1
|
Law CT, Burns KH. Comparative Genomics Reveals LINE-1 Recombination with Diverse RNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.02.635956. [PMID: 39975348 PMCID: PMC11838501 DOI: 10.1101/2025.02.02.635956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Long interspersed element-1 (LINE-1, L1) retrotransposons are the most abundant protein-coding transposable elements (TE) in mammalian genomes, and have shaped genome content over 170 million years of evolution. LINE-1 is self-propagating and mobilizes other sequences, including Alu elements. Occasionally, LINE-1 forms chimeric insertions with non-coding RNAs and mRNAs. U6 spliceosomal small nuclear RNA/LINE-1 chimeras are best known, though there are no comprehensive catalogs of LINE-1 chimeras. To address this, we developed TiMEstamp, a computational pipeline that leverages multiple sequence alignments (MSA) to estimate the age of LINE-1 insertions and identify candidate chimeric insertions where an adjacent sequence arrives contemporaneously. Candidates were refined by detecting hallmark features of L1 retrotransposition, such as target site duplication (TSD). Applying this pipeline to the human genome, we recovered all known species of LINE-1 chimeras and discovered new chimeric insertions involving small RNAs, Alu elements, and mRNA fragments. Some insertions are compatible with known mechanisms, such as RNA ligation. Other structures nominate novel mechanisms, such as trans-splicing. We also see evidence that LINE-1 loci with defunct promoters can acquire regulatory elements from nearby genes to restore retrotransposition activity. These discoveries highlight the recombinatory potential of LINE-1 RNA with implications for genome evolution and TE domestication.
Collapse
Affiliation(s)
- Cheuk-Ting Law
- Corresponding authors: Cheuk-Ting Law (), Kathleen H. Burns ()
| | | |
Collapse
|
2
|
Choi JD, Del Pinto LA, Sutter NB. SINE retrotransposons import polyadenylation signals to 3'UTRs in dog (Canis familiaris). Mob DNA 2025; 16:1. [PMID: 39755632 DOI: 10.1186/s13100-024-00338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Messenger RNA 3' untranslated regions (3'UTRs) control many aspects of gene expression and determine where the transcript will terminate. The polyadenylation signal (PAS) AAUAAA (AATAAA in DNA) is a key regulator of transcript termination and this hexamer, or a similar sequence, is very frequently found within 30 bp of 3'UTR ends. Short interspersed element (SINE) retrotransposons are found throughout genomes in high copy numbers. When inserted into genes they can disrupt expression, alter splicing, or cause nuclear retention of mRNAs. The genomes of the domestic dog and other carnivores carry hundreds of thousands of Can-SINEs, a tRNA-related SINE with transcription termination potential. Because of this we asked whether Can-SINEs may terminate transcript in some dog genes. RESULTS Each of the dog's nine Can-SINE consensus sequences carry an average of three AATAAA PASs on their sense strands but zero on their antisense strands. Consistent with the idea that Can-SINEs can terminate transcripts, we find that sense-oriented Can-SINEs are approximately ten times more frequent at 3' ends of 3'UTRs compared to further upstream within 3'UTRs. Furthermore, the count of AATAAA PASs on head-to-tail SINE sequences differs significantly between sense and antisense-oriented retrotransposons in transcripts. Can-SINEs near 3'UTR ends are likely to carry an AATAAA motif on the mRNA sense strand while those further upstream are not. We identified loci where Can-SINE insertion has truncated or altered a 3'UTR of the dog genome (dog 3'UTR) compared to the human ortholog. Dog 3'UTRs have peaks of AATAAA PAS frequency at 28, 32, and 36 bp from the end. The periodicity is partly explained by TAAA(n) repeats within Can-SINE AT-rich tails. We annotated all repeat-masked Can-SINE copies in the Boxer reference genome and found that the young SINEC_Cf type has a mode of 15 bp length for target site duplications (TSDs). All dog Can-SINE types favor integration at TSDs beginning with A(4). CONCLUSION Dog Can-SINE retrotransposition has imported AATAAA PASs into gene transcripts and led to alteration of 3'UTRs. AATAAA sequences are selectively removed from Can-SINEs in introns and upstream 3'UTR regions but are retained at the far downstream end of 3'UTRs, which we infer reflects their role as termination sequences for these transcripts.
Collapse
Affiliation(s)
- Jessica D Choi
- Department of Biology, La Sierra University, Riverside, CA, USA.
- The Jackson Laboratory, Bar Harbor, ME, USA.
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.
| | | | - Nathan B Sutter
- Department of Biology, La Sierra University, Riverside, CA, USA
| |
Collapse
|
3
|
Moldovan JB, Kopera HC, Liu Y, Garcia-Canadas M, Catalina P, Leone P, Sanchez L, Kitzman J, Kidd J, Garcia-Perez J, Moran J. Variable patterns of retrotransposition in different HeLa strains provide mechanistic insights into SINE RNA mobilization processes. Nucleic Acids Res 2024; 52:7761-7779. [PMID: 38850156 PMCID: PMC11260458 DOI: 10.1093/nar/gkae448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/10/2024] Open
Abstract
Alu elements are non-autonomous Short INterspersed Elements (SINEs) derived from the 7SL RNA gene that are present at over one million copies in human genomic DNA. Alu mobilizes by a mechanism known as retrotransposition, which requires the Long INterspersed Element-1 (LINE-1) ORF2-encoded protein (ORF2p). Here, we demonstrate that HeLa strains differ in their capacity to support Alu retrotransposition. Human Alu elements retrotranspose efficiently in HeLa-HA and HeLa-CCL2 (Alu-permissive) strains, but not in HeLa-JVM or HeLa-H1 (Alu-nonpermissive) strains. A similar pattern of retrotransposition was observed for other 7SL RNA-derived SINEs and tRNA-derived SINEs. In contrast, mammalian LINE-1s, a zebrafish LINE, a human SINE-VNTR-Alu (SVA) element, and an L1 ORF1-containing mRNA can retrotranspose in all four HeLa strains. Using an in vitro reverse transcriptase-based assay, we show that Alu RNAs associate with ORF2p and are converted into cDNAs in both Alu-permissive and Alu-nonpermissive HeLa strains, suggesting that 7SL- and tRNA-derived SINEs use strategies to 'hijack' L1 ORF2p that are distinct from those used by SVA elements and ORF1-containing mRNAs. These data further suggest ORF2p associates with the Alu RNA poly(A) tract in both Alu-permissive and Alu-nonpermissive HeLa strains, but that Alu retrotransposition is blocked after this critical step in Alu-nonpermissive HeLa strains.
Collapse
Affiliation(s)
- John B Moldovan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Huira C Kopera
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ying Liu
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marta Garcia-Canadas
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada 18016, Spain
| | | | - Paola E Leone
- Genetics and Genomics Laboratory, SOLCA Hospital, Quito, Ecuador
| | - Laura Sanchez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada 18016, Spain
| | - Jacob O Kitzman
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jose Luis Garcia-Perez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada 18016, Spain
| | - John V Moran
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Moldovan JB, Kopera HC, Liu Y, Garcia-Canadas M, Catalina P, Leone PE, Sanchez L, Kitzman JO, Kidd JM, Garcia-Perez JL, Moran JV. Variable patterns of retrotransposition in different HeLa strains provide mechanistic insights into SINE RNA mobilization processes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592410. [PMID: 38746229 PMCID: PMC11092746 DOI: 10.1101/2024.05.03.592410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Alu elements are non-autonomous Short INterspersed Elements (SINEs) derived from the 7SL RNA gene that are present at over one million copies in human genomic DNA. Alu mobilizes by a mechanism known as retrotransposition, which requires the Long INterspersed Element-1 (LINE-1 or L1) ORF2 -encoded protein (ORF2p). Here, we demonstrate that HeLa strains differ in their capacity to support Alu retrotransposition. Human Alu elements retrotranspose efficiently in HeLa-HA and HeLa-CCL2 ( Alu -permissive) strains, but not in HeLa-JVM or HeLa-H1 ( Alu -nonpermissive) strains. A similar pattern of retrotransposition was observed for other 7SL RNA -derived SINEs and tRNA -derived SINEs. In contrast, mammalian LINE-1s, a zebrafish LINE, a human SINE-VNTR - Alu ( SVA ) element, and an L1 ORF1 -containing messenger RNA can retrotranspose in all four HeLa strains. Using an in vitro reverse transcriptase-based assay, we show that Alu RNAs associate with ORF2p and are converted into cDNAs in both Alu -permissive and Alu -nonpermissive HeLa strains, suggesting that 7SL - and tRNA -derived SINE RNAs use strategies to 'hijack' L1 ORF2p that are distinct from those used by SVA elements and ORF1 -containing mRNAs. These data further suggest ORF2p associates with the Alu RNA poly(A) tract in both Alu -permissive and Alu -nonpermissive HeLa strains, but that Alu retrotransposition is blocked after this critical step in Alu -nonpermissive HeLa strains.
Collapse
|
5
|
Le Breton A, Bettencourt MP, Gendrel AV. Navigating the brain and aging: exploring the impact of transposable elements from health to disease. Front Cell Dev Biol 2024; 12:1357576. [PMID: 38476259 PMCID: PMC10927736 DOI: 10.3389/fcell.2024.1357576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that constitute on average 45% of mammalian genomes. Their presence and activity in genomes represent a major source of genetic variability. While this is an important driver of genome evolution, TEs can also have deleterious effects on their hosts. A growing number of studies have focused on the role of TEs in the brain, both in physiological and pathological contexts. In the brain, their activity is believed to be important for neuronal plasticity. In neurological and age-related disorders, aberrant activity of TEs may contribute to disease etiology, although this remains unclear. After providing a comprehensive overview of transposable elements and their interactions with the host, this review summarizes the current understanding of TE activity within the brain, during the aging process, and in the context of neurological and age-related conditions.
Collapse
Affiliation(s)
| | | | - Anne-Valerie Gendrel
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
6
|
Lari A, Glaunsinger BA. Murine Gammaherpesvirus 68 ORF45 Stimulates B2 Retrotransposon and Pre-tRNA Activation in a Manner Dependent on Mitogen-Activated Protein Kinase (MAPK) Signaling. Microbiol Spectr 2023; 11:e0017223. [PMID: 36752632 PMCID: PMC10100704 DOI: 10.1128/spectrum.00172-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 02/09/2023] Open
Abstract
RNA polymerase III (RNAPIII) transcribes a variety of noncoding RNAs, including tRNA (tRNA) and the B2 family of short interspersed nuclear elements (SINEs). B2 SINEs are noncoding retrotransposons that possess tRNA-like promoters and are normally silenced in healthy somatic tissue. Infection with the murine gammaherpesvirus MHV68 induces transcription of both SINEs and tRNAs, in part through the activity of the viral protein kinase ORF36. Here, we identify the conserved MHV68 tegument protein ORF45 as an additional activator of these RNAPIII loci. MHV68 ORF45 and ORF36 form a complex, resulting in an additive induction RNAPIII and increased ORF45 expression. ORF45-induced RNAPIII transcription is dependent on its activation of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) signaling pathway, which in turn increases the abundance of the RNAPIII transcription factor Brf1. Other viral and nonviral activators of MAPK/ERK signaling also increase the levels of Brf1 protein, B2 SINE RNA, and tRNA, suggesting that this is a common strategy to increase RNAPIII activity. IMPORTANCE Gammaherpesviral infection alters the gene expression landscape of a host cell, including through the induction of noncoding RNAs transcribed by RNA polymerase III (RNAPIII). Among these are a class of repetitive genes known as retrotransposons, which are normally silenced elements and can copy and spread throughout the genome, and transfer RNAs (tRNAs), which are fundamental components of protein translation machinery. How these loci are activated during infection is not well understood. Here, we identify ORF45 from the model murine gammaherpesvirus MHV68 as a novel activator of RNAPIII transcription. To do so, it engages the MAPK/ERK signaling pathway, which is a central regulator of cellular response to environmental stimuli. Activation of this pathway leads to the upregulation of a key factor required for RNAPIII activity, Brf1. These findings expand our understanding of the regulation and dysregulation of RNAPIII transcription and highlight how viral cooption of key signaling pathways can impact host gene expression.
Collapse
Affiliation(s)
- Azra Lari
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Britt A. Glaunsinger
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
- Howard Hughes Medical Institute, Berkeley, California, USA
| |
Collapse
|
7
|
SINEs as Credible Signs to Prove Common Ancestry in the Tree of Life: A Brief Review of Pioneering Case Studies in Retroposon Systematics. Genes (Basel) 2022; 13:genes13060989. [PMID: 35741751 PMCID: PMC9223172 DOI: 10.3390/genes13060989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/28/2022] [Accepted: 05/28/2022] [Indexed: 12/31/2022] Open
Abstract
Currently, the insertions of SINEs (and other retrotransposed elements) are regarded as one of the most reliable synapomorphies in molecular systematics. The methodological mainstream of molecular systematics is the calculation of nucleotide (or amino acid) sequence divergences under a suitable substitution model. In contrast, SINE insertion analysis does not require any complex model because SINE insertions are unidirectional and irreversible. This straightforward methodology was named the “SINE method,” which resolved various taxonomic issues that could not be settled by sequence comparison alone. The SINE method has challenged several traditional hypotheses proposed based on the fossil record and anatomy, prompting constructive discussions in the Evo/Devo era. Here, we review our pioneering SINE studies on salmon, cichlids, cetaceans, Afrotherian mammals, and birds. We emphasize the power of the SINE method in detecting incomplete lineage sorting by tracing the genealogy of specific genomic loci with minimal noise. Finally, in the context of the whole-genome era, we discuss how the SINE method can be applied to further our understanding of the tree of life.
Collapse
|
8
|
Chan PP, Lin BY, Mak AJ, Lowe TM. tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. Nucleic Acids Res 2021; 49:9077-9096. [PMID: 34417604 PMCID: PMC8450103 DOI: 10.1093/nar/gkab688] [Citation(s) in RCA: 761] [Impact Index Per Article: 190.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
tRNAscan-SE has been widely used for transfer RNA (tRNA) gene prediction for over twenty years, developed just as the first genomes were decoded. With the massive increase in quantity and phylogenetic diversity of genomes, the accurate detection and functional prediction of tRNAs has become more challenging. Utilizing a vastly larger training set, we created nearly one hundred specialized isotype- and clade-specific models, greatly improving tRNAscan-SE’s ability to identify and classify both typical and atypical tRNAs. We employ a new comparative multi-model strategy where predicted tRNAs are scored against a full set of isotype-specific covariance models, allowing functional prediction based on both the anticodon and the highest-scoring isotype model. Comparative model scoring has also enhanced the program's ability to detect tRNA-derived SINEs and other likely pseudogenes. For the first time, tRNAscan-SE also includes fast and highly accurate detection of mitochondrial tRNAs using newly developed models. Overall, tRNA detection sensitivity and specificity is improved for all isotypes, particularly those utilizing specialized models for selenocysteine and the three subtypes of tRNA genes encoding a CAU anticodon. These enhancements will provide researchers with more accurate and detailed tRNA annotation for a wider variety of tRNAs, and may direct attention to tRNAs with novel traits.
Collapse
Affiliation(s)
- Patricia P Chan
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Brian Y Lin
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Allysia J Mak
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, USA
| | - Todd M Lowe
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
9
|
Ichiyanagi T, Katoh H, Mori Y, Hirafuku K, Boyboy BA, Kawase M, Ichiyanagi K. B2 SINE Copies Serve as a Transposable Boundary of DNA Methylation and Histone Modifications in the Mouse. Mol Biol Evol 2021; 38:2380-2395. [PMID: 33592095 PMCID: PMC8136502 DOI: 10.1093/molbev/msab033] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
More than one million copies of short interspersed elements (SINEs), a class of retrotransposons, are present in the mammalian genomes, particularly within gene-rich genomic regions. Evidence has accumulated that ancient SINE sequences have acquired new binding sites for transcription factors (TFs) through multiple mutations following retrotransposition, and as a result have rewired the host regulatory network during the course of evolution. However, it remains unclear whether currently active SINEs contribute to the expansion of TF binding sites. To study the mobility, expression, and function of SINE copies, we first identified about 2,000 insertional polymorphisms of SINE B1 and B2 families within Mus musculus. Using a novel RNA sequencing method designated as melRNA-seq, we detected the expression of SINEs in male germ cells at both the subfamily and genomic copy levels: the vast majority of B1 RNAs originated from evolutionarily young subfamilies, whereas B2 RNAs originated from both young and old subfamilies. DNA methylation and chromatin immunoprecipitation-sequencing (ChIP-seq) analyses in liver revealed that polymorphic B2 insertions served as a boundary element inhibiting the expansion of DNA hypomethylated and histone hyperacetylated regions, and decreased the expression of neighboring genes. Moreover, genomic B2 copies were enriched at the boundary of various histone modifications, and chromatin insulator protein, CCCTC-binding factor, a well-known chromatin boundary protein, bound to >100 polymorphic and >10,000 non-polymorphic B2 insertions. These results suggest that the currently active B2 copies are mobile boundary elements that can modulate chromatin modifications and gene expression, and are likely involved in epigenomic and phenotypic diversification of the mouse species.
Collapse
Affiliation(s)
- Tomoko Ichiyanagi
- Laboratory of Genome and Epigenome Dynamics, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hirokazu Katoh
- Laboratory of Genome and Epigenome Dynamics, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshinobu Mori
- Laboratory of Genome and Epigenome Dynamics, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Keigo Hirafuku
- The Jikei University Hospital, Minato-ku, Tokyo 105-8471, Japan
| | - Beverly Ann Boyboy
- Laboratory of Genome and Epigenome Dynamics, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Masaki Kawase
- Laboratory of Genome and Epigenome Dynamics, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Kenji Ichiyanagi
- Laboratory of Genome and Epigenome Dynamics, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
10
|
Lata E, Choquet K, Sagliocco F, Brais B, Bernard G, Teichmann M. RNA Polymerase III Subunit Mutations in Genetic Diseases. Front Mol Biosci 2021; 8:696438. [PMID: 34395528 PMCID: PMC8362101 DOI: 10.3389/fmolb.2021.696438] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
RNA polymerase (Pol) III transcribes small untranslated RNAs such as 5S ribosomal RNA, transfer RNAs, and U6 small nuclear RNA. Because of the functions of these RNAs, Pol III transcription is best known for its essential contribution to RNA maturation and translation. Surprisingly, it was discovered in the last decade that various inherited mutations in genes encoding nine distinct subunits of Pol III cause tissue-specific diseases rather than a general failure of all vital functions. Mutations in the POLR3A, POLR3C, POLR3E and POLR3F subunits are associated with susceptibility to varicella zoster virus-induced encephalitis and pneumonitis. In addition, an ever-increasing number of distinct mutations in the POLR3A, POLR3B, POLR1C and POLR3K subunits cause a spectrum of neurodegenerative diseases, which includes most notably hypomyelinating leukodystrophy. Furthermore, other rare diseases are also associated with mutations in genes encoding subunits of Pol III (POLR3H, POLR3GL) and the BRF1 component of the TFIIIB transcription initiation factor. Although the causal relationship between these mutations and disease development is widely accepted, the exact molecular mechanisms underlying disease pathogenesis remain enigmatic. Here, we review the current knowledge on the functional impact of specific mutations, possible Pol III-related disease-causing mechanisms, and animal models that may help to better understand the links between Pol III mutations and disease.
Collapse
Affiliation(s)
- Elisabeth Lata
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| | - Karine Choquet
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Francis Sagliocco
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| | - Bernard Brais
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Geneviève Bernard
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, QC, Canada
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Martin Teichmann
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| |
Collapse
|
11
|
Ohyama T, Takahashi H, Sharma H, Yamazaki T, Gustincich S, Ishii Y, Carninci P. An NMR-based approach reveals the core structure of the functional domain of SINEUP lncRNAs. Nucleic Acids Res 2020; 48:9346-9360. [PMID: 32697302 PMCID: PMC7498343 DOI: 10.1093/nar/gkaa598] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are attracting widespread attention for their emerging regulatory, transcriptional, epigenetic, structural and various other functions. Comprehensive transcriptome analysis has revealed that retrotransposon elements (REs) are transcribed and enriched in lncRNA sequences. However, the functions of lncRNAs and the molecular roles of the embedded REs are largely unknown. The secondary and tertiary structures of lncRNAs and their embedded REs are likely to have essential functional roles, but experimental determination and reliable computational prediction of large RNA structures have been extremely challenging. We report here the nuclear magnetic resonance (NMR)-based secondary structure determination of the 167-nt inverted short interspersed nuclear element (SINE) B2, which is embedded in antisense Uchl1 lncRNA and upregulates the translation of sense Uchl1 mRNAs. By using NMR 'fingerprints' as a sensitive probe in the domain survey, we successfully divided the full-length inverted SINE B2 into minimal units made of two discrete structured domains and one dynamic domain without altering their original structures after careful boundary adjustments. This approach allowed us to identify a structured domain in nucleotides 31-119 of the inverted SINE B2. This approach will be applicable to determining the structures of other regulatory lncRNAs.
Collapse
Affiliation(s)
- Takako Ohyama
- NMR Division, RIKEN SPring-8 Center (RSC), RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Hazuki Takahashi
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Harshita Sharma
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Toshio Yamazaki
- NMR Division, RIKEN SPring-8 Center (RSC), RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Stefano Gustincich
- Central RNA Laboratory, Instituto Italiano di Tecnologia (IIT), 16163 Genova, Italy
| | - Yoshitaka Ishii
- NMR Division, RIKEN SPring-8 Center (RSC), RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Piero Carninci
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
12
|
Kojima KK. Structural and sequence diversity of eukaryotic transposable elements. Genes Genet Syst 2019; 94:233-252. [DOI: 10.1266/ggs.18-00024] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Kenji K. Kojima
- Genetic Information Research Institute
- Department of Life Sciences, National Cheng Kung University
| |
Collapse
|
13
|
Evaluating the applicability of mouse SINEs as an alternative normalization approach for RT-qPCR in brain tissue of the APP23 model for Alzheimer’s disease. J Neurosci Methods 2019; 320:128-137. [DOI: 10.1016/j.jneumeth.2019.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 01/04/2023]
|
14
|
Abstract
Transfer RNAs are the largest, most complex non-coding RNA family, universal to all living organisms. tRNAscan-SE has been the de facto tool for predicting tRNA genes in whole genomes. The newly developed version 2.0 has incorporated advanced methodologies with improved probabilistic search software and a suite of new gene models, enabling better functional classification of predicted genes. This chapter describes the use of the UNIX command-driven and online web versions, illustrating different search modes and options.
Collapse
Affiliation(s)
- Patricia P Chan
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Todd M Lowe
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
15
|
Structural determinants of the SINE B2 element embedded in the long non-coding RNA activator of translation AS Uchl1. Sci Rep 2018; 8:3189. [PMID: 29453387 PMCID: PMC5816658 DOI: 10.1038/s41598-017-14908-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/18/2017] [Indexed: 12/22/2022] Open
Abstract
Pervasive transcription of mammalian genomes leads to a previously underestimated level of complexity in gene regulatory networks. Recently, we have identified a new functional class of natural and synthetic antisense long non-coding RNAs (lncRNA) that increases translation of partially overlapping sense mRNAs. These molecules were named SINEUPs, as they require an embedded inverted SINE B2 element for their UP-regulation of translation. Mouse AS Uchl1 is the representative member of natural SINEUPs. It was originally discovered for its role in increasing translation of Uchl1 mRNA, a gene associated with neurodegenerative diseases. Here we present the secondary structure of the SINE B2 Transposable Element (TE) embedded in AS Uchl1. We find that specific structural regions, containing a short hairpin, are required for the ability of AS Uchl1 RNA to increase translation of its target mRNA. We also provide a high-resolution structure of the relevant hairpin, based on NMR observables. Our results highlight the importance of structural determinants in embedded TEs for their activity as functional domains in lncRNAs.
Collapse
|
16
|
Dunker W, Zhao Y, Song Y, Karijolich J. Recognizing the SINEs of Infection: Regulation of Retrotransposon Expression and Modulation of Host Cell Processes. Viruses 2017; 9:v9120386. [PMID: 29258254 PMCID: PMC5744160 DOI: 10.3390/v9120386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/12/2017] [Accepted: 12/17/2017] [Indexed: 12/16/2022] Open
Abstract
Short interspersed elements (SINEs) are a family of retrotransposons evolutionarily derived from cellular RNA polymerase III transcripts. Over evolutionary time, SINEs have expanded throughout the human genome and today comprise ~11% of total chromosomal DNA. While generally transcriptionally silent in healthy somatic cells, SINE expression increases during a variety of types of stresses, including DNA virus infection. The relevance of SINE expression to viral infection was largely unexplored, however, recent years have seen great progress towards defining the impact of SINE expression on viral replication and host gene expression. Here we review the origin and diversity of SINE elements and their transcriptional control, with an emphasis on how their expression impacts host cell biology during viral infection.
Collapse
Affiliation(s)
- William Dunker
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA.
| | - Yang Zhao
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA.
| | - Yu Song
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA.
- College of Pharmacy, Xinxiang Medical University, Xingxiang 453000, China.
| | - John Karijolich
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA.
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232-2363, USA.
| |
Collapse
|
17
|
Abstract
Our genomes are dominated by repetitive elements. The majority of these elements derive from retrotransposons, which expand throughout the genome through a process of reverse transcription and integration. Short interspersed nuclear elements, or SINEs, are an abundant class of retrotransposons that are transcribed by RNA polymerase III, thus generating exclusively noncoding RNA (ncRNA) that must hijack the machinery required for their transposition. SINE loci are generally transcriptionally repressed in somatic cells but can be robustly induced upon infection with multiple DNA viruses. Recent research has focused on the gene expression and signaling events that are modulated by SINE ncRNAs, particularly during gammaherpesvirus infection. Here, we review the biology of these SINE ncRNAs, explore how DNA virus infection may lead to their induction, and describe how novel gene regulatory and immune-related functions of these ncRNAs may impact the viral life cycle.
Collapse
|
18
|
Karijolich J, Zhao Y, Alla R, Glaunsinger B. Genome-wide mapping of infection-induced SINE RNAs reveals a role in selective mRNA export. Nucleic Acids Res 2017; 45:6194-6208. [PMID: 28334904 PMCID: PMC5449642 DOI: 10.1093/nar/gkx180] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 03/08/2017] [Indexed: 12/11/2022] Open
Abstract
Short interspersed nuclear elements (SINEs) are retrotransposons evolutionarily derived from endogenous RNA Polymerase III RNAs. Though SINE elements have undergone exaptation into gene regulatory elements, how transcribed SINE RNA impacts transcriptional and post-transcriptional regulation is largely unknown. This is partly due to a lack of information regarding which of the loci have transcriptional potential. Here, we present an approach (short interspersed nuclear element sequencing, SINE-seq), which selectively profiles RNA Polymerase III-derived SINE RNA, thereby identifying transcriptionally active SINE loci. Applying SINE-seq to monitor murine B2 SINE expression during a gammaherpesvirus infection revealed transcription from 28 270 SINE loci, with ∼50% of active SINE elements residing within annotated RNA Polymerase II loci. Furthermore, B2 RNA can form intermolecular RNA–RNA interactions with complementary mRNAs, leading to nuclear retention of the targeted mRNA via a mechanism involving p54nrb. These findings illuminate a pathway for the selective regulation of mRNA export during stress via retrotransposon activation.
Collapse
Affiliation(s)
- John Karijolich
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720-3370, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3370, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232-2363, USA
| | - Yang Zhao
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232-2363, USA
| | - Ravi Alla
- California Institute for Quantitative Biology, University of California, Berkeley, CA 94720-3370, USA
| | - Britt Glaunsinger
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720-3370, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3370, USA.,California Institute for Quantitative Biology, University of California, Berkeley, CA 94720-3370, USA
| |
Collapse
|
19
|
Ustyantsev IG, Golubchikova JS, Borodulina OR, Kramerov DA. Canonical and noncanonical RNA polyadenylation. Mol Biol 2017. [DOI: 10.1134/s0026893317010186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Ghanbarian H, Wagner N, Polo B, Baudouy D, Kiani J, Michiels JF, Cuzin F, Rassoulzadegan M, Wagner KD. Dnmt2/Trdmt1 as Mediator of RNA Polymerase II Transcriptional Activity in Cardiac Growth. PLoS One 2016; 11:e0156953. [PMID: 27270731 PMCID: PMC4894585 DOI: 10.1371/journal.pone.0156953] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/23/2016] [Indexed: 01/04/2023] Open
Abstract
Dnmt2/Trdmt1 is a methyltransferase, which has been shown to methylate tRNAs. Deficient mutants were reported to exhibit various, seemingly unrelated, defects in development and RNA-mediated epigenetic heredity. Here we report a role in a distinct developmental regulation effected by a noncoding RNA. We show that Dnmt2-deficiency in mice results in cardiac hypertrophy. Echocardiographic measurements revealed that cardiac function is preserved notwithstanding the increased dimensions of the organ due to cardiomyocyte enlargement. Mechanistically, activation of the P-TEFb complex, a critical step for cardiac growth, results from increased dissociation of the negatively regulating Rn7sk non-coding RNA component in Dnmt2-deficient cells. Our data suggest that Dnmt2 plays an unexpected role for regulation of cardiac growth by modulating activity of the P-TEFb complex.
Collapse
Affiliation(s)
- Hossein Ghanbarian
- Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nicole Wagner
- Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia-Antipolis, CNRS UMR7284/INSERM U1081, Faculty of Medicine, Nice, France
- Univ. Nice Sophia Antipolis, CNRS, Inserm, iBV, 06100, Nice, France
| | - Beatrice Polo
- Univ. Nice Sophia Antipolis, CNRS, Inserm, iBV, 06100, Nice, France
| | - Delphine Baudouy
- Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia-Antipolis, CNRS UMR7284/INSERM U1081, Faculty of Medicine, Nice, France
- Univ. Nice Sophia Antipolis, CNRS, Inserm, iBV, 06100, Nice, France
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jean-François Michiels
- Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia-Antipolis, CNRS UMR7284/INSERM U1081, Faculty of Medicine, Nice, France
- Department of Pathology, CHU Nice, Nice, France
| | - François Cuzin
- Univ. Nice Sophia Antipolis, CNRS, Inserm, iBV, 06100, Nice, France
| | - Minoo Rassoulzadegan
- Univ. Nice Sophia Antipolis, CNRS, Inserm, iBV, 06100, Nice, France
- * E-mail: (MR); (KDW)
| | - Kay-Dietrich Wagner
- Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia-Antipolis, CNRS UMR7284/INSERM U1081, Faculty of Medicine, Nice, France
- Univ. Nice Sophia Antipolis, CNRS, Inserm, iBV, 06100, Nice, France
- * E-mail: (MR); (KDW)
| |
Collapse
|
21
|
Zucchelli S, Cotella D, Takahashi H, Carrieri C, Cimatti L, Fasolo F, Jones MH, Sblattero D, Sanges R, Santoro C, Persichetti F, Carninci P, Gustincich S. SINEUPs: A new class of natural and synthetic antisense long non-coding RNAs that activate translation. RNA Biol 2016; 12:771-9. [PMID: 26259533 DOI: 10.1080/15476286.2015.1060395] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Over the past 10 years, it has emerged that pervasive transcription in mammalian genomes has a tremendous impact on several biological functions. Most of transcribed RNAs are lncRNAs and repetitive elements. In this review, we will detail the discovery of a new functional class of natural and synthetic antisense lncRNAs that stimulate translation of sense mRNAs. These molecules have been named SINEUPs since their function requires the activity of an embedded inverted SINEB2 sequence to UP-regulate translation. Natural SINEUPs suggest that embedded Transposable Elements may represent functional domains in long non-coding RNAs. Synthetic SINEUPs may be designed by targeting the antisense sequence to the mRNA of choice representing the first scalable tool to increase protein synthesis of potentially any gene of interest. We will discuss potential applications of SINEUP technology in the field of molecular biology experiments, in protein manufacturing as well as in therapy of haploinsufficiencies.
Collapse
Affiliation(s)
- S Zucchelli
- a Area of Neuroscience ; SISSA ; Trieste , Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Transposable elements have had a profound impact on the structure and function of mammalian genomes. The retrotransposon Long INterspersed Element-1 (LINE-1 or L1), by virtue of its replicative mobilization mechanism, comprises ∼17% of the human genome. Although the vast majority of human LINE-1 sequences are inactive molecular fossils, an estimated 80-100 copies per individual retain the ability to mobilize by a process termed retrotransposition. Indeed, LINE-1 is the only active, autonomous retrotransposon in humans and its retrotransposition continues to generate both intra-individual and inter-individual genetic diversity. Here, we briefly review the types of transposable elements that reside in mammalian genomes. We will focus our discussion on LINE-1 retrotransposons and the non-autonomous Short INterspersed Elements (SINEs) that rely on the proteins encoded by LINE-1 for their mobilization. We review cases where LINE-1-mediated retrotransposition events have resulted in genetic disease and discuss how the characterization of these mutagenic insertions led to the identification of retrotransposition-competent LINE-1s in the human and mouse genomes. We then discuss how the integration of molecular genetic, biochemical, and modern genomic technologies have yielded insight into the mechanism of LINE-1 retrotransposition, the impact of LINE-1-mediated retrotransposition events on mammalian genomes, and the host cellular mechanisms that protect the genome from unabated LINE-1-mediated retrotransposition events. Throughout this review, we highlight unanswered questions in LINE-1 biology that provide exciting opportunities for future research. Clearly, much has been learned about LINE-1 and SINE biology since the publication of Mobile DNA II thirteen years ago. Future studies should continue to yield exciting discoveries about how these retrotransposons contribute to genetic diversity in mammalian genomes.
Collapse
|
23
|
Konkel MK, Ullmer B, Arceneaux EL, Sanampudi S, Brantley SA, Hubley R, Smit AFA, Batzer MA. Discovery of a new repeat family in the Callithrix jacchus genome. Genome Res 2016; 26:649-59. [PMID: 26916108 PMCID: PMC4864456 DOI: 10.1101/gr.199075.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/23/2016] [Indexed: 11/24/2022]
Abstract
We identified a novel repeat family, termed Platy-1, in the Callithrix jacchus (common marmoset) genome that arose around the time of the divergence of platyrrhines and catarrhines and established itself as a repeat family in New World monkeys (NWMs). A full-length Platy-1 element is ∼100 bp in length, making it the shortest known short interspersed element (SINE) in primates, and harbors features characteristic of non-LTR retrotransposons. We identified 2268 full-length Platy-1 elements across 62 subfamilies in the common marmoset genome. Our subfamily reconstruction and phylogenetic analyses support Platy-1 propagation throughout the evolution of NWMs in the lineage leading to C. jacchus Platy-1 appears to have reached its amplification peak in the common ancestor of current day marmosets and has since moderately declined. However, identification of more than 200 Platy-1 elements identical to their respective consensus sequence, and the presence of polymorphic elements within common marmoset populations, suggests ongoing retrotransposition activity. Platy-1, a SINE, appears to have originated from an Alu element, and hence is likely derived from 7SL RNA. Our analyses illustrate the birth of a new repeat family and its propagation dynamics in the lineage leading to the common marmoset over the last 40 million years.
Collapse
Affiliation(s)
- Miriam K Konkel
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Brygg Ullmer
- School of Electrical Engineering and Computer Science, Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Erika L Arceneaux
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Sreeja Sanampudi
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Sarah A Brantley
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Robert Hubley
- Institute for Systems Biology, Seattle, Washington 98109-5263, USA
| | - Arian F A Smit
- Institute for Systems Biology, Seattle, Washington 98109-5263, USA
| | - Mark A Batzer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
24
|
Karijolich J, Abernathy E, Glaunsinger BA. Infection-Induced Retrotransposon-Derived Noncoding RNAs Enhance Herpesviral Gene Expression via the NF-κB Pathway. PLoS Pathog 2015; 11:e1005260. [PMID: 26584434 PMCID: PMC4652899 DOI: 10.1371/journal.ppat.1005260] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/13/2015] [Indexed: 02/07/2023] Open
Abstract
Short interspersed nuclear elements (SINEs) are highly abundant, RNA polymerase III-transcribed noncoding retrotransposons that are silenced in somatic cells but activated during certain stresses including viral infection. How these induced SINE RNAs impact the host-pathogen interaction is unknown. Here we reveal that during murine gammaherpesvirus 68 (MHV68) infection, rapidly induced SINE RNAs activate the antiviral NF-κB signaling pathway through both mitochondrial antiviral-signaling protein (MAVS)-dependent and independent mechanisms. However, SINE RNA-based signaling is hijacked by the virus to enhance viral gene expression and replication. B2 RNA expression stimulates IKKβ-dependent phosphorylation of the major viral lytic cycle transactivator protein RTA, thereby enhancing its activity and increasing progeny virion production. Collectively, these findings suggest that SINE RNAs participate in the innate pathogen response mechanism, but that herpesviruses have evolved to co-opt retrotransposon activation for viral benefit. Short interspersed nuclear elements (SINEs) are noncoding mobile genetic elements that are present at ~106 copies per mammalian genome, roughly comprising 10% of mammalian genomic real estate. SINEs are typically transcriptionally silenced, though in some cases viral infection can promote their expression, yet to an unknown functional outcome. Thus, SINE elements represent the largest class of infection-inducible noncoding RNAs that are functionally uncharacterized. Here, we reveal that SINE RNAs play a critical role in the host-pathogen interaction in that they are required for efficient murine gammaherpesvirus 68 (MHV68) replication and gene expression. We demonstrate that SINE RNAs, both exogenously expressed and infection-induced, are robust activators of the IKKβ kinase, a key signaling molecule in the innate immune response. Activation of the IKKβ kinase by SINE RNA is mediated through both MAVS-dependent and independent mechanisms. Moreover, we demonstrate the activation of the IKKβ via SINE RNA is required to drive the phosphorylation of MHV68 RTA, the main viral transcriptional activator, which enhances its transcriptional activating property. Collectively, we reveal the first example of a role for SINE RNAs in the host-pathogen interaction and identify them as a key immune signaling molecule early during infection. Though SINE RNAs activate the innate immune response, MHV68 has co-opted SINE-mediate innate immune activation to enhance the viral lifecycle.
Collapse
Affiliation(s)
- John Karijolich
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Emma Abernathy
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Britt A. Glaunsinger
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Varshney D, Vavrova-Anderson J, Oler AJ, Cairns BR, White RJ. Selective repression of SINE transcription by RNA polymerase III. Mob Genet Elements 2015; 5:86-91. [PMID: 26942044 DOI: 10.1080/2159256x.2015.1096997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 10/23/2022] Open
Abstract
A million copies of the Alu short interspersed nuclear element (SINE) are scattered throughout the human genome, providing ∼11% of our total DNA. SINEs spread by retrotransposition, using a transcript generated by RNA polymerase (pol) III from an internal promoter. Levels of these pol III-dependent Alu transcripts are far lower than might be expected from the abundance of the template. This was believed to reflect transcriptional suppression through DNA methylation, denying pol III access to most SINEs through chromatin-mediated effects. Contrary to expectations, our recent study found no evidence that methylation of SINE DNA reduces its occupancy or expression by pol III. However, histone H3 associated with SINEs is prominently methylated on lysine 9, a mark that correlates with transcriptional silencing. The SUV39 methyltransferases that deposit this mark can be found at many SINEs. Furthermore, a selective inhibitor of SUV39 stimulates pol III recruitment to these loci, as well as SINE expression. These data suggest that methylation of histone H3 rather than DNA may mediate repression of SINE transcription by pol III, at least under the conditions we studied.
Collapse
Affiliation(s)
- Dhaval Varshney
- Centre for Gene Regulation and Expression; University of Dundee ; Dundee, UK
| | - Jana Vavrova-Anderson
- College of Medical; Veterinary and Life Sciences; University of Glasgow ; Glasgow, UK
| | - Andrew J Oler
- Bioinformatics and Computational Biosciences Branch; Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases; National Institutes of Health ; Bethesda, MD USA
| | - Bradley R Cairns
- Department of Oncological Sciences; Huntsman Cancer Institute; University of Utah School of Medicine; Salt Lake City, UT USA; Howard Hughes Medical Institute; University of Utah School of Medicine; Salt Lake City, UT USA
| | | |
Collapse
|
26
|
SINE transcription by RNA polymerase III is suppressed by histone methylation but not by DNA methylation. Nat Commun 2015; 6:6569. [PMID: 25798578 PMCID: PMC4382998 DOI: 10.1038/ncomms7569] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/03/2015] [Indexed: 12/31/2022] Open
Abstract
Short interspersed nuclear elements (SINEs), such as Alu, spread by retrotransposition, which requires their transcripts to be copied into DNA and then inserted into new chromosomal sites. This can lead to genetic damage through insertional mutagenesis and chromosomal rearrangements between non-allelic SINEs at distinct loci. SINE DNA is heavily methylated and this was thought to suppress its accessibility and transcription, thereby protecting against retrotransposition. Here we provide several lines of evidence that methylated SINE DNA is occupied by RNA polymerase III, including the use of high-throughput bisulphite sequencing of ChIP DNA. We find that loss of DNA methylation has little effect on accessibility of SINEs to transcription machinery or their expression in vivo. In contrast, a histone methyltransferase inhibitor selectively promotes SINE expression and occupancy by RNA polymerase III. The data suggest that methylation of histones rather than DNA plays a dominant role in suppressing SINE transcription.
Collapse
|
27
|
Longo MS, Brown JD, Zhang C, O'Neill MJ, O'Neill RJ. Identification of a recently active mammalian SINE derived from ribosomal RNA. Genome Biol Evol 2015; 7:775-88. [PMID: 25637222 PMCID: PMC4994717 DOI: 10.1093/gbe/evv015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Complex eukaryotic genomes are riddled with repeated sequences whose derivation does not coincide with phylogenetic history and thus is often unknown. Among such sequences, the capacity for transcriptional activity coupled with the adaptive use of reverse transcription can lead to a diverse group of genomic elements across taxa, otherwise known as selfish elements or mobile elements. Short interspersed nuclear elements (SINEs) are nonautonomous mobile elements found in eukaryotic genomes, typically derived from cellular RNAs such as tRNAs, 7SL or 5S rRNA. Here, we identify and characterize a previously unknown SINE derived from the 3'-end of the large ribosomal subunit (LSU or 28S rDNA) and transcribed via RNA polymerase III. This new element, SINE28, is represented in low-copy numbers in the human reference genome assembly, wherein we have identified 27 discrete loci. Phylogenetic analysis indicates these elements have been transpositionally active within primate lineages as recently as 6 MYA while modern humans still carry transcriptionally active copies. Moreover, we have identified SINE28s in all currently available assembled mammalian genome sequences. Phylogenetic comparisons indicate that these elements are frequently rederived from the highly conserved LSU rRNA sequences in a lineage-specific manner. We propose that this element has not been previously recognized as a SINE given its high identity to the canonical LSU, and that SINE28 likely represents one of possibly many unidentified, active transposable elements within mammalian genomes.
Collapse
Affiliation(s)
- Mark S Longo
- Department of Molecular and Cell Biology and Institute for Systems Genomics, University of Connecticut
| | - Judy D Brown
- Department of Allied Health Sciences and Institute for Systems Genomics, University of Connecticut
| | - Chu Zhang
- Department of Molecular and Cell Biology and Institute for Systems Genomics, University of Connecticut
| | - Michael J O'Neill
- Department of Molecular and Cell Biology and Institute for Systems Genomics, University of Connecticut
| | - Rachel J O'Neill
- Department of Molecular and Cell Biology and Institute for Systems Genomics, University of Connecticut
| |
Collapse
|
28
|
|
29
|
Abstract
The Alu domain of the signal recognition particle (SRP) arrests protein biosynthesis by competition with elongation factor binding on the ribosome. The mammalian Alu domain is a protein-RNA complex, while prokaryotic Alu domains are protein-free with significant extensions of the RNA. Here we report the crystal structure of the complete Alu domain of Bacillus subtilis SRP RNA at 2.5 Å resolution. The bacterial Alu RNA reveals a compact fold, which is stabilized by prokaryote-specific extensions and interactions. In this 'closed' conformation, the 5' and 3' regions are clamped together by the additional helix 1, the connecting 3-way junction and a novel minor groove interaction, which we term the 'minor-saddle motif' (MSM). The 5' region includes an extended loop-loop pseudoknot made of five consecutive Watson-Crick base pairs. Homology modeling with the human Alu domain in context of the ribosome shows that an additional lobe in the pseudoknot approaches the large subunit, while the absence of protein results in the detachment from the small subunit. Our findings provide the structural basis for purely RNA-driven elongation arrest in prokaryotes, and give insights into the structural adaption of SRP RNA during evolution.
Collapse
Affiliation(s)
- Georg Kempf
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| |
Collapse
|
30
|
Matylla-Kulinska K, Tafer H, Weiss A, Schroeder R. Functional repeat-derived RNAs often originate from retrotransposon-propagated ncRNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:591-600. [PMID: 25045147 PMCID: PMC4233971 DOI: 10.1002/wrna.1243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/15/2014] [Accepted: 04/22/2014] [Indexed: 12/19/2022]
Abstract
The human genome is scattered with repetitive sequences, and the ENCODE project revealed that 60–70% of the genomic DNA is transcribed into RNA. As a consequence, the human transcriptome contains a large portion of repeat-derived RNAs (repRNAs). Here, we present a hypothesis for the evolution of novel functional repeat-derived RNAs from non-coding RNAs (ncRNAs) by retrotransposition. Upon amplification, the ncRNAs can diversify in sequence and subsequently evolve new activities, which can result in novel functions. Non-coding transcripts derived from highly repetitive regions can therefore serve as a reservoir for the evolution of novel functional RNAs. We base our hypothetical model on observations reported for short interspersed nuclear elements derived from 7SL RNA and tRNAs, α satellites derived from snoRNAs and SL RNAs derived from U1 small nuclear RNA. Furthermore, we present novel putative human repeat-derived ncRNAs obtained by the comparison of the Dfam and Rfam databases, as well as several examples in other species. We hypothesize that novel functional ncRNAs can derive also from other repetitive regions and propose Genomic SELEX as a tool for their identification.
Collapse
Affiliation(s)
- Katarzyna Matylla-Kulinska
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
31
|
Mourier T, Nielsen LP, Hansen AJ, Willerslev E. Transposable elements in cancer as a by-product of stress-induced evolvability. Front Genet 2014; 5:156. [PMID: 24910642 PMCID: PMC4038923 DOI: 10.3389/fgene.2014.00156] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/11/2014] [Indexed: 01/18/2023] Open
Abstract
Transposable elements (TEs) are ubiquitous in eukaryotic genomes. Barbara McClintock's famous notion of TEs acting as controlling elements modifying the genetic response of an organism upon exposure to stressful environments has since been solidly supported in a series of model organisms. This requires the TE activity response to possess an element of specificity and be targeted toward certain parts of the genome. We propose that a similar TE response is present in human cells, and that this stress response may drive the onset of human cancers. As such, TE-driven cancers may be viewed as an evolutionary by-product of organisms' abilities to genetically adapt to environmental stress.
Collapse
Affiliation(s)
- Tobias Mourier
- Natural History Museum of Denmark, Centre for GeoGenetics, University of Copenhagen Copenhagen, Denmark
| | - Lars P Nielsen
- Department of Virology and the Danish National Biobank, Statens Serum Institut Copenhagen, Denmark
| | - Anders J Hansen
- Natural History Museum of Denmark, Centre for GeoGenetics, University of Copenhagen Copenhagen, Denmark
| | - Eske Willerslev
- Natural History Museum of Denmark, Centre for GeoGenetics, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
32
|
Ichiyanagi K. Epigenetic regulation of transcription and possible functions of mammalian short interspersed elements, SINEs. Genes Genet Syst 2014; 88:19-29. [PMID: 23676707 DOI: 10.1266/ggs.88.19] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Short interspersed elements (SINEs) are a class of retrotransposons, which amplify their copy numbers in their host genomes by retrotransposition. More than a million copies of SINEs are present in a mammalian genome, constituting over 10% of the total genomic sequence. In contrast to the other two classes of retrotransposons, long interspersed elements (LINEs) and long terminal repeat (LTR) elements, SINEs are transcribed by RNA polymerase III. However, like LINEs and LTR elements, the SINE transcription is likely regulated by epigenetic mechanisms such as DNA methylation, at least for human Alu and mouse B1. Whereas SINEs and other transposable elements have long been thought as selfish or junk DNA, recent studies have revealed that they play functional roles at their genomic locations, for example, as distal enhancers, chromatin boundaries and binding sites of many transcription factors. These activities imply that SINE retrotransposition has shaped the regulatory network and chromatin landscape of their hosts. Whereas it is thought that the epigenetic mechanisms were originated as a host defense system against proliferation of parasitic elements, this review discusses a possibility that the same mechanisms are also used to regulate the SINE-derived functions.
Collapse
Affiliation(s)
- Kenji Ichiyanagi
- Division of Epigenomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
33
|
Abstract
First discovered in maize by Barbara McClintock in the 1940s, transposable elements (TEs) are DNA sequences that in some cases have the ability to move along chromosomes or "transpose" in the genome. This revolutionary finding was initially met with resistance by the scientific community and viewed by some as heretical. A large body of knowledge has accumulated over the last 60 years on the biology of TEs. Indeed, it is now known that TEs can generate genomic instability and reconfigure gene expression networks both in the germline and somatic cells. This review highlights recent findings on the role of TEs in health and diseases of the CNS, which were presented at the 2013 Society for Neuroscience meeting. The work of the speakers in this symposium shows that TEs are expressed and active in the brain, challenging the dogma that neuronal genomes are static and revealing that they are susceptible to somatic genomic alterations. These new findings on TE expression and function in the CNS have major implications for understanding the neuroplasticity of the brain, which could hypothetically have a role in shaping individual behavior and contribute to vulnerability to disease.
Collapse
|
34
|
Goldman A, Capoano CA, González-López E, Geisinger A. Identifier (ID) elements are not preferentially located to brain-specific genes: high ID element representation in other tissue-specific- and housekeeping genes of the rat. Gene 2013; 533:72-7. [PMID: 24125954 DOI: 10.1016/j.gene.2013.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/06/2013] [Accepted: 10/01/2013] [Indexed: 12/01/2022]
Abstract
BC1 is a short non-coding RNA from rodents, which is transcribed by RNA pol III. Its RNA is highly abundant in the brain, where it exerts a post-transcriptional regulatory role in dendrites. Upon transcription, retroposition and insertion, BC1 gives rise to a subclass of short interspersed repetitive sequences (SINEs) named identifier (ID) elements. IDs can become integrated inside non-coding regions of RNA pol II transcription units, and - although challenged by a couple of reports - their preferential location to brain-specific genes has been long proposed. Furthermore, an additional, cis-regulatory role in the control of brain-specific pol II-directed transcripts has been suggested for these sequences. In this work we used Northern blot and in silico analyses to examine IDs' location among pol II transcription units in different tissues, and in housekeeping genes. ID sequences appeared distributed in a similar fashion within tissue-specific hnRNA populations of the brain, testis and liver, and within housekeeping primary transcripts as well. Moreover, when the lengths of the unprocessed transcripts were considered, ID representation was higher in housekeeping ones. On the other hand, ID elements appeared similarly distributed among the different gene regions, with the obvious exclusion of those sequences where strict constraints for proper gene expression exist. Altogether, the widespread distribution of ID elements in all the analyzed genes - including housekeeping - and in all gene regions, suggests a random location, raising questions about the specific cis-regulatory role of those sequences.
Collapse
Affiliation(s)
- Andrés Goldman
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda. Italia 3318, 11600 Montevideo, Uruguay.
| | | | | | | |
Collapse
|
35
|
Durdevic Z, Schaefer M. Dnmt2 methyltransferases and immunity: An ancient overlooked connection between nucleotide modification and host defense? Bioessays 2013; 35:1044-9. [DOI: 10.1002/bies.201300088] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zeljko Durdevic
- Division of Epigenetics; DKFZ-ZMBH Alliance, German Cancer Research Center; Heidelberg Germany
| | - Matthias Schaefer
- Division of Epigenetics; DKFZ-ZMBH Alliance, German Cancer Research Center; Heidelberg Germany
| |
Collapse
|
36
|
Dridi S. Alu mobile elements: from junk DNA to genomic gems. SCIENTIFICA 2012; 2012:545328. [PMID: 24278713 PMCID: PMC3820591 DOI: 10.6064/2012/545328] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 11/06/2012] [Indexed: 06/02/2023]
Abstract
Alus, the short interspersed repeated sequences (SINEs), are retrotransposons that litter the human genomes and have long been considered junk DNA. However, recent findings that these mobile elements are transcribed, both as distinct RNA polymerase III transcripts and as a part of RNA polymerase II transcripts, suggest biological functions and refute the notion that Alus are biologically unimportant. Indeed, Alu RNAs have been shown to control mRNA processing at several levels, to have complex regulatory functions such as transcriptional repression and modulating alternative splicing and to cause a host of human genetic diseases. Alu RNAs embedded in Pol II transcripts can promote evolution and proteome diversity, which further indicates that these mobile retroelements are in fact genomic gems rather than genomic junks.
Collapse
Affiliation(s)
- Sami Dridi
- Nutrition Research Institute, The University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC 28081, USA
| |
Collapse
|
37
|
Fan J, Papadopoulos V. Transcriptional regulation of translocator protein (Tspo) via a SINE B2-mediated natural antisense transcript in MA-10 Leydig cells. Biol Reprod 2012; 86:147, 1-15. [PMID: 22378763 DOI: 10.1095/biolreprod.111.097535] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Translocator protein (18 kDa; TSPO) is a mitochondrial cholesterol- and drug-binding protein involved in cholesterol import into mitochondria, the rate-limiting step in steroidogenesis. TSPO is expressed at high levels in Leydig cells of the testis, and its expression levels dictate the ability of the cells to form androgen. In search of mechanisms that regulate Tspo expression, a number of transcription factors acting on its promoter region have been identified. We report herein the presence of a mechanism of regulation of Tspo expression via complementation with a natural antisense transcript (NAT). At the Tspo locus, a short interspersed repetitive element (SINE) of the SINE B2 family has the potential for high transcriptional activity. The extension of the SINE B2 element-mediated transcript overlapped with exon 3 of the Tspo gene and formed a NAT specific for Tspo (Tspo-NAT) in MA-10 mouse tumor Leydig cells. The identified Tspo-NAT was also found in testis and kidney tissues. Overexpression of the Tspo-NAT regulated Tspo gene expression and its function in steroid formation in MA-10 cells. Time-course studies have indicated that Tspo-NAT expression is regulated by cAMP and could regulate TSPO levels to maintain optimal steroid production by MA-10 Leydig cells. Taken together, these results suggest a new micro-transcriptional mechanism that regulates Tspo expression and thus steroidogenesis via an intron-based SINE B2-driven NAT specific for the Tspo gene.
Collapse
Affiliation(s)
- Jinjiang Fan
- The Research Institute of the McGill University Health Centre, McGill University, Montréal, Québec, Canada
| | | |
Collapse
|
38
|
Mourier T. Retrotransposon-centered analysis of piRNA targeting shows a shift from active to passive retrotransposon transcription in developing mouse testes. BMC Genomics 2011; 12:440. [PMID: 21884594 PMCID: PMC3175481 DOI: 10.1186/1471-2164-12-440] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 09/01/2011] [Indexed: 12/31/2022] Open
Abstract
Background Piwi-associated RNAs (piRNAs) bind transcripts from retrotransposable elements (RTE) in mouse germline cells and seemingly act as guides for genomic methylation, thereby repressing the activity of RTEs. It is currently unknown if and how Piwi proteins distinguish RTE transcripts from other cellular RNAs. During germline development, the main target of piRNAs switch between different types of RTEs. Using the piRNA targeting of RTEs as an indicator of RTE activity, and considering the entire population of genomic RTE loci along with their age and location, this study aims at further elucidating the dynamics of RTE activity during mouse germline development. Results Due to the inherent sequence redundancy between RTE loci, assigning piRNA targeting to specific loci is problematic. This limits the analysis, although certain features of piRNA targeting of RTE loci are apparent. As expected, young RTEs display a much higher level of piRNA targeting than old RTEs. Further, irrespective of age, RTE loci near protein-coding coding genes are targeted to a greater extent than RTE loci far from genes. During development, a shift in piRNA targeting is observed, with a clear increase in the relative piRNA targeting of RTEs residing within boundaries of protein-coding gene transcripts. Conclusions Reanalyzing published piRNA sequences and taking into account the features of individual RTE loci provide novel insight into the activity of RTEs during development. The obtained results are consistent with some degree of proportionality between what transcripts become substrates for Piwi protein complexes and the level by which the transcripts are present in the cell. A transition from active transcription of RTEs to passive co-transcription of RTE sequences residing within protein-coding transcripts appears to take place in postnatal development. Hence, the previously reported increase in piRNA targeting of SINEs in postnatal testis development does not necessitate widespread active transcription of SINEs, but may simply be explained by the prevalence of SINEs residing in introns.
Collapse
Affiliation(s)
- Tobias Mourier
- Centre for GeoGenetics, Natural History Museum, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K, Denmark.
| |
Collapse
|
39
|
Tashima S, Kaneko Y, Anezaki T, Baba M, Yachimori S, Abramov AV, Saveljev AP, Masuda R. Identification and Molecular Variations of CAN-SINEs from theZFYGene Final Intron of the Eurasian Badgers (GenusMeles). MAMMAL STUDY 2011. [DOI: 10.3106/041.036.0105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Coates BS, Kroemer JA, Sumerford DV, Hellmich RL. A novel class of miniature inverted repeat transposable elements (MITEs) that contain hitchhiking (GTCY)(n) microsatellites. INSECT MOLECULAR BIOLOGY 2011; 20:15-27. [PMID: 20977507 DOI: 10.1111/j.1365-2583.2010.01046.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The movement of miniature inverted repeat transposable elements (MITEs) modifies genome structure and function. We describe the microsatellite-associated interspersed nuclear element 2 (MINE-2), that integrates at consensus WTTTT target sites, creates dinucleotide TT target site duplications (TSDs), and forms predicted MITE-like secondary structures; a 5' subterminal inverted repeat (SIR; AGGGTTCCGTAG) that is partially complementary to a 5' inverted repeat (IR; ACGAAGCCCT) and 3'-SIRs (TTACGGAACCCT). A (GTCY)(n) microsatellite is hitchhiking downstream of conserved 5'MINE-2 secondary structures, causing flanking sequence similarity amongst mobile microsatellite loci. Transfection of insect cell lines indicates that MITE-like secondary structures are sufficient to mediate genome integration, and provides insight into the transposition mechanism used by MINE-2s.
Collapse
Affiliation(s)
- B S Coates
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, Genetics Laboratory, Iowa State University, Ames, IA 50010, USA.
| | | | | | | |
Collapse
|
41
|
Affiliation(s)
- Miriam K Konkel
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803, USA
| | - Jerilyn A Walker
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803, USA
| | - Mark A Batzer
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803, USA
| |
Collapse
|
42
|
Berger A, Strub K. Multiple Roles of Alu-Related Noncoding RNAs. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 51:119-46. [PMID: 21287136 DOI: 10.1007/978-3-642-16502-3_6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Repetitive Alu and Alu-related elements are present in primates, tree shrews (Scandentia), and rodents and have expanded to 1.3 million copies in the human genome by nonautonomous retrotransposition. Pol III transcription from these elements occurs at low levels under normal conditions but increases transiently after stress, indicating a function of Alu RNAs in cellular stress response. Alu RNAs assemble with cellular proteins into ribonucleoprotein complexes and can be processed into the smaller scAlu RNAs. Alu and Alu-related RNAs play a role in regulating transcription and translation. They provide a source for the biogenesis of miRNAs and, embedded into mRNAs, can be targeted by miRNAs. When present as inverted repeats in mRNAs, they become substrates of the editing enzymes, and their modification causes the nuclear retention of these mRNAs. Certain Alu elements evolved into unique transcription units with specific expression profiles producing RNAs with highly specific cellular functions.
Collapse
Affiliation(s)
- Audrey Berger
- Department of Cell Biology, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva 4, Switzerland
| | | |
Collapse
|
43
|
Pol II and its associated epigenetic marks are present at Pol III-transcribed noncoding RNA genes. Nat Struct Mol Biol 2010; 17:629-34. [PMID: 20418881 PMCID: PMC2917008 DOI: 10.1038/nsmb.1806] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 03/15/2010] [Indexed: 12/16/2022]
Abstract
Epigenetic control is an important aspect of gene regulation. Despite detailed understanding of protein-coding gene expression, the transcription of non-coding RNA genes by RNA polymerase (pol) III is less well characterized. Here we profile the epigenetic features of pol III target genes throughout the human genome. This reveals that the chromatin landscape of pol III-transcribed genes resembles that of pol II templates in many ways, although there are also clear differences. Our analysis also discovered an entirely unexpected phenomenon, namely that pol II is present at the majority of genomic loci that are bound by pol III.
Collapse
|
44
|
Ponicsan SL, Kugel JF, Goodrich JA. Genomic gems: SINE RNAs regulate mRNA production. Curr Opin Genet Dev 2010; 20:149-55. [PMID: 20176473 DOI: 10.1016/j.gde.2010.01.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 01/15/2010] [Accepted: 01/24/2010] [Indexed: 01/22/2023]
Abstract
Mammalian short interspersed elements (SINEs) are abundant retrotransposons that have long been considered junk DNA; however, RNAs transcribed from mouse B2 and human Alu SINEs have recently been found to control mRNA production at multiple levels. Upon cell stress B2 and Alu RNAs bind RNA polymerase II (Pol II) and repress transcription of some protein-encoding genes. Bi-directional transcription of a B2 SINE establishes a boundary that places the growth hormone locus in a permissive chromatin state during mouse development. Alu RNAs embedded in Pol II transcripts can promote evolution and proteome diversity through exonization via alternative splicing. Given the diverse means by which SINE encoded RNAs impact production of mRNAs, this genomic junk is proving to contain hidden gems.
Collapse
Affiliation(s)
- Steven L Ponicsan
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, 80309-0215, USA
| | | | | |
Collapse
|
45
|
Walters RD, Kugel JF, Goodrich JA. InvAluable junk: the cellular impact and function of Alu and B2 RNAs. IUBMB Life 2009; 61:831-7. [PMID: 19621349 DOI: 10.1002/iub.227] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The short interspersed elements (SINEs) Alu and B2 are retrotransposons that litter the human and mouse genomes, respectively. Given their abundance, the manner in which these elements impact the host genome and what their biological functions might be is of significant interest. Finding that Alu and B2 SINEs are transcribed, both as distinct RNA polymerase III transcripts and as part of RNA polymerase II transcripts, and that these SINE encoded RNAs indeed have biological functions has refuted the historical notion that SINEs are merely "junk DNA." This article reviews currently known cellular functions of both RNA polymerase II and RNA polymerase III transcribed Alu and B2 RNAs. These RNAs, in different forms, control gene expression by participating in processes as diverse as mRNA transcriptional control, A-to-I editing, nuclear retention, and alternative splicing. Future studies will likely reveal additional contributions of Alu and B2 RNAs as regulators of gene expression.
Collapse
Affiliation(s)
- Ryan D Walters
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | | | | |
Collapse
|
46
|
Mourier T, Willerslev E. Retrotransposons and non-protein coding RNAs. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:493-501. [PMID: 19729447 DOI: 10.1093/bfgp/elp036] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Retrotransposons constitute a significant fraction of mammalian genomes. Considering the finding of widespread transcriptional activity across entire genomes, it is not surprising that retrotransposons contribute to the collective RNA pool. However, the transcriptional output from retrotransposons does not merely represent spurious transcription. We review examples of functional RNAs transcribed from retrotransposons, and address the collection of non-protein coding RNAs derived from transposable element sequences, including numerous human microRNAs and the neuronal BC RNAs. Finally, we review the emerging understanding of how retrotransposons themselves are regulated by small RNAs.
Collapse
Affiliation(s)
- Tobias Mourier
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| | | |
Collapse
|
47
|
Tang DTP, Glazov EA, McWilliam SM, Barris WC, Dalrymple BP. Analysis of the complement and molecular evolution of tRNA genes in cow. BMC Genomics 2009; 10:188. [PMID: 19393063 PMCID: PMC2680898 DOI: 10.1186/1471-2164-10-188] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 04/24/2009] [Indexed: 12/21/2022] Open
Abstract
Background Detailed information regarding the number and organization of transfer RNA (tRNA) genes at the genome level is becoming readily available with the increase of DNA sequencing of whole genomes. However the identification of functional tRNA genes is challenging for species that have large numbers of repetitive elements containing tRNA derived sequences, such as Bos taurus. Reliable identification and annotation of entire sets of tRNA genes allows the evolution of tRNA genes to be understood on a genomic scale. Results In this study, we explored the B. taurus genome using bioinformatics and comparative genomics approaches to catalogue and analyze cow tRNA genes. The initial analysis of the cow genome using tRNAscan-SE identified 31,868 putative tRNA genes and 189,183 pseudogenes, where 28,830 of the 31,868 predicted tRNA genes were classified as repetitive elements by the RepeatMasker program. We then used comparative genomics to further discriminate between functional tRNA genes and tRNA-derived sequences for the remaining set of 3,038 putative tRNA genes. For our analysis, we used the human, chimpanzee, mouse, rat, horse, dog, chicken and fugu genomes to predict that the number of active tRNA genes in cow lies in the vicinity of 439. Of this set, 150 tRNA genes were 100% identical in their sequences across all nine vertebrate genomes studied. Using clustering analyses, we identified a new tRNA-GlyCCC subfamily present in all analyzed mammalian genomes. We suggest that this subfamily originated from an ancestral tRNA-GlyGCC gene via a point mutation prior to the radiation of the mammalian lineages. Lastly, in a separate analysis we created phylogenetic profiles for each putative cow tRNA gene using a representative set of genomes to gain an overview of common evolutionary histories of tRNA genes. Conclusion The use of a combination of bioinformatics and comparative genomics approaches has allowed the confident identification of a set of cow tRNA genes that will facilitate further studies in understanding the molecular evolution of cow tRNA genes.
Collapse
Affiliation(s)
- Dave T P Tang
- CSIRO Livestock Industries, Queensland Biosciences Precinct, St Lucia, QLD, Australia.
| | | | | | | | | |
Collapse
|
48
|
Abstract
Swine genomic DNA segments containing repetitive sequences were isolated from a porcine genomic library using genomic DNA as a probe. Three fragments containing the repetitive sequences from two of the primary phage clones were subcloned for sequence analysis, which revealed six new PRE-1 repetitive families other than those reported earlier by Singer et al. (Nucleic Acids Research 15, 2780, 1987). The frequency of the repetitive sequences in the swine genome was estimated at 2 x 10(6) per diploid genome. Sequence analysis revealed similarities between these repetitive sequences and that of arginine-tRNA gene.
Collapse
Affiliation(s)
- H Takahashi
- Department of Animal Breeding and Genetics, National Institute of Animal Industry, Tsukuba, Japan
| | | | | |
Collapse
|
49
|
Hirakawa M, Nishihara H, Kanehisa M, Okada N. Characterization and evolutionary landscape of AmnSINE1 in Amniota genomes. Gene 2008; 441:100-10. [PMID: 19166919 DOI: 10.1016/j.gene.2008.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 11/29/2008] [Accepted: 12/04/2008] [Indexed: 11/18/2022]
Abstract
Discovery of a large number of conserved non-coding elements (CNEs) in vertebrate genomes provides a cornerstone to elucidate molecular mechanisms of macroevolution. Extensive comparative genomics has proven that transposons such as short interspersed elements (SINEs) were an important source of CNEs. We recently characterized AmnSINE1, a SINE family in Amniota genomes, some of which are present in CNEs, and demonstrated that two AmnSINE1 loci play an important role in mammalian-specific brain development by functioning as an enhancer (Sasaki et al. Proc. Natl. Acad. Sci. USA 2008). To get more information about AmnSINE1s, we here performed a multi-species search for AmnSINE1, and revealed the distribution and evolutionary history of these SINEs in amniote genomes. The number of AmnSINE1 regions in amniotes ranged from 160 to 1200; the number in the eutherians were under 500 and the largest was that in chicken. Phylogenetic analysis established that each AmnSINE1 locus has evolved uniquely, primarily since the divergence of mammals from reptiles. These results support the notion that AmnSINE1s were amplified as an ancient retroposon in a common ancestor of Amniota and subsequently have survived for 300 Myr because of functions acquired by mutation-coupled exaptation prior mammalian radiation. On the basis of sequence homology and conserved synteny, we detected the orthologs of AmnSINE1 for candidates of further enhancer analysis, which are more conserved than two loci that were shown to have been involved in mammalian brain development. The present work provides a comprehensive data set to test the role of AmnSINE1s, many of which were exapted and contributed to mammalian macroevolution.
Collapse
Affiliation(s)
- Mika Hirakawa
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | | | | | | |
Collapse
|
50
|
Tsuchimoto S, Hirao Y, Ohtsubo E, Ohtsubo H. New SINE families from rice, OsSN, with poly(A) at the 3' ends. Genes Genet Syst 2008; 83:227-36. [PMID: 18670134 DOI: 10.1266/ggs.83.227] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A database search of the sequences flanking a member of rice retrotransposon RIRE7 revealed that a 298-bp sequence in the region downstream of the member is a repetitive sequence interspersed in the genome of Oryza sativa cv. Nipponbare. Most of the repetitive sequences were flanked by a direct repeat of a target-site sequence, about 14 bp in length. The consensus sequence, 293 bp in length, had no regions encoding any proteins but had sequence motifs of an internal promoter of RNA polymerase III. These indicate that the sequence is a retroposon SINE, designated OsSN1 (Oryza sativa SINE1). OsSN1 is a new rice SINE, because it has no homology with any of the three p-SINE families previously identified from rice, and because it has a stretch of A at the 3' end, unlike p-SINE and any other Gramineae SINEs which have a stretch of T at the 3' end. The Nipponbare genome was found to have many members related to OsSN1, forming two additional new SINE families (designated OsSN2 and OsSN3). OsSN2 and OsSN3 are highly homologous to the 3' and 5' regions of OsSN1, respectively. This suggests that OsSN1 has a mosaic structure, which is generated by sequence exchange (or shuffling) between ancestral OsSN2 and OsSN3. Despite the absence of homology in the 3' regions between OsSN1 (or OsSN2) and OsSN3, a sequence, 5'-TTCTC-3', is commonly present in the region preceding the A stretch at the 3' end. This sequence together with the A stretch and a stem-loop structure found in the region near the A stretch are assumed to be important for retroposition. OsSN members were present in strains of Oryza species, as were p-SINE members. Some of the members showed insertion polymorphism at the respective loci among the rice strains. p-SINE had such polymorphic members, which are useful for classification and phylogenetic analysis of various strains of Oryza species. The polymorphic members of OsSN were more frequently found than those of p-SINE, and therefore, such members are likely to be useful for extensive taxonomic and phylogenetic studies on various rice strains.
Collapse
Affiliation(s)
- Suguru Tsuchimoto
- Institute of Molecular and Cellular Biosciences, the University of Tokyo, Tokyo, Japan.
| | | | | | | |
Collapse
|