1
|
Milla CE. The globalization of cystic fibrosis care. Curr Opin Pediatr 2025; 37:266-271. [PMID: 40172290 PMCID: PMC12055477 DOI: 10.1097/mop.0000000000001458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
PURPOSE OF REVIEW The field of cystic fibrosis is experiencing dramatic changes, as the translation of a massive body of scientific knowledge accumulated from the day of the cloning of the CFTR gene has led to the identification of effective therapies to correct the basic defect. This has also allowed care providers and people with cystic fibrosis in low-income and middle-income countries (LMICs) to become more knowledgeable and proficient in cystic fibrosis cares. RECENT FINDINGS This review focuses on two main aspects highly relevant to understand the current status of cystic fibrosis in LMICs: The recognition of the universal occurrence of cystic fibrosis, as well as the varying incidence in different regions of the world, and the collaborative international efforts for dissemination of best care practices as an attempt to close gaps in care. SUMMARY As the field continues to change rapidly, multiple international efforts are attempting to close gaps and disparities clearly apparent between affluent countries and LMICs. However, these efforts are seriously hampered by limited access to effective therapies and most dramatically to CFTR modulator drugs.
Collapse
Affiliation(s)
- Carlos E Milla
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Palo Alto, California, USA
| |
Collapse
|
2
|
Kamenarova K, Kachakova-Yordanova D, Baymakova M, Georgiev M, Mihova K, Petkova V, Beltcheva O, Argirova R, Atanasov P, Kunchev M, Andonova R, Zasheva A, Drenska R, Ivanov I, Pantileeva D, Koleva V, Penev A, Lekova-Nikova D, Georgiev D, Pencheva D, Bozhilova R, Ivanova N, Dimova I, Plochev K, Popov G, Popivanov I, Gabrovsky N, Leseva M, Mitev V, Kaneva R. Rare host variants in ciliary expressed genes contribute to COVID-19 severity in Bulgarian patients. Sci Rep 2024; 14:19487. [PMID: 39174791 PMCID: PMC11341789 DOI: 10.1038/s41598-024-70514-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), a pneumonia with extremely heterogeneous clinical presentation, ranging from asymptomatic to severely ill patients. Previous studies have reported links between the presence of host genetic variants and the outcome of the COVID-19 infection. In our study, we used whole exome sequencing in a cohort of 444 SARS-CoV-2 patients, admitted to hospital in the period October-2020-April-2022, to search for associations between rare pathogenic/potentially pathogenic variants and COVID-19 progression. We used gene prioritization-based analysis in genes that have been reported by host genetic studies. Although we did not identify correlation between the presence of rare pathogenic variants and COVID-19 outcome, in critically ill patients we detected known mutations in a number of genes associated with severe disease related to cardiovascular disease, primary ciliary dyskinesia, cystic fibrosis, DNA damage repair response, coagulation, primary immune disorder, hemoglobin subunit β, and others. Additionally, we report 93 novel pathogenic variants found in severely infected patients who required intubation or died. A network analysis showed main component, consisting of 13 highly interconnected genes related to epithelial cilium. In conclusion, we have detected rare pathogenic host variants that may have influenced the COVID-19 outcome in Bulgarian patients.
Collapse
Affiliation(s)
- Kunka Kamenarova
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University - Sofia, Sofia, Bulgaria.
- Laboratory of Genomic Diagnostics, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University - Sofia, Sofia, Bulgaria.
| | - Darina Kachakova-Yordanova
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University - Sofia, Sofia, Bulgaria
- Laboratory of Genomic Diagnostics, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University - Sofia, Sofia, Bulgaria
| | - Magdalena Baymakova
- Department of Infectious Diseases, Military Medical Academy, Sofia, Bulgaria
| | - Martin Georgiev
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University - Sofia, Sofia, Bulgaria
- Laboratory of Genomic Diagnostics, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University - Sofia, Sofia, Bulgaria
| | - Kalina Mihova
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University - Sofia, Sofia, Bulgaria
- Laboratory of Genomic Diagnostics, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University - Sofia, Sofia, Bulgaria
| | - Veronika Petkova
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University - Sofia, Sofia, Bulgaria
- Laboratory of Genomic Diagnostics, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University - Sofia, Sofia, Bulgaria
| | - Olga Beltcheva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University - Sofia, Sofia, Bulgaria
- Laboratory of Genomic Diagnostics, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University - Sofia, Sofia, Bulgaria
| | - Radka Argirova
- Acibadem City Clinic, University Multidisciplinary Hospital for Active Treatment "Tokuda", Sofia, Bulgaria
| | - Petar Atanasov
- University Multidisciplinary Hospital for Active Treatment and Emergency Medicine "N.I. Pirogov", Sofia, Bulgaria
| | - Metodi Kunchev
- Department of Virology, Military Medical Academy, Sofia, Bulgaria
| | - Radina Andonova
- Department of Infectious Diseases, Military Medical Academy, Sofia, Bulgaria
| | - Anelia Zasheva
- Department of Infectious Diseases, Military Medical Academy, Sofia, Bulgaria
| | - Rumiana Drenska
- University Multidisciplinary Hospital for Active Treatment and Emergency Medicine "N.I. Pirogov", Sofia, Bulgaria
| | - Ivaylo Ivanov
- University Multidisciplinary Hospital for Active Treatment and Emergency Medicine "N.I. Pirogov", Sofia, Bulgaria
| | - Diana Pantileeva
- University Multidisciplinary Hospital for Active Treatment and Emergency Medicine "N.I. Pirogov", Sofia, Bulgaria
| | - Vesselina Koleva
- Acibadem City Clinic, University Multidisciplinary Hospital for Active Treatment "Tokuda", Sofia, Bulgaria
| | - Anton Penev
- Acibadem City Clinic, University Multidisciplinary Hospital for Active Treatment "Tokuda", Sofia, Bulgaria
| | - Diana Lekova-Nikova
- Acibadem City Clinic, University Multidisciplinary Hospital for Active Treatment "Tokuda", Sofia, Bulgaria
| | - Delyan Georgiev
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University - Sofia, Sofia, Bulgaria
- Laboratory of Genomic Diagnostics, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University - Sofia, Sofia, Bulgaria
| | - Daniela Pencheva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University - Sofia, Sofia, Bulgaria
- Laboratory of Genomic Diagnostics, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University - Sofia, Sofia, Bulgaria
| | - Radosveta Bozhilova
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University - Sofia, Sofia, Bulgaria
- Laboratory of Genomic Diagnostics, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University - Sofia, Sofia, Bulgaria
| | - Nevyana Ivanova
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University - Sofia, Sofia, Bulgaria
- Laboratory of Genomic Diagnostics, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University - Sofia, Sofia, Bulgaria
| | - Ivanka Dimova
- Laboratory of Genomic Diagnostics, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University - Sofia, Sofia, Bulgaria
| | - Kamen Plochev
- Department of Infectious Diseases, Military Medical Academy, Sofia, Bulgaria
| | - Georgi Popov
- Department of Infectious Diseases, Military Medical Academy, Sofia, Bulgaria
| | - Ivan Popivanov
- Department of Military Medicine, Military Medical Academy, Sofia, Bulgaria
| | - Nikolay Gabrovsky
- University Multidisciplinary Hospital for Active Treatment and Emergency Medicine "N.I. Pirogov", Sofia, Bulgaria
| | - Magdalena Leseva
- University Multidisciplinary Hospital for Active Treatment and Emergency Medicine "N.I. Pirogov", Sofia, Bulgaria
| | - Vanio Mitev
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University - Sofia, Sofia, Bulgaria
| | - Radka Kaneva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University - Sofia, Sofia, Bulgaria
- Laboratory of Genomic Diagnostics, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University - Sofia, Sofia, Bulgaria
| |
Collapse
|
3
|
Migeon BR, Kazazian HH. Reflections on the history of genetic medicine at Johns Hopkins University. Am J Med Genet A 2021; 185:3224-3229. [PMID: 33955173 DOI: 10.1002/ajmg.a.62246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 11/09/2022]
Abstract
Two members of the faculty-who witnessed the birth of Genetic Medicine and remained to see it evolve-present their reflections about the history of genetic medicine at the Johns Hopkins Medical Institutions. They tell how the genetic units in Pediatrics and Medicine that were initiated by Barton Childs and Victor McKusick, respectively, became the McKusick Nathans Department of Genetic Medicine in 2020.
Collapse
Affiliation(s)
- Barbara R Migeon
- The McKusick Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Haig H Kazazian
- The McKusick Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Martins-Dias P, Romão L. Nonsense suppression therapies in human genetic diseases. Cell Mol Life Sci 2021; 78:4677-4701. [PMID: 33751142 PMCID: PMC11073055 DOI: 10.1007/s00018-021-03809-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/06/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023]
Abstract
About 11% of all human disease-associated gene lesions are nonsense mutations, resulting in the introduction of an in-frame premature translation-termination codon (PTC) into the protein-coding gene sequence. When translated, PTC-containing mRNAs originate truncated and often dysfunctional proteins that might be non-functional or have gain-of-function or dominant-negative effects. Therapeutic strategies aimed at suppressing PTCs to restore deficient protein function-the so-called nonsense suppression (or PTC readthrough) therapies-have the potential to provide a therapeutic benefit for many patients and in a broad range of genetic disorders, including cancer. These therapeutic approaches comprise the use of translational readthrough-inducing compounds that make the translational machinery recode an in-frame PTC into a sense codon. However, most of the mRNAs carrying a PTC can be rapidly degraded by the surveillance mechanism of nonsense-mediated decay (NMD), thus decreasing the levels of PTC-containing mRNAs in the cell and their availability for PTC readthrough. Accordingly, the use of NMD inhibitors, or readthrough-compound potentiators, may enhance the efficiency of PTC suppression. Here, we review the mechanisms of PTC readthrough and their regulation, as well as the recent advances in the development of novel approaches for PTC suppression, and their role in personalized medicine.
Collapse
Affiliation(s)
- Patrícia Martins-Dias
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
- Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisboa, 1749-016, Lisbon, Portugal
| | - Luísa Romão
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal.
- Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisboa, 1749-016, Lisbon, Portugal.
| |
Collapse
|
5
|
Banjar H, Qeretli R, Ramadan A, Al-Ibraheem A, Bnatig F. The first report on CFTR mutations of meconium ileus in cystic fibrosis population in Saudi Arabia: A single center review. INTERNATIONAL JOURNAL OF PEDIATRICS AND ADOLESCENT MEDICINE 2021; 9:32-35. [PMID: 35573065 PMCID: PMC9072234 DOI: 10.1016/j.ijpam.2021.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 03/16/2021] [Indexed: 11/26/2022] Open
Abstract
Introduction Meconium ileus (MI) is one of the most common causes of intestinal obstruction in newborns. It is the earliest clinical manifestation of cystic fibrosis (CF). MI is suspected if a baby fails to pass meconium shortly after birth and develops symptoms of bowel obstruction, such as distention of the abdomen or vomiting. MI can lead to bowel perforation, a twisting of the bowel, or inflammation and infection of the abdominal cavity. Objectives To find the incidence and prevalence of meconium ileus in cystic fibrosis patients and to report on the most common gene mutation of MI in CF patients. Methodology Retrospective review of the medical documentations of all MI patients during the period of 1989–2018. Results A total of 40 CF confirmed patients were presented with MI. Twenty-nine patients (71%) are alive and 11 patients (29%) died or lost to follow-up. The following CFTR mutations were found: Eight patients (20%) with c.2988+1G>A; Intron 18. Seven patients (17.5%) with c.1418delG; Exon 11. Five patients (12.5%) with c.579+1G>T; Intron 5. Four patients (10%) with c.1911delG; Exon 14. Four patients (10%) with c.1521_1523delCTT; Exon 11. Four patients (10%) with c.416A>T; Exon 13. Three patients (7.5%) with c.2421A>G; Exon 14. Two patients (5%) with c.3908A>C; Exon 21. One patient (2.5%) with c.3889dupT; Exon 24. One patient (2.5%) with c.1657C>T; Exon 12. One patient (2.5%) with c.2547C>A; Exon 14a. Eighteen patients (45%) were presented with vomiting, 38 patients (95%) had postnatal radiological findings, 7 patients (17.5%) had electrolytes imbalance. Five patients (12.5%) had cholestasis and 4 patients (10%) developed chronic liver disease. Thirty-five patients (79.5%) underwent surgical repair and 9 patients (20.5%) were treated medically. Mean age of operation was 2.25 (2) days. Of 9 patients, 6 (66.6%) were treated with gastrograffin enema, 2 patients (22.2%) with oral N-acetylcysteine and 1 patient (11.1%) with saline rectal wash. Thirteen patients (31.5%) required TPN. Five patients had recurrent operation. Conclusion CF and meconium ileus are commonly present in CF patients in Saudi Arabia. Prognosis is similar to other CFs without MI, if treated early. Thirty percent of our CF/MI patients have intronic mutations.
Collapse
|
6
|
Sanders M, Lawlor JMJ, Li X, Schuen JN, Millard SL, Zhang X, Buck L, Grysko B, Uhl KL, Hinds D, Stenger CL, Morris M, Lamb N, Levy H, Bupp C, Prokop JW. Genomic, transcriptomic, and protein landscape profile of CFTR and cystic fibrosis. Hum Genet 2021; 140:423-439. [PMID: 32734384 PMCID: PMC7855842 DOI: 10.1007/s00439-020-02211-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/25/2020] [Indexed: 01/18/2023]
Abstract
Cystic Fibrosis (CF) is caused most often by removal of amino acid 508 (Phe508del, deltaF508) within CFTR, yet dozens of additional CFTR variants are known to give rise to CF and many variants in the genome are known to contribute to CF pathology. To address CFTR coding variants, we developed a sequence-to-structure-to-dynamic matrix for all amino acids of CFTR using 233 vertebrate species, CFTR structure within a lipid membrane, and 20 ns of molecular dynamic simulation to assess known variants from the CFTR1, CFTR2, ClinVar, TOPmed, gnomAD, and COSMIC databases. Surprisingly, we identify 18 variants of uncertain significance within CFTR from diverse populations that are heritable and a likely cause of CF that have been understudied due to nonexistence in Caucasian populations. In addition, 15 sites within the genome are known to modulate CF pathology, where we have identified one genome region (chr11:34754985-34836401) that contributes to CF through modulation of expression of a noncoding RNA in epithelial cells. These 15 sites are just the beginning of understanding comodifiers of CF, where utilization of eQTLs suggests many additional genomics of CFTR expressing cells that can be influenced by genomic background of CFTR variants. This work highlights that many additional insights of CF genetics are needed, particularly as pharmaceutical interventions increase in the coming years.
Collapse
Affiliation(s)
- Morgan Sanders
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
| | - James M J Lawlor
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Xiaopeng Li
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
| | - John N Schuen
- Pediatric Pulmonology, Helen DeVos Children's Hospital, Grand Rapids, MI, 49503, USA
| | - Susan L Millard
- Pediatric Pulmonology, Helen DeVos Children's Hospital, Grand Rapids, MI, 49503, USA
| | - Xi Zhang
- Department of Pediatrics, Division of Pulmonary Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Leah Buck
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
- Department of Mathematics, University of North Alabama, Florence, AL, 35632, USA
| | - Bethany Grysko
- Spectrum Health Medical Genetics, Grand Rapids, MI, 49503, USA
| | - Katie L Uhl
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
| | - David Hinds
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Cynthia L Stenger
- Department of Mathematics, University of North Alabama, Florence, AL, 35632, USA
| | - Michele Morris
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Neil Lamb
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Hara Levy
- Department of Pediatrics, Division of Pulmonary Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Caleb Bupp
- Spectrum Health Medical Genetics, Grand Rapids, MI, 49503, USA
| | - Jeremy W Prokop
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA.
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
7
|
Banjar HH, Tuleimat L, El Seoudi AAA, Mogarri I, Alhaider S, Nizami IY, AlMaghamsi T, Alkaf SA, Moghrabi N. Genotype patterns for mutations of the cystic fibrosis transmembrane conductance regulator gene: a retrospective descriptive study from Saudi Arabia. Ann Saudi Med 2020; 40:15-24. [PMID: 32026723 PMCID: PMC7012030 DOI: 10.5144/0256-4947.2020.15] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 07/20/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Cystic fibrosis (CF) occurs in populations in Saudi Arabia and the Gulf area. Approximately 2000 known variants have been identified for the CF transmembrane conductance regulator (CTFR) gene. Screening for ten of the most common variants can detect 80% of alleles. OBJECTIVE Determine the pattern of CFTR variants in the CF population of Saudi Arabia. DESIGN A retrospective, descriptive. SETTING Tertiary care center. PATIENTS AND METHODS We examined the medical records of 396 confirmed CF patients of all age groups that were positive for a CFTR variant from the period of 1 January 1998 to 1 December 2017. MAIN OUTCOME MEASURES Zygosity, morbidity and mortality patterns of different types of CFTR variants. SAMPLE SIZE 312 families that included 396 patients. RESULTS Of 48 variants identified, 6 were novel, having not been described in the medical literature. A homozygous state was found in 283 families (90.7%) and compound heterozygosity in 23 (7.4%). Six families were heterozygous (1.9%). Median age (interquartile range) was 10.2 months (4.4 months to 5.7 years) at diagnosis and 9.7 (5.4-16.5) years at follow up. Of 396 patients, 378 patients (95.5%) survived and 18 (4.5%) died. The ten most common variants identified in descending frequency were: p.Gly473GlufsX54 in 98 alleles (16%), p.Ile1234Val in 66 alleles (11%), F508del in 64 alleles (11%), 711+1G>T in 62 alleles (10%), 3120+1G>A in 62 alleles (11%), p.His139Leuin 38 alleles (6.4%), p.Gln637Hisfs in 30 alleles (5.2%), p.Ser549Arg in 27 alleles (4.5%), p.Asn1303Lys in 14 alleles (2.3%), delExon19-21in 10 alleles (1.6%). This analysis identified 79.2% of our CFTR variants. CONCLUSION CFTR mutational patterns in our CF population are characterized by a high allelic heterogeneity. The high prevalence of homozygous variants reflects the high level of consanguinity between parents. LIMITATIONS Our CFTR screening reflected only about 80% of CF patients in Saudi Arabia. CONFLICT OF INTEREST None.
Collapse
Affiliation(s)
- Hanaa Hasan Banjar
- From the Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Lin Tuleimat
- From the Department of Medicine, Al Faisal University, Riyadh, Saudi Arabia
| | | | - Ibrahim Mogarri
- From the Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sami Alhaider
- From the Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Imran Yaqoob Nizami
- From the Organ Transplant Center, King Faisal Specialist and Research Center, Riyadh, Saudi Arabia
| | - Talal AlMaghamsi
- From the Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sara Andulrahman Alkaf
- From the Biostatistic Epidemiology and Scientific Computing Department, King Faisal Center for Research and Islamic Studies, Riyadh, Saudi Arabia
| | - Nabil Moghrabi
- From the Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Matthes E, Goepp J, Martini C, Shan J, Liao J, Thomas DY, Hanrahan JW. Variable Responses to CFTR Correctors in vitro: Estimating the Design Effect in Precision Medicine. Front Pharmacol 2018; 9:1490. [PMID: 30618775 PMCID: PMC6305743 DOI: 10.3389/fphar.2018.01490] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/05/2018] [Indexed: 12/19/2022] Open
Abstract
Interest in precision medicine has grown in recent years due to the variable clinical benefit provided by some medications, their cost, and by new opportunities to tailor therapies to individual patients. In cystic fibrosis it may soon be possible to test several corrector drugs that improve the folding and functional expression of mutant cystic fibrosis transmembrane conductance regulator (CFTR) prospectively using cells from a patient to find the one that is best for that individual. Patient-to-patient variation in cell culture responses to correctors and the reproducibility of those responses has not been studied quantitatively. We measured the functional correction provided by lumacaftor (VX-809) using bronchial epithelial cells from 20 patients homozygous for the F508del-CFTR mutation. Significant differences were observed between individuals, supporting the utility of prospective testing. However, when correction of F508del-CFTR was measured repeatedly using cell aliquots from the same individuals, a design effect was observed that would impact statistical tests of significance. The results suggest that the sample size obtained from power calculations should be increased to compensate for group sampling when CFTR corrector drugs are compared in vitro for precision medicine.
Collapse
Affiliation(s)
- Elizabeth Matthes
- Department of Physiology, McGill University, Montréal, QC, Canada
- Cystic Fibrosis Translational Research Centre, McGill University, Montréal, QC, Canada
| | - Julie Goepp
- Department of Physiology, McGill University, Montréal, QC, Canada
- Cystic Fibrosis Translational Research Centre, McGill University, Montréal, QC, Canada
| | - Carolina Martini
- Department of Physiology, McGill University, Montréal, QC, Canada
- Cystic Fibrosis Translational Research Centre, McGill University, Montréal, QC, Canada
| | - Jiajie Shan
- Department of Physiology, McGill University, Montréal, QC, Canada
- Cystic Fibrosis Translational Research Centre, McGill University, Montréal, QC, Canada
| | - Jie Liao
- Department of Physiology, McGill University, Montréal, QC, Canada
- Cystic Fibrosis Translational Research Centre, McGill University, Montréal, QC, Canada
| | - David Y. Thomas
- Cystic Fibrosis Translational Research Centre, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - John W. Hanrahan
- Department of Physiology, McGill University, Montréal, QC, Canada
- Cystic Fibrosis Translational Research Centre, McGill University, Montréal, QC, Canada
- Research Institute of the McGill University Health Centre, McGill University, Montréal, QC, Canada
| |
Collapse
|
9
|
Wang C, Aleksandrov AA, Yang Z, Forouhar F, Proctor EA, Kota P, An J, Kaplan A, Khazanov N, Boël G, Stockwell BR, Senderowitz H, Dokholyan NV, Riordan JR, Brouillette CG, Hunt JF. Ligand binding to a remote site thermodynamically corrects the F508del mutation in the human cystic fibrosis transmembrane conductance regulator. J Biol Chem 2018; 293:17685-17704. [PMID: 29903914 PMCID: PMC6240863 DOI: 10.1074/jbc.ra117.000819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/31/2018] [Indexed: 01/07/2023] Open
Abstract
Many disease-causing mutations impair protein stability. Here, we explore a thermodynamic strategy to correct the disease-causing F508del mutation in the human cystic fibrosis transmembrane conductance regulator (hCFTR). F508del destabilizes nucleotide-binding domain 1 (hNBD1) in hCFTR relative to an aggregation-prone intermediate. We developed a fluorescence self-quenching assay for compounds that prevent aggregation of hNBD1 by stabilizing its native conformation. Unexpectedly, we found that dTTP and nucleotide analogs with exocyclic methyl groups bind to hNBD1 more strongly than ATP and preserve electrophysiological function of full-length F508del-hCFTR channels at temperatures up to 37 °C. Furthermore, nucleotides that increase open-channel probability, which reflects stabilization of an interdomain interface to hNBD1, thermally protect full-length F508del-hCFTR even when they do not stabilize isolated hNBD1. Therefore, stabilization of hNBD1 itself or of one of its interdomain interfaces by a small molecule indirectly offsets the destabilizing effect of the F508del mutation on full-length hCFTR. These results indicate that high-affinity binding of a small molecule to a remote site can correct a disease-causing mutation. We propose that the strategies described here should be applicable to identifying small molecules to help manage other human diseases caused by mutations that destabilize native protein conformation.
Collapse
Affiliation(s)
- Chi Wang
- From the Departments of Biological Sciences and
| | - Andrei A. Aleksandrov
- the Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Zhengrong Yang
- the Department of Chemistry, University of Alabama, Birmingham, Alabama 35294, and
| | | | - Elizabeth A. Proctor
- the Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Pradeep Kota
- the Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jianli An
- the Department of Chemistry, University of Alabama, Birmingham, Alabama 35294, and
| | - Anna Kaplan
- From the Departments of Biological Sciences and
| | - Netaly Khazanov
- the Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | | | - Brent R. Stockwell
- From the Departments of Biological Sciences and ,Chemistry, Columbia University, New York, New York 10027
| | - Hanoch Senderowitz
- the Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Nikolay V. Dokholyan
- the Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - John R. Riordan
- the Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | | | - John F. Hunt
- From the Departments of Biological Sciences and , To whom correspondence should be addressed. Tel.:
212-854-5443; Fax:
212-865-8246; E-mail:
| |
Collapse
|
10
|
Phenotype-Specific Enrichment of Mendelian Disorder Genes near GWAS Regions across 62 Complex Traits. Am J Hum Genet 2018; 103:535-552. [PMID: 30290150 DOI: 10.1016/j.ajhg.2018.08.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/28/2018] [Indexed: 01/29/2023] Open
Abstract
Although recent studies provide evidence for a common genetic basis between complex traits and Mendelian disorders, a thorough quantification of their overlap in a phenotype-specific manner remains elusive. Here, we have quantified the overlap of genes identified through large-scale genome-wide association studies (GWASs) for 62 complex traits and diseases with genes containing mutations known to cause 20 broad categories of Mendelian disorders. We identified a significant enrichment of genes linked to phenotypically matched Mendelian disorders in GWAS gene sets; of the total 1,240 comparisons, a higher proportion of phenotypically matched or related pairs (n = 50 of 92 [54%]) than phenotypically unmatched pairs (n = 27 of 1,148 [2%]) demonstrated significant overlap, confirming a phenotype-specific enrichment pattern. Further, we observed elevated GWAS effect sizes near genes linked to phenotypically matched Mendelian disorders. Finally, we report examples of GWAS variants localized at the transcription start site or physically interacting with the promoters of genes linked to phenotypically matched Mendelian disorders. Our results are consistent with the hypothesis that genes that are disrupted in Mendelian disorders are dysregulated by non-coding variants in complex traits and demonstrate how leveraging findings from related Mendelian disorders and functional genomic datasets can prioritize genes that are putatively dysregulated by local and distal non-coding GWAS variants.
Collapse
|
11
|
Hamdi Y, Boujemaa M, Ben Rekaya M, Ben Hamda C, Mighri N, El Benna H, Mejri N, Labidi S, Daoud N, Naouali C, Messaoud O, Chargui M, Ghedira K, Boubaker MS, Mrad R, Boussen H, Abdelhak S, the PEC Consortium. Family specific genetic predisposition to breast cancer: results from Tunisian whole exome sequenced breast cancer cases. J Transl Med 2018; 16:158. [PMID: 29879995 PMCID: PMC5992876 DOI: 10.1186/s12967-018-1504-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/03/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A family history of breast cancer has long been thought to indicate the presence of inherited genetic events that predispose to this disease. In North Africa, many specific epidemio-genetic characteristics have been observed in breast cancer families when compared to Western populations. Despite these specificities, the majority of breast cancer genetics studies performed in North Africa remain restricted to the investigation of the BRCA1 and BRCA2 genes. Thus, comprehensive data at a whole exome or whole genome level from local patients are lacking. METHODS A whole exome sequencing (WES) of seven breast cancer Tunisian families have been performed using a family-based approach. We focused our analysis on BC-TN-F001 family that included two affected members that have been sequenced using WES. Relevant variants identified in BC-TN-F001 have been confirmed using Sanger sequencing. Then, we conducted an integrative analysis by combining our results with those from other WES studies in order to figure out the genetic transmission model of the newly identified genes. Biological network construction and protein-protein interactions analyses have been performed to decipher the molecular mechanisms likely accounting for the role of these genes in breast cancer risk. RESULTS Sequencing, filtering strategies, and validation analysis have been achieved. For BC-TN-F001, no deleterious mutations have been identified on known breast cancer genes. However, 373 heterozygous, exonic and rare variants have been identified on other candidate genes. After applying several filters, 12 relevant high-risk variants have been selected. Our results showed that these variants seem to be inherited in a family specific model. This hypothesis has been confirmed following a thorough analysis of the reported WES studies. Enriched biological process and protein-protein interaction networks resulted in the identification of four novel breast cancer candidate genes namely MMS19, DNAH3, POLK and KATB6. CONCLUSIONS In this first WES application on Tunisian breast cancer patients, we highlighted the impact of next generation sequencing technologies in the identification of novel breast cancer candidate genes which may bring new insights into the biological mechanisms of breast carcinogenesis. Our findings showed that the breast cancer predisposition in non-BRCA families may be ethnic and/or family specific.
Collapse
Affiliation(s)
- Yosr Hamdi
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - Maroua Boujemaa
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - Mariem Ben Rekaya
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - Cherif Ben Hamda
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Faculty of Sciences of Bizerte, Carthage University, Tunis, Tunisia
| | - Najah Mighri
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - Houda El Benna
- Department of Medical Oncology, Abderrahmane Mami Hospital, Ariana, Tunisia
| | - Nesrine Mejri
- Department of Medical Oncology, Abderrahmane Mami Hospital, Ariana, Tunisia
| | - Soumaya Labidi
- Department of Medical Oncology, Abderrahmane Mami Hospital, Ariana, Tunisia
| | - Nouha Daoud
- Department of Medical Oncology, Abderrahmane Mami Hospital, Ariana, Tunisia
| | - Chokri Naouali
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - Olfa Messaoud
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - Mariem Chargui
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Mohamed Samir Boubaker
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - Ridha Mrad
- Department of Human Genetics, Charles Nicolle Hospital, Tunis, Tunisia
| | - Hamouda Boussen
- Department of Medical Oncology, Abderrahmane Mami Hospital, Ariana, Tunisia
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP 74, 1002 Tunis, Tunisia
| | - the PEC Consortium
- Department of Medical Oncology, Abderrahmane Mami Hospital, Ariana, Tunisia
| |
Collapse
|
12
|
Abstract
Identifying mutations that cause cystic fibrosis (CF) is important for making an early, unambiguous diagnosis, which, in turn, is linked to better health and a greater life expectancy. In patients of African descent, a molecular diagnosis is often confounded by the fact that the majority of investigations undertaken to identify causative mutations have been conducted on European populations, and CF-causing mutations tend to be population specific. We undertook a survey of published data with the aim of identifying causative CF mutations in patients of African descent in the Americas. We found that 1,584 chromosomes had been tested in only 6 countries, of which 876 alleles (55.3%) still remained unidentified. There were 59 mutations identified. Of those, 41 have been shown to cause CF, 17 have no associated functional studies, and one (R117H) is of varying clinical consequence. The most common mutations identified in the patients of African descent were: ΔF508 (29.4% identified in the United States, Colombia, Brazil, and Venezuela); 3120 + 1G>A (8.4% identified in Brazil, the United States, and Colombia); G85E (3.8% identified in Brazil); 1811 + 1.6kbA>G (3.7% identified in Colombia); and 1342 - 1G>C (3.1% identified in the United States). The majority of the mutations identified (81.4%) have been described in just one country. Our findings indicate that there is a need to fully characterize the spectrum of CF mutations in the diaspora to improve diagnostic accuracy for these patients and facilitate treatment.
Collapse
|
13
|
Abstract
Systemic and odontogenic etiologies of chronic rhinosinusitis, although rare, are an integral consideration in the comprehensive management of patients with sinonasal disease. Proper knowledge and timely recognition of each disease process, with referrals to appropriate consultants, will facilitate treatment, because many of these conditions require both local and systemic therapy. In some instances, medical therapy plays a pivotal role, with surgery being a supplemental treatment technique. We review the most commonly encountered systemic etiologies of chronic rhinosinusitis and odontogenic sinusitis, including clinical presentation, diagnosis, management, and treatment outcomes.
Collapse
Affiliation(s)
- Edward C Kuan
- Department of Head and Neck Surgery, University of California, Los Angeles (UCLA) Medical Center, 10833 Le Conte Avenue, 62-132 CHS, Los Angeles, CA 90095, USA
| | - Jeffrey D Suh
- Department of Head and Neck Surgery, University of California, Los Angeles (UCLA) Medical Center, 10833 Le Conte Avenue, 62-132 CHS, Los Angeles, CA 90095, USA.
| |
Collapse
|
14
|
Guideline for the Evaluation of Cholestatic Jaundice in Infants: Joint Recommendations of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. J Pediatr Gastroenterol Nutr 2017; 64:154-168. [PMID: 27429428 DOI: 10.1097/mpg.0000000000001334] [Citation(s) in RCA: 311] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cholestatic jaundice in infancy affects approximately 1 in every 2500 term infants and is infrequently recognized by primary providers in the setting of physiologic jaundice. Cholestatic jaundice is always pathologic and indicates hepatobiliary dysfunction. Early detection by the primary care physician and timely referrals to the pediatric gastroenterologist/hepatologist are important contributors to optimal treatment and prognosis. The most common causes of cholestatic jaundice in the first months of life are biliary atresia (25%-40%) followed by an expanding list of monogenic disorders (25%), along with many unknown or multifactorial (eg, parenteral nutrition-related) causes, each of which may have time-sensitive and distinct treatment plans. Thus, these guidelines can have an essential role for the evaluation of neonatal cholestasis to optimize care. The recommendations from this clinical practice guideline are based upon review and analysis of published literature and the combined experience of the authors. The committee recommends that any infant noted to be jaundiced after 2 weeks of age be evaluated for cholestasis with measurement of total and direct serum bilirubin, and that an elevated serum direct bilirubin level (direct bilirubin levels >1.0 mg/dL or >17 μmol/L) warrants timely consideration for evaluation and referral to a pediatric gastroenterologist or hepatologist. Of note, current differential diagnostic plans now incorporate consideration of modern broad-based next-generation DNA sequencing technologies in the proper clinical context. These recommendations are a general guideline and are not intended as a substitute for clinical judgment or as a protocol for the care of all infants with cholestasis. Broad implementation of these recommendations is expected to reduce the time to the diagnosis of pediatric liver diseases, including biliary atresia, leading to improved outcomes.
Collapse
|
15
|
Abstract
The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene encodes an epithelial ion channel. Although one mutation remains the most common cause of CF (F508del), there have been more than 2000 reported variations in CFTR. For the most part, individuals who carry only one mutation (heterozygotes) have no symptoms; individuals who inherit deleterious mutations from both parents have CF. However, growing awareness of CFTR mutations that do not ever or do not always cause CF, and individuals with mild or single-organ system manifestations of CFTR-related disease have made this Mendelian relationship more complex.
Collapse
|
16
|
Abstract
Cystic fibrosis (CF) is the most common life-limiting inherited illness of whites. Most of the morbidity and mortality in CF stems from impaired mucociliary clearance leading to chronic, progressive airways obstruction and damage. Significant progress has been made in the care of patients with CF, with advances focused on improving mucociliary clearance, minimizing inflammatory damage, and managing infections; these advances include new antimicrobial therapies, mucolytic and osmotic agents, and antiinflammatory treatments. More recently, researchers have targeted disease-causing mutations using therapies to promote gene transcription and improve channel function, which has led to impressive physiologic changes in some patients. As we develop more advanced, allele-directed therapies for the management of CF, it will become increasingly important to understand the specific genetic and environmental interactions that cause the significant heterogeneity of lung disease seen in the CF population. This understanding of CF endotypes will allow for more targeted, personalized therapies for future patients. This article reviews the genetic and molecular basis of CF lung disease, the treatments currently available, and novel therapies that are in development.
Collapse
Affiliation(s)
| | - Thomas W Ferkol
- Department of Pediatrics; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
17
|
Qiu W, Liesa M, Carpenter EP, Shirihai OS. ATP Binding and Hydrolysis Properties of ABCB10 and Their Regulation by Glutathione. PLoS One 2015; 10:e0129772. [PMID: 26053025 PMCID: PMC4459825 DOI: 10.1371/journal.pone.0129772] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/13/2015] [Indexed: 11/26/2022] Open
Abstract
ABCB10 (ATP binding cassette sub-family B10) is a mitochondrial inner-membrane ABC transporter. ABCB10 has been shown to protect the heart from the impact of ROS during ischemia-reperfusion and to allow for proper hemoglobin synthesis during erythroid development. ABC transporters are proteins that increase ATP binding and hydrolysis activity in the presence of the transported substrate. However, molecular entities transported by ABCB10 and its regulatory mechanisms are currently unknown. Here we characterized ATP binding and hydrolysis properties of ABCB10 by using the 8-azido-ATP photolabeling technique. This technique can identify potential ABCB10 regulators, transported substrates and amino-acidic residues required for ATP binding and hydrolysis. We confirmed that Gly497 and Lys498 in the Walker A motif, Glu624 in the Walker B motif and Gly602 in the C-Loop motif of ABCB10 are required for proper ATP binding and hydrolysis activity, as their mutation changed ABCB10 8-Azido-ATP photo-labeling. In addition, we show that the potential ABCB10 transported entity and heme precursor delta-aminolevulinic acid (dALA) does not alter 8-azido-ATP photo-labeling. In contrast, oxidized glutathione (GSSG) stimulates ATP hydrolysis without affecting ATP binding, whereas reduced glutathione (GSH) inhibits ATP binding and hydrolysis. Indeed, we detectABCB10 glutathionylation in Cys547 and show that it is one of the exposed cysteine residues within ABCB10 structure. In all, we characterize essential residues for ABCB10 ATPase activity and we provide evidence that supports the exclusion of dALA as a potential substrate directly transported by ABCB10. Last, we show the first molecular mechanism by which mitochondrial oxidative status, through GSH/GSSG, can regulate ABCB10.
Collapse
Affiliation(s)
- Wei Qiu
- Department of Medicine, Obesity and Nutrition Section, Mitochondria ARC, Evans Biomedical Research Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Marc Liesa
- Department of Medicine, Obesity and Nutrition Section, Mitochondria ARC, Evans Biomedical Research Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail: (OSS); (ML)
| | - Elizabeth P. Carpenter
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Orian S. Shirihai
- Department of Medicine, Obesity and Nutrition Section, Mitochondria ARC, Evans Biomedical Research Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Clinical Biochemistry, School of Medicine, Ben Gurion University, Beer-Sheva, Israel
- * E-mail: (OSS); (ML)
| |
Collapse
|
18
|
Chauvet S, Traboulsi W, Thevenon L, Kouadri A, Feige JJ, Camara B, Alfaidy N, Benharouga M. EG-VEGF, BV8, and their receptor expression in human bronchi and their modification in cystic fibrosis: Impact of CFTR mutation (delF508). Am J Physiol Lung Cell Mol Physiol 2015; 309:L314-22. [PMID: 26047640 DOI: 10.1152/ajplung.00382.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/22/2015] [Indexed: 12/22/2022] Open
Abstract
Enhanced lung angiogenesis has been reported in cystic fibrosis (CF). Recently, two highly homologous ligands, endocrine gland vascular endothelial growth factor (EG-VEGF) and mammalian Bv8, have been described as new angiogenic factors. Both ligands bind and activate two closely related G protein-coupled receptors, the prokineticin receptor (PROKR) 1 and 2. Yet, the expression, regulation, and potential role of EG-VEGF, BV8, and their receptors in normal and CF lung are still unknown. The expression of the receptors and their ligands was examined using molecular, biochemical, and immunocytochemistry analyses in lungs obtained from CF patients vs. control and in normal and CF bronchial epithelial cells. Cystic fibrosis transmembrane conductance regulator (CFTR) activity was evaluated in relation to both ligands, and concentrations of EG-VEGF were measured by ELISA. At the mRNA level, EG-VEGF, BV8, and PROKR2 gene expression was, respectively, approximately five, four, and two times higher in CF lungs compared with the controls. At the cellular level, both the ligands and their receptors showed elevated expressions in the CF condition. Similar results were observed at the protein level. The EG-VEGF secretion was apical and was approximately two times higher in CF compared with the normal epithelial cells. This secretion was increased following the inhibition of CFTR chloride channel activity. More importantly, EG-VEGF and BV8 increased the intracellular concentration of Ca(2+) and cAMP and stimulated CFTR-chloride channel activity. Altogether, these data suggest local roles for epithelial BV8 and EG-VEGF in the CF airway peribronchial vascular remodeling and highlighted the role of CFTR activity in both ligand biosynthesis and secretion.
Collapse
Affiliation(s)
- Sylvain Chauvet
- Centre National de la Recherche Scientifique, LCBM-UMR 5249, Grenoble, France; Commissariat à l'Energie Atomique, DSV-iRTSV, Grenoble, France; Grenoble Alpes Université, Grenoble, France
| | - Wael Traboulsi
- Commissariat à l'Energie Atomique, DSV-iRTSV, Grenoble, France; Grenoble Alpes Université, Grenoble, France; Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France; and
| | - Laura Thevenon
- Commissariat à l'Energie Atomique, DSV-iRTSV, Grenoble, France; Grenoble Alpes Université, Grenoble, France; Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France; and
| | - Amal Kouadri
- Centre National de la Recherche Scientifique, LCBM-UMR 5249, Grenoble, France; Commissariat à l'Energie Atomique, DSV-iRTSV, Grenoble, France; Grenoble Alpes Université, Grenoble, France
| | - Jean-Jacques Feige
- Commissariat à l'Energie Atomique, DSV-iRTSV, Grenoble, France; Grenoble Alpes Université, Grenoble, France; Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France; and
| | - Boubou Camara
- Centre de Ressources et de Compétences pour la Mucoviscidose, Clinique Universitaire de Pneumologie-Pole Thorax et Vaisseaux, CHU de Grenoble, France
| | - Nadia Alfaidy
- Commissariat à l'Energie Atomique, DSV-iRTSV, Grenoble, France; Grenoble Alpes Université, Grenoble, France; Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France; and
| | - Mohamed Benharouga
- Centre National de la Recherche Scientifique, LCBM-UMR 5249, Grenoble, France; Commissariat à l'Energie Atomique, DSV-iRTSV, Grenoble, France; Grenoble Alpes Université, Grenoble, France;
| |
Collapse
|
19
|
Regan JF, Kamitaki N, Legler T, Cooper S, Klitgord N, Karlin-Neumann G, Wong C, Hodges S, Koehler R, Tzonev S, McCarroll SA. A rapid molecular approach for chromosomal phasing. PLoS One 2015; 10:e0118270. [PMID: 25739099 PMCID: PMC4349636 DOI: 10.1371/journal.pone.0118270] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/12/2015] [Indexed: 11/18/2022] Open
Abstract
Determining the chromosomal phase of pairs of sequence variants - the arrangement of specific alleles as haplotypes - is a routine challenge in molecular genetics. Here we describe Drop-Phase, a molecular method for quickly ascertaining the phase of pairs of DNA sequence variants (separated by 1-200 kb) without cloning or manual single-molecule dilution. In each Drop-Phase reaction, genomic DNA segments are isolated in tens of thousands of nanoliter-sized droplets together with allele-specific fluorescence probes, in a single reaction well. Physically linked alleles partition into the same droplets, revealing their chromosomal phase in the co-distribution of fluorophores across droplets. We demonstrated the accuracy of this method by phasing members of trios (revealing 100% concordance with inheritance information), and demonstrate a common clinical application by phasing CFTR alleles at genomic distances of 11-116 kb in the genomes of cystic fibrosis patients. Drop-Phase is rapid (requiring less than 4 hours), scalable (to hundreds of samples), and effective at long genomic distances (200 kb).
Collapse
Affiliation(s)
- John F. Regan
- Digital Biology Center, Bio-Rad Laboratories, Pleasanton, California, United States of America
- * E-mail: (JFR); (SAM)
| | - Nolan Kamitaki
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Cambridge, Massachusetts, United States of America
| | - Tina Legler
- Digital Biology Center, Bio-Rad Laboratories, Pleasanton, California, United States of America
| | - Samantha Cooper
- Digital Biology Center, Bio-Rad Laboratories, Pleasanton, California, United States of America
| | - Niels Klitgord
- Digital Biology Center, Bio-Rad Laboratories, Pleasanton, California, United States of America
| | - George Karlin-Neumann
- Digital Biology Center, Bio-Rad Laboratories, Pleasanton, California, United States of America
| | - Catherine Wong
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shawn Hodges
- Digital Biology Center, Bio-Rad Laboratories, Pleasanton, California, United States of America
| | - Ryan Koehler
- Digital Biology Center, Bio-Rad Laboratories, Pleasanton, California, United States of America
| | - Svilen Tzonev
- Digital Biology Center, Bio-Rad Laboratories, Pleasanton, California, United States of America
| | - Steven A. McCarroll
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Cambridge, Massachusetts, United States of America
- * E-mail: (JFR); (SAM)
| |
Collapse
|
20
|
Kushwah R, Gagnon S, Sweezey NB. Intrinsic predisposition of naïve cystic fibrosis T cells to differentiate towards a Th17 phenotype. Respir Res 2013; 14:138. [PMID: 24344776 PMCID: PMC3890528 DOI: 10.1186/1465-9921-14-138] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/13/2013] [Indexed: 01/04/2023] Open
Abstract
Background Cystic fibrosis (CF) is a complex, multi-system, life-shortening, autosomal recessive disease most common among Caucasians. Pulmonary pathology, the major cause of morbidity and mortality in CF, is characterized by dysregulation of cytokines and a vicious cycle of infection and inflammation. This cycle causes a progressive decline in lung function, eventually resulting in respiratory failure and death. The Th17 immune response plays an active role in the pathogenesis of CF pulmonary pathology, but it is not known whether the pathophysiology of CF disease contributes to a heightened Th17 response or whether CF naïve CD4+ T lymphocytes (Th0 cells) intrinsically have a heightened predisposition to Th17 differentiation. Methods To address this question, Th0 cells were isolated from the peripheral blood of CF mice, human CF subjects and corresponding controls. Murine Th0 cells were isolated from single spleen cell suspensions using fluorescence-activated cell sorting. Lymphocytes from human buffy coats were isolated by gradient centrifugation and Th0 cells were further isolated using a human naïve T cell isolation kit. Th0 cells were then assessed for their capacity to differentiate along Th17, Th1 or Treg lineages in response to corresponding cytokine stimulation. The T cell responses of human peripheral blood cells were also assessed ex vivo using flow cytometry. Results Here we identify in both mouse and human CF an intrinsically enhanced predisposition of Th0 cells to differentiate towards a Th17 phenotype, while having a normal propensity for differentiation into Th1 and Treg lineages. Furthermore, we identify an active Th17 response in the peripheral blood of human CF subjects. Conclusions We propose that these novel observations offer an explanation, at least in part, for the known increased Th17-associated inflammation of CF and the early signs of inflammation in CF lungs before any evidence of infection. Moreover, these findings point towards direct modulation of T cell responses as a novel potential therapeutic strategy for combating excessive inflammation in CF.
Collapse
Affiliation(s)
| | | | - Neil B Sweezey
- Physiology and Experimental Medicine, Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8.
| |
Collapse
|
21
|
Chignard M, Ramphal R. Basic Research Funding by Philanthropic Organizations: A Case in Point. Am J Respir Crit Care Med 2013; 188:1376-8. [DOI: 10.1164/rccm.201307-1275le] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
22
|
Tsui LC, Dorfman R. The cystic fibrosis gene: a molecular genetic perspective. Cold Spring Harb Perspect Med 2013; 3:a009472. [PMID: 23378595 DOI: 10.1101/cshperspect.a009472] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The positional cloning of the gene responsible for cystic fibrosis (CF) was the important first step in understanding the basic defect and pathophysiology of the disease. This study aims to provide a historical account of key developments as well as factors that contributed to the cystic fibrosis transmembrane conductance regulator (CFTR) gene identification work. A redefined gene structure based on the full sequence of the gene derived from the Human Genome Project is presented, along with brief reviews of the transcription regulatory sequences for the CFTR gene, the role of mRNA splicing in gene regulation and CF disease, and, various related sequences in the human genome and other species. Because CF mutations and genotype-phenotype correlations are covered by our colleagues (Ferec C, Cutting GR. 2012. Assessing the disease-liability of mutations in CFTR. Cold Spring Harb Perspect Med doi: 10.1101/cshperspect.a009480), we only attempt to provide an introduction of the CF mutation database here for reference purposes.
Collapse
Affiliation(s)
- Lap-Chee Tsui
- The University of Hong Kong, Hong Kong, Special Administrative Region, China.
| | | |
Collapse
|
23
|
A rapid method for optimizing running temperature of electrophoresis through repetitive on-chip CE operations. Int J Mol Sci 2011; 12:4271-81. [PMID: 21845077 PMCID: PMC3155350 DOI: 10.3390/ijms12074271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 06/16/2011] [Accepted: 06/20/2011] [Indexed: 02/06/2023] Open
Abstract
In this paper, a rapid and simple method to determine the optimal temperature conditions for denaturant electrophoresis using a temperature-controlled on-chip capillary electrophoresis (CE) device is presented. Since on-chip CE operations including sample loading, injection and separation are carried out just by switching the electric field, we can repeat consecutive run-to-run CE operations on a single on-chip CE device by programming the voltage sequences. By utilizing the high-speed separation and the repeatability of the on-chip CE, a series of electrophoretic operations with different running temperatures can be implemented. Using separations of reaction products of single-stranded DNA (ssDNA) with a peptide nucleic acid (PNA) oligomer, the effectiveness of the presented method to determine the optimal temperature conditions required to discriminate a single-base substitution (SBS) between two different ssDNAs is demonstrated. It is shown that a single run for one temperature condition can be executed within 4 min, and the optimal temperature to discriminate the SBS could be successfully found using the present method.
Collapse
|
24
|
Yu YC, Miki H, Nakamura Y, Hanyuda A, Matsuzaki Y, Abe Y, Yasui M, Tanaka K, Hwang TC, Bompadre SG, Sohma Y. Curcumin and genistein additively potentiate G551D-CFTR. J Cyst Fibros 2011; 10:243-52. [PMID: 21441077 DOI: 10.1016/j.jcf.2011.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 02/19/2011] [Accepted: 03/01/2011] [Indexed: 12/20/2022]
Abstract
BACKGROUND The G551D mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) is a common cause of cystic fibrosis (CF). G551D-CFTR is characterized by an extremely low open probability despite its normal trafficking to the plasma membrane. Numerous small molecules have been shown to increase the activity of G551D-CFTR presumably by binding to the CFTR protein. METHODS We investigated the effect of curcumin, genistein and their combined application on G551D-CFTR activity using the patch clamp technique. RESULTS Curcumin increased G551D-CFTR whole-cell and single-channel currents less than genistein did at their maximally effective concentrations. However, curcumin further increased the channel activity of G551D-CFTR that had been already maximally potentiated by genistein, up to ~50% of the WT-CFTR level. In addition, the combined application of genistein and curcumin over a lower concentration range synergistically rescued the gating defect of G551D-CFTR. CONCLUSIONS The additive effects between curcumin and genistein not only support the hypothesis that multiple mechanisms are involved in the action of CFTR potentiators, but also pose pharmaceutical implications in the development of drugs for CF pharmacotherapy.
Collapse
Affiliation(s)
- Ying-Chun Yu
- Department of Pharmacology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Miki H, Zhou Z, Li M, Hwang TC, Bompadre SG. Potentiation of disease-associated cystic fibrosis transmembrane conductance regulator mutants by hydrolyzable ATP analogs. J Biol Chem 2010; 285:19967-75. [PMID: 20406820 PMCID: PMC2888408 DOI: 10.1074/jbc.m109.092684] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 03/31/2010] [Indexed: 11/06/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel belonging to the ATP-binding cassette transporter superfamily. CFTR is gated by ATP binding and hydrolysis at its two nucleotide-binding domains (NBDs), which dimerize in the presence of ATP to form two ATP-binding pockets (ABP1 and ABP2). Mutations reducing the activity of CFTR result in the genetic disease cystic fibrosis. Two of the most common mutations causing a severe phenotype are G551D and DeltaF508. Previously we found that the ATP analog N(6)-(2-phenylethyl)-ATP (P-ATP) potentiates the activity of G551D by approximately 7-fold. Here we show that 2'-deoxy-ATP (dATP), but not 3'-deoxy-ATP, increases the activity of G551D-CFTR by approximately 8-fold. We custom synthesized N(6)-(2-phenylethyl)-2'-deoxy-ATP (P-dATP), an analog combining the chemical modifications in dATP and P-ATP. This new analog enhances G551D current by 36.2 +/- 5.4-fold suggesting an independent but energetically additive action of these two different chemical modifications. We show that P-dATP binds to ABP1 to potentiate the activity of G551D, and mutations in both sides of ABP1 (W401G and S1347G) decrease its potentiation effect, suggesting that the action of P-dATP takes place at the interface of both NBDs. Interestingly, P-dATP completely rectified the gating abnormality of DeltaF508-CFTR by increasing its activity by 19.5 +/- 3.8-fold through binding to both ABPs. This result highlights the severity of the gating defect associated with DeltaF508, the most prevalent disease-associated mutation. The new analog P-dATP can be not only an invaluable tool to study CFTR gating, but it can also serve as a proof-of-principle that, by combining elements that potentiate the channel activity independently, the increase in chloride transport necessary to reach a therapeutic target is attainable.
Collapse
Affiliation(s)
- Haruna Miki
- From the Dalton Cardiovascular Research Center and
- the Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka 569-1094, Japan
| | - Zhen Zhou
- From the Dalton Cardiovascular Research Center and
| | - Min Li
- From the Dalton Cardiovascular Research Center and
| | - Tzyh-Chang Hwang
- From the Dalton Cardiovascular Research Center and
- the Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65211 and
| | | |
Collapse
|
26
|
Becq F. Cystic fibrosis transmembrane conductance regulator modulators for personalized drug treatment of cystic fibrosis: progress to date. Drugs 2010; 70:241-59. [PMID: 20166764 DOI: 10.2165/11316160-000000000-00000] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This article considers the issue of personalized drug discovery for the orphan disease cystic fibrosis (CF) to deliver a candidate for therapeutic development. CF is a very complicated disease due to numerous anomalies of the gene leading to progressive severity and morbidity. Despite extensive research efforts, 20 years after the cloning of the CF gene, CF patients are still waiting for a curative treatment as prescribed medications still target the secondary manifestations of the disease rather than the gene or the CF transmembrane conductance regulator (CFTR) protein. New therapeutics aimed at improving mutant CFTR functions, also known as 'protein repair therapy' are nevertheless hoped and predicted to replace some of the currently used therapy, while improving the quality of life as well as life expectancy of CF patients. Although there is substantial variability in the cost of treating CF between countries, a protein repair therapy should also alleviate the financial burden of medical costs for CF patients and their families. Finding new drugs or rediscovering old ones for CF is critically dependent on the delivery of molecular and structural information on the CFTR protein, on its mutated version and on the network of CFTR-interacting proteins. The expertise needed to turn compounds into marketable drugs for CF will depend on our ability to provide biological information obtained from pertinent models of the disease and on our success in transferring safe molecules to clinical trials. Predicting a drug-induced response is also an attractive challenge that could be rapidly applied to patients.
Collapse
Affiliation(s)
- Frédéric Becq
- Institute of Physiology and Cellular Biology, University of Poitiers, National Centre of Scientific Research, Poitiers, France.
| |
Collapse
|
27
|
|
28
|
Collazo T, Bofill AM, Clark Y, Hernández Y, Gómez M, Rodríguez F, Ramos MD, Giménez J, Casals T, Rojo M. Common mutations in Cuban cystic fibrosis patients. J Cyst Fibros 2008; 8:47-9. [PMID: 18938114 DOI: 10.1016/j.jcf.2008.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 09/02/2008] [Accepted: 09/09/2008] [Indexed: 11/19/2022]
Abstract
So far, more than 1500 mutations have been reported in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Mutational spectrum varies in accordance with geographic and/or ethnic origin. In this study, we have analyzed seven common CF mutations (p.F508del, p.G542X, p.R1162X, p.N1303K, p.R334W, p.R553X and c.3120+1G>A) taking into account the ethnic origin of the Cuban population which is mainly influenced by Spanish and sub-Sahara African contribution. All but p.N1303K have been detected in our patients, the p.F508del being the most prevalent (37.9%). Overall, six mutations showed frequencies above 1% accounting for 55.5% of the Cuban CF alleles.
Collapse
|
29
|
Frenţescu L, Brownsell E, Hinks J, Malone G, Shaw H, Budişan L, Bulman M, Schwarz M, Pop L, Filip M, Tomescu E, Moşescu S, Popa I, Benga G. The study of cystic fibrosis transmembrane conductance regulator gene mutations in a group of patients from Romania. J Cyst Fibros 2008; 7:423-8. [DOI: 10.1016/j.jcf.2008.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 02/28/2008] [Accepted: 03/11/2008] [Indexed: 11/16/2022]
|
30
|
Abstract
CLC-0 and cystic fibrosis transmembrane conductance regulator (CFTR) Cl−channels play important roles in Cl−transport across cell membranes. These two proteins belong to, respectively, the CLC and ABC transport protein families whose members encompass both ion channels and transporters. Defective function of members in these two protein families causes various hereditary human diseases. Ion channels and transporters were traditionally viewed as distinct entities in membrane transport physiology, but recent discoveries have blurred the line between these two classes of membrane transport proteins. CLC-0 and CFTR can be considered operationally as ligand-gated channels, though binding of the activating ligands appears to be coupled to an irreversible gating cycle driven by an input of free energy. High-resolution crystallographic structures of bacterial CLC proteins and ABC transporters have led us to a better understanding of the gating properties for CLC and CFTR Cl−channels. Furthermore, the joined force between structural and functional studies of these two protein families has offered a unique opportunity to peek into the evolutionary link between ion channels and transporters. A promising byproduct of this exercise is a deeper mechanistic insight into how different transport proteins work at a fundamental level.
Collapse
|
31
|
Fichou Y, Génin E, Le Maréchal C, Audrézet MP, Scotet V, Férec C. Estimating the age of CFTR mutations predominantly found in Brittany (Western France). J Cyst Fibros 2008; 7:168-73. [PMID: 17825628 DOI: 10.1016/j.jcf.2007.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 07/06/2007] [Accepted: 07/26/2007] [Indexed: 11/22/2022]
Abstract
BACKGROUND Disparities in the spectrum of mutations within the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene are commonly observed in populations from different ethnical and/or geographical origins. The occurrence of CF in Brittany (western France) is one of the highest in populations from Caucasian origin (<1/2000 in specific areas). The W846X(2), 1078delT and G551D mutations, as well as the I1027T polymorphism in cis with the DeltaF508 mutation (currently referred to as p.F508del) are particularly frequent in this area. We investigated the age of the respective variants in the region of interest. METHODS Several polymorphic markers surrounding the CFTR gene were genotyped. Allele frequencies as well as mutation rates and other parameters were used to calculate the respective age of the most recent common ancestors in the region of interest by a previously employed, simple likelihood-based method. RESULTS Following haplotype reconstruction and simulation, the ages were estimated to be approximately 600, 1000, 1200 and 600 years, respectively (with a 95% confidence interval). CONCLUSIONS These datings thus provide historical insights in the context of understanding population migrations. They also underline the usefulness of this method for estimating the age of rare mutations with a limited number of carriers.
Collapse
Affiliation(s)
- Yann Fichou
- Inserm, U613, Génétique Moléculaire et Génétique Epidémiologique, Etablissement Français du Sang, 46 rue Félix Le Dantec, BP62025, F-29220, Brest, France
| | | | | | | | | | | |
Collapse
|
32
|
Bompadre SG, Li M, Hwang TC. Mechanism of G551D-CFTR (cystic fibrosis transmembrane conductance regulator) potentiation by a high affinity ATP analog. J Biol Chem 2007; 283:5364-9. [PMID: 18167357 DOI: 10.1074/jbc.m709417200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel gated by ATP binding and hydrolysis at its nucleotide binding domains (NBD). The NBDs dimerize in a head-to-tail configuration, forming two ATP binding pockets (ABP) with the ATP molecules buried at the dimer interface. Previous studies have indicated that ABP2, formed by the Walker A and B motifs of NBD2 and the signature sequence of NBD1, is the site critical for the ATP-dependent opening of CFTR. The G551D mutation in ABP2, the third most common cystic fibrosis-associated mutation, abolishes ATP-dependent gating, resulting in an open probability that is approximately 100-fold lower than that of wild-type channels. Interestingly, we found that the ATP analog N6-(2-phenylethyl)-ATP (P-ATP) increases G551D currents mainly by increasing the open time of the channel. This effect is reduced when P-ATP is applied together with ATP, suggesting a competition between ATP and P-ATP for a common binding site. Introducing mutations that lower the nucleotide binding affinity at ABP2 did not alter significantly the effects of P-ATP on G551D-CFTR, whereas an equivalent mutation at ABP1 (consisting of the Walker A and B motifs of NBD1 and the signature sequence of NBD2) dramatically decreased the potency of P-ATP, indicating that ABP1 is the site where P-ATP binds to increase the activity of G551D-CFTR. These results substantiate the idea that nucleotide binding at ABP1 stabilizes the open channel conformation. Our observation that P-ATP enhances the G551D activity by binding at ABP1 implicates that ABP1 can potentially be a target for drugs to bind and increase the channel activity.
Collapse
Affiliation(s)
- Silvia G Bompadre
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri 65211, USA.
| | | | | |
Collapse
|
33
|
Abstract
Gallstone disease is one of the most prevalent gastrointestinal diseases with a substantial burden to health care systems that is supposed to increase in ageing populations at risk. Aetiology and pathogenesis of cholesterol gallstones still are not well defined, and strategies for prevention and efficient nonsurgical therapies are missing. This review summarizes current concepts on the pathogenesis of cholesterol gallstones with focus on the uptake and secretion of biliary lipids and special emphasis on recent studies into the genetic background.
Collapse
Affiliation(s)
- H-U Marschall
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| | | |
Collapse
|
34
|
Hayashi H, Sugiyama Y. 4-phenylbutyrate enhances the cell surface expression and the transport capacity of wild-type and mutated bile salt export pumps. Hepatology 2007; 45:1506-16. [PMID: 17538928 DOI: 10.1002/hep.21630] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UNLABELLED Progressive familial intrahepatic cholestasis type 2 (PFIC2) is caused by a mutation in the bile salt export pump (BSEP/ABCB11) gene. We previously reported that E297G and D482G BSEP, which are frequently found mutations in European patients, result in impaired membrane trafficking, whereas both mutants retain their transport function. The dysfunctional localization is probably attributable to the retention of BSEP in endoplasmic reticulum (ER) followed by proteasomal degradation. Because sodium 4-phenylbutyrate (4PBA) has been shown to restore the reduced cell surface expression of mutated plasma membrane proteins, in the current study, we investigated the effect of 4PBA treatment on E297G and D482G BSEP. Transcellular transport and cell surface biotinylation studies using Madin-Darby canine kidney (MDCK) II cells demonstrated that 4PBA treatment increased functional cell surface expression of wild-type (WT), E297G, and D482G BSEP. The prolonged half-life of cell surface-resident BSEP with 4PBA treatment was responsible for this result. Moreover, treatment of Sprague-Dawley rats with 4PBA resulted in an increase in BSEP expression at the canalicular membrane, which was accompanied by an increase in the biliary excretion of [(3)H]taurocholic acid (TC). CONCLUSION 4PBA treatment with a clinically achievable concentration enhances the cell surface expression and the transport capacity of WT, E297G, and D482G BSEP in MDCK II cells, and also induces functional BSEP expression at the canalicular membrane and bile acid transport via canalicular membrane in vivo. 4PBA is a potential pharmacological agent for treating not only PFIC2 patients with E297G and D482G mutations but also other cholestatic patients, in whom the BSEP expression at the canalicular membrane is reduced.
Collapse
Affiliation(s)
- Hisamitsu Hayashi
- Department of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
35
|
Bompadre SG, Sohma Y, Li M, Hwang TC. G551D and G1349D, two CF-associated mutations in the signature sequences of CFTR, exhibit distinct gating defects. J Gen Physiol 2007; 129:285-98. [PMID: 17353351 PMCID: PMC2151620 DOI: 10.1085/jgp.200609667] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Accepted: 02/21/2007] [Indexed: 11/21/2022] Open
Abstract
Mutations in the gene encoding cystic fibrosis transmembrane conductance regulator (CFTR) result in cystic fibrosis (CF). CFTR is a chloride channel that is regulated by phosphorylation and gated by ATP binding and hydrolysis at its nucleotide binding domains (NBDs). G551D-CFTR, the third most common CF-associated mutation, has been characterized as having a lower open probability (Po) than wild-type (WT) channels. Patients carrying the G551D mutation present a severe clinical phenotype. On the other hand, G1349D, also a mutant with gating dysfunction, is associated with a milder clinical phenotype. Residues G551 and G1349 are located at equivalent positions in the highly conserved signature sequence of each NBD. The physiological importance of these residues lies in the fact that the signature sequence of one NBD and the Walker A and B motifs from the other NBD form the ATP-binding pocket (ABP1 and ABP2, named after the location of the Walker A motif) once the two NBDs dimerize. Our studies show distinct gating characteristics for these mutants. The G551D mutation completely eliminates the ability of ATP to increase the channel activity, and the observed activity is approximately 100-fold smaller than WT-CFTR. G551D-CFTR does not respond to ADP, AMP-PNP, or changes in [Mg(2+)]. The low activity of G551D-CFTR likely represents the rare ATP-independent gating events seen with WT channels long after the removal of ATP. G1349D-CFTR maintains ATP dependence, albeit with a Po approximately 10-fold lower than WT. Interestingly, compared to WT results, the ATP dose-response relationship of G1349D-CFTR is less steep and shows a higher apparent affinity for ATP. G1349D data could be well described by a gating model that predicts that binding of ATP at ABP1 hinders channel opening. Thus, our data provide a quantitative explanation at the single-channel level for different phenotypes presented by patients carrying these two mutations. In addition, these results support the idea that CFTR's two ABPs play distinct functional roles in gating.
Collapse
Affiliation(s)
- Silvia G Bompadre
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
36
|
Gentzsch M, Choudhury A, Chang XB, Pagano RE, Riordan JR. Misassembled mutant DeltaF508 CFTR in the distal secretory pathway alters cellular lipid trafficking. J Cell Sci 2007; 120:447-55. [PMID: 17213331 DOI: 10.1242/jcs.03350] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most patients with cystic fibrosis (CF) have a single codon deletion (DeltaF508) in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) that impairs assembly of the multidomain glycoprotein. The mutant protein escapes endoplasmic reticulum (ER) quality control at low temperature, but is rapidly cleared from the distal secretory pathway and degraded in lysosomes. CF cells accumulate free cholesterol similar to Niemann-Pick disease type C cells. We show that this lipid alteration is caused by the presence of misassembled mutant CFTR proteins, including DeltaF508, in the distal secretory pathway rather than the absence of functional CFTR. By contrast, cholesterol distribution is not changed by either D572N CFTR, which does not mature even at low temperature, or G551D, which is processed normally but is inactive. On expression of the DeltaF508 mutant, cholesterol and glycosphingolipids accumulate in punctate endosomal structures and cholesterol esters are reduced, indicating a block in the translocation of cholesterol to the ER for esterification. This is overcome by Rab9 overexpression, resulting in clearance of accumulating intracellular cholesterol. Similar but less pronounced alterations in intracellular cholesterol distribution are observed on expression of a temperature-rescued mutant variant of the related ATP-binding cassette (ABC) protein multidrug resistance-associated protein 1 (MRP1). Thus, on escape from ER quality control, misassembled mutants of CFTR and MRP1 impair lipid homeostasis in endocytic compartments.
Collapse
Affiliation(s)
- Martina Gentzsch
- Department of Cell and Developmental Biology and Cystic Fibrosis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
37
|
Ames GF, Mimura CS, Holbrook SR, Shyamala V. Traffic ATPases: a superfamily of transport proteins operating from Escherichia coli to humans. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 65:1-47. [PMID: 1533298 DOI: 10.1002/9780470123119.ch1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- G F Ames
- Department of Molecular and Cell Biology, University of California, Berkeley
| | | | | | | |
Collapse
|
38
|
Fachin AL, Ferreira-Nozawa MS, Maccheroni W, Martinez-Rossi NM. Role of the ABC transporter TruMDR2 in terbinafine, 4-nitroquinoline N-oxide and ethidium bromide susceptibility in Trichophyton rubrum. J Med Microbiol 2006; 55:1093-1099. [PMID: 16849730 DOI: 10.1099/jmm.0.46522-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A single-copy gene, designated TruMDR2, encoding an ATP-binding cassette (ABC) transporter was cloned and sequenced from the dermatophyte Trichophyton rubrum. The ORF of TruMDR2 was 4048 nt and the deduced amino acid sequence showed high homology with ABC transporters involved in drug efflux in other fungi. The encoded ABC protein predicted 12 transmembrane segments (TMSs) and two almost identical nucleotide-binding domains (NBDs) arranged in two halves in a (TMS(6)-NBD)(2) configuration and could be classified as a member of the multidrug-resistance (MDR) class of ABC transporters. Northern blot analyses revealed an increased level of transcription of the TruMDR2 gene when mycelium was exposed to acriflavine, benomyl, ethidium bromide, ketoconazole, chloramphenicol, griseofulvin, fluconazole, imazalil, itraconazole, methotrexate, 4-nitroquinoline N-oxide (4NQO) or tioconazole. Disruption of the TruMDR2 gene rendered the mutant more sensitive to terbinafine, 4NQO and ethidium bromide than the control strain, suggesting that this transporter plays a role in modulating drug susceptibility in T. rubrum.
Collapse
Affiliation(s)
- Ana Lúcia Fachin
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Monica S Ferreira-Nozawa
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Walter Maccheroni
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Nilce M Martinez-Rossi
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
39
|
Abstract
The retinal pigment epithelium (RPE) lying distal to the retina regulates the extracellular environment and provides metabolic support to the outer retina. RPE abnormalities are closely associated with retinal death and it has been claimed several of the most important diseases causing blindness are degenerations of the RPE. Therefore, the study of the RPE is important in Ophthalmology. Although visualisation of the RPE is part of clinical investigations, there are a limited number of methods which have been used to investigate RPE function. One of the most important is a study of the current generated by the RPE. In this it is similar to other secretory epithelia. The RPE current is large and varies as retinal activity alters. It is also affected by drugs and disease. The RPE currents can be studied in cell culture, in animal experimentation but also in clinical situations. The object of this review is to summarise this work, to relate it to the molecular membrane mechanisms of the RPE and to possible mechanisms of disease states.
Collapse
Affiliation(s)
- Geoffrey B Arden
- Department of Optometry and Visual Science, Henry Wellcome Laboratiories for Visual Sciences, City University, London, UK.
| | | |
Collapse
|
40
|
Mir MA, Rajeswari HS, Veeraraghavan U, Ajitkumar P. Molecular characterisation of ABC transporter type FtsE and FtsX proteins of Mycobacterium tuberculosis. Arch Microbiol 2006; 185:147-58. [PMID: 16416128 DOI: 10.1007/s00203-005-0079-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 11/09/2005] [Accepted: 12/14/2005] [Indexed: 11/30/2022]
Abstract
Elicitation of drug resistance and various survival strategies inside host macrophages have been the hallmarks of Mycobacterium tuberculosis as a successful pathogen. ATP Binding Cassette (ABC) transporter type proteins are known to be involved in the efflux of drugs in bacterial and mammalian systems. FtsE, an ABC transporter type protein, in association with the integral membrane protein FtsX, is involved in the assembly of potassium ion transport proteins and probably of cell division proteins as well, both of which being relevant to tubercle bacillus. In this study, we cloned ftsE gene of M. tuberculosis, overexpressed and purified. The recombinant MtFtsE-6xHis protein and the native MtFtsE protein were found localized on the membrane of E. coli and M. tuberculosis cells, respectively. MtFtsE-6xHis protein showed ATP binding in vitro, for which the K42 residue in the Walker A motif was found essential. While MtFtsE-6xHis protein could partially complement growth defect of E. coli ftsE temperature-sensitive strain MFT1181, co-expression of MtFtsE and MtFtsX efficiently complemented the growth defect, indicating that the MtFtsE and MtFtsX proteins might be performing an associated function. MtFtsE and MtFtsX-6xHis proteins were found to exist as a complex on the membrane of E. coli cells co-expressing the two proteins.
Collapse
Affiliation(s)
- Mushtaq Ahmad Mir
- Department of Microbiology and Cell Biology, Indian Institute of Science, 560012, Bangalore, India
| | | | | | | |
Collapse
|
41
|
Gross CH, Abdul-Manan N, Fulghum J, Lippke J, Liu X, Prabhakar P, Brennan D, Willis MS, Faerman C, Connelly P, Raybuck S, Moore J. Nucleotide-binding domains of cystic fibrosis transmembrane conductance regulator, an ABC transporter, catalyze adenylate kinase activity but not ATP hydrolysis. J Biol Chem 2005; 281:4058-68. [PMID: 16361259 DOI: 10.1074/jbc.m511113200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP-binding cassette (ABC) transporter family. CFTR consists of two transmembrane domains, two nucleotide-binding domains (NBD1 and NBD2), and a regulatory domain. Previous biochemical reports suggest NBD1 is a site of stable nucleotide interaction with low ATPase activity, whereas NBD2 is the site of active ATP hydrolysis. It has also been reported that NBD2 additionally possessed adenylate kinase (AK) activity. Knowledge about the intrinsic biochemical activities of the NBDs is essential to understanding the Cl(-) ion gating mechanism. We find that purified mouse NBD1, human NBD1, and human NBD2 function as adenylate kinases but not as ATPases. AK activity is strictly dependent on the addition of the adenosine monophosphate (AMP) substrate. No liberation of [(33)P]phosphate is observed from the gamma-(33)P-labeled ATP substrate in the presence or absence of AMP. AK activity is intrinsic to both human NBDs, as the Walker A box lysine mutations abolish this activity. At low protein concentration, the NBDs display an initial slower nonlinear phase in AK activity, suggesting that the activity results from homodimerization. Interestingly, the G551D gating mutation has an exaggerated nonlinear phase compared with the wild type and may indicate this mutation affects the ability of NBD1 to dimerize. hNBD1 and hNBD2 mixing experiments resulted in an 8-57-fold synergistic enhancement in AK activity suggesting heterodimer formation, which supports a common theme in ABC transporter models. A CFTR gating mechanism model based on adenylate kinase activity is proposed.
Collapse
|
42
|
Balss KM, Ross D, Begley HC, Olsen KG, Tarlov MJ. DNA hybridization assays using temperature gradient focusing and peptide nucleic acids. J Am Chem Soc 2005; 126:13474-9. [PMID: 15479104 DOI: 10.1021/ja030667w] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two types of DNA hybridization assays are demonstrated with temperature gradient focusing (TGF) and peptide nucleic acids (PNAs). In TGF, the application of a controlled temperature gradient along the length of a microchannel filled with an appropriate temperature-dependent buffer results in the formation of a gradient in both the electric field and electrophoretic velocity. Ionic species move in this gradient and concentrate at a unique point where the total velocity sums to zero. The first assay is a mixing assay in which PNA is allowed to flow through spatially focused DNA targets within a capillary. The second assay detects single base pair mutations (SBPM) by monitoring the fluorescence intensity of PNA/DNA duplexes as a function of temperature within the capillary. The SBPM analysis can be performed in less than 5 min with 100-fold more dilute analyte compared to conventional UV melting measurements.
Collapse
Affiliation(s)
- Karin M Balss
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
| | | | | | | | | |
Collapse
|
43
|
Becq F, Mettey Y. Pharmacological interventions for the correction of ion transport defect in cystic fibrosis. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.14.10.1465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Araújo FGD, Novaes FC, Santos NPCD, Martins VC, Souza SMD, Santos SEBD, Ribeiro-dos-Santos AKC. Prevalence of deltaF508, G551D, G542X, and R553X mutations among cystic fibrosis patients in the North of Brazil. Braz J Med Biol Res 2005; 38:11-5. [PMID: 15665983 DOI: 10.1590/s0100-879x2005000100003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cystic fibrosis (CF) is the most common genetic disease among Caucasians and is rare among sub-Saharan Africans. The Brazilian population is not ethnically homogeneous but it is the result of three-way ethnic admixture of Europeans, Africans and Amerindians in varying proportions, depending on the region. In the present study, we investigated 33 patients who had been diagnosed and are currently under treatment for CF at the University Hospital João de Barros Barreto, Belém, Pará State. The molecular analysis for G542X, G551D and R553X mutations was performed by PCR followed by RFLP using BstNI, HincII and MboI, respectively, in polyacrylamide gel eletrophoresis and stained with AgNO3. ThedeltaF508 mutation (a deletion of 3 bp) was only analyzed by polyacrylamide gel electrophoresis and stained with AgNO3. Each sample was analyzed for regions of interest in the CFTR gene using amplified by PCR and specific primers. The deltaF508 and G551D mutations presented frequencies of 22.7 and 3%, respectively. In 74.3% of the remaining patients, none of the mutations investigated was found. The present study characterized in a sample of patients with an established clinical diagnosis of CF (asthma, repeated bronchopneumonia, disorders of nutritional status, etc.) the most frequent mutation (deltaF508) in the North region of Brazil and is also the first report of the G551D mutation. In spite of the wide spectrum of CF mutations and the heterogeneous ethnic origin of the Amazon population, the molecular diagnosis is a helpful additional tool for the diagnosis and treatment of CF patients.
Collapse
Affiliation(s)
- F G de Araújo
- Laboratório de Genética Humana e Médica, Departamento de Patologia, Centro de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | | | | | | | | | | | | |
Collapse
|
45
|
Katagiri Y, Neri QV, Takeuchi T, Schlegel PN, Megid WA, Kent-First M, Rosenwaks Z, Palermo GD. Y chromosome assessment and its implications for the development of ICSI children. Reprod Biomed Online 2004; 8:307-18. [PMID: 15038896 DOI: 10.1016/s1472-6483(10)60911-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aetiology of compromised spermatogenesis is often genetic in nature. There are only a few reports of father/son cohorts that have been evaluated to assess heritability of mutations associated with male factor infertility and the psychological well-being of the children. In the present study, multiple tissues were sampled from consenting male patients and their sons derived from intracytoplasmic sperm injection (ICSI) and underwent chromosomal and genetic analyses. Paediatric and psychological examinations were also conducted. In 87 men and 47 boys, 22 sequence tagged sites (STS) were analysed by multiplex PCR and deletion breakpoints were defined with additional loci. In one patient, the breakpoints map to the highly unstable palindrome-rich region within AZFb and proximal AZFc was investigated. A total of 86 blood, 26 semen, and 73 cheek cells samples were collected from adults, and 36 blood samples and 44 cheek cell specimens were obtained from the boys. Though all of the fathers had normal karyotypes, the incidence of chromosomal abnormalities in the somatic cells of male progeny was 8.3% (3/36). The incidence of germ line aneuploidy in these men was 0.5-2.8%. A CF mutation (Delta508) was detected in one of 87 men (1.2%) and microdeletions in Yq AZF were detected in 3.4% of 87 adults and in 2.1% of their sons (n = 47). In conclusion, screening for Y chromosome microdeletions provides crucial information in the counselling of couples seeking infertility treatment. Moreover, DNA extraction and Y deletion assessments of cheek cells provide a non-invasive approach. Inheritance of Yq deletions appears not to affect the psychological and physical development of children derived from ICSI.
Collapse
Affiliation(s)
- Yukiko Katagiri
- Cornell Institute for Reproductive Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Chen M, Abele R, Tampé R. Functional non-equivalence of ATP-binding cassette signature motifs in the transporter associated with antigen processing (TAP). J Biol Chem 2004; 279:46073-81. [PMID: 15322097 DOI: 10.1074/jbc.m404042200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The transporter associated with antigen processing (TAP) is a key component of the cellular immune system. As a member of the ATP-binding cassette (ABC) superfamily, TAP hydrolyzes ATP to energize the transport of peptides from the cytosol into the lumen of the endoplasmic reticulum. TAP is composed of TAP1 and TAP2, each containing a transmembrane domain and a nucleotide-binding domain (NBD). Here we investigated the role of the ABC signature motif (C-loop) on the functional non-equivalence of the NBDs, which contain a canonical C-loop (LSGGQ) for TAP1 and a degenerate C-loop (LAAGQ) for TAP2. Mutation of the leucine or glycine (LSGGQ) in TAP1 fully abolished peptide transport. However, TAP complexes with equivalent mutations in TAP2 still showed residual peptide transport activity. To elucidate the origin of the asymmetry of the NBDs of TAP, we further examined TAP complexes with exchanged C-loops. Strikingly, the chimera with two canonical C-loops showed the highest transport rate whereas the chimera with two degenerate C-loops had the lowest transport rate, demonstrating that the ABC signature motifs control peptide transport efficiency. All single site mutants and chimeras showed similar activities in peptide or ATP binding, implying that these mutations affect the ATPase activity of TAP. In addition, these results prove that the serine of the C-loop is not essential for TAP function but rather coordinates, together with other residues of the C-loop, the ATP hydrolysis in both nucleotide-binding sites.
Collapse
Affiliation(s)
- Min Chen
- Institute of Biochemistry, Biozentrum, Goethe-University Frankfurt, Marie-Curie-Strasse 9, D-60439 Frankfurt am Main, Germany
| | | | | |
Collapse
|
47
|
Melin P, Thoreau V, Norez C, Bilan F, Kitzis A, Becq F. The cystic fibrosis mutation G1349D within the signature motif LSHGH of NBD2 abolishes the activation of CFTR chloride channels by genistein. Biochem Pharmacol 2004; 67:2187-96. [PMID: 15163550 DOI: 10.1016/j.bcp.2004.02.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Accepted: 02/05/2004] [Indexed: 11/19/2022]
Abstract
Cystic fibrosis (CF) is a common lethal genetic disease caused by autosomal recessive mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel that belongs to the ATP-Binding Cassette (ABC) family of transporters. The class III CF mutations G551D and G1349D are located within the "signature" sequence LSGGQ and LSHGH of NBD1 and NBD2, respectively. We have constructed by site-directed mutagenesis vectors encoding green fluorescent protein (GFP)-tagged wild-type (wt) CFTR or CFTR containing delF508, G551D, G1349D and G551D/G1349D to study their pharmacology after transient expression in COS-7 cells. We show that IBMX and the benzo[c]quinolizinium derivative MPB-91 stimulates the activity of G1349D-, G551D- and G551D/G1349D-CFTR only in the presence of cAMP-promoting agents like forskolin or cpt-cAMP. Similar half-maximal effective concentrations (EC(50)) of MPB-91 (22-36microM) have been determined for wt-, G551D-, G1349D- and G551D/G1349D-CFTR. The isoflavone genistein stimulates wild-type (wt)- and delF508-CFTR channel activity in a non-Michaelis-Menten manner. By contrast, the response of G1349D- and G551D-CFTR to genistein is dramatically altered. First, genistein is not able to stimulate G1349D- and G551D/G1349D-CFTR. Second, genistein stimulates G551D-CFTR without any inhibition at high concentration. We conclude from these results that whereas G551 in NBD1 is an important molecular site for inhibition of CFTR by genistein, the symmetrical G1349 in NBD2 is also one major site but for the activation of CFTR by genistein. Because both mutations alter specifically the mechanism of CFTR channel activation by genistein, we believe that the signature sequences of CFTR act as molecular switches that upon interaction with genistein turn on and off the channel.
Collapse
Affiliation(s)
- Patricia Melin
- Institut de Physiologie et Biologie Cellulaires CNRS UMR 6187, Université de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers, France
| | | | | | | | | | | |
Collapse
|
48
|
Feuillet-Fieux MN, Ferrec M, Gigarel N, Thuillier L, Sermet I, Steffann J, Lenoir G, Bonnefont JP. Novel CFTR mutations in black cystic fibrosis patients. Clin Genet 2004; 65:284-7. [PMID: 15025720 DOI: 10.1111/j.1399-0004.2004.00230.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cystic fibrosis (CF) is considered as a rare disease in black Africans. In fact, this disease is likely to be underestimated since clinical features consistent with CF diagnosis are often ascribed to environmental factors such as malnutrition. Very little is known about CFTR mutations in affected patients from Central Africa. We report here four novel mutations, i.e., IVS2 + 28 (intron 2), 459T > A (exon 4), EX17a_EX18del (exons 17-18), and IVS22 + IG > A (intron 22), in such patients. An update of CFTR mutations reported in black patients from various ethnies is included. These data might be helpful for genetic counselling regarding CF in black patients.
Collapse
Affiliation(s)
- M N Feuillet-Fieux
- Department of Genetic Biochemistry, Hopital Necker-Enfants Malades, Paris Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Marivingt-Mounir C, Norez C, Dérand R, Bulteau-Pignoux L, Nguyen-Huy D, Viossat B, Morgant G, Becq F, Vierfond JM, Mettey Y. Synthesis, SAR, Crystal Structure, and Biological Evaluation of Benzoquinoliziniums as Activators of Wild-Type and Mutant Cystic Fibrosis Transmembrane Conductance Regulator Channels. J Med Chem 2004; 47:962-72. [PMID: 14761197 DOI: 10.1021/jm0308848] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chloride channels play important roles in homeostasis and regulate cell volume, transepithelial transport, and electrical excitability. Despite recent progress made in the genetic and molecular aspect of chloride channels, their pharmacology is still poorly understood. The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated epithelial chloride channel for which mutations cause cystic fibrosis. Here we have synthesized benzo[c]quinolizinium and benzo[f]indolo[2,3-a]quinolizinium salts (MPB) and performed a SAR to identify the structural basis for activation of the CFTR chloride channel. Synthesized compounds were evaluated on wild-type CFTR and on CFTR having the glycine-to-aspartic acid missense mutation at codon 551 (G551D-CFTR), using a robot and cell-based assay. The presence of an hydroxyl group at position 6 of the benzo[c]quinolizinium skeleton associated with a chlorine atom at position 10 or 7 and an alkyl chain at position 5 determined the highest activity. The most potent product is 5-butyl-7-chloro-6-hydroxybenzo[c]quinolizinium chloride (8u, MPB-104). 8u is 100 times more potent than the parent compound 8a (MPB-07).
Collapse
Affiliation(s)
- Cécile Marivingt-Mounir
- Laboratoire de Chimie Organique, Faculté de Médecine et de Pharmacie, Université de Poitiers, 34 rue du Jardin des Plantes, BP 199, 86005 Poitiers Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
|