1
|
Dong M, Maturana AD. Effects of aging on calcium channels in skeletal muscle. Front Mol Biosci 2025; 12:1558456. [PMID: 40177518 PMCID: PMC11961898 DOI: 10.3389/fmolb.2025.1558456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
In skeletal muscle, calcium is not only essential to stimulate and sustain their contractions but also for muscle embryogenesis, regeneration, energy production in mitochondria, and fusion. Different ion channels contribute to achieving the various functions of calcium in skeletal muscles. Muscle contraction is initiated by releasing calcium from the sarcoplasmic reticulum through the ryanodine receptor channels gated mechanically by four dihydropyridine receptors of T-tubules. The calcium influx through store-operated calcium channels sustains the contraction and stimulates muscle regeneration. Mitochondrial calcium uniporter allows the calcium entry into mitochondria to stimulate oxidative phosphorylation. Aging alters the expression and activity of these different calcium channels, resulting in a reduction of skeletal muscle force generation and regeneration capacity. Regular physical training and bioactive molecules from nutrients can prevent the effects of aging on calcium channels. This review focuses on the current knowledge of the effects of aging on skeletal muscles' calcium channels.
Collapse
Affiliation(s)
| | - Andrés Daniel Maturana
- Department of Applied Biosciences, Graduate School of Bioagricultural Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
2
|
Grima-Terrén M, Campanario S, Ramírez-Pardo I, Cisneros A, Hong X, Perdiguero E, Serrano AL, Isern J, Muñoz-Cánoves P. Muscle aging and sarcopenia: The pathology, etiology, and most promising therapeutic targets. Mol Aspects Med 2024; 100:101319. [PMID: 39312874 DOI: 10.1016/j.mam.2024.101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Sarcopenia is a progressive muscle wasting disorder that severely impacts the quality of life of elderly individuals. Although the natural aging process primarily causes sarcopenia, it can develop in response to other conditions. Because muscle function is influenced by numerous changes that occur with age, the etiology of sarcopenia remains unclear. However, recent characterizations of the aging muscle transcriptional landscape, signaling pathway disruptions, fiber and extracellular matrix compositions, systemic metabolomic and inflammatory responses, mitochondrial function, and neurological inputs offer insights and hope for future treatments. This review will discuss age-related changes in healthy muscle and our current understanding of how this can deteriorate into sarcopenia. As our elderly population continues to grow, we must understand sarcopenia and find treatments that allow individuals to maintain independence and dignity throughout an extended lifespan.
Collapse
Affiliation(s)
- Mercedes Grima-Terrén
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Silvia Campanario
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Ignacio Ramírez-Pardo
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Andrés Cisneros
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain
| | - Xiaotong Hong
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | | | - Antonio L Serrano
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | - Joan Isern
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA
| | - Pura Muñoz-Cánoves
- Altos Labs, San Diego Institute of Science, San Diego, CA, 92121, USA; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain.
| |
Collapse
|
3
|
Zhang R, Liu S, Mousavi SM. Cognitive Dysfunction and Exercise: From Epigenetic to Genetic Molecular Mechanisms. Mol Neurobiol 2024; 61:6279-6299. [PMID: 38286967 DOI: 10.1007/s12035-024-03970-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/19/2024] [Indexed: 01/31/2024]
Abstract
Maintaining good health is crucial, and exercise plays a vital role in achieving this goal. It offers a range of positive benefits for cognitive function, regardless of age. However, as our population ages and life expectancy increases, cognitive impairment has become a prevalent issue, often coexisting with age-related neurodegenerative conditions. This can result in devastating consequences such as memory loss, difficulty speaking, and confusion, greatly hindering one's ability to lead an ordinary life. In addition, the decrease in mental capacity has a significant effect on an individual's physical and emotional well-being, greatly reducing their overall level of contentment and causing a significant financial burden for communities. While most current approaches aim to slow the decline of cognition, exercise offers a non-pharmacological, safe, and accessible solution. Its effects on cognition are intricate and involve changes in the brain's neural plasticity, mitochondrial stability, and energy metabolism. Moreover, exercise triggers the release of cytokines, playing a significant role in the body-brain connection and its impact on cognition. Additionally, exercise can influence gene expression through epigenetic mechanisms, leading to lasting improvements in brain function and behavior. Herein, we summarized various genetic and epigenetic mechanisms that can be modulated by exercise in cognitive dysfunction.
Collapse
Affiliation(s)
- Runhong Zhang
- Department of Physical Education, Luliang University, Lishi, 033000, Shanxi, China.
| | - Shangwu Liu
- Department of Physical Education, Luliang University, Lishi, 033000, Shanxi, China
| | | |
Collapse
|
4
|
Lan XQ, Deng CJ, Wang QQ, Zhao LM, Jiao BW, Xiang Y. The role of TGF-β signaling in muscle atrophy, sarcopenia and cancer cachexia. Gen Comp Endocrinol 2024; 353:114513. [PMID: 38604437 DOI: 10.1016/j.ygcen.2024.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/24/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Skeletal muscle, comprising a significant proportion (40 to 50 percent) of total body weight in humans, plays a critical role in maintaining normal physiological conditions. Muscle atrophy occurs when the rate of protein degradation exceeds protein synthesis. Sarcopenia refers to age-related muscle atrophy, while cachexia represents a more complex form of muscle wasting associated with various diseases such as cancer, heart failure, and AIDS. Recent research has highlighted the involvement of signaling pathways, including IGF1-Akt-mTOR, MuRF1-MAFbx, and FOXO, in regulating the delicate balance between muscle protein synthesis and breakdown. Myostatin, a member of the TGF-β superfamily, negatively regulates muscle growth and promotes muscle atrophy by activating Smad2 and Smad3. It also interacts with other signaling pathways in cachexia and sarcopenia. Inhibition of myostatin has emerged as a promising therapeutic approach for sarcopenia and cachexia. Additionally, other TGF-β family members, such as TGF-β1, activin A, and GDF11, have been implicated in the regulation of skeletal muscle mass. Furthermore, myostatin cooperates with these family members to impair muscle differentiation and contribute to muscle loss. This review provides an overview of the significance of myostatin and other TGF-β signaling pathway members in muscular dystrophy, sarcopenia, and cachexia. It also discusses potential novel therapeutic strategies targeting myostatin and TGF-β signaling for the treatment of muscle atrophy.
Collapse
Affiliation(s)
- Xin-Qiang Lan
- Metabolic Control and Aging Group, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Cheng-Jie Deng
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Qi-Quan Wang
- Metabolic Control and Aging Group, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Li-Min Zhao
- Senescence and Cancer Group, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Bao-Wei Jiao
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yang Xiang
- Metabolic Control and Aging Group, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
5
|
Olthof MGL, Hasler A, Valdivieso P, Flück M, Gerber C, Gehrke R, Klein K, von Rechenberg B, Snedeker JG, Wieser K. Poly(ADP-Ribose) Polymerases-Inhibitor Talazoparib Inhibits Muscle Atrophy and Fatty Infiltration in a Tendon Release Infraspinatus Sheep Model: A Pilot Study. Metabolites 2024; 14:187. [PMID: 38668315 PMCID: PMC11051840 DOI: 10.3390/metabo14040187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Structural muscle changes, including muscle atrophy and fatty infiltration, follow rotator cuff tendon tear and are associated with a high repair failure rate. Despite extensive research efforts, no pharmacological therapy is available to successfully prevent both muscle atrophy and fatty infiltration after tenotomy of tendomuscular unit without surgical repair. Poly(ADP-ribose) polymerases (PARPs) are identified as a key transcription factors involved in the maintenance of cellular homeostasis. PARP inhibitors have been shown to influence muscle degeneration, including mitochondrial hemostasis, oxidative stress, inflammation and metabolic activity, and reduced degenerative changes in a knockout mouse model. Tenotomized infraspinatus were assessed for muscle degeneration for 16 weeks using a Swiss Alpine sheep model (n = 6). All sheep received daily oral administration of 0.5 mg Talazoparib. Due to animal ethics, the treatment group was compared with three different controls from prior studies of our institution. To mitigate potential batch heterogeneity, PARP-I was evaluated in comparison with three distinct control groups (n = 6 per control group) using the same protocol without treatment. The control sheep were treated with an identical study protocol without Talazoparib treatment. Muscle atrophy and fatty infiltration were evaluated at 0, 6 and 16 weeks post-tenotomy using DIXON-MRI. The controls and PARP-I showed a significant (control p < 0.001, PARP-I p = 0.01) decrease in muscle volume after 6 weeks. However, significantly less (p = 0.01) atrophy was observed in PARP-I after 6 weeks (control 1: 76.6 ± 8.7%; control 2: 80.3 ± 9.3%, control 3: 73.8 ± 6.7% vs. PARP-I: 90.8 ± 5.1% of the original volume) and 16 weeks (control 1: 75.7 ± 9.9; control 2: 74.2 ± 5.6%; control 3: 75.3 ± 7.4% vs. PARP-I 93.3 ± 10.6% of the original volume). All experimental groups exhibited a statistically significant (p < 0.001) augmentation in fatty infiltration following a 16-week period when compared to the initial timepoint. However, the PARP-I showed significantly less fatty infiltration (p < 0.003) compared to all controls (control 1: 55.6 ± 6.7%, control 2: 53.4 ± 9.4%, control 3: 52.0 ± 12.8% vs. PARP-I: 33.5 ± 8.4%). Finally, a significantly (p < 0.04) higher proportion and size of fast myosin heavy chain-II fiber type was observed in the treatment group. This study shows that PARP-inhibition with Talazoparib inhibits the progression of both muscle atrophy and fatty infiltration over 16 weeks in retracted sheep musculotendinous units.
Collapse
Affiliation(s)
- Maurits G. L. Olthof
- Department of Orthopaedics, Balgrist, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland; (A.H.); (C.G.); (J.G.S.); (K.W.)
| | - Anita Hasler
- Department of Orthopaedics, Balgrist, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland; (A.H.); (C.G.); (J.G.S.); (K.W.)
| | - Paola Valdivieso
- Laboratory for Muscle Plasticity, Department of Orthopedics, Balgrist Campus, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland; (P.V.); (M.F.)
| | - Martin Flück
- Laboratory for Muscle Plasticity, Department of Orthopedics, Balgrist Campus, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland; (P.V.); (M.F.)
| | - Christian Gerber
- Department of Orthopaedics, Balgrist, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland; (A.H.); (C.G.); (J.G.S.); (K.W.)
| | - Rieke Gehrke
- Musculoskeletal Research Unit, Center for Applied Biotechnology and Molecular Medicine, Equine Department, Vetsuisse Faculty, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (R.G.); (K.K.); (B.v.R.)
| | - Karina Klein
- Musculoskeletal Research Unit, Center for Applied Biotechnology and Molecular Medicine, Equine Department, Vetsuisse Faculty, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (R.G.); (K.K.); (B.v.R.)
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit, Center for Applied Biotechnology and Molecular Medicine, Equine Department, Vetsuisse Faculty, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (R.G.); (K.K.); (B.v.R.)
| | - Jess G. Snedeker
- Department of Orthopaedics, Balgrist, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland; (A.H.); (C.G.); (J.G.S.); (K.W.)
- Institute for Biomechanics, ETH Zurich, Gloriastrasse 37/39, 8092 Zürich, Switzerland
| | - Karl Wieser
- Department of Orthopaedics, Balgrist, University of Zurich, Forchstrasse 340, 8008 Zurich, Switzerland; (A.H.); (C.G.); (J.G.S.); (K.W.)
| |
Collapse
|
6
|
Yang L, Ni Y, Jiang C, Liu L, Zhang S, Liu J, Sun L, Xu W. A neuromorphic device mimicking synaptic plasticity under different body fluid K + homeostasis for artificial reflex path construction and pattern recognition. FUNDAMENTAL RESEARCH 2024; 4:353-361. [PMID: 38933504 PMCID: PMC11197765 DOI: 10.1016/j.fmre.2022.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022] Open
Abstract
The ionic environment of body fluids influences nervous functions for maintaining homeostasis in organisms and ensures normal perceptual abilities and reflex activities. Neural reflex activities, such as limb movements, are closely associated with potassium ions (K+). In this study, we developed artificial synaptic devices based on ion concentration-adjustable gels for emulating various synaptic plasticities under different K+ concentrations in body fluids. In addition to performing essential synaptic functions, potential applications in information processing and associative learning using short- and long-term plasticity realized using ion concentration-adjustable gels are presented. Artificial synaptic devices can be used for constructing an artificial neural pathway that controls artificial muscle reflex activities and can be used for image pattern recognition. All tests show a strong relationship with ion homeostasis. These devices could be applied to neuromorphic robots and human-machine interfaces.
Collapse
Affiliation(s)
- Lu Yang
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Nankai University, Tianjin 300350, China
- Shenzhen Research Institute of Nankai University, Shenzhen 518000, China
| | - Yao Ni
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Nankai University, Tianjin 300350, China
- Shenzhen Research Institute of Nankai University, Shenzhen 518000, China
| | - Chengpeng Jiang
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Nankai University, Tianjin 300350, China
- Shenzhen Research Institute of Nankai University, Shenzhen 518000, China
| | - Lu Liu
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Nankai University, Tianjin 300350, China
- Shenzhen Research Institute of Nankai University, Shenzhen 518000, China
| | - Song Zhang
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Nankai University, Tianjin 300350, China
- Shenzhen Research Institute of Nankai University, Shenzhen 518000, China
| | - Jiaqi Liu
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Nankai University, Tianjin 300350, China
- Shenzhen Research Institute of Nankai University, Shenzhen 518000, China
| | - Lin Sun
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Nankai University, Tianjin 300350, China
- Shenzhen Research Institute of Nankai University, Shenzhen 518000, China
| | - Wentao Xu
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology, Ministry of Education, Nankai University, Tianjin 300350, China
- Shenzhen Research Institute of Nankai University, Shenzhen 518000, China
| |
Collapse
|
7
|
Careccia G, Mangiavini L, Cirillo F. Regulation of Satellite Cells Functions during Skeletal Muscle Regeneration: A Critical Step in Physiological and Pathological Conditions. Int J Mol Sci 2023; 25:512. [PMID: 38203683 PMCID: PMC10778731 DOI: 10.3390/ijms25010512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Skeletal muscle regeneration is a complex process involving the generation of new myofibers after trauma, competitive physical activity, or disease. In this context, adult skeletal muscle stem cells, also known as satellite cells (SCs), play a crucial role in regulating muscle tissue homeostasis and activating regeneration. Alterations in their number or function have been associated with various pathological conditions. The main factors involved in the dysregulation of SCs' activity are inflammation, oxidative stress, and fibrosis. This review critically summarizes the current knowledge on the role of SCs in skeletal muscle regeneration. It examines the changes in the activity of SCs in three of the most common and severe muscle disorders: sarcopenia, muscular dystrophy, and cancer cachexia. Understanding the molecular mechanisms involved in their dysregulations is essential for improving current treatments, such as exercise, and developing personalized approaches to reactivate SCs.
Collapse
Affiliation(s)
- Giorgia Careccia
- Department of Biosciences, University of Milan, 20133 Milan, Italy;
| | - Laura Mangiavini
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy;
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Federica Cirillo
- IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
- Institute for Molecular and Translational Cardiology (IMTC), 20097 San Donato Milanese, Italy
| |
Collapse
|
8
|
Marchione G, Pilotto E, Midena G. Proptosis secondary to bilateral extraocular muscle enlargement in Noonan syndrome with hypertrophic cardiomyopathy: A case report. Eur J Ophthalmol 2023; 33:NP67-NP70. [PMID: 36065573 DOI: 10.1177/11206721221125035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE To report and investigate proptosis in a young girl with Noonan syndrome. METHODS Observational case report. RESULTS A 16-year-old girl affected by Noonan syndrome underwent a complete ophthalmological examination showing bilateral proptosis with hypofunction of lateral rectus and superior oblique muscles. Visual acuity, color discrimination and fundus examination were unremarkable. The orbital MRI showed bilateral proptosis and symmetrical enlargement of extraocular muscles, with bellies thickening and tendon sparing. The young patient also complained restrictive hypertrophic cardiomyopathy. CONCLUSIONS Proptosis is an uncommon ocular manifestation of Noonan syndrome and its pathophysiology has never been clarified. The MRI evidence of extraocular muscles enlargement associated with hypertrophic cardiomyopathy, led us to hypothesize a common altered pathway beneath these features, more specifically the MAP kinase pathway, since extraocular and cardiac muscles share a mesenchymal embryological origin.
Collapse
Affiliation(s)
- Giulia Marchione
- Department of Ophthalmology, University of Padova, Padova, Italy
| | - Elisabetta Pilotto
- Department of Ophthalmology, University of Padova, Padova, Italy
- Padova University Hospital ERN-EYE Center, Padova, Italy
| | | |
Collapse
|
9
|
Wiggs MP, Lee Y, Shimkus KL, O'Reilly CI, Lima F, Macias BR, Shirazi-Fard Y, Greene ES, Hord JM, Braby LA, Carroll CC, Lawler JM, Bloomfield SA, Fluckey JD. Combined effects of heavy ion exposure and simulated Lunar gravity on skeletal muscle. LIFE SCIENCES IN SPACE RESEARCH 2023; 37:39-49. [PMID: 37087178 DOI: 10.1016/j.lssr.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/04/2023] [Accepted: 02/19/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND The limitations to prolonged spaceflight include unloading-induced atrophy of the musculoskeletal system which may be enhanced by exposure to the space radiation environment. Previous results have concluded that partial gravity, comparable to the Lunar surface, may have detrimental effects on skeletal muscle. However, little is known if these outcomes are exacerbated by exposure to low-dose rate, high-energy radiation common to the space environment. Therefore, the present study sought to determine the impact of highly charge, high-energy (HZE) radiation on skeletal muscle when combined with partial weightbearing to simulate Lunar gravity. We hypothesized that partial unloading would compromise skeletal muscle and these effects would be exacerbated by radiation exposure. METHODS For month old female BALB/cByJ mice were -assigned to one of 2 groups; either full weight bearing (Cage Controls, CC) or partial weight bearing equal to 1/6th bodyweight (G/6). Both groups were then divided to receive either a single whole body absorbed dose of 0.5 Gy of 300 MeV 28Si ions (RAD) or a sham treatment (SHAM). Radiation exposure experiments were performed at the NASA Space Radiation Laboratory (NSRL) located at Brookhaven National Laboratory on Day 0, followed by 21 d of CC or G/6 loading. Muscles of the hind limb were used to measure protein synthesis and other histological measures. RESULTS Twenty-one days of Lunar gravity (G/6) resulted in lower soleus, plantaris, and gastrocnemius muscle mass. Radiation exposure did not further impact muscle mass. 28Si exposure in normal ambulatory animals (RAD+CC) did not impact gastrocnemius muscle mass when compared to SHAM+CC (p>0.05), but did affect the soleus, where mass was higher following radiation compared to SHAM (p<0.05). Mixed gastrocnemius muscle protein synthesis was lower in both unloading groups. Fiber type composition transitioned towards a faster isoform with partial unloading and was not further impacted by radiation. The combined effects of partial loading and radiation partially mitigated fiber cross-sectional area when compared to partial loading alone. Radiation and G/6 reduced the total number of myonuclei per fiber while leading to elevated BrdU content of skeletal muscle. Similarly, unloading and radiation resulted in higher collagen content of muscle when compared to controls, but the effects of combined exposure were not additive. CONCLUSIONS The results of this study confirm that partial weightbearing causes muscle atrophy, in part due to reductions of muscle protein synthesis in the soleus and gastrocnemius as well as reduced peripheral nuclei per fiber. Additionally, we present novel data illustrating 28Si exposure reduced nuclei in muscle fibers despite higher satellite cell fusion, but did not exacerbate muscle atrophy, CSA changes, or collagen content. In conclusion, both partial loading and HZE radiation can negatively impact muscle morphology.
Collapse
Affiliation(s)
- Michael P Wiggs
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States; Department of Health, Human Performance and Recreation, Baylor University, Waco, TX, United States.
| | - Yang Lee
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| | - Kevin L Shimkus
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| | - Colleen I O'Reilly
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| | - Florence Lima
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| | - Brandon R Macias
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States; NASA Johnson Space Center, Houston, Texas, United States
| | - Yasaman Shirazi-Fard
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States; NASA Ames Research Center, Moffett Field, CA, United States
| | - Elizabeth S Greene
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| | - Jeffrey M Hord
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| | - Leslie A Braby
- Department of Nuclear Engineering, Texas A&M University, College Station, TX, United States
| | - Chad C Carroll
- Department of Physiology, Purdue University, West Lafayette, IN, United States
| | - John M Lawler
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| | - Susan A Bloomfield
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| | - James D Fluckey
- Department of Health & Kinesiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
10
|
Baraldo M, Zorzato S, Dondjang AHT, Geremia A, Nogara L, Dumitras AG, Canato M, Marcucci L, Nolte H, Blaauw B. Inducible deletion of raptor and mTOR from adult skeletal muscle impairs muscle contractility and relaxation. J Physiol 2022; 600:5055-5075. [PMID: 36255030 DOI: 10.1113/jp283686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/20/2022] [Indexed: 01/05/2023] Open
Abstract
Skeletal muscle weakness has been associated with different pathological conditions, including sarcopenia and muscular dystrophy, and is accompanied by altered mammalian target of rapamycin (mTOR) signalling. We wanted to elucidate the functional role of mTOR in muscle contractility. Most loss-of-function studies for mTOR signalling have used the drug rapamycin to inhibit some of the signalling downstream of mTOR. However, given that rapamycin does not inhibit all mTOR signalling completely, we generated a double knockout for mTOR and for the scaffold protein of mTORC1, raptor, in skeletal muscle. We found that double knockout in mice results in a more severe phenotype compared with deletion of raptor or mTOR alone. Indeed, these animals display muscle weakness, increased fibre denervation and a slower muscle relaxation following tetanic stimulation. This is accompanied by a shift towards slow-twitch fibres and changes in the expression levels of calcium-related genes, such as Serca1 and Casq1. Double knockout mice show a decrease in calcium decay kinetics after tetanus in vivo, suggestive of a reduced calcium reuptake. In addition, RNA sequencing analysis revealed that many downregulated genes, such as Tcap and Fhod3, are linked to sarcomere organization. These results suggest a key role for mTOR signalling in maintaining proper fibre relaxation in skeletal muscle. KEY POINTS: Skeletal muscle wasting and weakness have been associated with different pathological conditions, including sarcopenia and muscular dystrophy, and are accompanied by altered mammalian target of rapamycin (mTOR) signalling. Mammalian target of rapamycin plays a crucial role in the maintenance of muscle mass and functionality. We found that the loss of both mTOR and raptor results in contractile abnormalities, with severe muscle weakness and delayed relaxation following tetanic stimulation. These results are associated with alterations in the expression of genes involved in sarcomere organization and calcium handling and with an impairment in calcium reuptake after contraction. Taken together, these results provide a mechanistic insight into the role of mTOR in muscle contractility.
Collapse
Affiliation(s)
- Martina Baraldo
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Sabrina Zorzato
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Achille Homère Tchampda Dondjang
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Alessia Geremia
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Leonardo Nogara
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ana Georgia Dumitras
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marta Canato
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lorenzo Marcucci
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Center for Biosystems Dynamics Research, RIKEN, Suita, Japan
| | - Hendrik Nolte
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Bert Blaauw
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
11
|
Kuhnen G, Guedes Russomanno T, Murgia M, Pillon NJ, Schönfelder M, Wackerhage H. Genes Whose Gain or Loss of Function Changes Type 1, 2A, 2X, or 2B Muscle Fibre Proportions in Mice—A Systematic Review. Int J Mol Sci 2022; 23:ijms232112933. [PMID: 36361732 PMCID: PMC9658117 DOI: 10.3390/ijms232112933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2022] Open
Abstract
Adult skeletal muscle fibres are classified as type 1, 2A, 2X, and 2B. These classifications are based on the expression of the dominant myosin heavy chain isoform. Muscle fibre-specific gene expression and proportions of muscle fibre types change during development and in response to exercise, chronic electrical stimulation, or inactivity. To identify genes whose gain or loss-of-function alters type 1, 2A, 2X, or 2B muscle fibre proportions in mice, we conducted a systematic review of transgenic mouse studies. The systematic review was conducted in accordance with the 2009 PRISMA guidelines and the PICO framework. We identified 25 “muscle fibre genes” (Akirin1, Bdkrb2, Bdnf, Camk4, Ccnd3, Cpt1a, Epas1, Esrrg, Foxj3, Foxo1, Il15, Mapk12, Mstn, Myod1, Ncor1, Nfatc1, Nol3, Ppargc1a, Ppargc1b, Sirt1, Sirt3, Thra, Thrb, Trib3, and Vgll2) whose gain or loss-of-function significantly changes type 1, 2A, 2X or 2B muscle fibre proportions in mice. The fact that 15 of the 25 muscle fibre genes are transcriptional regulators suggests that muscle fibre-specific gene expression is primarily regulated transcriptionally. A reanalysis of existing datasets revealed that the expression of Ppargc1a and Vgll2 increases and Mstn decreases after exercise, respectively. This suggests that these genes help to regulate the muscle fibre adaptation to exercise. Finally, there are many known DNA sequence variants of muscle fibre genes. It seems likely that such DNA sequence variants contribute to the large variation of muscle fibre type proportions in the human population.
Collapse
Affiliation(s)
- Gabryela Kuhnen
- Department of Sports and Health Sciences, Technical University of Munich, 80809 Munich, Germany
| | - Tiago Guedes Russomanno
- Department of Sports and Health Sciences, Technical University of Munich, 80809 Munich, Germany
| | - Marta Murgia
- Max Planck Institute, Martinsried, 82152 Munich, Germany
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi, 58/B, 35131 Padua, Italy
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Martin Schönfelder
- Department of Sports and Health Sciences, Technical University of Munich, 80809 Munich, Germany
| | - Henning Wackerhage
- Department of Sports and Health Sciences, Technical University of Munich, 80809 Munich, Germany
| |
Collapse
|
12
|
Shi J, Li W, Liu A, Ren L, Zhang P, Jiang T, Han Y, Liu L. MiRNA sequencing of Embryonic Myogenesis in Chengkou Mountain Chicken. BMC Genomics 2022; 23:571. [PMID: 35948880 PMCID: PMC9364561 DOI: 10.1186/s12864-022-08795-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/27/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Skeletal muscle tissue is among the largest organ systems in mammals, essential for survival and movement. Embryonic muscle development determines the quantity and quality of muscles after the birth of an individual. MicroRNAs (miRNAs) are a significant class of non-coding RNAs that bind to the 3'UTR region of mRNA to regulate gene function. Total RNA was extracted from the leg muscles of chicken embryos in different developmental stages of Chengkou Mountain Chicken and used to generate 171,407,341 clean small RNA reads. Target prediction, GO, and KEGG enrichment analyses determined the significantly enriched genes and pathways. Differential analysis determined the significantly different miRNAs between chicken embryo leg muscles at different developmental stages. Meanwhile, the weighted correlation network analysis (WGCNA) identified key modules in different developmental stages, and the hub miRNAs were screened following the KME value. RESULTS The clean reads contained 2047 miRNAs, including 721 existing miRNAs, 1059 known miRNAs, and 267 novel miRNAs. Many genes and pathways related to muscle development were identified, including ERBB4, MEF2C, FZD4, the Wnt, Notch, and MAPK signaling pathways. The WGCNA established the greenyellow module and gga-miR-130b-5p for E12, magenta module and gga-miR-1643-5p for E16, purple module and gga-miR-12218-5p for E19, cyan module and gga-miR-132b-5p for E21. CONCLUSION These results lay a foundation for further research on the molecular regulatory mechanism of embryonic muscle development in Chengkou mountain chicken and provide a reference for other poultry and livestock muscle development studies.
Collapse
Affiliation(s)
- Jun'an Shi
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China
| | - Wendong Li
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China
| | - Anfang Liu
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China
| | - Lingtong Ren
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China
| | - Pusen Zhang
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China
| | - Ting Jiang
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China
| | - Yuqing Han
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China
| | - Lingbin Liu
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Beibei, Chongqing, 400700, China.
| |
Collapse
|
13
|
Graca FA, Rai M, Hunt LC, Stephan A, Wang YD, Gordon B, Wang R, Quarato G, Xu B, Fan Y, Labelle M, Demontis F. The myokine Fibcd1 is an endogenous determinant of myofiber size and mitigates cancer-induced myofiber atrophy. Nat Commun 2022; 13:2370. [PMID: 35501350 PMCID: PMC9061726 DOI: 10.1038/s41467-022-30120-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/14/2022] [Indexed: 12/19/2022] Open
Abstract
Decline in skeletal muscle cell size (myofiber atrophy) is a key feature of cancer-induced wasting (cachexia). In particular, atrophy of the diaphragm, the major muscle responsible for breathing, is an important determinant of cancer-associated mortality. However, therapeutic options are limited. Here, we have used Drosophila transgenic screening to identify muscle-secreted factors (myokines) that act as paracrine regulators of myofiber growth. Subsequent testing in mouse myotubes revealed that mouse Fibcd1 is an evolutionary-conserved myokine that preserves myofiber size via ERK signaling. Local administration of recombinant Fibcd1 (rFibcd1) ameliorates cachexia-induced myofiber atrophy in the diaphragm of mice bearing patient-derived melanoma xenografts and LLC carcinomas. Moreover, rFibcd1 impedes cachexia-associated transcriptional changes in the diaphragm. Fibcd1-induced signaling appears to be muscle selective because rFibcd1 increases ERK activity in myotubes but not in several cancer cell lines tested. We propose that rFibcd1 may help reinstate myofiber size in the diaphragm of patients with cancer cachexia.
Collapse
Affiliation(s)
- Flavia A Graca
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Mamta Rai
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Liam C Hunt
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Yong-Dong Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Brittney Gordon
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States
- Xenograft Core, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Ruishan Wang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Giovanni Quarato
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Myriam Labelle
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States.
- Solid Tumor Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, United States.
| |
Collapse
|
14
|
Song Y, Zhang Q, Shi J, Fu L, Cheng S. Screening of Genes Related to Growth, Development and Meat Quality of Sahan Crossbred F1 Sheep Based on RNA-Seq Technology. Front Vet Sci 2022; 9:831519. [PMID: 35464379 PMCID: PMC9021821 DOI: 10.3389/fvets.2022.831519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/28/2022] [Indexed: 12/22/2022] Open
Abstract
This study aimed to identify genes related to sheep growth, development and meat quality. Small-tailed Han sheep (STH), and small-tailed Han sheep and Suffolk crossbred F1 (STH×SFK), were selected to determine the growth performance, slaughter performance, and meat quality. The longissimus dorsi muscle was selected for transcriptome sequencing, and the target gene was screened based on bioinformatics analysis; real-time fluorescent quantitative PCR (RT-PCR) and western blotting (WB) were conducted to verify the target gene. Locations of genes in tissues were confirmed via immunofluorescence. The results showed that the pre-slaughter live weight, bust circumference, slaughter performance, and marbling score of the STH×SFK population were significantly higher than those of the STH population (P < 0.01). Sequencing results showed that 560 differentially expressed genes (DEGs) were identified in the STH×SFK population, of which 377 exhibited up-regulated and 183 exhibited down-regulated expression levels. GO annotation revealed that DEGs could be classified into 13 cell components, 10 molecular functions, and 22 biological processes. The KEGG enrichment analysis showed that DEGs were mainly enriched in the Rap1 signaling pathway, Ras signaling pathway, and other pathways related to growth and meat quality. Based on the GO and KEGG analyses, four candidate genes related to sheep growth and meat quality, namely myostain (MSTN), interferon-related developmental regulator 1 (IFRD1), peroxisome proliferator activator receptor delta (PPARD), and myosin light chain 2 (MLC2 or MYL2), were screened. The expression levels of genes and proteins were verified via RT-PCR and WB, and the results were consistent with the trend of transcriptome sequencing. Immunofluorescence results showed that IFRD1 was expressed in the cytoplasm and nucleus, and MYL2 was expressed in the cytoplasm. This study revealed the mechanism of gene regulation of sheep growth and development at the molecular level and provided a theoretical basis for studying sheep genetics and breeding.
Collapse
Affiliation(s)
- Yali Song
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Quanwei Zhang
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Jinping Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Lingjuan Fu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shuru Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
15
|
Lautherbach N, Gonçalves DAP, Silveira WA, Paula-Gomes S, Valentim RR, Zanon NM, Pereira MG, Miyabara EH, Navegantes LCC, Kettelhut IC. Urocortin 2 promotes hypertrophy and enhances skeletal muscle function through cAMP and insulin/IGF-1 signaling pathways. Mol Metab 2022; 60:101492. [PMID: 35390501 PMCID: PMC9035725 DOI: 10.1016/j.molmet.2022.101492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/27/2022] [Accepted: 03/29/2022] [Indexed: 11/28/2022] Open
Abstract
Objective Although it is well established that urocortin 2 (Ucn2), a peptide member of the corticotrophin releasing factor (CRF) family, and its specific corticotrophin-releasing factor 2 receptor (CRF2R) are highly expressed in skeletal muscle, the role of this peptide in the regulation of skeletal muscle mass and protein metabolism remains elusive. Methods To elucidate the mechanisms how Ucn2 directly controls protein metabolism in skeletal muscles of normal mice, we carried out genetic tools, physiological and molecular analyses of muscles in vivo and in vitro. Results Here, we demonstrated that Ucn2 overexpression activated cAMP signaling and promoted an expressive muscle hypertrophy associated with higher rates of protein synthesis and activation of Akt/mTOR and ERK1/2 signaling pathways. Furthermore, Ucn2 induced a decrease in mRNA levels of atrogin-1 and in autophagic flux inferred by an increase in the protein content of LC3-I, LC3-II and p62. Accordingly, Ucn2 reduced both the transcriptional activity of FoxO in vivo and the overall protein degradation in vitro through an inhibition of lysosomal proteolytic activity. In addition, we demonstrated that Ucn2 induced a fast-to-slow fiber type shift and improved fatigue muscle resistance, an effect that was completely blocked in muscles co-transfected with mitogen-activated protein kinase phosphatase 1 (MKP-1), but not with dominant-negative Akt mutant (Aktmt). Conclusions These data suggest that Ucn2 triggers an anabolic and anti-catabolic response in skeletal muscle of normal mice probably through the activation of cAMP cascade and participation of Akt and ERK1/2 signaling. These findings open new perspectives in the development of therapeutic strategies to cope with the loss of muscle mass. Ucn2 overexpression promotes muscle growth due to an increase in protein synthesis. Ucn2 inhibits FoxO activity and autophagic-lysosomal system. Ucn2-induced skeletal muscle phenotype is dependent on Akt and ERK1/2. Ucn2 induces a fast-to-slow fiber type shift and improves fatigue resistance. The increase in muscle fatigue resistance is dependent on ERK1/2.
Collapse
Affiliation(s)
- Natalia Lautherbach
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Biochemistry/Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Dawit A P Gonçalves
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Wilian A Silveira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Biochemistry, Pharmacology and Physiology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil.
| | - Sílvia Paula-Gomes
- Department of Biochemistry/Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil.
| | - Rafael Rossi Valentim
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Neuza M Zanon
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Marcelo G Pereira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Elen H Miyabara
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | - Luiz C C Navegantes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Isis C Kettelhut
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Biochemistry/Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
16
|
Attwaters M, Hughes SM. Cellular and molecular pathways controlling muscle size in response to exercise. FEBS J 2022; 289:1428-1456. [PMID: 33755332 DOI: 10.1111/febs.15820] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/27/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022]
Abstract
From the discovery of ATP and motor proteins to synaptic neurotransmitters and growth factor control of cell differentiation, skeletal muscle has provided an extreme model system in which to understand aspects of tissue function. Muscle is one of the few tissues that can undergo both increase and decrease in size during everyday life. Muscle size depends on its contractile activity, but the precise cellular and molecular pathway(s) by which the activity stimulus influences muscle size and strength remain unclear. Four correlates of muscle contraction could, in theory, regulate muscle growth: nerve-derived signals, cytoplasmic calcium dynamics, the rate of ATP consumption and physical force. Here, we summarise the evidence for and against each stimulus and what is known or remains unclear concerning their molecular signal transduction pathways and cellular effects. Skeletal muscle can grow in three ways, by generation of new syncytial fibres, addition of nuclei from muscle stem cells to existing fibres or increase in cytoplasmic volume/nucleus. Evidence suggests the latter two processes contribute to exercise-induced growth. Fibre growth requires increase in sarcolemmal surface area and cytoplasmic volume at different rates. It has long been known that high-force exercise is a particularly effective growth stimulus, but how this stimulus is sensed and drives coordinated growth that is appropriately scaled across organelles remains a mystery.
Collapse
Affiliation(s)
- Michael Attwaters
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| | - Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, UK
| |
Collapse
|
17
|
Coletti C, Acosta GF, Keslacy S, Coletti D. Exercise-mediated reinnervation of skeletal muscle in elderly people: An update. Eur J Transl Myol 2022; 32. [PMID: 35234025 PMCID: PMC8992679 DOI: 10.4081/ejtm.2022.10416] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 11/22/2022] Open
Abstract
Sarcopenia is defined by the loss of muscle mass and function. In aging sarcopenia is due to mild chronic inflammation but also to fiber-intrinsic defects, such as mitochondrial dysfunction. Age-related sarcopenia is associated with physical disability and lowered quality of life. In addition to skeletal muscle, the nervous tissue is also affected in elderly people. With aging, type 2 fast fibers preferentially undergo denervation and are reinnervated by slow-twitch motor neurons. They spread forming new neuro-muscular junctions with the denervated fibers: the result is an increased proportion of slow fibers that group together since they are associated in the same motor unit. Grouping and fiber type shifting are indeed major histological features of aging skeletal muscle. Exercise has been proposed as an intervention for age-related sarcopenia due to its numerous beneficial effects on muscle mechanical and biochemical features. In 2013, a precursor study in humans was published in the European Journal of Translation Myology (formerly known as Basic and Applied Myology), highlighting the occurrence of reinnervation in the musculature of aged, exercise-trained individuals as compared to the matching control. This paper, entitled «Reinnervation of Vastus lateralis is increased significantly in seniors (70-years old) with a lifelong history of high-level exercise», is now being reprinted for the second issue of the «Ejtm Seminal Paper Series». In this short review we discuss those results in the light of the most recent advances confirming the occurrence of exercise-mediated reinnervation, ultimately preserving muscle structure and function in elderly people who exercise.
Collapse
Affiliation(s)
- Claudia Coletti
- School of Kinesiology, Nutrition and Food Science, California State University Los Angeles, Los Angeles, CA.
| | - Gilberto F Acosta
- School of Kinesiology, Nutrition and Food Science, California State University Los Angeles, Los Angeles, CA.
| | - Stefan Keslacy
- School of Kinesiology, Nutrition and Food Science, California State University Los Angeles, Los Angeles, CA.
| | - Dario Coletti
- DAHFMO - Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy; Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France; Interuniversity institute of Myology, Ro.
| |
Collapse
|
18
|
Alix-Fages C, Del Vecchio A, Baz-Valle E, Santos-Concejero J, Balsalobre-Fernández C. The role of the neural stimulus in regulating skeletal muscle hypertrophy. Eur J Appl Physiol 2022; 122:1111-1128. [PMID: 35138447 DOI: 10.1007/s00421-022-04906-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/28/2022] [Indexed: 02/06/2023]
Abstract
Resistance training is frequently performed with the goal of stimulating muscle hypertrophy. Due to the key roles motor unit recruitment and mechanical tension play to induce muscle growth, when programming, the manipulation of the training variables is oriented to provoke the correct stimulus. Although it is known that the nervous system is responsible for the control of motor units and active muscle force, muscle hypertrophy researchers and trainers tend to only focus on the adaptations of the musculotendinous unit and not in the nervous system behaviour. To better guide resistance exercise prescription for muscle hypertrophy and aiming to delve into the mechanisms that maximize this goal, this review provides evidence-based considerations for possible effects of neural behaviour on muscle growth when programming resistance training, and future neurophysiological measurement that should be tested when training to increase muscle mass. Combined information from the neural and muscular structures will allow to understand the exact adaptations of the muscle in response to a given input (neural drive to the muscle). Changes at different levels of the nervous system will affect the control of motor units and mechanical forces during resistance training, thus impacting the potential hypertrophic adaptations. Additionally, this article addresses how neural adaptations and fatigue accumulation that occur when resistance training may influence the hypertrophic response and propose neurophysiological assessments that may improve our understanding of resistance training variables that impact on muscular adaptations.
Collapse
Affiliation(s)
- Carlos Alix-Fages
- Applied Biomechanics and Sport Technology Research Group, Autonomous University of Madrid, C/ Fco Tomas y Valiente 3, Cantoblanco, 28049, Madrid, Spain.
| | - Alessandro Del Vecchio
- Neuromuscular Physiology and Neural Interfacing Group, Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University, Erlangen-Nürnberg, Germany
| | - Eneko Baz-Valle
- Department of Physical Education and Sport, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Jordan Santos-Concejero
- Department of Physical Education and Sport, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Carlos Balsalobre-Fernández
- Applied Biomechanics and Sport Technology Research Group, Autonomous University of Madrid, C/ Fco Tomas y Valiente 3, Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
19
|
Masuzawa R, Takahashi K, Takano K, Nishino I, Sakai T, Endo T. DA-Raf and the MEK inhibitor trametinib reverse skeletal myocyte differentiation inhibition or muscle atrophy caused by myostatin and GDF11 through the non-Smad Ras-ERK pathway. J Biochem 2021; 171:109-122. [PMID: 34676394 DOI: 10.1093/jb/mvab116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/18/2021] [Indexed: 12/25/2022] Open
Abstract
Myostatin (Mstn) and GDF11 are critical factors that are involved in muscle atrophy in the young and sarcopenia in the elderly, respectively. These TGF-β superfamily proteins activate not only Smad signaling but also non-Smad signaling including the Ras-mediated ERK pathway (Raf-MEK-ERK phosphorylation cascade). Although Mstn and GDF11 have been shown to induce muscle atrophy or sarcopenia by Smad2/3-mediated Akt inhibition, participation of the non-Smad Ras-ERK pathway in atrophy and sarcopenia has not been well determined. We show here that both Mstn and GDF11 prevented skeletal myocyte differentiation but that the MEK inhibitor U0126 or trametinib restored differentiation in Mstn- or GDF11-treated myocytes. These MEK inhibitors induced the expression of DA-Raf1 (DA-Raf), which is a dominant-negative antagonist of the Ras-ERK pathway. Exogenous expression of DA-Raf in Mstn- or GDF11-treated myocytes restored differentiation. Furthermore, administration of trametinib to aged mice resulted in an increase in myofiber size, or recovery from muscle atrophy. The trametinib administration downregulated ERK activity in these muscles. These results imply that the Mstn/GDF11-induced Ras-ERK pathway plays critical roles in the inhibition of myocyte differentiation and muscle regeneration, which leads to muscle atrophy. Trametinib and similar approved drugs might be applicable to the treatment of muscle atrophy in sarcopenia or cachexia.
Collapse
Affiliation(s)
- Ryuichi Masuzawa
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan
| | - Kazuya Takahashi
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan
| | - Kazunori Takano
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo 187-8502, Japan
| | - Toshiyuki Sakai
- Drug Discovery Center and Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan
| |
Collapse
|
20
|
Loss of skeletal muscle area and fat-free mass during dabrafenib/trametinib and vemurafenib/cobimetinib treatments in patients with BRAF-mutant metastatic malignant melanoma. Melanoma Res 2021; 30:477-483. [PMID: 32898388 DOI: 10.1097/cmr.0000000000000678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study aimed to assess whether dabrafenib/trametinib and vemurafenib/cobimetinib treatments are associated with a change in skeletal muscle area (SMA) and total fat-free mass (FFM) assessed by computed tomography (CT), and to compare the efficacy and safety profile of these treatments in patients with metastatic melanoma. Thirty-one patients treated with B-Raf proto-oncogene, serine/threonine kinase/MAPK extracellular receptor kinase inhibitors were included between 2016 and 2019. Eighteen patients received dabrafenib/trametinib and remaining patients received vemurafenib/cobimetinib. CT scans were performed at baseline and at 4-6 months of follow-up to measure cross-sectional areas of SMA. FFM and skeletal muscle index (SMI) values were calculated. Of the patients, including 18 treated with dabrafenib/trametinib (58.1%) and 13 with vemurafenib/cobimetinib (41.9%); 58.1% were male, 41.9% were female and median age was 52 years. A significant decrease in SMA was observed after dabrafenib/trametinib and vemurafenib/cobimetinib treatments (P = 0.003 and P = 0.002, respectively). A significant decrease in FFM values was observed after dabrafenib/trametinib and vemurafenib/cobimetinib treatments (P = 0.003 and P = 0.002, respectively). Dose-limiting toxicity (DLT) was observed in 35.9% of the patients with sarcopenia. No significant difference was seen between the dabrafenib/trametinib and vemurafenib/cobimetinib groups in median progression-free survival (PFS) (11.9 vs. 7.3 months, respectively, P = 0.28) and in median overall survival (OS) (25.46 vs. 13.7 months, respectively, P = 0.41). Baseline sarcopenia was not significantly associated with PFS or OS (P = 0.172 and P = 0.326, respectively). We found a significant decrease in SMI values determined at 4-6 months compared to the values before treatment both in dabrafenib/trametinib and vemurafenib/cobimetinib groups. DLT was similar with both treatments. Baseline sarcopenia was not significantly associated with PFS or OS.
Collapse
|
21
|
Maeda Y, Tidyman WE, Ander BP, Pritchard CA, Rauen KA. Ras/MAPK dysregulation in development causes a skeletal myopathy in an activating Braf L597V mouse model for cardio-facio-cutaneous syndrome. Dev Dyn 2021; 250:1074-1095. [PMID: 33522658 DOI: 10.1002/dvdy.309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/03/2021] [Accepted: 01/19/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cardio-facio-cutaneous (CFC) syndrome is a human multiple congenital anomaly syndrome that is caused by activating heterozygous mutations in either BRAF, MEK1, or MEK2, three protein kinases of the Ras/mitogen-activated protein kinase (MAPK) pathway. CFC belongs to a group of syndromes known as RASopathies. Skeletal muscle hypotonia is a ubiquitous phenotype of RASopathies, especially in CFC syndrome. To better understand the underlying mechanisms for the skeletal myopathy in CFC, a mouse model with an activating BrafL597V allele was utilized. RESULTS The activating BrafL597V allele resulted in phenotypic alterations in skeletal muscle characterized by a reduction in fiber size which leads to a reduction in muscle size which are functionally weaker. MAPK pathway activation caused inhibition of myofiber differentiation during embryonic myogenesis and global transcriptional dysregulation of developmental pathways. Inhibition in differentiation can be rescued by MEK inhibition. CONCLUSIONS A skeletal myopathy was identified in the CFC BrafL597V mouse validating the use of models to study the effect of Ras/MAPK dysregulation on skeletal myogenesis. RASopathies present a novel opportunity to identify new paradigms of myogenesis and further our understanding of Ras in development. Rescue of the phenotype by inhibitors may help advance the development of therapeutic options for RASopathy patients.
Collapse
Affiliation(s)
- Yoshiko Maeda
- Department of Pediatrics, University of California Davis, Sacramento, California, USA.,UC Davis MIND Institute, Sacramento, California, USA
| | - William E Tidyman
- Department of Pediatrics, University of California Davis, Sacramento, California, USA.,UC Davis MIND Institute, Sacramento, California, USA
| | - Bradley P Ander
- UC Davis MIND Institute, Sacramento, California, USA.,Department of Neurology, University of California Davis, Sacramento, California, USA
| | - Catrin A Pritchard
- Leicester Cancer Research Centre, University of Leicester, Leicester, United Kingdom
| | - Katherine A Rauen
- Department of Pediatrics, University of California Davis, Sacramento, California, USA.,UC Davis MIND Institute, Sacramento, California, USA
| |
Collapse
|
22
|
Sartori R, Romanello V, Sandri M. Mechanisms of muscle atrophy and hypertrophy: implications in health and disease. Nat Commun 2021; 12:330. [PMID: 33436614 PMCID: PMC7803748 DOI: 10.1038/s41467-020-20123-1] [Citation(s) in RCA: 469] [Impact Index Per Article: 117.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle is the protein reservoir of our body and an important regulator of glucose and lipid homeostasis. Consequently, the growth or the loss of muscle mass can influence general metabolism, locomotion, eating and respiration. Therefore, it is not surprising that excessive muscle loss is a bad prognostic index of a variety of diseases ranging from cancer, organ failure, infections and unhealthy ageing. Muscle function is influenced by different quality systems that regulate the function of contractile proteins and organelles. These systems are controlled by transcriptional dependent programs that adapt muscle cells to environmental and nutritional clues. Mechanical, oxidative, nutritional and energy stresses, as well as growth factors or cytokines modulate signaling pathways that, ultimately, converge on protein and organelle turnover. Novel insights that control and orchestrate such complex network are continuously emerging and will be summarized in this review. Understanding the mechanisms that control muscle mass will provide therapeutic targets for the treatment of muscle loss in inherited and non-hereditary diseases and for the improvement of the quality of life during ageing. Loss of muscle mass is associated with ageing and with a number of diseases such as cancer. Here, the authors review the signaling pathways that modulate protein synthesis and degradation and gain or loss of muscle mass, and discuss therapeutic implications and future directions for the field.
Collapse
Affiliation(s)
- Roberta Sartori
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35121, Padova, Italy.,Veneto Institute of Molecular Medicine, via Orus 2, 35129, Padova, Italy
| | - Vanina Romanello
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35121, Padova, Italy. .,Veneto Institute of Molecular Medicine, via Orus 2, 35129, Padova, Italy.
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35121, Padova, Italy. .,Veneto Institute of Molecular Medicine, via Orus 2, 35129, Padova, Italy. .,Myology Center, University of Padova, via Ugo Bassi 58/b, 35121, Padova, Italy. .,Department of Medicine, McGill University, Montreal, Canada.
| |
Collapse
|
23
|
Abstract
Skeletal muscle hypertrophy can be induced by hormones and growth factors acting directly as positive regulators of muscle growth or indirectly by neutralizing negative regulators, and by mechanical signals mediating the effect of resistance exercise. Muscle growth during hypertrophy is controlled at the translational level, through the stimulation of protein synthesis, and at the transcriptional level, through the activation of ribosomal RNAs and muscle-specific genes. mTORC1 has a central role in the regulation of both protein synthesis and ribosomal biogenesis. Several transcription factors and co-activators, including MEF2, SRF, PGC-1α4, and YAP promote the growth of the myofibers. Satellite cell proliferation and fusion is involved in some but not all muscle hypertrophy models.
Collapse
Affiliation(s)
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Italy
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
| | | | - Bert Blaauw
- Venetian Institute of Molecular Medicine, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Italy
| |
Collapse
|
24
|
Bi Y, Chen Y, Xin D, Liu T, He L, Kang Y, Pan C, Shen W, Lan X, Liu M. Effect of indel variants within the sorting nexin 29 (SNX29) gene on growth traits of goats. Anim Biotechnol 2020; 33:914-919. [PMID: 33208046 DOI: 10.1080/10495398.2020.1846547] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The sorting nexin 29 gene (SNX29) is a well-known regulator of myocyte differentiation and proliferation. In this work, two indels (17-bp and 21-bp) were identified in the goat SNX29 gene, and their effects on the growth traits of 1,759 Shaanbei white cashmere (SBWC) goats were analyzed. Both indels had three genotypes [homozygote wild type (II), heterozygote (ID), and homozygote mutation (DD)] and displayed medium genetic diversity (0.25 < polymorphism information content (PIC) < 0.50) in the population. The 17-bp indel was significantly associated with chest width (p = 0.009), body weight (p = 0.021), and chest depth (p = 0.032), with the II genotype dominant. The 21-bp indel was significantly associated with chest width (p = 0.001), chest depth (p = 4.8E-5), heart girth (p = 0.007), and hip width (p = 0.002). Because the two indels were in the upstream (17-bp) and intron (21-bp) regions of the SNX29 gene, transcription factor binding sites were predicted. The IRF5 and MYC could bind with the 17-bp indel and 21-bp indel sequences, respectively. This study indicates that SNX29 is a promising candidate gene that can be used to improve meat production in goat breeding.
Collapse
Affiliation(s)
- Yi Bi
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yuhan Chen
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Dongyun Xin
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Tingting Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Libang He
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yuxin Kang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Weijun Shen
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Mei Liu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
25
|
Gokuladhas S, Schierding W, Cameron-Smith D, Wake M, Scotter EL, O’Sullivan J. Shared Regulatory Pathways Reveal Novel Genetic Correlations Between Grip Strength and Neuromuscular Disorders. Front Genet 2020; 11:393. [PMID: 32391060 PMCID: PMC7194178 DOI: 10.3389/fgene.2020.00393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Muscle weakness is a common consequence of both aging (sarcopenia) and neuromuscular disorders (NMD). Whilst genome-wide association (GWA) studies have identified genetic variants associated with grip strength (GS; measure of muscle strength/weakness) and NMDs, including multiple sclerosis (MS), myasthenia gravis (MG) and amyotrophic lateral sclerosis (ALS), it is not known whether there are common mechanisms between these phenotypes. To examine this, we have integrated GS and NMD associated genetic variants (single nucleotide polymorphisms; SNPs) in a multimorbid analysis that leverages high-throughput chromatin interaction (Hi-C) data and expression quantitative trait loci data to identify target genes (i.e., SNP-mediated gene regulation). Biological pathways enriched by these genes were then identified using next-generation pathway enrichment analysis. Lastly, druggable genes were identified using drug gene interaction (DGI) database. We identified gene regulatory mechanisms associated with GS, MG, MS, and ALS. The SNPs associated with GS regulate a subset of genes that are also regulated by the SNPs of MS, MG, and ALS. Yet, we did not find any genes commonly regulated by all four phenotype associated SNPs. By contrast, we identified significant enrichment in three pathways (mTOR signaling, axon guidance, and alcoholism) that are commonly affected by the gene regulatory mechanisms associated with all four phenotypes. 13% of the genes we identified were known drug targets, and GS shares at least one druggable gene and pathway with each of the NMD phenotypes. We have identified significant biological overlaps between GS and NMD, demonstrating the potential for spatial genetic analysis to identify common mechanisms between potential multimorbid phenotypes. Collectively, our results form the foundation for a shift from a gene to a pathway-based approach to the rationale design of therapeutic interventions and treatments for NMD.
Collapse
Affiliation(s)
| | | | - David Cameron-Smith
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Melissa Wake
- Murdoch Children’s Research Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Emma L. Scotter
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Justin O’Sullivan
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
26
|
Pennuto M, Pandey UB, Polanco MJ. Insulin-like growth factor 1 signaling in motor neuron and polyglutamine diseases: From molecular pathogenesis to therapeutic perspectives. Front Neuroendocrinol 2020; 57:100821. [PMID: 32006533 DOI: 10.1016/j.yfrne.2020.100821] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 11/19/2022]
Abstract
The pleiotropic peptide insulin-like growth factor 1 (IGF-I) regulates human body homeostasis and cell growth. IGF-I activates two major signaling pathways, namely phosphoinositide-3-kinase (PI3K)/protein kinase B (PKB/Akt) and Ras/extracellular signal-regulated kinase (ERK), which contribute to brain development, metabolism and function as well as to neuronal maintenance and survival. In this review, we discuss the general and tissue-specific effects of the IGF-I pathways. In addition, we present a comprehensive overview examining the role of IGF-I in neurodegenerative diseases, such as spinal and muscular atrophy, amyotrophic lateral sclerosis, and polyglutamine diseases. In each disease, we analyze the disturbances of the IGF-I pathway, the modification of the disease protein by IGF-I signaling, and the therapeutic strategies based on the use of IGF-I developed to date. Lastly, we highlight present and future considerations in the use of IGF-I for the treatment of these disorders.
Collapse
Affiliation(s)
- Maria Pennuto
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; Veneto Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padova, Italy; Padova Neuroscience Center (PNC), 35131 Padova, Italy; Myology Center (CIR-Myo), 35131 Padova, Italy.
| | - Udai Bhan Pandey
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA; Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - María José Polanco
- Department of Pharmaceutic and Health Science, University San Pablo CEU, Campus Montepríncipe, 28925 Alcorcón, Madrid, Spain.
| |
Collapse
|
27
|
Bykanov AE, Pitskhelauri DI, Grachev NS, Semenov DE, Sufianov RA, Yashin KS, Matuev KB. Endogenous and Exogenous Factors Affecting the Surgical Technique (Review). Sovrem Tekhnologii Med 2020; 12:93-99. [PMID: 34513059 PMCID: PMC8353673 DOI: 10.17691/stm2020.12.2.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Indexed: 11/20/2022] Open
Abstract
In this review, we analyzed essential factors affecting precise manual movements in microsurgery described in the medical literature. The search for publications in English and Russian languages was conducted in the PubMed database without limitation by the date of publication. The search was carried out according to the following descriptors: surgical procedures, dexterity, microsurgery, caffeine, alcohol, nicotine, physical exercise, sleep deprivation, posture. Only randomized and cohort studies involving doctors and students with surgical specialties were included in the analysis. We did not include papers in which only psychological (non-motor) aspects were studied. Due to the limited number of publications meeting the inclusion criteria and conflicting results in some of them, the presented review does not allow us to formulate unambiguous conclusions and recommendations. Further studies (deep and fundamental) of endogenous and exogenous factors affecting the microsurgical technique are needed.
Collapse
Affiliation(s)
- A E Bykanov
- Researcher, N.N. Burdenko National Medical Research Center for Neurosurgery, Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia
| | - D I Pitskhelauri
- Professor, Head of the 7 Neurosurgical Department, N.N. Burdenko National Medical Research Center for Neurosurgery, Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia
| | - N S Grachev
- PhD Student, N.N. Burdenko National Medical Research Center for Neurosurgery, Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia
| | - D E Semenov
- Student, Faculty of Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Malaya Trubetskaya St., Moscow, 119991, Russia
| | - R A Sufianov
- Clinical Resident, 7 Neurosurgical Department, N.N. Burdenko National Medical Research Center for Neurosurgery, Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia
| | - K S Yashin
- Assistant, Department of Traumatology, Orthopedics, and Neurosurgery, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - K B Matuev
- Professor, Head of the Scientific and Educational Department, N.N. Burdenko National Medical Research Center for Neurosurgery, Ministry of Health of the Russian Federation, 16, 4 Tverskaya-Yamskaya St., Moscow, 125047, Russia
| |
Collapse
|
28
|
Chen H, Liu Y, Li H, Fang Z, Lin Y, Xu S, Li J, Feng B, Wu D, Che L. Nutritional effects pre-weaning on growth performance, carcass traits and meat quality of pigs. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an18368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The objective of the present study was to investigate the effect of nutritional restriction during the suckling period on growth performance, carcass traits and meat quality of fattening pigs. A one-way experimental design was used. In total, 24 male pigs of normal birthweight (1.54 ± 0.05 kg) were randomly allocated at 7 days of age to three groups: control, fed ad libitum; 30% nutritional restriction (Re30%); and 60% nutritional restriction (Re60%). The Re30% and Re60% groups showed decreased average daily gain, average daily feed intake and feed conversion ratio from Day 7 to Day 28. After Day 28, differences in these parameters were observed only in the Re60% group relative to the control. With regard to hormone levels, the Re60% group showed decreased serum concentration of insulin-like growth factor-1 at Day 28 and increased serum concentration of growth hormone at Day 147. Furthermore, the Re60% group had decreased carcass weight, ham weight and dressing percentage, and increased carcass lean percentage relative to the control, as well as lower cross-sectional area and myofibre diameter of muscle. The Re60% group had lower levels of myosin heavy chain (MyHC) IIx and MyHC IIb mRNA and a higher percentage of MyHC I and MyHC IIa mRNA in longissimus dorsi muscle than the Re30% group. In conclusion, nutritional restriction during the suckling period decreased weaning weight, with post-weaning growth performance, carcass traits and myofibre type affected in the Re60% group rather than Re30% group.
Collapse
|
29
|
De Leo S, Colombo C, Di Stefano M, Dubini A, Cozzi S, Persani L, Fugazzola L. Body Composition and Leptin/Ghrelin Levels during Lenvatinib for Thyroid Cancer. Eur Thyroid J 2020; 9:1-10. [PMID: 32071896 PMCID: PMC7024882 DOI: 10.1159/000504048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022] Open
Abstract
Weight loss is one of the most frequent adverse events during treatment with multikinase inhibitors, but scanty data are available on its extent and characteristics. This is the first assessment of the body composition by bioelectrical impedance analysis and of circulating leptin and ghrelin levels, in patients with advanced thyroid cancer before and at regular intervals during treatment with the tyrosine kinase inhibitor lenvatinib. Body mass index (BMI) decreased in all patients, with an average ∆ reduction of -6.4, -9.8, and -15.3% at 3, 6, and 12 months of treatment, respectively. Interestingly, in most patients, after the first year of treatment, BMI remained stable. In all patients, fat mass (FM) reduced more than fat-free mass, the highest decrement being of -60 and -16%, respectively. A decrease in the body cell mass, a parameter mainly due to muscle tissue, was observed only in patients with a vast baseline muscular mass. Total body water decreased in parallel to BMI. During treatment, leptin tightly paralleled the decrease of BMI values, consistent with the decrease in FM, whereas ghrelin levels increased upon BMI decrease. The loss of the FM accounts for the largest portion of BMI reduction during lenvatinib treatment. The increase in ghrelin could account for the BMI stabilization observed after 1 year of treatment. Nevertheless, oral nutritional supplements should be given as early as possible and athletic patients should be encouraged to maintain physical activity. In some circumstances, parenteral nutrition is required for the rehabilitation of these patients.
Collapse
Affiliation(s)
- Simone De Leo
- Division of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Carla Colombo
- Division of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Marta Di Stefano
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Antonella Dubini
- Division of Laboratory Medicine, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Silvia Cozzi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Luca Persani
- Division of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Laura Fugazzola
- Division of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- *Laura Fugazzola, Division of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Piazzale Brescia 20, IT–20149 Milano (Italy), E-Mail
| |
Collapse
|
30
|
Rimer M. Extracellular signal-regulated kinases 1 and 2 regulate neuromuscular junction and myofiber phenotypes in mammalian skeletal muscle. Neurosci Lett 2019; 715:134671. [PMID: 31805372 DOI: 10.1016/j.neulet.2019.134671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 02/06/2023]
Abstract
The neuromuscular junction is the synapse between a motor neuron of the spinal cord and a skeletal muscle fiber in the periphery. Reciprocal interactions between these excitable cells, and between them and others cell types present within the muscle tissue, shape the development, homeostasis and plasticity of skeletal muscle. An important aim in the field is to understand the molecular mechanisms underlying these cellular interactions, which include identifying the nature of the signals and receptors involved but also of the downstream intracellular signaling cascades elicited by them. This review focuses on work that shows that skeletal muscle fiber-derived extracellular signal-regulated kinases 1 and 2 (ERK1/2), ubiquitous and prototypical intracellular mitogen-activated protein kinases, have modulatory roles in the maintenance of the neuromuscular synapse and in the acquisition and preservation of fiber type identity in skeletal muscle.
Collapse
Affiliation(s)
- Mendell Rimer
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center and Texas A&M Institute for Neuroscience, Bryan, TX 77807 USA.
| |
Collapse
|
31
|
Fugazzola L, Elisei R, Fuhrer D, Jarzab B, Leboulleux S, Newbold K, Smit J. 2019 European Thyroid Association Guidelines for the Treatment and Follow-Up of Advanced Radioiodine-Refractory Thyroid Cancer. Eur Thyroid J 2019; 8:227-245. [PMID: 31768334 PMCID: PMC6873012 DOI: 10.1159/000502229] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/19/2019] [Indexed: 01/03/2023] Open
Abstract
The vast majority of thyroid cancers of follicular origin (TC) have a very favourable outcome, but 5-10% of cases will develop metastatic disease. Around 60-70% of this subset, hence less than 5% of all patients with TC, will become radioiodine refractory (RAI-R), with a significant negative impact on prognosis and a mean life expectancy of 3-5 years. Since no European expert consensus or guidance for this challenging condition is currently available, a task force of TC experts was nominated by the European Thyroid Association (ETA) to prepare this document based on the principles of clinical evidence. The task force started to work in September 2018 and after several revision rounds, prepared a list of recommendations to support the treatment and follow-up of patients with advanced TC. Criteria for advanced RAI-R TC were proposed, and the most appropriate diagnostic tools and the local, systemic and palliative treatments are described. Systemic therapy with multikinase inhibitors is fully discussed, including recommendations on how to start it and at which dosage, on the duration of treatment, and on the management of side effects. The appropriate relationship between the specialist and the patient/family as well as ethical issues are covered. Based on the available studies and on personal experience, the experts provided 39 recommendations aimed to improve the management of advanced RAI-R TCs. Above all of them is the indication to treat and follow these patients in a specialized setting which allows the interaction between several specialists in a multidisciplinary team.
Collapse
Affiliation(s)
- Laura Fugazzola
- Division of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Rossella Elisei
- Unit of Endocrinology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Dagmar Fuhrer
- Department of Endocrinology, Diabetes and Metabolism, Endocrine Tumour Center at West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Barbara Jarzab
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Institute, Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Sophie Leboulleux
- Department of Nuclear Medicine and Endocrine Oncology, Gustave Roussy and Université Paris Saclay, Villejuif, France
| | - Kate Newbold
- Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, United Kingdom
| | - Jan Smit
- Division of Endocrinology, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
32
|
Ciano M, Mantellato G, Connolly M, Paul-Clark M, Willis-Owen S, Moffatt MF, Cookson WOCM, Mitchell JA, Polkey MI, Hughes SM, Kemp PR, Natanek SA. EGF receptor (EGFR) inhibition promotes a slow-twitch oxidative, over a fast-twitch, muscle phenotype. Sci Rep 2019; 9:9218. [PMID: 31239465 PMCID: PMC6592914 DOI: 10.1038/s41598-019-45567-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 04/10/2019] [Indexed: 11/17/2022] Open
Abstract
A low quadriceps slow-twitch (ST), oxidative (relative to fast-twitch) fiber proportion is prevalent in chronic diseases such Chronic Obstructive Pulmonary Disease (COPD) and is associated with exercise limitation and poor outcomes. Benefits of an increased ST fiber proportion are demonstrated in genetically modified animals. Pathway analysis of published data of differentially expressed genes in mouse ST and FT fibers, mining of our microarray data and a qPCR analysis of quadriceps specimens from COPD patients and controls were performed. ST markers were quantified in C2C12 myotubes with EGF-neutralizing antibody, EGFR inhibitor or an EGFR-silencing RNA added. A zebrafish egfra mutant was generated by genome editing and ST fibers counted. EGF signaling was (negatively) associated with the ST muscle phenotype in mice and humans, and muscle EGF transcript levels were raised in COPD. In C2C12 myotubes, EGFR inhibition/silencing increased ST, including mitochondrial, markers. In zebrafish, egfra depletion increased ST fibers and mitochondrial content. EGF is negatively associated with ST muscle phenotype in mice, healthy humans and COPD patients. EGFR blockade promotes the ST phenotype in myotubes and zebrafish embryos. EGF signaling suppresses the ST phenotype, therefore EGFR inhibitors may be potential treatments for COPD-related muscle ST fiber loss.
Collapse
Affiliation(s)
| | - Giada Mantellato
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Martin Connolly
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Mark Paul-Clark
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Miriam F Moffatt
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Jane A Mitchell
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Simon M Hughes
- Randall Division of Cell & Molecular Biophysics, King's College London, London, UK
| | - Paul R Kemp
- National Heart and Lung Institute, Imperial College London, London, UK
| | - S Amanda Natanek
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
33
|
Phosphorylated ERK1/2 protein levels are closely associated with the fast fiber phenotypes in rat hindlimb skeletal muscles. Pflugers Arch 2019; 471:971-982. [PMID: 31093758 DOI: 10.1007/s00424-019-02278-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/02/2019] [Accepted: 04/24/2019] [Indexed: 01/27/2023]
Abstract
The relationship between the extracellular signal-regulated kinase 1 and 2 (ERK1/2), one of the mitogen-activated protein kinases (MAPKs), and mammalian skeletal muscle fiber phenotype is unclear. We looked at this relationship in three in vivo conditions in male Wistar rats. First, the levels of phosphorylated (active) ERK1/2 protein were closely associated with the fiber type composition of sedentary rat hindlimb muscles: highest in the superficial portion of the gastrocnemius (100% fast fibers), lower in the plantaris (~ 80% fast fibers), and lowest in the soleus (~ 15% fast fibers). Second, during growth, there was a gradual decrease in the percentage of fast fibers from 40% at 3 weeks to 1.5% at 65 weeks and a concomitant gradual decrease in the levels of phosphorylated ERK1/2 in the soleus muscle. Third, sciatic nerve denervation induced a significant decrease in the weight of both the soleus and plantaris, but a slow-to-fast fiber type shift and increase in phosphorylated ERK1/2 protein were observed only in the soleus. Although only a few fast and fast + slow hybrid fibers of the denervated soleus muscle reacted positively to the anti-phosphorylated ERK1/2 antibody by immuno-histochemical analysis, our results suggest that the phosphorylated form of ERK1/2 seems to be closely related to the fast fiber phenotype program. Further evidence for this relationship was provided by the observation that several slow fiber phenotype-specific proteins, i.e., Hsp72, Hsp60, and PGC-1, changed in the opposite direction of the levels of phosphorylated ERK1/2 protein.
Collapse
|
34
|
Bosutti A, Bernareggi A, Massaria G, D'Andrea P, Taccola G, Lorenzon P, Sciancalepore M. A "noisy" electrical stimulation protocol favors muscle regeneration in vitro through release of endogenous ATP. Exp Cell Res 2019; 381:121-128. [PMID: 31082374 DOI: 10.1016/j.yexcr.2019.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/17/2019] [Accepted: 05/09/2019] [Indexed: 02/04/2023]
Abstract
An in vitro system of electrical stimulation was used to explore whether an innovative "noisy" stimulation protocol derived from human electromyographic recordings (EMGstim) could promote muscle regeneration. EMGstim was delivered to cultured mouse myofibers isolated from Flexor Digitorum Brevis, preserving their satellite cells. In response to EMGstim, immunostaining for the myogenic regulatory factor myogenin, revealed an increased percentage of elongated myogenin-positive cells surrounding the myofibers. Conditioned medium collected from EMGstim-treated cell cultures, promoted satellite cells differentiation in unstimulated myofiber cell cultures, suggesting that extracellular soluble factors could mediate the process. Interestingly, the myogenic effect of EMGstim was mimicked by exogenously applied ATP (0.1 μM), reduced by the ATP diphosphohydrolase apyrase and prevented by blocking endogenous ATP release with carbenoxolone. In conclusion, our results show that "noisy" electrical stimulations favor muscle progenitor cell differentiation most likely via the release of endogenous ATP from contracting myofibres. Our data also suggest that "noisy" stimulation protocols could be potentially more efficient than regular stimulations to promote in vivo muscle regeneration after traumatic injury or in neuropathological diseases.
Collapse
Affiliation(s)
- Alessandra Bosutti
- Department of Life Sciences and Centre for Neuroscience B.R.A.I.N., University of Trieste, Via A. Fleming 22, I-34127, Trieste, Italy
| | - Annalisa Bernareggi
- Department of Life Sciences and Centre for Neuroscience B.R.A.I.N., University of Trieste, Via A. Fleming 22, I-34127, Trieste, Italy
| | - Gabriele Massaria
- Department of Life Sciences and Centre for Neuroscience B.R.A.I.N., University of Trieste, Via A. Fleming 22, I-34127, Trieste, Italy; Area Science Park, Padriciano, 99, I-34149, Trieste, Italy
| | - Paola D'Andrea
- Department of Life Sciences and Centre for Neuroscience B.R.A.I.N., University of Trieste, Via A. Fleming 22, I-34127, Trieste, Italy
| | - Giuliano Taccola
- Department of Neuroscience, SISSA, Via Bonomea 265, 34136, Trieste, Italy; SPINAL (Spinal Person Injury Neurorehabilitation Applied Laboratory), Istituto di Medicina Fisica e Riabilitazione (IMFR), Via Gervasutta 48, 33100, Udine, Italy
| | - Paola Lorenzon
- Department of Life Sciences and Centre for Neuroscience B.R.A.I.N., University of Trieste, Via A. Fleming 22, I-34127, Trieste, Italy
| | - Marina Sciancalepore
- Department of Life Sciences and Centre for Neuroscience B.R.A.I.N., University of Trieste, Via A. Fleming 22, I-34127, Trieste, Italy.
| |
Collapse
|
35
|
Olsen LA, Nicoll JX, Fry AC. The skeletal muscle fiber: a mechanically sensitive cell. Eur J Appl Physiol 2019; 119:333-349. [PMID: 30612167 DOI: 10.1007/s00421-018-04061-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022]
Abstract
The plasticity of skeletal muscle, whether an increase in size, change in metabolism, or alteration in structural properties, is in a continuous state of flux largely dependent upon physical activity. Much of the past research has expounded upon these ever-changing aspects of the muscle fiber following exercise. Specifically, endocrine and paracrine signaling have been heavily investigated lending to much of the past literature comprised of such endocrinological dynamics following muscle activity. Mechanotransduction, the ability of a cell to convert a mechanical stimulus into an intracellular biochemical response, has garnered much less attention. Recent work, however, has demonstrated the physical continuity of the muscle fiber, specifically demonstrating a continuous physical link between the extracellular matrix (ECM), cytoskeleton, and nuclear matrix as a means to rapidly regulate gene expression following a mechanical stimulus. Similarly, research has shown mechanical stimuli to directly influence cytoplasmic signaling whether through oxidative adaptations, increased muscle size, or enhanced muscle integrity. Regrettably, minimal research has investigated the role that exercise may play within the mechanotransducing signaling cascades. This proposed line of study may prove paramount as muscle-related diseases greatly impact one's ability to lead an independent lifestyle along with contributing a substantial burden upon the economy. Thus, this review explores both biophysical and biochemical mechanotransduction, and how these signaling pathways may be influenced following exercise.
Collapse
Affiliation(s)
- Luke A Olsen
- Biomedical Sciences, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Justin X Nicoll
- Department of Kinesiology, California State University, Northridge, CA, 91330-8287, USA
| | - Andrew C Fry
- Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, KS, 66045, USA.
| |
Collapse
|
36
|
Vassilakos G, Barton ER. Insulin-Like Growth Factor I Regulation and Its Actions in Skeletal Muscle. Compr Physiol 2018; 9:413-438. [PMID: 30549022 DOI: 10.1002/cphy.c180010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The insulin-like growth factor (IGF) pathway is essential for promoting growth and survival of virtually all tissues. It bears high homology to its related protein insulin, and as such, there is an interplay between these molecules with regard to their anabolic and metabolic functions. Skeletal muscle produces a significant proportion of IGF-1, and is highly responsive to its actions, including increased muscle mass and improved regenerative capacity. In this overview, the regulation of IGF-1 production, stability, and activity in skeletal muscle will be described. Second, the physiological significance of the forms of IGF-1 produced will be discussed. Last, the interaction of IGF-1 with other pathways will be addressed. © 2019 American Physiological Society. Compr Physiol 9:413-438, 2019.
Collapse
Affiliation(s)
- Georgios Vassilakos
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, USA
| | - Elisabeth R Barton
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
37
|
Scicchitano BM, Dobrowolny G, Sica G, Musarò A. Molecular Insights into Muscle Homeostasis, Atrophy and Wasting. Curr Genomics 2018; 19:356-369. [PMID: 30065611 PMCID: PMC6030854 DOI: 10.2174/1389202919666180101153911] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Muscle homeostasis is guaranteed by a delicate balance between synthesis and degradation of cell proteins and its alteration leads to muscle wasting and diseases. In this review, we describe the major anabolic pathways that are involved in muscle growth and homeostasis and the proteolytic systems that are over-activated in muscle pathologies. Modulation of these pathways comprises an attractive target for drug intervention.
Collapse
Affiliation(s)
- Bianca Maria Scicchitano
- Istituto di Istologia e Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Largo Francesco Vito 1-00168, Roma, Italy
| | - Gabriella Dobrowolny
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Gigliola Sica
- Istituto di Istologia e Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Largo Francesco Vito 1-00168, Roma, Italy
| | - Antonio Musarò
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
38
|
Schiaffino S. Muscle fiber type diversity revealed by anti-myosin heavy chain antibodies. FEBS J 2018; 285:3688-3694. [PMID: 29761627 DOI: 10.1111/febs.14502] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/24/2018] [Accepted: 05/08/2018] [Indexed: 01/02/2023]
Abstract
Different forms of myosin heavy chains (MyHCs), coded by a large family of sarcomeric MYH genes, are expressed in striated muscles. The generation of specific anti-MyHC antibodies has provided a powerful tool to define the fiber types present in skeletal muscles, their functional properties, their response to conditions that affect muscle plasticity and their changes in muscle disorders. Cardiomyocyte heterogeneity has been revealed by the serendipitous observation that different MyHCs are present in atrial and ventricular myocardium and in heart conduction tissue. Developmental MyHCs present in embryonic and fetal/neonatal skeletal muscle are re-expressed during muscle regeneration and can be used to identify regenerating fibers in muscle diseases. MyHC isoforms provide cell type-specific markers to identify the signaling pathways that control muscle cell identity and are an essential reference to interpret the results of single-cell transcriptomics and proteomics.
Collapse
|
39
|
Lancel S, Hesselink MK, Woldt E, Rouillé Y, Dorchies E, Delhaye S, Duhem C, Thorel Q, Mayeuf-Louchart A, Pourcet B, Montel V, Schaart G, Beton N, Picquet F, Briand O, Salles JP, Duez H, Schrauwen P, Bastide B, Bailleul B, Staels B, Sebti Y. Endospanin-2 enhances skeletal muscle energy metabolism and running endurance capacity. JCI Insight 2018; 3:98081. [PMID: 29720572 DOI: 10.1172/jci.insight.98081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/28/2018] [Indexed: 11/17/2022] Open
Abstract
Metabolic stresses such as dietary energy restriction or physical activity exert beneficial metabolic effects. In the liver, endospanin-1 and endospanin-2 cooperatively modulate calorie restriction-mediated (CR-mediated) liver adaptations by controlling growth hormone sensitivity. Since we found CR to induce endospanin protein expression in skeletal muscle, we investigated their role in this tissue. In vivo and in vitro endospanin-2 triggers ERK phosphorylation in skeletal muscle through an autophagy-dependent pathway. Furthermore, endospanin-2, but not endospanin-1, overexpression decreases muscle mitochondrial ROS production, induces fast-to-slow fiber-type switch, increases skeletal muscle glycogen content, and improves glucose homeostasis, ultimately promoting running endurance capacity. In line, endospanin-2-/- mice display higher lipid peroxidation levels, increased mitochondrial ROS production under mitochondrial stress, decreased ERK phosphorylation, and reduced endurance capacity. In conclusion, our results identify endospanin-2 as a potentially novel player in skeletal muscle metabolism, plasticity, and function.
Collapse
Affiliation(s)
- Steve Lancel
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Matthijs Kc Hesselink
- School for Nutrition, Toxicology and Metabolism, Deptartments of Human Biology and Human Movement Sciences, Maastricht University Medical Center, NL-6200 MD Maastricht, the Netherlands
| | - Estelle Woldt
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Yves Rouillé
- Center of Infection and Immunity of Lille (CIIL), Inserm, U1019, CNRS UMR-8204, Institut Pasteur de Lille, Université de Lille, France
| | - Emilie Dorchies
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Stephane Delhaye
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Christian Duhem
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Quentin Thorel
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Alicia Mayeuf-Louchart
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Benoit Pourcet
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Valérie Montel
- URePSS, Université de Lille, EA 7369, F-59650 Villeneuve d'Ascq, France
| | - Gert Schaart
- School for Nutrition, Toxicology and Metabolism, Deptartments of Human Biology and Human Movement Sciences, Maastricht University Medical Center, NL-6200 MD Maastricht, the Netherlands
| | - Nicolas Beton
- INSERM UMR1043 (CPTP), Université de Toulouse, Paul Sabatier, Hôpital des Enfants, CHU de Toulouse, Toulouse, France
| | - Florence Picquet
- URePSS, Université de Lille, EA 7369, F-59650 Villeneuve d'Ascq, France
| | - Olivier Briand
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Jean Pierre Salles
- INSERM UMR1043 (CPTP), Université de Toulouse, Paul Sabatier, Hôpital des Enfants, CHU de Toulouse, Toulouse, France
| | - Hélène Duez
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Patrick Schrauwen
- School for Nutrition, Toxicology and Metabolism, Deptartments of Human Biology and Human Movement Sciences, Maastricht University Medical Center, NL-6200 MD Maastricht, the Netherlands
| | - Bruno Bastide
- URePSS, Université de Lille, EA 7369, F-59650 Villeneuve d'Ascq, France
| | - Bernard Bailleul
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Bart Staels
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| | - Yasmine Sebti
- Université de Lille, U1011 - EGID, F-59000 Lille, France.,Inserm, U1011, F-59000 Lille, France.,CHU Lille, F-59000 Lille, France.,Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
40
|
Rossi S, Di Noia V, Tonetti L, Strippoli A, Basso M, Schinzari G, Cassano A, Leone A, Barone C, D'Argento E. Does sarcopenia affect outcome in patients with non-small-cell lung cancer harboring EGFR mutations? Future Oncol 2018. [PMID: 29528255 DOI: 10.2217/fon-2017-0499] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM To evaluate gefitinib outcomes in EGFR-mutated non-small-cell lung cancer (NSCLC) patients harboring EGFR mutations, according to their sarcopenia status. PATIENTS & METHODS We retrospectively evaluated 33 patients with advanced NSCLC and EGFR mutations (exon 19 or 21), dividing them into sarcopenic patients, with low skeletal muscle index ≤39 cm2/m2 for women and ≤55 cm2/m2 for men, and nonsarcopenic patients. RESULTS Sarcopenia does not affect response to gefitinib treatment in EGFR mutated NSCLC patients, even if it is a bad prognostic indicator for overall survival (p = 0.035). CONCLUSION Early recognition of sarcopenia is beneficial for prevention of cancer cachexia and detection of patients at potential risk of serious adverse events. Gefitinib dosage should be reduced and modulated in sarcopenic patients.
Collapse
Affiliation(s)
- Sabrina Rossi
- Department of Oncology & Hematology, Humanitas Clinical & Research Center, Via Manzoni 56, 20089 Rozzano (MI), Italy
| | - Vincenzo Di Noia
- Polo Scienze Oncologiche ed Ematologiche, UOC di Oncologia Medica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli - Largo Francesco Vito 1, 00168 Rome, Italy
| | - Laura Tonetti
- Polo Scienze delle Immagini, di Laboratorio ed Infettivologiche, Instituto di Radiologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli - Largo Francesco Vito 1, 00168 Rome, Italy
| | - Antonia Strippoli
- Polo Scienze Oncologiche ed Ematologiche, UOC di Oncologia Medica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli - Largo Francesco Vito 1, 00168 Rome, Italy
| | - Michele Basso
- Polo Scienze Oncologiche ed Ematologiche, UOC di Oncologia Medica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli - Largo Francesco Vito 1, 00168 Rome, Italy
| | - Giovanni Schinzari
- Polo Scienze Oncologiche ed Ematologiche, UOC di Oncologia Medica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli - Largo Francesco Vito 1, 00168 Rome, Italy
| | - Alessandra Cassano
- Department of Oncology & Hematology, Humanitas Clinical & Research Center, Via Manzoni 56, 20089 Rozzano (MI), Italy
| | - Antonio Leone
- Polo Scienze delle Immagini, di Laboratorio ed Infettivologiche, Instituto di Radiologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli - Largo Francesco Vito 1, 00168 Rome, Italy
| | - Carlo Barone
- Polo Scienze Oncologiche ed Ematologiche, UOC di Oncologia Medica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli - Largo Francesco Vito 1, 00168 Rome, Italy
| | - Ettore D'Argento
- Polo Scienze Oncologiche ed Ematologiche, UOC di Oncologia Medica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli - Largo Francesco Vito 1, 00168 Rome, Italy
| |
Collapse
|
41
|
Saera-Vila A, Louie KW, Sha C, Kelly RM, Kish PE, Kahana A. Extraocular muscle regeneration in zebrafish requires late signals from Insulin-like growth factors. PLoS One 2018; 13:e0192214. [PMID: 29415074 PMCID: PMC5802911 DOI: 10.1371/journal.pone.0192214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 01/19/2018] [Indexed: 12/22/2022] Open
Abstract
Insulin-like growth factors (Igfs) are key regulators of key biological processes such as embryonic development, growth, and tissue repair and regeneration. The role of Igf in myogenesis is well documented and, in zebrafish, promotes fin and heart regeneration. However, the mechanism of action of Igf in muscle repair and regeneration is not well understood. Using adult zebrafish extraocular muscle (EOM) regeneration as an experimental model, we show that Igf1 receptor blockage using either chemical inhibitors (BMS754807 and NVP-AEW541) or translation-blocking morpholino oligonucleotides (MOs) reduced EOM regeneration. Zebrafish EOMs regeneration depends on myocyte dedifferentiation, which is driven by early epigenetic reprogramming and requires autophagy activation and cell cycle reentry. Inhibition of Igf signaling had no effect on either autophagy activation or cell proliferation, indicating that Igf signaling was not involved in the early reprogramming steps of regeneration. Instead, blocking Igf signaling produced hypercellularity of regenerating EOMs and diminished myosin expression, resulting in lack of mature differentiated muscle fibers even many days after injury, indicating that Igf was involved in late re-differentiation steps. Although it is considered the main mediator of myogenic Igf actions, Akt activation decreased in regenerating EOMs, suggesting that alternative signaling pathways mediate Igf activity in muscle regeneration. In conclusion, Igf signaling is critical for re-differentiation of reprogrammed myoblasts during late steps of zebrafish EOM regeneration, suggesting a regulatory mechanism for determining regenerated muscle size and timing of differentiation, and a potential target for regenerative therapy.
Collapse
Affiliation(s)
- Alfonso Saera-Vila
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ke’ale W. Louie
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Cuilee Sha
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ryan M. Kelly
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Phillip E. Kish
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alon Kahana
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
42
|
Proteomic and microRNA Transcriptome Analysis revealed the microRNA-SmyD1 network regulation in Skeletal Muscle Fibers performance of Chinese perch. Sci Rep 2017; 7:16498. [PMID: 29184116 PMCID: PMC5705591 DOI: 10.1038/s41598-017-16718-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 11/16/2017] [Indexed: 12/14/2022] Open
Abstract
Fish myotomes are comprised of anatomically segregated fast and slow muscle fibers that possess different metabolic and contractile properties. Although the expression profile properties in fast and slow muscle fibers had been investigated at the mRNA levels, a comprehensive analysis at proteomic and microRNA transcriptomic levels is limited. In the present study, we first systematically compared the proteomic and microRNA transcriptome of the slow and fast muscles of Chinese perch (Siniperca chuatsi). Total of 2102 proteins were identified in muscle tissues. Among them, 99 proteins were differentially up-regulated and 400 were down-regulated in the fast muscle compared with slow muscle. MiRNA microarrays revealed that 199 miRNAs identified in the two types of muscle fibers. Compared with the fast muscle, the 32 miRNAs was up-regulated and 27 down-regulated in the slow muscle. Specifically, expression of miR-103 and miR-144 was negatively correlated with SmyD1a and SmyD1b expression in fast and slow muscles, respectively. The luciferase reporter assay further verified that the miR-103 and miR-144 directly regulated the SmyD1a and SmyD1b expression by targeting their 3′-UTR. The constructed miRNA-SmyD1 interaction network might play an important role in controlling the development and performance of different muscle fiber types in Chinese perch.
Collapse
|
43
|
Abstract
Septic shock remains the major cause of childhood morbidity and mortality worldwide. Although early sepsis recognition, fluid resuscitation, timely administration of antimicrobials, and vasoactive-inotropic drug infusions are all key to achieving good sepsis outcomes, therapy using various steroid drug classes remains an attractive adjunctive intervention to minimize the duration of septic shock and transition to multiple organ dysfunction syndrome. All steroid drug classes possess biological plausibility to affect a beneficial clinical effect among children with septic shock, but none has undergone rigorous, prospective assessment in a large, high-quality pediatric interventional trial.
Collapse
|
44
|
Duan Y, Li F, Tan B, Yao K, Yin Y. Metabolic control of myofibers: promising therapeutic target for obesity and type 2 diabetes. Obes Rev 2017; 18:647-659. [PMID: 28391659 DOI: 10.1111/obr.12530] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/13/2017] [Accepted: 01/26/2017] [Indexed: 02/02/2023]
Abstract
Mammalian skeletal muscles are composed of two major fibre types (I and II) that differ in terms of size, metabolism and contractile properties. In general, slow-twitch type I fibres are rich in mitochondria and have a greater insulin sensitivity than fast-twitch type II skeletal muscles. Although not widely appreciated, a forced induction of the slow skeletal muscle phenotype may inhibit the progress of obesity and diabetes. This potentially forms the basis for targeting slow/oxidative myofibers in the treatment of obesity. In this context, a better understanding of the molecular basis of fibre-type specification and plasticity may help to identify potential therapeutic targets for obesity and diabetes.
Collapse
Affiliation(s)
- Yehui Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fengna Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,Hunan Co-Innovation Center of Safety Animal Production, CICSAP, Changsha, China
| | - Bie Tan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Kang Yao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,Hunan Co-Innovation Center of Safety Animal Production, CICSAP, Changsha, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China.,Laboratory of Animal Nutrition and Human Health, School of Biology, Hunan Normal University, Changsha, China
| |
Collapse
|
45
|
Graff M, Scott RA, Justice AE, Young KL, Feitosa MF, Barata L, Winkler TW, Chu AY, Mahajan A, Hadley D, Xue L, Workalemahu T, Heard-Costa NL, den Hoed M, Ahluwalia TS, Qi Q, Ngwa JS, Renström F, Quaye L, Eicher JD, Hayes JE, Cornelis M, Kutalik Z, Lim E, Luan J, Huffman JE, Zhang W, Zhao W, Griffin PJ, Haller T, Ahmad S, Marques-Vidal PM, Bien S, Yengo L, Teumer A, Smith AV, Kumari M, Harder MN, Justesen JM, Kleber ME, Hollensted M, Lohman K, Rivera NV, Whitfield JB, Zhao JH, Stringham HM, Lyytikäinen LP, Huppertz C, Willemsen G, Peyrot WJ, Wu Y, Kristiansson K, Demirkan A, Fornage M, Hassinen M, Bielak LF, Cadby G, Tanaka T, Mägi R, van der Most PJ, Jackson AU, Bragg-Gresham JL, Vitart V, Marten J, Navarro P, Bellis C, Pasko D, Johansson Å, Snitker S, Cheng YC, Eriksson J, Lim U, Aadahl M, Adair LS, Amin N, Balkau B, Auvinen J, Beilby J, Bergman RN, Bergmann S, Bertoni AG, Blangero J, Bonnefond A, Bonnycastle LL, Borja JB, Brage S, Busonero F, Buyske S, Campbell H, Chines PS, Collins FS, Corre T, Smith GD, Delgado GE, Dueker N, Dörr M, Ebeling T, Eiriksdottir G, Esko T, Faul JD, et alGraff M, Scott RA, Justice AE, Young KL, Feitosa MF, Barata L, Winkler TW, Chu AY, Mahajan A, Hadley D, Xue L, Workalemahu T, Heard-Costa NL, den Hoed M, Ahluwalia TS, Qi Q, Ngwa JS, Renström F, Quaye L, Eicher JD, Hayes JE, Cornelis M, Kutalik Z, Lim E, Luan J, Huffman JE, Zhang W, Zhao W, Griffin PJ, Haller T, Ahmad S, Marques-Vidal PM, Bien S, Yengo L, Teumer A, Smith AV, Kumari M, Harder MN, Justesen JM, Kleber ME, Hollensted M, Lohman K, Rivera NV, Whitfield JB, Zhao JH, Stringham HM, Lyytikäinen LP, Huppertz C, Willemsen G, Peyrot WJ, Wu Y, Kristiansson K, Demirkan A, Fornage M, Hassinen M, Bielak LF, Cadby G, Tanaka T, Mägi R, van der Most PJ, Jackson AU, Bragg-Gresham JL, Vitart V, Marten J, Navarro P, Bellis C, Pasko D, Johansson Å, Snitker S, Cheng YC, Eriksson J, Lim U, Aadahl M, Adair LS, Amin N, Balkau B, Auvinen J, Beilby J, Bergman RN, Bergmann S, Bertoni AG, Blangero J, Bonnefond A, Bonnycastle LL, Borja JB, Brage S, Busonero F, Buyske S, Campbell H, Chines PS, Collins FS, Corre T, Smith GD, Delgado GE, Dueker N, Dörr M, Ebeling T, Eiriksdottir G, Esko T, Faul JD, Fu M, Færch K, Gieger C, Gläser S, Gong J, Gordon-Larsen P, Grallert H, Grammer TB, Grarup N, van Grootheest G, Harald K, Hastie ND, Havulinna AS, Hernandez D, Hindorff L, Hocking LJ, Holmens OL, Holzapfel C, Hottenga JJ, Huang J, Huang T, Hui J, Huth C, Hutri-Kähönen N, James AL, Jansson JO, Jhun MA, Juonala M, Kinnunen L, Koistinen HA, Kolcic I, Komulainen P, Kuusisto J, Kvaløy K, Kähönen M, Lakka TA, Launer LJ, Lehne B, Lindgren CM, Lorentzon M, Luben R, Marre M, Milaneschi Y, Monda KL, Montgomery GW, De Moor MHM, Mulas A, Müller-Nurasyid M, Musk AW, Männikkö R, Männistö S, Narisu N, Nauck M, Nettleton JA, Nolte IM, Oldehinkel AJ, Olden M, Ong KK, Padmanabhan S, Paternoster L, Perez J, Perola M, Peters A, Peters U, Peyser PA, Prokopenko I, Puolijoki H, Raitakari OT, Rankinen T, Rasmussen-Torvik LJ, Rawal R, Ridker PM, Rose LM, Rudan I, Sarti C, Sarzynski MA, Savonen K, Scott WR, Sanna S, Shuldiner AR, Sidney S, Silbernagel G, Smith BH, Smith JA, Snieder H, Stančáková A, Sternfeld B, Swift AJ, Tammelin T, Tan ST, Thorand B, Thuillier D, Vandenput L, Vestergaard H, van Vliet-Ostaptchouk JV, Vohl MC, Völker U, Waeber G, Walker M, Wild S, Wong A, Wright AF, Zillikens MC, Zubair N, Haiman CA, Lemarchand L, Gyllensten U, Ohlsson C, Hofman A, Rivadeneira F, Uitterlinden AG, Pérusse L, Wilson JF, Hayward C, Polasek O, Cucca F, Hveem K, Hartman CA, Tönjes A, Bandinelli S, Palmer LJ, Kardia SLR, Rauramaa R, Sørensen TIA, Tuomilehto J, Salomaa V, Penninx BWJH, de Geus EJC, Boomsma DI, Lehtimäki T, Mangino M, Laakso M, Bouchard C, Martin NG, Kuh D, Liu Y, Linneberg A, März W, Strauch K, Kivimäki M, Harris TB, Gudnason V, Völzke H, Qi L, Järvelin MR, Chambers JC, Kooner JS, Froguel P, Kooperberg C, Vollenweider P, Hallmans G, Hansen T, Pedersen O, Metspalu A, Wareham NJ, Langenberg C, Weir DR, Porteous DJ, Boerwinkle E, Chasman DI, Abecasis GR, Barroso I, McCarthy MI, Frayling TM, O’Connell JR, van Duijn CM, Boehnke M, Heid IM, Mohlke KL, Strachan DP, Fox CS, Liu CT, Hirschhorn JN, Klein RJ, Johnson AD, Borecki IB, Franks PW, North KE, Cupples LA, Loos RJF, Kilpeläinen TO. Genome-wide physical activity interactions in adiposity - A meta-analysis of 200,452 adults. PLoS Genet 2017; 13:e1006528. [PMID: 28448500 PMCID: PMC5407576 DOI: 10.1371/journal.pgen.1006528] [Show More Authors] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/07/2016] [Indexed: 11/23/2022] Open
Abstract
Physical activity (PA) may modify the genetic effects that give rise to increased risk of obesity. To identify adiposity loci whose effects are modified by PA, we performed genome-wide interaction meta-analyses of BMI and BMI-adjusted waist circumference and waist-hip ratio from up to 200,452 adults of European (n = 180,423) or other ancestry (n = 20,029). We standardized PA by categorizing it into a dichotomous variable where, on average, 23% of participants were categorized as inactive and 77% as physically active. While we replicate the interaction with PA for the strongest known obesity-risk locus in the FTO gene, of which the effect is attenuated by ~30% in physically active individuals compared to inactive individuals, we do not identify additional loci that are sensitive to PA. In additional genome-wide meta-analyses adjusting for PA and interaction with PA, we identify 11 novel adiposity loci, suggesting that accounting for PA or other environmental factors that contribute to variation in adiposity may facilitate gene discovery.
Collapse
Affiliation(s)
- Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert A. Scott
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Anne E. Justice
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kristin L. Young
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mary F. Feitosa
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Llilda Barata
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Thomas W. Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Audrey Y. Chu
- National Heart, Lung, and Blood Institute, Framingham Heart Study, Framingham, Massachusetts, United States of America
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - David Hadley
- Division of Population Health Sciences and Education, St. George's, University of London, London, United Kingdom
| | - Luting Xue
- National Heart, Lung, and Blood Institute, Framingham Heart Study, Framingham, Massachusetts, United States of America
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Tsegaselassie Workalemahu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Nancy L. Heard-Costa
- National Heart, Lung, and Blood Institute, Framingham Heart Study, Framingham, Massachusetts, United States of America
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Marcel den Hoed
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tarunveer S. Ahluwalia
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center, Gentofte, Denmark
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Julius S. Ngwa
- Howard University, Department of Internal Medicine, Washington DC, United States of America
| | - Frida Renström
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, Sweden
- Department of Biobank Research, Umeå University, Umeå, Sweden
| | - Lydia Quaye
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - John D. Eicher
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, The Framingham Heart Study, Framingham, Massachusetts, United States of America
| | - James E. Hayes
- Cell and Developmental Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, United States of America
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Marilyn Cornelis
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Zoltan Kutalik
- Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Elise Lim
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Jian’an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Jennifer E. Huffman
- National Heart, Lung, and Blood Institute, Framingham Heart Study, Framingham, Massachusetts, United States of America
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Department of Cardiology, Ealing Hospital HNS Trust, Middlesex, United Kingdom
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Paula J. Griffin
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Toomas Haller
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Shafqat Ahmad
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, Sweden
| | - Pedro M. Marques-Vidal
- Department of Internal Medicine, Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Stephanie Bien
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Loic Yengo
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8199 - EGID, Lille, France
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Albert Vernon Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Meena Kumari
- ISER, University of Essex, Colchester, Essex, United Kingdom
| | - Marie Neergaard Harder
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johanne Marie Justesen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marcus E. Kleber
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany
| | - Mette Hollensted
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kurt Lohman
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Natalia V. Rivera
- Karolinska Institutet, Respiratory Unit, Department of Medicine Solna, Stockholm, Sweden
| | - John B. Whitfield
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jing Hua Zhao
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Heather M. Stringham
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, University of Tampere School of Medicine, Tampere, Finland
| | - Charlotte Huppertz
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
- EMGO+ Institute, Vrije Universiteit & VU University Medical Center, Amsterdam, The Netherlands
- Department of Public and Occupational Health, VU University Medical Center, Amsterdam, The Netherlands
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
- EMGO+ Institute, Vrije Universiteit & VU University Medical Center, Amsterdam, The Netherlands
| | - Wouter J. Peyrot
- Department of Psychiatry, EMGO Institute for Health and Care Research and Neuroscience Campus Amsterdam, VU University Medical Center/GGZ InGeest, Amsterdam, The Netherlands
| | - Ying Wu
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kati Kristiansson
- National Institute for Health and Welfare, Department of Health, Helsinki, Finland
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Ayse Demirkan
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Myriam Fornage
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Maija Hassinen
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Lawrence F. Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gemma Cadby
- Centre for Genetic Origins of Health and Disease, University of Western Australia, Crawley, Western Australia, Australia
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Peter J. van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anne U. Jackson
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jennifer L. Bragg-Gresham
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Jonathan Marten
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Pau Navarro
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Claire Bellis
- Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research of Singapore, Singapore
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Dorota Pasko
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Søren Snitker
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Yu-Ching Cheng
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Veterans Affairs Maryland Health Care System, University of Maryland, Baltimore, Maryland, United States of America
| | - Joel Eriksson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Unhee Lim
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| | - Mette Aadahl
- Research Centre for Prevention and Health, Glostrup University Hospital, Glostrup, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Linda S. Adair
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Najaf Amin
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Beverley Balkau
- INSERM U-1018, CESP, Renal and Cardiovascular Epidemiology, UVSQ-UPS, Villejuif, France
| | - Juha Auvinen
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
| | - John Beilby
- Busselton Population Medical Research Institute, Nedlands, Western Australia, Australia
- PathWest Laboratory Medicine of WA, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, Western Australia, Australia
| | - Richard N. Bergman
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Sven Bergmann
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Alain G. Bertoni
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - John Blangero
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Amélie Bonnefond
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8199 - EGID, Lille, France
| | - Lori L. Bonnycastle
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, United States of America
| | - Judith B. Borja
- USC-Office of Population Studies Foundation, Inc., University of San Carlos, Cebu City, Philippines
- Department of Nutrition and Dietetics, University of San Carlos, Cebu City, Philippines
| | - Søren Brage
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Fabio Busonero
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale Delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Steve Buyske
- Department of Genetics, Rutgers University, Piscataway, New Jersey, United States of America
- Department of Statistics and Biostatistics, Rutgers University, Piscataway, New Jersey, United States of America
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, Edinburgh, Scotland
| | - Peter S. Chines
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, United States of America
| | - Francis S. Collins
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, United States of America
| | - Tanguy Corre
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - George Davey Smith
- MRC Integrative Epidemiology Unit & School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Graciela E. Delgado
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nicole Dueker
- University of Maryland School of Medicine, Department of Epidemiology & Public Health, Baltimore, Maryland, United States of America
| | - Marcus Dörr
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Tapani Ebeling
- Department of Medicine, Oulu University Hospital, Oulu, Finland
- Institute of Clinical Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
| | | | - Tõnu Esko
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
| | - Jessica D. Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Mao Fu
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | | | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Sven Gläser
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Jian Gong
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Penny Gordon-Larsen
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Tanja B. Grammer
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gerard van Grootheest
- Department of Psychiatry, EMGO Institute for Health and Care Research and Neuroscience Campus Amsterdam, VU University Medical Center/GGZ InGeest, Amsterdam, The Netherlands
| | - Kennet Harald
- National Institute for Health and Welfare, Department of Health, Helsinki, Finland
| | - Nicholas D. Hastie
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Aki S. Havulinna
- National Institute for Health and Welfare, Department of Health, Helsinki, Finland
| | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, United States of America
| | - Lucia Hindorff
- Division of Genomic Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lynne J. Hocking
- Musculoskeletal Research Programme, Division of Applied Medicine, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Generation Scotland, Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Christina Holzapfel
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Nutritional Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Jouke Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
- NCA Institute, VU University & VU Medical Center, Amsterdam, The Netherlands
| | - Jie Huang
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Tao Huang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Jennie Hui
- Busselton Population Medical Research Institute, Nedlands, Western Australia, Australia
- PathWest Laboratory Medicine of WA, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Population Health, The University of Western Australia, Crawley, Western Australia, Australia
| | - Cornelia Huth
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Nina Hutri-Kähönen
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
- Department of Pediatrics, University of Tampere School of Medicine, Tampere, Finland
| | - Alan L. James
- Busselton Population Medical Research Institute, Nedlands, Western Australia, Australia
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia, Australia
| | - John-Olov Jansson
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Min A. Jhun
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Markus Juonala
- Department of Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | - Leena Kinnunen
- National Institute for Health and Welfare, Department of Health, Helsinki, Finland
| | - Heikki A. Koistinen
- National Institute for Health and Welfare, Department of Health, Helsinki, Finland
- Department of Medicine and Abdominal Center: Endocrinology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Ivana Kolcic
- Department of Public Health, Faculty of Medicine, University of Split, Split, Croatia
| | | | - Johanna Kuusisto
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Kirsti Kvaløy
- HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Levanger, Norway
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
- Department of Clinical Physiology, University of Tampere School of Medicine, Tampere, Finland
| | - Timo A. Lakka
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Institute of Biomedicine, Physiology, University of Eastern Finland, Kuopio Campus, Finland
| | - Lenore J. Launer
- Neuroepidemiology Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Benjamin Lehne
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Cecilia M. Lindgren
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
- The Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Mattias Lorentzon
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Geriatric Medicine, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Robert Luben
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Michel Marre
- INSERM U-1138, Équipe 2: Pathophysiology and Therapeutics of Vascular and Renal diseases Related to Diabetes, Centre de Recherche des Cordeliers, Paris, France
- Department of Endocrinology, Diabetology, Nutrition, and Metabolic Diseases, Bichat Claude Bernard Hospital, Paris, France
| | - Yuri Milaneschi
- Department of Psychiatry, EMGO Institute for Health and Care Research and Neuroscience Campus Amsterdam, VU University Medical Center/GGZ InGeest, Amsterdam, The Netherlands
| | - Keri L. Monda
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Center for Observational Research, Amgen Inc., Thousand Oaks, California, United States of America
| | - Grant W. Montgomery
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Marleen H. M. De Moor
- EMGO+ Institute, Vrije Universiteit & VU University Medical Center, Amsterdam, The Netherlands
- Section of Clinical Child and Family Studies, Department of Educational and Family Studies, Vrije Universiteit, Amsterdam, The Netherlands
| | - Antonella Mulas
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale Delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Medicine I, Ludwig-Maximilians-Universität, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - A. W. Musk
- Busselton Population Medical Research Institute, Nedlands, Western Australia, Australia
- School of Population Health, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Reija Männikkö
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Satu Männistö
- National Institute for Health and Welfare, Department of Health, Helsinki, Finland
| | - Narisu Narisu
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, United States of America
| | - Matthias Nauck
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Jennifer A. Nettleton
- Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Ilja M. Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Albertine J. Oldehinkel
- Interdisciplinary Center Psychopathology and Emotion Regulation (ICPE), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Matthias Olden
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Ken K. Ong
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Sandosh Padmanabhan
- Generation Scotland, Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, United Kingdom
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Lavinia Paternoster
- MRC Integrative Epidemiology Unit & School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Jeremiah Perez
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Markus Perola
- National Institute for Health and Welfare, Department of Health, Helsinki, Finland
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- University of Tartu, Estonian Genome Centre, Tartu, Estonia
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Patricia A. Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Inga Prokopenko
- Genomics of Common Disease, Imperial College London, London, United Kingdom
| | | | - Olli T. Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States of America
| | - Laura J. Rasmussen-Torvik
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Rajesh Rawal
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Paul M. Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lynda M. Rose
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, Edinburgh, Scotland
| | - Cinzia Sarti
- Social Services and Health Care Department, City of Helsinki, Helsinki, Finland
| | - Mark A. Sarzynski
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States of America
| | - Kai Savonen
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - William R. Scott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Serena Sanna
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale Delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Alan R. Shuldiner
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Veterans Affairs Maryland Health Care System, University of Maryland, Baltimore, Maryland, United States of America
| | - Steve Sidney
- Division of Research, Kaiser Permanente Northern California, Oakland, California, United States of America
| | - Günther Silbernagel
- Division of Angiology, Department of Internal Medicine, Medical University Graz, Austria
| | - Blair H. Smith
- Generation Scotland, Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, United Kingdom
- School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alena Stančáková
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Barbara Sternfeld
- Division of Research, Kaiser Permanente Northern California, Oakland, California, United States of America
| | - Amy J. Swift
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, United States of America
| | - Tuija Tammelin
- LIKES Research Center for Sport and Health Sciences, Jyväskylä, Finland
| | - Sian-Tsung Tan
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Barbara Thorand
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Dorothée Thuillier
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8199 - EGID, Lille, France
| | - Liesbeth Vandenput
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Vestergaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center, Gentofte, Denmark
| | - Jana V. van Vliet-Ostaptchouk
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marie-Claude Vohl
- Institute of Nutrition and Functional Foods, Quebec, Canada
- School of Nutrition, Laval University, Quebec, Canada
| | - Uwe Völker
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Gérard Waeber
- Department of Internal Medicine, Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Mark Walker
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sarah Wild
- Centre for Population Health Sciences, Usher Institute for Population Health Sciences and Informatics, Teviot Place, Edinburgh, Scotland
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing at UCL, London, United Kingdom
| | - Alan F. Wright
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | | | - Niha Zubair
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Christopher A. Haiman
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Loic Lemarchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| | - Ulf Gyllensten
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Consortium for Healthy Aging, Leiden University Medical Center, Leiden, The Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Consortium for Healthy Aging, Leiden University Medical Center, Leiden, The Netherlands
| | - André G. Uitterlinden
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Louis Pérusse
- Institute of Nutrition and Functional Foods, Quebec, Canada
- Department of Kinesiology, Laval University, Quebec, Canada
| | - James F. Wilson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, Edinburgh, Scotland
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Ozren Polasek
- Centre for Global Health Research, Usher Institute for Population Health Sciences and Informatics, Edinburgh, Scotland
- Department of Public Health, Faculty of Medicine, University of Split, Split, Croatia
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale Delle Ricerche (CNR), Cittadella Universitaria di Monserrato, Monserrato, Italy
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - Kristian Hveem
- HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Levanger, Norway
| | - Catharina A. Hartman
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anke Tönjes
- University of Leipzig, Medical Department, Leipzig, Germany
| | | | - Lyle J. Palmer
- School of Public Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Rainer Rauramaa
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Thorkild I. A. Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- MRC Integrative Epidemiology Unit & School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
- Department of Clinical Epidemiology, Bispebjerg and Frederiksberg Hospitals, The Capital Region, Copenhagen, Denmark
| | - Jaakko Tuomilehto
- National Institute for Health and Welfare, Department of Health, Helsinki, Finland
- Centre for Vascular Prevention, Danube-University Krems, Krems, Austria
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Veikko Salomaa
- National Institute for Health and Welfare, Department of Health, Helsinki, Finland
| | - Brenda W. J. H. Penninx
- Department of Psychiatry, EMGO Institute for Health and Care Research and Neuroscience Campus Amsterdam, VU University Medical Center/GGZ InGeest, Amsterdam, The Netherlands
| | - Eco J. C. de Geus
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
- EMGO+ Institute, Vrije Universiteit & VU University Medical Center, Amsterdam, The Netherlands
| | - Dorret I. Boomsma
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands
- NCA Institute, VU University & VU Medical Center, Amsterdam, The Netherlands
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, University of Tampere School of Medicine, Tampere, Finland
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
- National Institute for Health Research Biomedical Research Centre at Guy's and St. Thomas' Foundation Trust, London, United Kingdom
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States of America
| | - Nicholas G. Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Diana Kuh
- MRC Unit for Lifelong Health and Ageing at UCL, London, United Kingdom
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Allan Linneberg
- Research Centre for Prevention and Health, Glostrup University Hospital, Glostrup, Denmark
- Department of Clinical Experimental Research, Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Winfried März
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Synlab Academy, Synlab Services LLC, Mannheim, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Mika Kivimäki
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Tamara B. Harris
- Laboratory of Epidemiology and Population Science, National Institute on Aging, Bethesda, Maryland, United States of America
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Lu Qi
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Marjo-Riitta Järvelin
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- MRC-PHE Centre for Environment and Health, Imperial College London, London, United Kingdom
| | - John C. Chambers
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Department of Cardiology, Ealing Hospital HNS Trust, Middlesex, United Kingdom
- Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Jaspal S. Kooner
- Department of Cardiology, Ealing Hospital HNS Trust, Middlesex, United Kingdom
- National Heart and Lung Institute, Imperial College London, United Kingdom
- Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Philippe Froguel
- University of Lille, CNRS, Institut Pasteur de Lille, UMR 8199 - EGID, Lille, France
- Hammersmith Hospital, London, United Kingdom
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Peter Vollenweider
- Department of Internal Medicine, Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Göran Hallmans
- Department of Biobank Research, Umeå University, Umeå, Sweden
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Nicholas J. Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - David R. Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David J. Porteous
- Generation Scotland, Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Eric Boerwinkle
- Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Daniel I. Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | | | | | | | - Gonçalo R. Abecasis
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Inês Barroso
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom
| | - Mark I. McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, Oxford, United Kingdom
| | - Timothy M. Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Jeffrey R. O’Connell
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Cornelia M. van Duijn
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Consortium for Healthy Aging, Leiden University Medical Center, Leiden, The Netherlands
- Center of Medical Systems Biology, Leiden, The Netherlands
| | - Michael Boehnke
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Iris M. Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Karen L. Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - David P. Strachan
- Population Health Research Institute, St. George's University of London, London, United Kingdom
| | - Caroline S. Fox
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, The Framingham Heart Study, Framingham, Massachusetts, United States of America
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Joel N. Hirschhorn
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
- Divisions of Endocrinology and Genetics and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - Robert J. Klein
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Andrew D. Johnson
- National Heart, Lung, and Blood Institute, Framingham Heart Study, Framingham, Massachusetts, United States of America
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, The Framingham Heart Study, Framingham, Massachusetts, United States of America
| | - Ingrid B. Borecki
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Paul W. Franks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, Sweden
- Department of Public Health & Clinical Medicine, Umeå University, Umeå, Sweden
| | - Kari E. North
- Carolina Center for Genome Sciences, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - L. Adrienne Cupples
- National Heart, Lung, and Blood Institute, Framingham Heart Study, Framingham, Massachusetts, United States of America
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Ruth J. F. Loos
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- Genetics of Obesity and Related Metabolic Traits Program, Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Department of Preventive Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Tuomas O. Kilpeläinen
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Department of Preventive Medicine, The Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
46
|
Wang S, Seaberg B, Paez-Colasante X, Rimer M. Defective Acetylcholine Receptor Subunit Switch Precedes Atrophy of Slow-Twitch Skeletal Muscle Fibers Lacking ERK1/2 Kinases in Soleus Muscle. Sci Rep 2016; 6:38745. [PMID: 27934942 PMCID: PMC5146667 DOI: 10.1038/srep38745] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 11/15/2016] [Indexed: 01/10/2023] Open
Abstract
To test the role of extracellular-signal regulated kinases 1 and 2 (ERK1/2) in slow-twitch, type 1 skeletal muscle fibers, we studied the soleus muscle in mice genetically deficient for myofiber ERK1/2. Young adult mutant soleus was drastically wasted, with highly atrophied type 1 fibers, denervation at most synaptic sites, induction of “fetal” acetylcholine receptor gamma subunit (AChRγ), reduction of “adult” AChRε, and impaired mitochondrial biogenesis and function. In weanlings, fiber morphology and mitochondrial markers were mostly normal, yet AChRγ upregulation and AChRε downregulation were observed. Synaptic sites with fetal AChRs in weanling muscle were ~3% in control and ~40% in mutants, with most of the latter on type 1 fibers. These results suggest that: (1) ERK1/2 are critical for slow-twitch fiber growth; (2) a defective γ/ε-AChR subunit switch, preferentially at synapses on slow fibers, precedes wasting of mutant soleus; (3) denervation is likely to drive this wasting, and (4) the neuromuscular synapse is a primary subcellular target for muscle ERK1/2 function in vivo.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Bonnie Seaberg
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Ximena Paez-Colasante
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Mendell Rimer
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA
| |
Collapse
|
47
|
Pattanakuhar S, Pongchaidecha A, Chattipakorn N, Chattipakorn SC. The effect of exercise on skeletal muscle fibre type distribution in obesity: From cellular levels to clinical application. Obes Res Clin Pract 2016; 11:112-132. [PMID: 27756527 DOI: 10.1016/j.orcp.2016.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/18/2016] [Accepted: 09/28/2016] [Indexed: 12/25/2022]
Abstract
Skeletal muscles play important roles in metabolism, energy expenditure, physical strength, and locomotive activity. Skeletal muscle fibre types in the body are heterogeneous. They can be classified as oxidative types and glycolytic types with oxidative-type are fatigue-resistant and use oxidative metabolism, while fibres with glycolytic-type are fatigue-sensitive and prefer glycolytic metabolism. Several studies demonstrated that an obese condition with abnormal metabolic parameters has been negatively correlated with the distribution of oxidative-type skeletal muscle fibres, but positively associated with that of glycolytic-type muscle fibres. However, some studies demonstrated otherwise. In addition, several studies demonstrated that an exercise training programme caused the redistribution of oxidative-type skeletal muscle fibres in obesity. In contrast, some studies showed inconsistent findings. Therefore, the present review comprehensively summarizes and discusses those consistent and inconsistent findings from clinical studies, regarding the association among the distribution of skeletal muscle fibre types, obese condition, and exercise training programmes. Furthermore, the possible underlying mechanisms and clinical application of the alterations in muscle fibre type following obesity are presented and discussed.
Collapse
Affiliation(s)
- Sintip Pattanakuhar
- Department of Rehabilitation Medicine, Faculty of Medicine, Chiang Mai University, Thailand; Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Thailand
| | - Anchalee Pongchaidecha
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
48
|
Koulmann N, Richard‐Bulteau H, Crassous B, Serrurier B, Pasdeloup M, Bigard X, Banzet S. Physical exercise during muscle regeneration improves recovery of the slow/oxidative phenotype. Muscle Nerve 2016; 55:91-100. [DOI: 10.1002/mus.25151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Nathalie Koulmann
- Institut de Recherche Biomédicale des Armées, Département Environnements OpérationnelsBretigny‐Sur‐Orge France
- Ecole du Val‐de‐GrâceParis France
| | - Hélène Richard‐Bulteau
- Institut de Recherche Biomédicale des Armées, Département Environnements OpérationnelsBretigny‐Sur‐Orge France
| | - Brigitte Crassous
- Institut de Recherche Biomédicale des Armées, Département Environnements OpérationnelsBretigny‐Sur‐Orge France
| | - Bernard Serrurier
- Institut de Recherche Biomédicale des Armées, Département Environnements OpérationnelsBretigny‐Sur‐Orge France
| | - Marielle Pasdeloup
- Institut de Recherche Biomédicale des Armées, Département Environnements OpérationnelsBretigny‐Sur‐Orge France
| | - Xavier Bigard
- Institut de Recherche Biomédicale des Armées, Département Environnements OpérationnelsBretigny‐Sur‐Orge France
- Ecole du Val‐de‐GrâceParis France
| | - Sébastien Banzet
- Ecole du Val‐de‐GrâceParis France
- Institut de Recherche Biomédicale des Armées, Département Soutien Médico‐Chirurgical des Forces1 rue du lieutenant Raoul Batany92140Clamart France
- INSERM U1197Clamart France
| |
Collapse
|
49
|
Sakakibara I, Wurmser M, Dos Santos M, Santolini M, Ducommun S, Davaze R, Guernec A, Sakamoto K, Maire P. Six1 homeoprotein drives myofiber type IIA specialization in soleus muscle. Skelet Muscle 2016; 6:30. [PMID: 27597886 PMCID: PMC5011358 DOI: 10.1186/s13395-016-0102-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/16/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Adult skeletal muscles are composed of slow and fast myofiber subtypes which each express selective genes required for their specific contractile and metabolic activity. Six homeoproteins are transcription factors regulating muscle cell fate through activation of myogenic regulatory factors and driving fast-type gene expression during embryogenesis. RESULTS We show here that Six1 protein accumulates more robustly in the nuclei of adult fast-type muscles than in adult slow-type muscles, this specific enrichment takes place during perinatal growth. Deletion of Six1 in soleus impaired fast-type myofiber specialization during perinatal development, resulting in a slow phenotype and a complete lack of Myosin heavy chain 2A (MyHCIIA) expression. Global transcriptomic analysis of wild-type and Six1 mutant myofibers identified the gene networks controlled by Six1 in adult soleus muscle. This analysis showed that Six1 is required for the expression of numerous genes encoding fast-type sarcomeric proteins, glycolytic enzymes and controlling intracellular calcium homeostasis. Parvalbumin, a key player of calcium buffering, in particular, is a direct target of Six1 in the adult myofiber. CONCLUSIONS This analysis revealed that Six1 controls distinct aspects of adult muscle physiology in vivo, and acts as a main determinant of fast-fiber type acquisition and maintenance.
Collapse
Affiliation(s)
- Iori Sakakibara
- INSERM U1016, Institut Cochin, Paris, 75014 France
- CNRS UMR 8104, Paris, 75014 France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, 75014 France
- Division of Integrative Pathophysiology, Proteo-Science Center, Graduate School of Medicine, Ehime University, Ehime, Japan
| | - Maud Wurmser
- INSERM U1016, Institut Cochin, Paris, 75014 France
- CNRS UMR 8104, Paris, 75014 France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, 75014 France
| | - Matthieu Dos Santos
- INSERM U1016, Institut Cochin, Paris, 75014 France
- CNRS UMR 8104, Paris, 75014 France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, 75014 France
| | - Marc Santolini
- Laboratoire de Physique Statistique, CNRS, Université P. et M. Curie, Université D. Diderot, École Normale Supérieure, Paris, 75005 France
| | - Serge Ducommun
- Nestlé Institute of Health Sciences SA, EPFL Innovation Park, Lausanne, Switzerland
| | - Romain Davaze
- INSERM U1016, Institut Cochin, Paris, 75014 France
- CNRS UMR 8104, Paris, 75014 France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, 75014 France
| | - Anthony Guernec
- INSERM U1016, Institut Cochin, Paris, 75014 France
- CNRS UMR 8104, Paris, 75014 France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, 75014 France
| | - Kei Sakamoto
- Nestlé Institute of Health Sciences SA, EPFL Innovation Park, Lausanne, Switzerland
| | - Pascal Maire
- INSERM U1016, Institut Cochin, Paris, 75014 France
- CNRS UMR 8104, Paris, 75014 France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, 75014 France
| |
Collapse
|
50
|
Derbré F, Droguet M, Léon K, Troadec S, Pennec JP, Giroux-Metges MA, Rannou F. Single Muscle Immobilization Decreases Single-Fibre Myosin Heavy Chain Polymorphism: Possible Involvement of p38 and JNK MAP Kinases. PLoS One 2016; 11:e0158630. [PMID: 27383612 PMCID: PMC4934689 DOI: 10.1371/journal.pone.0158630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/20/2016] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Muscle contractile phenotype is affected during immobilization. Myosin heavy chain (MHC) isoforms are the major determinant of the muscle contractile phenotype. We therefore sought to evaluate the effects of muscle immobilization on both the MHC composition at single-fibre level and the mitogen-activated protein kinases (MAPK), a family of intracellular signaling pathways involved in the stress-induced muscle plasticity. METHODS The distal tendon of female Wistar rat Peroneus Longus (PL) was cut and fixed to the adjacent bone at neutral muscle length. Four weeks after the surgery, immobilized and contralateral PL were dissociated and the isolated fibres were sampled to determine MHC composition. Protein kinase 38 (p38), extracellular signal-regulated kinases (ERK1/2), and c-Jun- NH2-terminal kinase (JNK) phosphorylations were measured in 6- and 15-day immobilized and contralateral PL. RESULTS MHC distribution in immobilized PL was as follows: I = 0%, IIa = 11.8 ± 2.8%, IIx = 53.0 ± 6.1%, IIb = 35.3 ± 7.3% and I = 6.1 ± 3.9%, IIa = 22.1 ± 3.4%, IIx = 46.6 ± 4.5%, IIb = 25.2 ± 6.6% in contralateral muscle. The MHC composition in immobilized muscle is consistent with a faster contractile phenotype according to the Hill's model of the force-velocity relationship. Immobilized and contralateral muscles displayed a polymorphism index of 31.1% (95% CI 26.1-36.0) and 39.3% (95% CI 37.0-41.5), respectively. Significant increases in p38 and JNK phosphorylation were observed following 6 and 15 days of immobilization. CONCLUSIONS Single muscle immobilization at neutral length induces a shift of MHC composition toward a faster contractile phenotype and decreases the polymorphic profile of single fibres. Activation of p38 and JNK could be a potential mechanism involved in these contractile phenotype modifications during muscle immobilization.
Collapse
Affiliation(s)
- Frédéric Derbré
- Laboratory “Movement Sport and health Sciences”(M2S) -EA1274, University Rennes 2-ENS Rennes, Rennes, France
| | - Mickaël Droguet
- Physiology Department-EA1274 M2S, School of Medicine, Brest, France
| | - Karelle Léon
- Physiology Department-EA1274 M2S, School of Medicine, Brest, France
| | - Samuel Troadec
- Physiology Department-EA1274 M2S, School of Medicine, Brest, France
| | | | | | - Fabrice Rannou
- Physiology Department-EA1274 M2S, School of Medicine, Brest, France
| |
Collapse
|