium. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1365-2672.1987.tb02412.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Buendia-Claveria AM, Ruiz-Sainz JE, Cubo-Sanchez T, Perez-Silva J. Studies of symbiotic plasmids inRhizobium trifoliiand fast-growing bacteria that nodulate soybeans. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1365-2672.1986.tb03752.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Karunakaran R, Ebert K, Harvey S, Leonard ME, Ramachandran V, Poole PS. Thiamine is synthesized by a salvage pathway in Rhizobium leguminosarum bv. viciae strain 3841. J Bacteriol 2006; 188:6661-8. [PMID: 16952958 PMCID: PMC1595474 DOI: 10.1128/jb.00641-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 07/10/2006] [Indexed: 12/21/2022] Open
Abstract
In the absence of added thiamine, Rhizobium leguminosarum bv. viciae strain 3841 does not grow in liquid medium and forms only "pin" colonies on agar plates, which contrasts with the good growth of Sinorhizobium meliloti 1021, Mesorhizobium loti 303099, and Rhizobium etli CFN42. These last three organisms have thiCOGE genes, which are essential for de novo thiamine synthesis. While R. leguminosarum bv. viciae 3841 lacks thiCOGE, it does have thiMED. Mutation of thiM prevented formation of pin colonies on agar plates lacking added thiamine, suggesting thiamine intermediates are normally present. The putative functions of ThiM, ThiE, and ThiD are 4-methyl-5-(beta-hydroxyethyl) thiazole (THZ) kinase, thiamine phosphate pyrophosphorylase, and 4-amino-5-hydroxymethyl-2-methyl pyrimidine (HMP) kinase, respectively. This suggests that a salvage pathway operates in R. leguminosarum, and addition of HMP and THZ enabled growth at the same rate as that enabled by thiamine in strain 3841 but elicited no growth in the thiM mutant (RU2459). There is a putative thi box sequence immediately upstream of the thiM, and a gfp-mut3.1 fusion to it revealed the presence of a promoter that is strongly repressed by thiamine. Using fluorescent microscopy and quantitative reverse transcription-PCR, it was shown that thiM is expressed in the rhizosphere of vetch and pea plants, indicating limitation for thiamine. Pea plants infected by RU2459 were not impaired in nodulation or nitrogen fixation. However, colonization of the pea rhizosphere by the thiM mutant was impaired relative to that of the wild type. Overall, the results show that a thiamine salvage pathway operates to enable growth of Rhizobium leguminosarum in the rhizosphere, allowing its survival when thiamine is limiting.
Collapse
Affiliation(s)
- R Karunakaran
- School of Biological Sciences, University of Reading, Whiteknights, P.O. Box 228, Reading RG6 6AJ, United Kingdom
| | | | | | | | | | | |
Collapse
|
19
|
Schlaman HRM, Olsthoorn MMA, Harteveld M, Dörner L, Djordjevic MA, Thomas-Oates JE, Spaink HP. The production of species-specific highly unsaturated fatty acyl-containing LCOs from Rhizobium leguminosarum bv. trifolii is stringently regulated by nodD and involves the nodRL genes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:215-26. [PMID: 16570652 DOI: 10.1094/mpmi-19-0215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A proportion of the Nod factors of some Rhizobium leguminosarum bv. trifolii strains is characterized by the presence of highly unsaturated fatty acyl chains containing trans double bonds in conjugation with the carbonyl group of the glycan oligosaccharide backbone. These fatty acyl chains are C18:3, C20:3, C18:4, or C20:4 and have UV-absorption maxima at 303 and 330 nm. These Nod factors are presumed to be important for host-specific nodulation on clover species. However, in wild-type R. leguminosarum bv. trifolii ANU843, Nod factors with these characteristic acyl chains were not observed using standard growth conditions. They were observed only when nod genes were present in multiple copies or when transcription was artificially increased to higher levels by introduction of extra copies of the transcriptional regulator gene nodD. In a screen for the genetic requirements for production of the Nod factors with these characteristic structures, it was found that the region downstream of nodF and nodE is essential for the presence of highly unsaturated fatty acyl moieties. Mu-lacZ insertion in this region produced a mutant that did not produce detectable levels of the highly unsaturated fatty acyl-bearing Nod factors. The Mu-lacZ insertion was translationally fused to a putative new gene, designated nodR, in the nodE-nodL intergenic region; however, no predicted function for the putative NodR protein has been obtained from database homology searches. In a set of 12 wild-type strains of R. leguminosarum by. trifolii originating from various geographical regions that were analyzed for the presence of a nodR-like gene, it was found that seven strains carry a homologous NodR open reading frame. Taken together, our results suggest a tightly controlled regulation of nod genes, in which we propose that it is the balance of transcriptional levels of nodFE and the nodRL genes that is critical for determining the presence of highly unsaturated fatty acyl moieties in the Nod factors produced by R. leguminosarum bv. trifolii.
Collapse
Affiliation(s)
- Helmi R M Schlaman
- Institute of Biology Leiden, Leiden University, Clusius Laboratory, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
20
|
Pérez-Mendoza D, Sepúlveda E, Pando V, Muñoz S, Nogales J, Olivares J, Soto MJ, Herrera-Cervera JA, Romero D, Brom S, Sanjuán J. Identification of the rctA gene, which is required for repression of conjugative transfer of rhizobial symbiotic megaplasmids. J Bacteriol 2005; 187:7341-50. [PMID: 16237017 PMCID: PMC1272987 DOI: 10.1128/jb.187.21.7341-7350.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An analysis of the conjugative transfer of pRetCFN42d, the symbiotic plasmid (pSym) of Rhizobium etli, has revealed a novel gene, rctA, as an essential element of a regulatory system for silencing the conjugative transfer of R. etli pSym by repressing the transcription of conjugal transfer genes in standard laboratory media. The rctA gene product lacks sequence conservation with other proteins of known function but may belong to the winged-helix DNA-binding subfamily of transcriptional regulators. Similar to that of many transcriptional repressors, rctA transcription seems to be positively autoregulated. rctA expression is greatly reduced upon overexpression of another gene, rctB, previously identified as a putative activator of R. etli pSym conjugal transfer. Thus, rctB seems to counteract the repressive action of rctA. rctA homologs are present in at least three other bacterial genomes within the order Rhizobiales, where they are invariably located adjacent to and divergently transcribed from putative virB-like operons. We show that similar to that of R. etli pSym, conjugative transfer of the 1.35-Mb symbiotic megaplasmid A of Sinorhizobium meliloti is also subjected to the inhibitory action of rctA. Our data provide strong evidence that the R. etli and S. meliloti pSym plasmids are indeed self-conjugative plasmids and that this property would only be expressed under optimal, as yet unknown conditions that entail inactivation of the rctA function. The rctA gene seems to represent novel but probably widespread regulatory systems controlling the transfer of conjugative elements within the order Rhizobiales.
Collapse
Affiliation(s)
- Daniel Pérez-Mendoza
- Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain, Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos, México
| | - Edgardo Sepúlveda
- Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain, Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos, México
| | - Victoria Pando
- Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain, Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos, México
| | - Socorro Muñoz
- Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain, Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos, México
| | - Joaquina Nogales
- Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain, Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos, México
| | - José Olivares
- Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain, Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos, México
| | - Maria J. Soto
- Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain, Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos, México
| | - José A. Herrera-Cervera
- Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain, Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos, México
| | - David Romero
- Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain, Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos, México
| | - Susana Brom
- Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain, Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos, México
| | - Juan Sanjuán
- Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain, Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos, México
- Corresponding author. Mailing address: Dpto. Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Profesor Albareda 1, 18008 Granada, Spain. Phone: 34-958181600, ext. 219. Fax: 34-958129600. E-mail:
| |
Collapse
|
21
|
Laus MC, van Brussel AAN, Kijne JW. Exopolysaccharide structure is not a determinant of host-plant specificity in nodulation of Vicia sativa roots. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:1123-9. [PMID: 16353547 DOI: 10.1094/mpmi-18-1123] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Exopolysaccharide (EPS)-deficient strains of the root nodule symbiote Rhizobium leguminosarum induce formation of abortive infection threads in Vicia sativa subsp. nigra roots. As a result, the nodule tissue remains uninfected. Formation of an infection thread can be restored by coinoculation of the EPS-deficient mutant with a Nod factor-deficient strain, which produces a similar EPS structure. This suggests that EPS contributes to host-plant specificity of nodulation. Here, a comparison was made of i) coinoculation with heterologous strains with different EPS structures, and ii) introduction of the pRL1JI Sym plasmid or a nod gene-encoding fragment in the same heterologous strains. Most strains not complementing in coinoculation experiments were able to nodulate V. sativa roots as transconjugants. Apparently, coinoculation is a delicate approach in which differences in root colonization ability or bacterial growth rate easily affect successful infection-thread formation. Obviously, lack of infection-thread formation in coinoculation studies is not solely determined by EPS structure. Transconjugation data show that different EPS structures can allow infection-thread formation and subsequent nodulation of V. sativa roots.
Collapse
Affiliation(s)
- Marc C Laus
- Institute of Biology Leiden, Leiden University, The Netherlands
| | | | | |
Collapse
|
22
|
Miao L, Zhou K, Zhou J, Chen D, Xie F. Apparent incompatibility of plasmid pSfrYC4b of Sinorhizobium fredii with two different plasmids in another strain. Arch Microbiol 2005; 183:359-67. [PMID: 16010525 DOI: 10.1007/s00203-005-0780-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 04/02/2005] [Accepted: 04/27/2005] [Indexed: 10/25/2022]
Abstract
Sinorhizobium fredii YC4B is a spontaneous mutant derivative of strain YC4 that is unable to nodulate soybeans. The second-largest plasmid of strain YC4B, termed pSfrYC4b (810 kb), was transferred to S. fredii HN01SR, a strain which contains three large indigenous plasmids (pSfrHN01a, pSfrHN01b and pSfrHN01c). Surprisingly, two stable indigenous plasmids (pSfrHN01a and pSfrHN01b) of strain HN01SR were cured simultaneously by the introduction of pSfrYC4b. Furthermore, a novel, unstable plasmid (pHY4) became visible in agarose gels. The electrophoretic mobility of plasmid pHY4 was slower than that shown by the cured plasmids, indicating that the molecular weight of the former is higher than that of plasmids pSfrYC4b and pSfrHN01b. Replication gene repC-like sequences were detected by polymerase chain reaction (PCR) on pSfrHN01a and pSfrYC4b, but not on pSfrHN01b. Sau3AI and PstI restriction patterns of the PCR-amplified repC-like sequences from HN01SR and YC4B were very similar.
Collapse
Affiliation(s)
- Lihong Miao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | | | | | | | | |
Collapse
|
23
|
|
24
|
Bladergroen MR, Badelt K, Spaink HP. Infection-blocking genes of a symbiotic Rhizobium leguminosarum strain that are involved in temperature-dependent protein secretion. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:53-64. [PMID: 12580282 DOI: 10.1094/mpmi.2003.16.1.53] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Rhizobium leguminosarum strain RBL5523 is able to form nodules on pea, but these nodules are ineffective for nitrogen fixation. The impairment in nitrogen fixation appears to be caused by a defective infection of the host plant and is host specific for pea. A Tn5 mutant of this strain, RBL5787, is able to form effective nodules on pea. We have sequenced a 33-kb region around the phage-transductable Tn5 insertion. The Tn5 insertion was localized to the 10th gene of a putative operon of 14 genes that was called the imp (impaired in nitrogen fixation) locus. Several highly similar gene clusters of unknown function are present in Pseudomonas aeruginosa, Vibrio cholerae, Edwardsiella ictaluri, and several other animal pathogens. Homology studies indicate that several genes of the imp locus are involved in protein phosphorylation, either as a kinase or dephosphorylase, or contain a phosphoprotein-binding module called a forkhead-associated domain. Other proteins show similarity to proteins involved in type III protein secretion. Two dimensional gel electrophoretic analysis of the secreted proteins in the supernatant fluid of cultures of RBL5523 and RBL5787 showed the absence in the mutant strain of at least four proteins with molecular masses of approximately 27 kDa and pIs between 5.5 and 6.5. The production of these proteins in the wild-type strain is temperature dependent. Sequencing of two of these proteins revealed that their first 20 amino acids are identical. This sequence showed homology to that of secreted ribose binding proteins (RbsB) from Bacilus subtilis and V. cholerae. Based on this protein sequence, the corresponding gene encoding a close homologue of RbsB was cloned that contains a N-terminal signal sequence that is recognized by type I secretion systems. Inoculation of RBL5787 on pea plants in the presence of supernatant of RBL5523 caused a reduced ability of RBL5787 to nodulate pea and fix nitrogen. Boiling of this supernatant before inoculation restored the formation of effective nodules to the original values, indicating that secreted proteins are indeed responsible for the impaired phenotype. These data suggest that the imp locus is involved in the secretion to the environment of proteins, including periplasmic RbsB protein, that cause blocking of infection specifically in pea plants.
Collapse
Affiliation(s)
- M R Bladergroen
- Institute of Molecular Plant Sciences, Leiden University, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | | | | |
Collapse
|
25
|
|
26
|
Radeva G, Jurgens G, Niemi M, Nick G, Suominen L, Lindström K. Description of two biovars in the Rhizobium galegae species: biovar orientalis and biovar officinalis. Syst Appl Microbiol 2001; 24:192-205. [PMID: 11518322 DOI: 10.1078/0723-2020-00029] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Twenty-six Rhizobium galegae strains, representing the center of origin of the host plants Galega orientalis and G. officinalis as well as other geographic regions, were used in a polyphasic analysis of the relationships of R. galegae strains. Phage typing, lipopolysaccharide (LPS) profiling, pulsed field gel electrophoresis (PFGE) profiling and rep-PCR (use of repetitive sequences as PCR primers for genomic fingerprinting) with REP and ERIC primers investigated nonsymbiotic properties, whereas plasmid profiling and hybridisation with a nif gene probe, and with nodB, nodD, nod box and an IS sequence from the symbiotic region as probes, were used to reveal the relationships of symbiotic genes. The results were used in pairwise calculations of distances between the strains, and the distances were visualised as a dendrogram. Indexes of association were compared for all tests pooled, and for chromosomal tests and symbiotic markers separately, to display the input of the different categories of tests on the grouping of the strains. Our study shows that symbiosis related genetic traits in R. galegae divide strains belonging to the species into two groups, which correspond to strains forming an effective symbioses with G. orientalis and G. officinalis respectively. We therefore propose that Rhizobium galegae strains forming an effective symbiosis with Galega orientalis are called R. galegae bv. orientalis and strains forming an effective symbiosis with Galega officinalis are called R. galegae bv. officinalis.
Collapse
Affiliation(s)
- G Radeva
- Department of Applied Chemistry and Microbiology, University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
27
|
López-Lara IM, Geiger O. The nodulation protein NodG shows the enzymatic activity of an 3-oxoacyl-acyl carrier protein reductase. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:349-357. [PMID: 11277432 DOI: 10.1094/mpmi.2001.14.3.349] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The acyl carrier protein NodF is required for the synthesis of unusual polyunsaturated fatty acids that confer specificity to lipochitin oligosaccharide nodulation (Nod) factors of Rhizobium leguminosarum. In this study, homogeneous NodF protein was used as a ligand to identify proteins of R. leguminosarum that specifically interact with NodF and presumably are involved in the biosynthesis or transfer of the unusual fatty acids. The N-terminal amino acid sequence of a 29-kDa protein that interacts strongly with NodF revealed high similarity to NodG of Rhizobium sp. N33 and to NodG of Sinorhizobium meliloti We cloned and sequenced the gene coding for the NodG-like protein of R. leguminosarum and found it to be the product of the constitutively expressed gene fabG. FabG is the 3-oxoacyl-acyl carrier protein reductase that catalyzes the first reduction step in each cycle of fatty acid elongation. FabG of R. leguminosarum and NodG of Rhizobium sp. N33 were expressed in Escherichia coli. In both cases, the purified protein showed 3-oxoacyl-acyl carrier protein reductase activity in vitro. Therefore, NodG has the same biochemical function as FabG, and the high degree of similarity at the protein and DNA level suggest that nodG is a duplication of the housekeeping genefabG.
Collapse
Affiliation(s)
- I M López-Lara
- Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Morelos, CP.
| | | |
Collapse
|
28
|
Ramírez-Romero MA, Soberón N, Pérez-Oseguera A, Téllez-Sosa J, Cevallos MA. Structural elements required for replication and incompatibility of the Rhizobium etli symbiotic plasmid. J Bacteriol 2000; 182:3117-24. [PMID: 10809690 PMCID: PMC94497 DOI: 10.1128/jb.182.11.3117-3124.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/1999] [Accepted: 02/25/2000] [Indexed: 11/20/2022] Open
Abstract
The symbiotic plasmid of Rhizobium etli CE3 belongs to the RepABC family of plasmid replicons. This family is characterized by the presence of three conserved genes, repA, repB, and repC, encoded by the same DNA strand. A long intergenic sequence (igs) between repB and repC is also conserved in all members of the plasmid family. In this paper we demonstrate that (i) the repABC genes are organized in an operon; (ii) the RepC product is essential for replication; (iii) RepA and RepB products participate in plasmid segregation and in the regulation of plasmid copy number; (iv) there are two cis-acting incompatibility regions, one located in the igs (incalpha) and the other downstream of repC (incbeta) (the former is essential for replication); and (v) RepA is a trans-acting incompatibility factor. We suggest that incalpha is a cis-acting site required for plasmid partitioning and that the origin of replication lies within incbeta.
Collapse
Affiliation(s)
- M A Ramírez-Romero
- Programa de Evolución Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | | | | | | | | |
Collapse
|
29
|
López-Lara IM, Geiger O. Expression and purification of four different rhizobial acyl carrier proteins. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 4):839-849. [PMID: 10784042 DOI: 10.1099/00221287-146-4-839] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In rhizobia, besides the constitutive acyl carrier protein (AcpP) involved in the biosynthesis and transfer of common fatty acids, there are at least three specialized acyl carrier proteins (ACPs): (1) the flavonoid-inducible nodulation protein NodF; (2) the RkpF protein, which is required for the biosynthesis of rhizobial capsular polysaccharides; and (3) AcpXL, which transfers 27-hydroxyoctacosanoic acid to a sugar backbone during lipid A biosynthesis. Whereas the nucleotide sequences encoding the three specialized ACPs are known, only the amino acid sequence of the AcpP of Sinorhizobium meliloti was available. In this study, using reverse genetics, the genes for the constitutive AcpPs of S. meliloti and of Rhizobium leguminosarum were cloned and sequenced. Previously, it had been shown that NodF and RkpF can be overproduced in Escherichia coli using the T7 polymerase expression system. Using the same system, the constitutive AcpPs of S. meliloti and of R. leguminosarum, together with the specialized ACP AcpXL, were overproduced and purified. All the known ACPs of rhizobia can be labelled in vivo during expression in E. coli with radioactive beta-alanine added to the growth medium due to their modification with a 4'-phosphopantetheine prosthetic group. The availability of all functionally different ACPs should help to unravel how different fatty acids are targeted towards different biosynthetic pathways in one organism.
Collapse
Affiliation(s)
- Isabel M López-Lara
- Institute of Biotechnology, Technical University of Berlin, Seestrasse 13,D-13353 Berlin, Germany1
| | - Otto Geiger
- Institute of Biotechnology, Technical University of Berlin, Seestrasse 13,D-13353 Berlin, Germany1
| |
Collapse
|
30
|
Zorreguieta A, Finnie C, Downie JA. Extracellular glycanases of Rhizobium leguminosarum are activated on the cell surface by an exopolysaccharide-related component. J Bacteriol 2000; 182:1304-12. [PMID: 10671451 PMCID: PMC94416 DOI: 10.1128/jb.182.5.1304-1312.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobium leguminosarum secretes two extracellular glycanases, PlyA and PlyB, that can degrade exopolysaccharide (EPS) and carboxymethyl cellulose (CMC), which is used as a model substrate of plant cell wall cellulose polymers. When grown on agar medium, CMC degradation occurred only directly below colonies of R. leguminosarum, suggesting that the enzymes remain attached to the bacteria. Unexpectedly, when a PlyA-PlyB-secreting colony was grown in close proximity to mutants unable to produce or secrete PlyA and PlyB, CMC degradation occurred below that part of the mutant colonies closest to the wild type. There was no CMC degradation in the region between the colonies. By growing PlyB-secreting colonies on a lawn of CMC-nondegrading mutants, we could observe a halo of CMC degradation around the colony. Using various mutant strains, we demonstrate that PlyB diffuses beyond the edge of the colony but does not degrade CMC unless it is in contact with the appropriate colony surface. PlyA appears to remain attached to the cells since no such diffusion of PlyA activity was observed. EPS defective mutants could secrete both PlyA and PlyB, but these enzymes were inactive unless they came into contact with an EPS(+) strain, indicating that EPS is required for activation of PlyA and PlyB. However, we were unable to activate CMC degradation with a crude EPS fraction, indicating that activation of CMC degradation may require an intermediate in EPS biosynthesis. Transfer of PlyB to Agrobacterium tumefaciens enabled it to degrade CMC, but this was only observed if it was grown on a lawn of R. leguminosarum. This indicates that the surface of A. tumefaciens is inappropriate to activate CMC degradation by PlyB. Analysis of CMC degradation by other rhizobia suggests that activation of secreted glycanases by surface components may occur in other species.
Collapse
|
31
|
Roest HP, Mulders IH, Spaink HP, Wijffelman CA, Lugtenberg BJ. A Rhizobium leguminosarum biovar trifolii locus not localized on the sym plasmid hinders effective nodulation on plants of the pea cross-inoculation group. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1997; 10:938-41. [PMID: 9304865 DOI: 10.1094/mpmi.1997.10.7.938] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Introduction of the Sym plasmid pRL1JI into the cured Rhizobium leguminosarum bv. trifolii strain RCR5 resulted in a strain, designated RBL5523, that was expected to nodulate plants of the pea cross-inoculation group. However, effective nodulation occurred only on Vicia sativa plants, not on V. hirsuta or Pisum sativum. After random Tn5 mutagenesis, a derivative of RBL5523 was isolated that effectively nodulated and fixed nitrogen on P. sativum and V. hirsuta. Characterization of the mutant, RBL5787, indicated the cell surface components, extracellular polysaccharides, lipopolysaccharides, and outer membrane proteins, as well as the pattern of Nod metabolites, were indistinguishable from those of the parental strain. To obtain an indication of the function of the mutated locus, the flanking regions were sequenced and used to perform searches in protein and nonredundant nucleotide data-bases. No significant similarity or homology with any known sequence was detected.
Collapse
Affiliation(s)
- H P Roest
- Leiden University, Institute of Molecular Plant Sciences, Clusius Laboratory, Netherlands
| | | | | | | | | |
Collapse
|
32
|
Ramírez-Romero MA, Bustos P, Girard L, Rodríguez O, Cevallos MA, Dávila G. Sequence, localization and characteristics of the replicator region of the symbiotic plasmid of Rhizobium etli. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 8):2825-2831. [PMID: 9274036 DOI: 10.1099/00221287-143-8-2825] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The replicator region of the symbiotic plasmid of Rhizobium etli CFN42 was cloned and sequenced. A plasmid derivative (pH3) harbouring a 5-6 kb HindIII fragment from the symbiotic plasmid was found to be capable of independent replication and eliminated the symbiotic plasmid when introduced into a R. etli CFNX101 strain (a recA derivative). The stability and the copy number of pH3 were the same as that of the symbiotic plasmid, indicating that the information required for stable replication and incompatibility resides in the 5.6 kb HindIII fragment. The sequence analysis of this fragment showed the presence of three ORFs similar in sequence analysis of this fragment showed the presence of three ORFs similar in sequence and organization to repA, repB and repC described for the replicator regions of the Agrobacterium plasmids pTiB653 and pRiA4b and for the R. leguminosarum cryptic plasmid pRL8JI. Hybridization studies showed that p42d-like replicator sequences are found in the symbiotic plasmids of other R. etli strains and in a 'cryptic' plasmid of R. tropici.
Collapse
Affiliation(s)
- Miguel A Ramírez-Romero
- Departamento de Genética Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, Mexico
| | - Patricia Bustos
- Departamento de Genética Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, Mexico
| | - Lourdes Girard
- Departamento de Genética Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, Mexico
| | - Oscar Rodríguez
- Departamento de Genética Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, Mexico
| | - Miguel A Cevallos
- Departamento de Ecología Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, Mexico
| | - Guillermo Dávila
- Departamento de Genética Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, Mexico
| |
Collapse
|
33
|
Wernegreen JJ, Harding EE, Riley MA. Rhizobium gone native: unexpected plasmid stability of indigenous Rhizobium leguminosarum. Proc Natl Acad Sci U S A 1997; 94:5483-8. [PMID: 9144264 PMCID: PMC24705 DOI: 10.1073/pnas.94.10.5483] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Lateral transfer of bacterial plasmids is thought to play an important role in microbial evolution and population dynamics. However, this assumption is based primarily on investigations of medically or agriculturally important bacterial species. To explore the role of lateral transfer in the evolution of bacterial systems not under intensive, human-mediated selection, we examined the association of genotypes at plasmid-encoded and chromosomal loci of native Rhizobium, the nitrogen-fixing symbiont of legumes. To this end, Rhizobium leguminosarum strains nodulating sympatric species of native Trifolium were characterized genetically at plasmid-encoded symbiotic (sym) regions (nodulation AB and nodulation CIJT loci) and a repeated chromosomal locus not involved in the symbiosis with legumes. Restriction fragment length polymorphism analysis was used to distinguish genetic groups at plasmid and chromosomal loci. The correlation between major sym and chromosomal genotypes and the distribution of genotypes across host plant species and sampling location were determined using chi2 analysis. In contrast to findings of previous studies, a strict association existed between major sym plasmid and chromosomal genetic groups, suggesting a lack of successful sym plasmid transfer between major Rhizobium chromosomal types. These data indicate that previous observations of sym plasmid transfer in agricultural settings may seriously overestimate the rates of successful conjugation in systems not impacted by human activities. In addition, a nonrandom distribution of Rhizobium genotypes across host plant species and sampling site demonstrates the importance of both factors in shaping Rhizobium population dynamics.
Collapse
Affiliation(s)
- J J Wernegreen
- Department of Biology, Yale University, New Haven, CT 06511, USA.
| | | | | |
Collapse
|
34
|
Mazurier SI, Laguerre G. Unusual localization of nod and nif genes in Rhizobium leguminosarum bv. viciae. Can J Microbiol 1997. [DOI: 10.1139/m97-056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genomic DNA from seven strains of Rhizobium leguminosarum bv. viciae isolated from nodules of field-grown lentils showed homology to nod and nif gene probes, whereas plasmid DNA did not hybridize with these probes. The results suggest that symbiotic genes could be located on the chromosome or perhaps on a very large plasmid that could not be resolved in Eckhardt gels. Each strain contained one plasmid that hybridized with a pSym isolated from a R. leguminosarum strain of the same field population. This finding led us to hypothesize that the nod and nif genes of the seven strains might have originated from a Sym plasmid and have been integrated into another replicon. The ability to nodulate vetch was confirmed for all of the seven strains. Thus, wild strains of R. leguminosarum bv. viciae that nodulate vetch carry nod and nif genes either on the chromosome or on an extrachromosomal replicon of size much larger than the pSyms hitherto described.Key words: Rhizobium leguminosarum, nod genes, nif genes, chromosome, symbiotic plasmid, megaplasmid.
Collapse
|
35
|
van Workum WA, Canter Cremers HC, Wijfjes AH, van der Kolk C, Wijffelman CA, Kijne JW. Cloning and characterization of four genes of Rhizobium leguminosarum bv. trifolii involved in exopolysaccharide production and nodulation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1997; 10:290-301. [PMID: 9057334 DOI: 10.1094/mpmi.1997.10.2.290] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Four different genes of Rhizobium leguminosarum bv. trifolii strain RBL5599 involved in exopolysaccharide (EPS) production were identified by complementation of Tn5-induced EPS-deficient mutants (Exo mutants) with a cosmid bank. On one cosmid pssA was located, which was found to be almost identical to the pss4 gene from R. leguminosarum bv. viciae VF39 and highly homologous to a family of glycosyl transferases. Two pssA mutants, exo2 and exo4, were characterized and found to produce 19 and 1% of the wild-type amount of EPS, respectively. The three other genes were found to be closely linked on a different complementing cosmid. pssC revealed similarity to exoM and exoW of R. meliloti, both encoding glucosyl transferases involved in the synthesis of succinoglycan. A mutation in this gene (mutant exo50) did reduce EPS synthesis to 27% of the wild-type amount. We found an operon closely linked to pssC, consisting of two overlapping genes, pssD and pssE, that is essential for EPS production. Homology of pssD and pssE was found with cps14F and cps14G of Streptococcus pneumoniae, respectively: two genes responsible for the second step in capsule polysaccharide synthesis. Furthermore, pssD and pssE were homologous to the 5' and 3' parts, respectively, of spsK of Sphingomonas S88, which encodes a putative glycosyl transferase. Structural analysis of EPS produced by Exo mutants exo2, exo4, and exo50 showed it to be identical to that of the parental strain RBL5599, with the exception of acetyl groups esterified to one of the glucose residues being absent.
Collapse
Affiliation(s)
- W A van Workum
- Institute of Molecular Plant Sciences, Leiden University, The Netherlands.
| | | | | | | | | | | |
Collapse
|
36
|
Sivakumaran S, Lockhart PJ, Jarvis BD. Identification of soil bacteria expressing a symbiotic plasmid from Rhizobium leguminosarum bv. trofolii. Can J Microbiol 1997; 43:164-77. [PMID: 9090106 DOI: 10.1139/m97-022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A hundred strains of non-nodulating, Gram-negative, rod-shaped bacteria were isolated from clover-ryegrass pastures on three different soil types and from a sandy loam under lupins. When crossed with Escherichia coli PN200 containing the cointegrate plasmid pPN1, 11 transconjugants gained the ability to form nodules on the roots of white clover (Trifolium repens cv. Grasslands Huia). A nodA probe indicated that they had gained nodulation genes. The identities of these 11 strains and 4 others derived from earlier work on non-nodulating root nodule bacteria, were determined by ribotyping, DNA-DNA hybridization, and partial 16S rRNA sequencing. Good agreement was obtained between the three methods, and 11 of the strains were identified as Rhizobium leguminosarum (6), Rhizobium loti (2), Rhizobium etli (1), Rhizobium tropici (1), and Sinorhizobium meliloti (1). DNA-DNA hybridization indicated that the remaining four strains were related to the Rhizobium leguminosarum reference strains. The existence of several species of non-nodulating rhizobia in pasture soil, including species for which the normal host plant was absent, is discussed in relation to the fate of symbiotic plasmids from Rhizobium seed inoculants. It is also suggested that new species should be named for the geographical region from which they are first isolated rather than the host plant.
Collapse
Affiliation(s)
- S Sivakumaran
- Department of Microbiology and Genetics, Massey University, Palmerston North, New Zealand
| | | | | |
Collapse
|
37
|
Molecular analysis of theRhizobiumgenes involved in the induction of nitrogen-fixing nodules on legumes. ACTA ACUST UNITED AC 1997. [DOI: 10.1098/rstb.1987.0057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent developments in the molecular genetics ofRhizobium spp. are presented, and the use of mutant bacterial strains to determine which properties are required for symbiotic nitrogen fixation and nodulation of legumes is described. Both the lipopolysaccharide and the exopolysaccharide ofRhizobium spp. are implicated in infection. Recent studies have identified several genes involved in the early steps of this process and in the determination of host-range specificity. Analysis of their products has given some indications of their functions. The expression of most of these nodulation (nod) genes is controlled by the regulatory genenodD, which is itself expressed constitutively, whereas other nod genes are transcribed only when the cells are exposed to compounds present in the rhizosphere of legumes. These compounds were identified as various flavones and flavanones. Other plant-specified aromatic molecules, such as isoflavonoids, antagonize this induction.
Collapse
|
38
|
Abstract
Soil bacteria of the genera Azorhizobium, Bradyrhizobium, and Rhizobium are collectively termed rhizobia. They share the ability to penetrate legume roots and elicit morphological responses that lead to the appearance of nodules. Bacteria within these symbiotic structures fix atmosphere nitrogen and thus are of immense ecological and agricultural significance. Although modern genetic analysis of rhizobia began less than 20 years ago, dozens of nodulation genes have now been identified, some in multiple species of rhizobia. These genetic advances have led to the discovery of a host surveillance system encoded by nodD and to the identification of Nod factor signals. These derivatives of oligochitin are synthesized by the protein products of nodABC, nodFE, NodPQ, and other nodulation genes; they provoke symbiotic responses on the part of the host and have generated immense interest in recent years. The symbiotic functions of other nodulation genes are nonetheless uncertain, and there remain significant gaps in our knowledge of several large groups of rhizobia with interesting biological properties. This review focuses on the nodulation genes of rhizobia, with particular emphasis on the concept of biological specificity of symbiosis with legume host plants.
Collapse
Affiliation(s)
- S G Pueppke
- Department of Plant Pathology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
39
|
Spaink HP, Wijfjes AH, Lugtenberg BJ. Rhizobium NodI and NodJ proteins play a role in the efficiency of secretion of lipochitin oligosaccharides. J Bacteriol 1995; 177:6276-81. [PMID: 7592394 PMCID: PMC177469 DOI: 10.1128/jb.177.21.6276-6281.1995] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Thin-layer chromatographic analysis of extracts of D-[1-14C]glucosamine-labelled rhizobia was used to analyze the effects of nodI, nodJ, and nodT on secretion of lipochitin oligosaccharide (LCO) signal molecules. Secretion was analyzed by comparing quantities of radiolabelled LCOs present in the cellular and spent growth medium fractions. A second rapid and sensitive method was introduced to estimate the secreted LCO fractions by using D-[1-14C]glucosamine-labelled cells grown in medium supplemented with chitinase. At various times after induction of LCO synthesis, the quantity of degradation products of LCOs was compared with the amount of nondegraded LCOs. In wild-type strains of Rhizobium leguminosarum biovars viciae and trifolii the nodI and nodJ genes (but not the nodT gene) strongly enhance the secretion of LCOs during the first 5 h after the induction of LCO synthesis. In LCO-overproducing strains the enhancement of secretion was observed only during the first 3 h after induction. At times later than 5 h after induction, a significant influence of the presence of the nodI and nodJ genes on LCO secretion was detectable neither in the wild type nor in LCO-overproducing strains. By using plasmids in which the nodI and nodJ genes are cloned separately under control of a flavonoid-inducible promoter, it was shown that both genes are needed for a wild-type level of LCO secretion. Therefore, these results demonstrate that nodI and nodJ play a role in determining the efficiency of LCO secretion.
Collapse
Affiliation(s)
- H P Spaink
- Clusius Laboratory, Institute of Plant Molecular Biology, Leiden University, The Netherlands
| | | | | |
Collapse
|
40
|
Roest HP, Bloemendaal CJ, Wijffelman CA, Lugtenberg BJ. Isolation and characterization of ropA homologous genes from Rhizobium leguminosarum biovars viciae and trifolii. J Bacteriol 1995; 177:4985-91. [PMID: 7545151 PMCID: PMC177275 DOI: 10.1128/jb.177.17.4985-4991.1995] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
ropA encodes a 36-kDa outer membrane protein of Rhizobium leguminosarum bv. viciae strain 248 which constitutes the low-M(r) part of antigen group III (R.A. de Maagd, I.H.M. Mulders, H.C.J. Canter Cremers, B.J.J. Lugtenberg, J. Bacteriol. 174:214-221, 1992). We observed that genes homologous to ropA are present in strain 248 as well as in other R. leguminosarum strains, and we describe the cloning and characterization of two of these genes. Sequencing of a 2.2-kb Bg/II fragment from R. leguminosarum bv. viciae strain 248 that hybridizes with ropA revealed one large open reading frame of 1,074 bp encoding a mature protein of 38.096 kDa. Homology between this gene and ropA is 91.8% on the DNA level. Homology on the amino acid level is only 69.9% as a result of a frameshift. On the basis of homology and immunochemical characteristics, we conclude that this gene encodes the high-M(r) part of the outer membrane protein antigen group III that is repressed during symbiosis. We named this gene ropA2. The second gene that we cloned was the ropA homologous gene of R. leguminosarum bv. trifolii strain LPR5020. Except for amino acid 43, the N-terminal part of the corresponding protein appeared to be identical to the first 51 amino acids of RopA of strain 248. The transcription start sites of both genes were determined, and the promoter regions were compared with that of ropA of strain 248. No clear consensus sequence could be deduced. The relationship of ropA and ropA2 of R. leguminosarum bv. viciae strain 248 with two similar genes from Brucella abortus is discussed.
Collapse
Affiliation(s)
- H P Roest
- Institute of Molecular Plant Sciences, Leiden University, The Netherlands
| | | | | | | |
Collapse
|
41
|
Schlüter A, Rüberg S, Krämer M, Weidner S, Priefer UB. A homolog of the Rhizobium meliloti nitrogen fixation gene fixN is involved in the production of a microaerobically induced oxidase activity in the phytopathogenic bacterium Agrobacterium tumefaciens. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:206-15. [PMID: 7753030 DOI: 10.1007/bf00705651] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hybridization analysis using the Rhizobium meliloti nitrogen fixation gene fixN as a probe revealed the presence of a homologous DNA region in the phytopathogenic bacterium Agrobacterium tumefaciens. Hybridization signals were also detected with total DNAs of Rhizobium leguminosarum bv. phaseoli, Rhodobacter capsulatus and Escherichia coli, but not those of Xanthomonas campestris pv. campestris and Pseudomonas putida. The hybridizing fragment from A. tumefaciens was cloned and sequenced. The predicted gene product of one of the two open reading frames identified on the sequenced fragment shows homology to FixN of different Rhizobiaceae as well as a low but significant similarity to subunit I of heme copper oxidases from various bacteria. The presence of five strictly conserved histidine residues previously implicated in forming ligands to heme and CuB in oxidases and the predicted membrane topology provide evidence that the A. tumefaciens fixN-like gene product is a component of the heme copper oxidase superfamily. The incomplete open reading frame starting only 8 nucleotides downstream of the fixN-like gene exhibits homology to Rhizobium fixO. Using an uidA (GUS) gene fusion it could be shown that the A. tumefaciens fixN-like gene is preferentially expressed under microaerobic conditions. Expression of the uidA fusion is abolished in R. meliloti fixJ and fixK mutants, indicating that an Fnr-like protein is involved in transcriptional regulation of the fixN-like gene in A. tumefaciens. The presence of an upstream DNA sequence motif identical to the Fnr-consensus binding site (anaerobox) further supports this hypothesis. A. tumefaciens mutated in the fixN-like gene shows decreased TMPD-specific oxidase activity under microaerobic conditions, indicating that the fixN-like gene or operon codes for proteins involved in respiration under reduced oxygen availability.
Collapse
Affiliation(s)
- A Schlüter
- Okologie des Bodens, Botanisches Institut, RWTH Aachen, Germany
| | | | | | | | | |
Collapse
|
42
|
Moënne-Loccoz Y, Baldani J, Weaver R. Sequential heat-curing of Tn5-Mob-sac labelled plasmids from Rhizobium to obtain derivatives with various combinations of plasmids and no plasmid. Lett Appl Microbiol 1995. [DOI: 10.1111/j.1472-765x.1995.tb00420.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Ritsema T, Geiger O, van Dillewijn P, Lugtenberg BJ, Spaink HP. Serine residue 45 of nodulation protein NodF from Rhizobium leguminosarum bv. viciae is essential for its biological function. J Bacteriol 1994; 176:7740-3. [PMID: 8002602 PMCID: PMC197235 DOI: 10.1128/jb.176.24.7740-7743.1994] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A system for testing the role of the Rhizobium nodF gene in the production of host-specific lipochitin oligosaccharides and in nodulation was developed. We show that a mutant nodF gene, in which the codon for serine residue 45 was changed to that for threonine, still expresses NodF, which, however, is no longer functional.
Collapse
Affiliation(s)
- T Ritsema
- Clusius Laboratory, Institute of Molecular Plant Sciences, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
44
|
|
45
|
Leung K, Strain SR, de Bruijn FJ, Bottomley PJ. Genotypic and Phenotypic Comparisons of Chromosomal Types within an Indigenous Soil Population of
Rhizobium leguminosarum
bv. trifolii. Appl Environ Microbiol 1994; 60:416-26. [PMID: 16349171 PMCID: PMC201329 DOI: 10.1128/aem.60.2.416-426.1994] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The relative genetic similarities of 200 isolates of
Rhizobium leguminosarum
bv. trifolii recovered from an Oregon soil were determined at 13 enzyme loci by multilocus enzyme electrophoresis (MLEE). These isolates represented 13 antigenically distinct serotypes recovered from nodules formed on various clover species. The MLEE-derived levels of relatedness among isolates of
R. leguminosarum
bv. trifolii were found to be in good agreement with the levels of relatedness established by using repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the PCR technique and with levels of relatedness from previously published DNA reassociation studies. BIOLOG substrate utilization patterns showed that isolates within an electrophoretic type (ET) were phenotypically more similar to each other than to isolates of other ETs. The soil isolates were represented by 53 ETs which could be clustered into seven groups (groups B, E, G, H1, H2, I, and J). Evidence for multilocus structure within the population was obtained, and group B was identified as the primary creator of the disequilibrium. Of 75 isolates belonging to the nodule-dominant serotype AS6 complex, 72 were found in group B. Isolates WS2-01 and WS2-02 representing nodule-dominant serotypes recovered from subclover grown at another Oregon site were also found in group B. Isolates representing the most numerous ETs in group B (ETs 2 and 3) were either suboptimally effective or completely ineffective at fixing nitrogen on six different clover species. Another four groups of isolates (groups A, C, D, and F) were identified when 32 strains of diverse origins were analyzed by MLEE and incorporated into the cluster analysis. Group A was most dissimilar in comparisons with other groups and contained strain USDA 2124 (T24), which produces trifolitoxin and has unique symbiotic characteristics.
Collapse
Affiliation(s)
- K Leung
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331-3804
| | | | | | | |
Collapse
|
46
|
Swart S, Smit G, Lugtenberg BJ, Kijne JW. Restoration of attachment, virulence and nodulation of Agrobacterium tumefaciens chvB mutants by rhicadhesin. Mol Microbiol 1993; 10:597-605. [PMID: 7968537 DOI: 10.1111/j.1365-2958.1993.tb00931.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In contrast to wild-type Agrobacterium tumefaciens strains, beta-1,2-glucan-deficient chvB mutants were found to be unable to attach to pea root hair tips. The mutants appeared to produce rhicadhesin, the protein that mediates the first step in attachment of Rhizobiaceae cells to plant root hairs, but the protein was inactive. Both attachment to root hairs and virulence of the chvB mutants could be restored by treatment of the plants with active rhicadhesin, whereas treatment of plants with beta-1,2-glucan had no effect on attachment or virulence. Moreover, nodulation ability of a chvB mutant carrying a Sym plasmid could be restored by pretreatment of the host plant with rhicadhesin. Apparently the attachment-minus and avirulence phenotype of chvB mutants is caused by lack of active rhicadhesin, rather than directly being caused by a deficiency in beta-1,2-glucan synthesis. The results strongly suggest that rhicadhesin is essential for attachment and virulence of A. tumefaciens cells. They also indicate that the mechanisms of binding of Agrobacterium and Rhizobium bacteria to plant target cells are similar, despite differences between these target cells.
Collapse
Affiliation(s)
- S Swart
- Institute of Molecular Plant Sciences, Leiden University, The Netherlands
| | | | | | | |
Collapse
|
47
|
Breedveld MW, Cremers HC, Batley M, Posthumus MA, Zevenhuizen LP, Wijffelman CA, Zehnder AJ. Polysaccharide synthesis in relation to nodulation behavior of Rhizobium leguminosarum. J Bacteriol 1993; 175:750-7. [PMID: 8423148 PMCID: PMC196214 DOI: 10.1128/jb.175.3.750-757.1993] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In this study, we characterized four Tn5 mutants derived from Rhizobium leguminosarum RBL5515 with respect to synthesis and secretion of cellulose fibrils, extracellular polysaccharides (EPS), capsular polysaccharides, and cyclic beta-(1,2)-glucans. One mutant, strain RBL5515 exo-344::Tn5, synthesizes residual amounts of EPS, the repeating unit of which lacks the terminal galactose molecule and the substituents attached to it. On basis of the polysaccharide production pattern of strain RBL5515 exo-344::Tn5, the structural features of the polysaccharides synthesized, and the results of an analysis of the enzyme activities involved, we hypothesize that this strain is affected in a galactose transferase involved in the synthesis of EPS only. All four mutants failed to nodulate plants belonging to the pea cross-inoculation group; on Vicia sativa they induced root hair deformation and rare abortive infection threads. All of the mutants appeared to be pleiotropic, since in addition to defects in the synthesis of EPS, lipopolysaccharide, and/or capsular polysaccharides significant increases in the synthesis and secretion of cyclic beta-(1,2)-glucans were observed. We concluded that it is impossible to correlate a defect in the synthesis of a particular polysaccharide with nodulation characteristics.
Collapse
Affiliation(s)
- M W Breedveld
- Department of Microbiology, Agricultural University, Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
48
|
Smit G, Swart S, Lugtenberg BJ, Kijne JW. Molecular mechanisms of attachment of Rhizobium bacteria to plant roots. Mol Microbiol 1992; 6:2897-903. [PMID: 1479881 DOI: 10.1111/j.1365-2958.1992.tb01748.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Attachment of bacteria to plant cells is one of the earliest steps in many plant-bacterium interactions. This review covers the current knowledge on one of the best-studied examples of bacterium-plant attachment, namely the molecular mechanism by which Rhizobium bacteria adhere to plant roots. Despite differences in several studies with regard to growth conditions of bacteria and plants and to methods used for measuring attachment, an overall consensus can be drawn from the available data. Rhizobial attachment to plant root hairs appears to be a two-step process. A bacterial Ca(2+)-binding protein, designated as rhicadhesin, is involved in direct attachment of bacteria to the surface of the root hair cell. Besides this step, there is another step which results mainly in accumulation and anchoring of the bacteria to the surface of the root hair. This leads to so-called firm attachment. Depending on the growth conditions of the bacteria, the latter step is mediated by plant lectins and/or by bacterial appendages such as cellulose fibrils and fimbriae. The possible role of these adhesions in root nodule formation is discussed.
Collapse
Affiliation(s)
- G Smit
- Institute of Molecular Plant Sciences, Leiden University, The Netherlands
| | | | | | | |
Collapse
|
49
|
Baldani JI, Weaver RW, Hynes MF, Eardly BD. Utilization of Carbon Substrates, Electrophoretic Enzyme Patterns, and Symbiotic Performance of Plasmid-Cured Clover Rhizobia. Appl Environ Microbiol 1992; 58:2308-14. [PMID: 16348739 PMCID: PMC195773 DOI: 10.1128/aem.58.7.2308-2314.1992] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmids in
Rhizobium
spp. are relatively large, numerous, and difficult to cure. Except for the symbiotic plasmid, little is known about their functions. The primary objective of our investigation was to obtain plasmid-cured derivatives of
Rhizobium leguminosarum
bv. trifolii by using a direct selection system and to determine changes in the phenotype of the cured strains. Three strains of rhizobia were utilized that contained three, four, and five plasmids. Phenotypic effects observed after curing of plasmids indicated that the plasmids were involved in the utilization of adonitol, arabinose, catechol, glycerol, inositol, lactose, malate, rhamnose, and sorbitol and also influenced motility, lipopolysaccharide production, and utilization of nitrate. Specific staining of 26 enzymes electrophoretically separated on starch gels indicated that superoxide dismutase, hexokinase, and carbamate kinase activities were affected by curing of plasmids. Curing of cryptic plasmids also influenced nodulation and growth of plants on nitrogen-deficient media. The alteration in the ability to utilize various substrates after curing of plasmids suggests that the plasmids may encode genes that contribute significantly to the saprophytic competence of rhizobia in soil.
Collapse
Affiliation(s)
- J I Baldani
- Department of Soil & Crop Sciences, Texas A&M University, College Station, Texas 77843; Department of Biological Sciences, University of Calgary, Calgary, Canada T2N 1N4 ; and Pennsylvania State University, Berks Campus, Reading, Pennsylvania 19610
| | | | | | | |
Collapse
|
50
|
Novikova N, Safronova V. Transconjugants ofAgrobacterium radiobacterharbouring sym genes ofRhizobium galegaecan form an effective symbiosis withMedicago sativa. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05107.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|