1
|
Wyżewski Z, Gregorczyk-Zboroch KP, Mielcarska MB, Świtlik W, Niedzielska A. Bid Protein: A Participant in the Apoptotic Network with Roles in Viral Infections. Int J Mol Sci 2025; 26:2385. [PMID: 40141030 PMCID: PMC11942203 DOI: 10.3390/ijms26062385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
The BH3-interacting domain death agonist (Bid), a proapoptotic signaling molecule of the B-cell lymphoma 2 (Bcl-2) family, is a key regulator of mitochondrial outer membrane (MOM) permeability. Uniquely positioned at the intersection of extrinsic and intrinsic apoptosis pathways, Bid links death receptor signaling to the mitochondria-dependent cascade and can also be activated by endoplasmic reticulum (ER) stress. In its active forms, cleaved Bid (cBid) and truncated Bid (tBid), it disrupts MOM integrity via Bax/Bak-dependent and independent mechanisms. Apoptosis plays a dual role in viral infections, either promoting or counteracting viral propagation. Consequently, viruses modulate Bid signaling to favor their replication. The deregulation of Bid activity contributes to oncogenic transformation, inflammation, immunosuppression, neurotoxicity, and pathogen propagation during various viral infections. In this work, we explore Bid's structure, function, activation processes, and mitochondrial targeting. We describe its role in apoptosis induction and its involvement in infections with multiple viruses. Additionally, we discuss the therapeutic potential of Bid in antiviral strategies. Understanding Bid's signaling pathways offers valuable insights into host-virus interactions and the pathogenesis of infections. This knowledge may facilitate the development of novel therapeutic approaches to combat virus-associated diseases effectively.
Collapse
Affiliation(s)
- Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszynski University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland
| | - Karolina Paulina Gregorczyk-Zboroch
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.P.G.-Z.); (M.B.M.); (A.N.)
| | - Matylda Barbara Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.P.G.-Z.); (M.B.M.); (A.N.)
| | - Weronika Świtlik
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland;
| | - Adrianna Niedzielska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.P.G.-Z.); (M.B.M.); (A.N.)
| |
Collapse
|
2
|
Maggi S, Mori G, Maglie L, Carnuccio D, Delfino D, Della Monica E, Rivetti C, Folli C. Activity of Membrane-Permeabilizing Lpt Peptides. Biomolecules 2024; 14:994. [PMID: 39199383 PMCID: PMC11352940 DOI: 10.3390/biom14080994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Herein, we investigated the toxicity and membrane-permeabilizing capabilities of Lpt and Lpt-like peptides, belonging to type I toxin-antitoxin systems carried by plasmid DNA of Lacticaseibacillus strains. These 29 amino acid peptides are predicted to form α-helical structures with a conserved central hydrophobic sequence and differently charged hydrophilic termini. Like Lpt, the expression of Lpt-like in E. coli induced growth arrest, nucleoid condensation, and cell membrane damage, suggesting membrane interaction as the mode of action. The membrane permeabilization activity of both peptides was evaluated by using liposome leakage assays, dynamic light scattering, and CD spectroscopy. Lpt and Lpt-like showed liposome leakage activity, which did not lead to liposome disruption but depended on peptide concentration. Lpt was generally more effective than Lpt-like, probably due to different physical chemical properties. Leakage was significantly reduced in larger liposomes and increased with negatively charged PCPS liposomes, indicating that electrostatic interactions and membrane curvature influence peptide activity. Contrary to most membrane-active peptides, Lpt an Lpt-like progressively lost their α-helical structure upon interaction with liposomes. Our data are inconsistent with the formation of membrane-spanning peptide pores but support a mechanism relying on the transient failure of the membrane permeability barrier possibly through the formation of "lipid pores".
Collapse
Affiliation(s)
- Stefano Maggi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.M.); (G.M.); (L.M.); (D.C.); (E.D.M.)
| | - Giulia Mori
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.M.); (G.M.); (L.M.); (D.C.); (E.D.M.)
| | - Luigi Maglie
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.M.); (G.M.); (L.M.); (D.C.); (E.D.M.)
| | - Dario Carnuccio
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.M.); (G.M.); (L.M.); (D.C.); (E.D.M.)
| | - Danila Delfino
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| | - Emanuele Della Monica
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.M.); (G.M.); (L.M.); (D.C.); (E.D.M.)
| | - Claudio Rivetti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.M.); (G.M.); (L.M.); (D.C.); (E.D.M.)
| | - Claudia Folli
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| |
Collapse
|
3
|
Srinivasan MK, Premnath BJ, Parimelazhagan R, Namasivayam N. Synthesis, characterization, and evaluation of the anticancer properties of pH-responsive carvacrol-zinc oxide quantum dots on breast cancer cell line (MDA-MB-231). Cell Biochem Funct 2024; 42:e4062. [PMID: 38807490 DOI: 10.1002/cbf.4062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
Since most solid tumors have a low pH value, a pH-responsive drug delivery system may offer a broad method for tumor-targeting treatment. The present study is used to analyze the anticancer activity of carvacrol-zinc oxide quantum dots (CVC-ZnO QDs) against breast cancer cells (MDA-MB-231). CVC-ZnO QDs demonstrate pH responsive and are specifically released within the acidic pH tumor microenvironment. This property enables targeted drug delivery exclusively to cancer cells while minimizing the impact on normal cells. To the synthesized ZnO QDs, the CVC was loaded and then examined by X-ray diffraction, ultraviolet-visible, Fourier transform infrared spectrophotometer, scanning electron microscopy-energy dispersive X-ray, and transmission electron microscopy. For up to 20 h, CVC release was examined in different pH-buffered solutions. The results showed that carvacrol release was stable in an acidic pH solution. Further, cytotoxicity assay, antioxidant, and lipid peroxidation activity, reactive oxygen species, mitochondrial membrane potential, nuclear damage, and the ability of CVC-ZnO QDs to cause apoptosis were all examined. Apoptosis markers such as Bcl2, Bax, caspase-3, and caspase-9, were also studied. In conclusion, the CVC-ZnO QDs destabilized the MDA-MB-231cells under its acidic tumor microenvironment and regulated apoptosis.
Collapse
Affiliation(s)
- Manoj Kumar Srinivasan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, India
| | - Briska Jifrina Premnath
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, India
| | - Ramya Parimelazhagan
- Department of Biochemistry, Faculty of Medicine, Sri Lakshmi Narayana Institute of Medical Sciences (SLIMS), Puducherry, India
| | - Nalini Namasivayam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, India
| |
Collapse
|
4
|
Yu C, Zhao J, Cheng F, Chen J, Chen J, Xu H, Shi K, Xia K, Ding S, Wang K, Wang R, Chen Y, Li Y, Li H, Chen Q, Yu X, Shao F, Liang C, Li F. Silencing circATXN1 in Aging Nucleus Pulposus Cell Alleviates Intervertebral Disc Degeneration via Correcting Progerin Mislocalization. RESEARCH (WASHINGTON, D.C.) 2024; 7:0336. [PMID: 38533181 PMCID: PMC10964222 DOI: 10.34133/research.0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/17/2024] [Indexed: 03/28/2024]
Abstract
Circular RNAs (circRNAs) play a critical regulatory role in degenerative diseases; however, their functions and therapeutic applications in intervertebral disc degeneration (IVDD) have not been explored. Here, we identified that a novel circATXN1 highly accumulates in aging nucleus pulposus cells (NPCs) accountable for IVDD. CircATXN1 accelerates cellular senescence, disrupts extracellular matrix organization, and inhibits mitochondrial respiration. Mechanistically, circATXN1, regulated by heterogeneous nuclear ribonucleoprotein A2B1-mediated splicing circularization, promotes progerin translocation from the cell nucleus to the cytoplasm and inhibits the expression of insulin-like growth factor 1 receptor (IGF-1R). To demonstrate the therapeutic potential of circATXN1, siRNA targeting the backsplice junction of circATNX1 was screened and delivered by tetrahedral framework nucleic acids (tFNAs) due to their unique compositional and tetrahedral structural features. Our siRNA delivery system demonstrates superior abilities to transfect aging cells, clear intracellular ROS, and enhanced biological safety. Using siRNA-tFNAs to silence circATXN1, aging NPCs exhibit reduced mislocalization of progerin in the cytoplasm and up-regulation of IGF-1R, thereby demonstrating a rejuvenated cellular phenotype and improved mitochondrial function. In vivo, administering an aging cell-adapted siRNA nucleic acid framework delivery system to progerin pathologically expressed premature aging mice (zmpste24-/-) can ameliorate the cellular matrix in the nucleus pulposus tissue, effectively delaying IVDD. This study not only identified circATXN1 functioning as a cell senescence promoter in IVDD for the first time, but also successfully demonstrated its therapeutic potential via a tFNA-based siRNA delivery strategy.
Collapse
Affiliation(s)
- Chao Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Jing Zhao
- Department of Chemistry,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
| | - Feng Cheng
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Jiangjie Chen
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Jinyang Chen
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Haibin Xu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Kesi Shi
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Kaishun Xia
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Siwen Ding
- Westlake Street Community Health Service Center, Hangzhou 310009, Zhejiang, PR China
| | - Kanbin Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Ronghao Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Yazhou Chen
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Yi Li
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Hao Li
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Qixin Chen
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Xiaohua Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Fangwei Shao
- Zhejiang University-University of Illinois at Urbana-Champaign Institute,
Zhejiang University, Haining 314400, Zhejiang, PR China
- Biomedical and Health Translational Research Centre,
Zhejiang University, Haining 314400, Zhejiang, PR China
| | - Chengzhen Liang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| | - Fangcai Li
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Orthopedics Research Institute of Zhejiang University,
Zhejiang University, Hangzhou 310009, Zhejiang, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310009, Zhejiang, PR China
| |
Collapse
|
5
|
Sehrawat N, Yadav M, Kumar S, Devi A, Singh R, Sharma V, Dhama K, Lorenzo JM, Sharma AK. Mung bean as a potent emerging functional food having anticancer therapeutic potential: Mechanistic insight and recent updates. Biotechnol Appl Biochem 2023; 70:2002-2016. [PMID: 37574464 DOI: 10.1002/bab.2505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023]
Abstract
Cancer is still a major challenge for humans. In recent years, researchers have focused on plant-based metabolites as a safe, efficient, alternative or combinatorial, as well as cost-effective preventive strategy against carcinogenesis. Mung bean is an important nutritious legume, and known for providing various health benefits due to various bioactive phytochemicals and easily digestible proteins. Regular intake of mung bean helps to regulate metabolism by affecting the growth and survival of good microbes in the host gut. Mung bean has also been reported to have anti-inflammatory, antioxidant, antiproliferative, and immunomodulatory properties. These properties may possess the preventive potential of mung bean against carcinogenesis. Bibliographic databases for peer-reviewed research literature were searched through a structured conceptual approach using focused review questions on mung beans, anticancer, therapeutics, and functional foods along with inclusion/exclusion criteria. For the appraisal of the quality of retrieved articles, standard tools were employed. A deductive qualitative content analysis methodology further led us to analyze outcomes of the research and review articles. The present review provides recent updates on the anticancer potential of mung bean and the possible mechanism of action thereof to prevent carcinogenesis and metastasis. Extensive research on the active metabolites and mechanisms of action is required to establish the anticancer potential of mung bean. Keeping the above facts in view, mung bean should be investigated for its bioactive compounds, to be considered as functional food of the future.
Collapse
Affiliation(s)
- Nirmala Sehrawat
- Department of Bio-Sciences and Technology, M.M.E.C., Maharishi Markandeshwar (deemed to be University), Mullana, Ambala, Haryana, India
| | - Mukesh Yadav
- Department of Bio-Sciences and Technology, M.M.E.C., Maharishi Markandeshwar (deemed to be University), Mullana, Ambala, Haryana, India
| | - Sunil Kumar
- Department of Microbiology, Faculty of Bio-medical Sciences, Kampala International University, Kampala, Uganda
| | - Ashwanti Devi
- Department of Bio-Sciences and Technology, M.M.E.C., Maharishi Markandeshwar (deemed to be University), Mullana, Ambala, Haryana, India
| | - Rajbir Singh
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, Haryana, India
| | - Varruchi Sharma
- Department of Biotechnology & Bioinformatics, Sri Guru Gobind Singh College, Chandigarh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spain
- Área de Tecnoloxía dos Alimentos, Facultade de Ciencias de Ourense, Universidade de Vigo, Vigo, Ourense, Spain
| | - Anil Kumar Sharma
- Department of Bio-Sciences and Technology, M.M.E.C., Maharishi Markandeshwar (deemed to be University), Mullana, Ambala, Haryana, India
| |
Collapse
|
6
|
Margheritis E, Kappelhoff S, Cosentino K. Pore-Forming Proteins: From Pore Assembly to Structure by Quantitative Single-Molecule Imaging. Int J Mol Sci 2023; 24:ijms24054528. [PMID: 36901959 PMCID: PMC10003378 DOI: 10.3390/ijms24054528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/11/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Pore-forming proteins (PFPs) play a central role in many biological processes related to infection, immunity, cancer, and neurodegeneration. A common feature of PFPs is their ability to form pores that disrupt the membrane permeability barrier and ion homeostasis and generally induce cell death. Some PFPs are part of the genetically encoded machinery of eukaryotic cells that are activated against infection by pathogens or in physiological programs to carry out regulated cell death. PFPs organize into supramolecular transmembrane complexes that perforate membranes through a multistep process involving membrane insertion, protein oligomerization, and finally pore formation. However, the exact mechanism of pore formation varies from PFP to PFP, resulting in different pore structures with different functionalities. Here, we review recent insights into the molecular mechanisms by which PFPs permeabilize membranes and recent methodological advances in their characterization in artificial and cellular membranes. In particular, we focus on single-molecule imaging techniques as powerful tools to unravel the molecular mechanistic details of pore assembly that are often obscured by ensemble measurements, and to determine pore structure and functionality. Uncovering the mechanistic elements of pore formation is critical for understanding the physiological role of PFPs and developing therapeutic approaches.
Collapse
|
7
|
Rouchidane Eyitayo A, Giraud MF, Daury L, Lambert O, Gonzalez C, Manon S. Cell-free synthesis and reconstitution of Bax in nanodiscs: Comparison between wild-type Bax and a constitutively active mutant. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184075. [PMID: 36273540 DOI: 10.1016/j.bbamem.2022.184075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
Bax is a major player in the mitochondrial pathway of apoptosis, by making the Outer Mitochondrial Membrane (OMM) permeable to various apoptogenic factors, including cytochrome c. In order to get further insight into the structure and function of Bax when it is inserted in the OMM, we attempted to reconstitute Bax in nanodiscs. Cell-free protein synthesis in the presence of nanodiscs did not yield Bax-containing nanodiscs, but it provided a simple way to purify full-length Bax without any tag. Purified wild-type Bax (BaxWT) and a constitutively active mutant (BaxP168A) displayed biochemical properties that were in line with previous characterizations following their expression in yeast and human cells followed by their reconstitution into liposomes. Both Bax variants were then reconstituted in nanodiscs. Size exclusion chromatography, dynamic light scattering and transmission electron microscopy showed that nanodiscs formed with BaxP168A were larger than nanodiscs formed with BaxWT. This was consistent with the hypothesis that BaxP168A was reconstituted in nanodiscs as an active oligomer.
Collapse
Affiliation(s)
| | - Marie-France Giraud
- IBGC, UMR5095, CNRS, Université de Bordeaux, France; CBMN, UMR5248, CNRS, Université de Bordeaux, France
| | | | | | | | - Stéphen Manon
- IBGC, UMR5095, CNRS, Université de Bordeaux, France.
| |
Collapse
|
8
|
Jain A, Gupta S, Sharma P. Role of Hypoxia-inducible proteins in Ameloblastoma: A Review. JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, MEDICINE, AND PATHOLOGY 2022. [DOI: 10.1016/j.ajoms.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Yu Y, Tang Y, Chu K, Gao T, Smith ZJ. High-Resolution Low-Power Hyperspectral Line-Scan Imaging of Fast Cellular Dynamics Using Azo-Enhanced Raman Scattering Probes. J Am Chem Soc 2022; 144:15314-15323. [PMID: 35969674 DOI: 10.1021/jacs.2c06275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Small-molecule Raman probes for cellular imaging have attracted great attention owing to their sharp peaks that are sensitive to environmental changes. The small cross section of molecular Raman scattering limits dynamic cellular Raman imaging to expensive and complex coherent approaches that acquire single-channel images and lose hyperspectral Raman information. We introduce a new method, dynamic azo-enhanced Raman imaging (DAERI), to couple the new class of azo-enhanced Raman probes with a high-speed line-scan Raman imaging system. DAERI achieved high-resolution low-power imaging of fast cellular dynamics resolved at ∼270 nm along the confocal direction, 75 μW/μm2 and 3.5 s/frame. Based on the azo-enhanced Raman probes with characteristic signals 102-104 stronger than classic Raman labels, DAERI was not restricted to the cellular Raman-silent region as in prior work and enabled multiplex visualization of organelle motions and interactions. We anticipate DAERI to be a powerful tool for future studies in biophysics and cell biology.
Collapse
Affiliation(s)
- Yajun Yu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yuchen Tang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Kaiqin Chu
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Tingjuan Gao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zachary J Smith
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
10
|
HIF-1 α Is Associated with Resistance to Hypoxia-Induced Apoptosis in Ameloblastoma. Int J Dent 2022; 2021:3060375. [PMID: 34987583 PMCID: PMC8723839 DOI: 10.1155/2021/3060375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022] Open
Abstract
Background Ameloblastoma (AMB) is a benign odontogenic tumour, with an aggressive local behaviour and a high rate of recurrence. Previous studies have demonstrated that hypoxia-induced factor alpha 1 (HIF-1α) and activated caspase-3 contribute to tumour invasiveness and cytogenesis in ameloblastoma. Hypoxia increases HIF-1α levels, which triggers a number of signalling pathways. This paper aimed to present data in the study of hypoxia-activated signalling pathways that modulate proapoptotic and antiapoptotic events in AMB. Methods Twenty cases of AMB and ten cases of dental follicle (DF) were used to analyse the immunoexpression of HIF-1α, p53, BNIP3, Bcl-2, IAP-2, GLUT1, and Bax. To contribute to the study, an analysis of expression and genetic interaction was performed using the cell line AME-1. Results AMB and DF expressed the studied proteins. These proteins showed significantly greater immunoexpression in AMB compared with the DF (p < 0.05). HIF-1α showed an important association with GLUT1, and a positive correlation was observed among p53, Bcl-2, and IAP-2. Transcriptomic analysis showed the significant expression of the studied proteins, and the network generated showed a direct association of HIF-1αF with GLUT1 (SLC2A1), TP53, and LDHA. Interestingly, GLUT1 also exhibited direct interaction with TP53 and LDHA. Conclusion In AMB tumorigenesis, hypoxia is possibly related to antiapoptotic events, which suggests an important role for HIF-1α, GLUT1, Bcl-2, IAP-2, and possibly p53.
Collapse
|
11
|
Risner ML, Pasini S, McGrady NR, Calkins DJ. Bax Contributes to Retinal Ganglion Cell Dendritic Degeneration During Glaucoma. Mol Neurobiol 2022; 59:1366-1380. [PMID: 34984584 PMCID: PMC8882107 DOI: 10.1007/s12035-021-02675-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022]
Abstract
The BCL-2 (B-cell lymphoma-2) family of proteins contributes to mitochondrial-based apoptosis in models of neurodegeneration, including glaucomatous optic neuropathy (glaucoma), which degrades the retinal ganglion cell (RGC) axonal projection to the visual brain. Glaucoma is commonly associated with increased sensitivity to intraocular pressure (IOP) and involves a proximal program that leads to RGC dendritic pruning and a distal program that underlies axonopathy in the optic projection. While genetic deletion of the Bcl2-associated X protein (Bax-/-) prolongs RGC body survival in models of glaucoma and optic nerve trauma, axonopathy persists, thus raising the question of whether dendrites and the RGC light response are protected. Here, we used an inducible model of glaucoma in Bax-/- mice to determine if Bax contributes to RGC dendritic degeneration. We performed whole-cell recordings and dye filling in RGCs signaling light onset (αON-Sustained) and offset (αOFF-Sustained). We recovered RGC dendritic morphologies by confocal microscopy and analyzed dendritic arbor complexity and size. Additionally, we assessed RGC axon function by measuring anterograde axon transport of cholera toxin subunit B to the superior colliculus and behavioral spatial frequency threshold (i.e., spatial acuity). We found 1 month of IOP elevation did not cause significant RGC death in either WT or Bax-/- retinas. However, IOP elevation reduced dendritic arbor complexity of WT αON-Sustained and αOFF-Sustained RGCs. In the absence of Bax, αON- and αOFF-Sustained RGC dendritic arbors remained intact following IOP elevation. In addition to dendrites, neuroprotection by Bax-/- generalized to αON-and αOFF-Sustained RGC light- and current-evoked responses. Both anterograde axon transport and spatial acuity declined during IOP elevation in WT and Bax-/- mice. Collectively, our results indicate Bax contributes to RGC dendritic degeneration and distinguishes the proximal and distal neurodegenerative programs involved during the progression of glaucoma.
Collapse
Affiliation(s)
- Michael L Risner
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave. S., Nashville, TN, 37232, USA
| | - Silvia Pasini
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave. S., Nashville, TN, 37232, USA
| | - Nolan R McGrady
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave. S., Nashville, TN, 37232, USA
| | - David J Calkins
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, AA7103 MCN/VUIIS, 1161 21st Ave. S., Nashville, TN, 37232, USA.
| |
Collapse
|
12
|
PGAM1 regulates the glycolytic metabolism of SCs in tibetan sheep and its influence on the development of SCs. Gene 2021; 804:145897. [PMID: 34418471 DOI: 10.1016/j.gene.2021.145897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/20/2021] [Accepted: 08/06/2021] [Indexed: 11/20/2022]
Abstract
This study was to explore the regulation effect of PGAM1 on the proliferation, apoptosis and glycolysis pathway of Tibetan sheep Sertoli cells. In this paper, the reproductive organs of male Tibetan sheep before pre-puberty (3 months old), sexual maturity (1 year old) and adult (3 years old) were used as experimental materials. The complete CDS region sequence of PGAM1 gene was cloned for bioinformatics analysis, and had the closest relationship with Tibetan antelope. QRT-PCR, Western blot and immunohistochemical staining were used to detect the expression and localization of PGAM1 in the testis and epididymis tissues of Tibetan sheep at different growth and development stages at the transcription and translation levels. Then the Tibetan sheep primary Sertoli cells (SCs) were isolated to construct PGAM1 gene overexpression and interference vectors, and to transfect primary SCs so as to promote and inhibit PGAM1 gene expression; CCK-8 and flow cytometry were used to detect the proliferation effect of SCs;qRT-PCR technology was employed to detect the changes in the expression of genes related to cell proliferation and apoptosis. Different kits were used to detect pyruvate, lactic acid, ATP production and LDH activity during glycolysis, and to detect the changes in the expression of downstream genes in the glycolysis pathway. The results showed that the CDS region of Tibetan sheep PGAM1 gene was 765 bp in length, which can encode 254 amino acids; and the expression of PGAM1 protein in the testis and epididymis increased at 1Y group and 3Ygroup compared with 3 M group, and that the PGAM1 protein mainly existed in SCs and Leydig cells at different developmental stages. CCK-8 and flow cytometry test results found that compared with the empty vector group (pcDNA3.1(+)), the proliferation rate of the PGAM1 gene overexpression group (pcDNA3.1(+)-PGAM1) decreased. The mRNA expression of the cell proliferation related genes PCNA and Bcl2 was significantly decreased (P < 0.05), and the expression of apoptosis-related genes Bax and caspase3 was significantly increased (P < 0.05). The expression of downstream genes in the glycolysis pathway was significant increased (P < 0.05), pyruvate content, ATP content, lactic acid production and LDH activity increased significantly (P < 0.05). Compared with the interference control group (NC), the proliferation rate of the PGAM1 gene interference group (si-PGAM1) was weakened. The mRNA expression of the cell proliferation-related genes PCNA and Bcl2 was significantly increased (P < 0.05), and the expression of cell apoptosis related genes Bax and caspase3 was significantly decreased (P < 0.05). The expression of downstream genes in the glycolysis pathway was significantly reduced (P < 0.05), and the pyruvate content, ATP content, lactic acid production and LDH activity were significantly decreased (P < 0.05). The PGAM1 gene might regulate the glycolytic metabolism pathway and regulate the sperm formation and maturation process by affecting the proliferation and apoptosis of SCs. This result provides basic data for the study of the function of PGAM1 in sheep testicular development.
Collapse
|
13
|
Cdk8 Kinase Module: A Mediator of Life and Death Decisions in Times of Stress. Microorganisms 2021; 9:microorganisms9102152. [PMID: 34683473 PMCID: PMC8540245 DOI: 10.3390/microorganisms9102152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/18/2023] Open
Abstract
The Cdk8 kinase module (CKM) of the multi-subunit mediator complex plays an essential role in cell fate decisions in response to different environmental cues. In the budding yeast S. cerevisiae, the CKM consists of four conserved subunits (cyclin C and its cognate cyclin-dependent kinase Cdk8, Med13, and Med12) and predominantly negatively regulates a subset of stress responsive genes (SRG’s). Derepression of these SRG’s is accomplished by disassociating the CKM from the mediator, thus allowing RNA polymerase II-directed transcription. In response to cell death stimuli, cyclin C translocates to the mitochondria where it induces mitochondrial hyper-fission and promotes regulated cell death (RCD). The nuclear release of cyclin C requires Med13 destruction by the ubiquitin-proteasome system (UPS). In contrast, to protect the cell from RCD following SRG induction induced by nutrient deprivation, cyclin C is rapidly destroyed by the UPS before it reaches the cytoplasm. This enables a survival response by two mechanisms: increased ATP production by retaining reticular mitochondrial morphology and relieving CKM-mediated repression on autophagy genes. Intriguingly, nitrogen starvation also stimulates Med13 destruction but through a different mechanism. Rather than destruction via the UPS, Med13 proteolysis occurs in the vacuole (yeast lysosome) via a newly identified Snx4-assisted autophagy pathway. Taken together, these findings reveal that the CKM regulates cell fate decisions by both transcriptional and non-transcriptional mechanisms, placing it at a convergence point between cell death and cell survival pathways.
Collapse
|
14
|
Rose M, Kurylowicz M, Mahmood M, Winkel S, Moran-Mirabal JM, Fradin C. Direct Measurement of the Affinity between tBid and Bax in a Mitochondria-Like Membrane. Int J Mol Sci 2021; 22:8240. [PMID: 34361006 PMCID: PMC8348223 DOI: 10.3390/ijms22158240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 01/05/2023] Open
Abstract
The execution step in apoptosis is the permeabilization of the outer mitochondrial membrane, controlled by Bcl-2 family proteins. The physical interactions between the different proteins in this family and their relative abundance literally determine the fate of the cells. These interactions, however, are difficult to quantify, as they occur in a lipid membrane and involve proteins with multiple conformations and stoichiometries which can exist both in soluble and membrane. Here we focus on the interaction between two core Bcl-2 family members, the executor pore-forming protein Bax and the truncated form of the activator protein Bid (tBid), which we imaged at the single particle level in a mitochondria-like planar supported lipid bilayer. We inferred the conformation of the proteins from their mobility, and detected their transient interactions using a novel single particle cross-correlation analysis. We show that both tBid and Bax have at least two different conformations at the membrane, and that their affinity for one another increases by one order of magnitude (with a 2D-KD decreasing from ≃1.6μm-2 to ≃0.1μm-2) when they pass from their loosely membrane-associated to their transmembrane form. We conclude by proposing an updated molecular model for the activation of Bax by tBid.
Collapse
Affiliation(s)
- Markus Rose
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada; (M.R.); (M.K.); (M.M.); (S.W.)
| | - Martin Kurylowicz
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada; (M.R.); (M.K.); (M.M.); (S.W.)
| | - Mohammad Mahmood
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada; (M.R.); (M.K.); (M.M.); (S.W.)
| | - Sheldon Winkel
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada; (M.R.); (M.K.); (M.M.); (S.W.)
| | - Jose M. Moran-Mirabal
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada;
| | - Cécile Fradin
- Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada; (M.R.); (M.K.); (M.M.); (S.W.)
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
15
|
Electrical unfolding of cytochrome c during translocation through a nanopore constriction. Proc Natl Acad Sci U S A 2021; 118:2016262118. [PMID: 33883276 DOI: 10.1073/pnas.2016262118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many small proteins move across cellular compartments through narrow pores. In order to thread a protein through a constriction, free energy must be overcome to either deform or completely unfold the protein. In principle, the diameter of the pore, along with the effective driving force for unfolding the protein, as well as its barrier to translocation, should be critical factors that govern whether the process proceeds via squeezing, unfolding/threading, or both. To probe this for a well-established protein system, we studied the electric-field-driven translocation behavior of cytochrome c (cyt c) through ultrathin silicon nitride (SiNx) solid-state nanopores of diameters ranging from 1.5 to 5.5 nm. For a 2.5-nm-diameter pore, we find that, in a threshold electric-field regime of ∼30 to 100 MV/m, cyt c is able to squeeze through the pore. As electric fields inside the pore are increased, the unfolded state of cyt c is thermodynamically stabilized, facilitating its translocation. In contrast, for 1.5- and 2.0-nm-diameter pores, translocation occurs only by threading of the fully unfolded protein after it transitions through a higher energy unfolding intermediate state at the mouth of the pore. The relative energies between the metastable, intermediate, and unfolded protein states are extracted using a simple thermodynamic model that is dictated by the relatively slow (∼ms) protein translocation times for passing through the nanopore. These experiments map the various modes of protein translocation through a constriction, which opens avenues for exploring protein folding structures, internal contacts, and electric-field-induced deformability.
Collapse
|
16
|
Muninathan N. Amelioration of Combination of Paclitaxel and Di Allyl Sulfide on the Alterations of Bcl2, P53 and Apoptosis Changes Against 7,12 Di Methyl Benz (A) Anthracene Induced Skin Cancer in Experimental Animals. Indian J Clin Biochem 2021; 36:143-150. [PMID: 33867704 DOI: 10.1007/s12291-019-0817-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/28/2019] [Indexed: 11/27/2022]
Abstract
The purpose of this study was to investigate the Bcl2, P53 and apoptosis changes against skin cancer in experimental animals. Skin cancer is the most common form of human cancer. It is estimated that over 1 million new cases occur annually. The annual rates of all forms of skin cancer are increasing each year, representing a growing public concern. It has also been estimated that nearly half of all Americans who live to age 65 are likely to develop skin cancer at least once. Skin cancer was induced in rats by Di Methyl Benz (a) Anthracene at the dosage of DMBA (5 µg) per animal, three times a week for 28 weeks after conformation of skin cancer treated with Paclitaxel and Di allyl sulfide for 30 days. The levels of Bcl2 gene expression were significantly decreased and P53gene expression were markedly increased in Paclitaxel and Di allyl sulfide treated animals when compared with cancer bearing animals. The treatment with combination of Paclitaxel and Di allyl sulfide effectively reduced Bcl2 protein expression and also increased P53gene expression. Moreover, the levels of Bcl2 and P53 a good indicators of restoring the skin architecture, were also reversed in skin damage subjects after treatment with the herbal compounds preparation. So, from the obtained results it is concluded that a combination of Paclitaxel and Di allyl sulfide is capable of restoring the skin architecture and can also increase the apoptosis activities in skin cancer rats.
Collapse
Affiliation(s)
- N Muninathan
- Department of Research, Meenakshi Medical College and Research Institute, Meenakshi Academy of Higher Education and Research, Enathur, Kanchipuram, 631552 Tamil Nadu India
| |
Collapse
|
17
|
Panuzzo C, Jovanovski A, Pergolizzi B, Pironi L, Stanga S, Fava C, Cilloni D. Mitochondria: A Galaxy in the Hematopoietic and Leukemic Stem Cell Universe. Int J Mol Sci 2020; 21:ijms21113928. [PMID: 32486249 PMCID: PMC7312164 DOI: 10.3390/ijms21113928] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are the main fascinating energetic source into the cells. Their number, shape, and dynamism are controlled by the cell’s type and current behavior. The perturbation of the mitochondrial inward system via stress response and/or oncogenic insults could activate several trafficking molecular mechanisms with the intention to solve the problem. In this review, we aimed to clarify the crucial pathways in the mitochondrial system, dissecting the different metabolic defects, with a special emphasis on hematological malignancies. We investigated the pivotal role of mitochondria in the maintenance of hematopoietic stem cells (HSCs) and their main alterations that could induce malignant transformation, culminating in the generation of leukemic stem cells (LSCs). In addition, we presented an overview of LSCs mitochondrial dysregulated mechanisms in terms of (1) increasing in oxidative phosphorylation program (OXPHOS), as a crucial process for survival and self-renewal of LSCs,(2) low levels of reactive oxygen species (ROS), and (3) aberrant expression of B-cell lymphoma 2 (Bcl-2) with sustained mitophagy. Furthermore, these peculiarities may represent attractive new “hot spots” for mitochondrial-targeted therapy. Finally, we remark the potential of the LCS metabolic effectors to be exploited as novel therapeutic targets.
Collapse
Affiliation(s)
- Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
- Correspondence: (C.P.); (D.C.)
| | - Aleksandar Jovanovski
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
| | - Barbara Pergolizzi
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
| | - Lucrezia Pironi
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
| | - Serena Stanga
- Department of Neuroscience Rita Levi Montalcini, 10124 Turin, Italy;
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano, Italy
| | - Carmen Fava
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (A.J.); (B.P.); (L.P.); (C.F.)
- Correspondence: (C.P.); (D.C.)
| |
Collapse
|
18
|
Rasolonjatovo B, Illy N, Bennevault V, Mathé J, Midoux P, Le Gall T, Haudebourg T, Montier T, Lehn P, Pitard B, Cheradame H, Huin C, Guégan P. Temperature‐Sensitive Amphiphilic Non‐Ionic Triblock Copolymers for Enhanced In Vivo Skeletal Muscle Transfection. Macromol Biosci 2020; 20:e1900276. [DOI: 10.1002/mabi.201900276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/30/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Bazoly Rasolonjatovo
- LAMBE, CNRS, Université Evry, CEAUniversité Paris–Saclay 91025 Evry France
- LAMBE, UCPUniversité Paris–Seine 91025 Evry France
| | - Nicolas Illy
- Equipe Chimie des Polymères, Institut Parisien de Chimie Moléculaire, CNRS, Sorbonne Université 4 Place Jussieu 75005 Paris France
| | - Véronique Bennevault
- Equipe Chimie des Polymères, Institut Parisien de Chimie Moléculaire, CNRS, Sorbonne Université 4 Place Jussieu 75005 Paris France
- Université Evry 91025 Evry France
| | - Jérôme Mathé
- LAMBE, CNRS, Université Evry, CEAUniversité Paris–Saclay 91025 Evry France
- LAMBE, UCPUniversité Paris–Seine 91025 Evry France
| | - Patrick Midoux
- Centre de Biophysique MoléculaireCNRS UPR4301 45071 Orléans Cedex 02 France
| | - Tony Le Gall
- Groupe – Transfert de Gènes et Thérapie Génique, UMR 1078 – Génétique, Génomique Fonctionnelle et BiotechnologiesUniversité de Brest, INSERM, CHU de Brest 22 Avenue Camille Desmoulins 29238 Brest Cedex France
| | - Thomas Haudebourg
- CRCINA, INSERMUniversity of Angers, University of Nantes 49000 and 44000 Nantes France
| | - Tristan Montier
- Groupe – Transfert de Gènes et Thérapie Génique, UMR 1078 – Génétique, Génomique Fonctionnelle et BiotechnologiesUniversité de Brest, INSERM, CHU de Brest 22 Avenue Camille Desmoulins 29238 Brest Cedex France
| | - Pierre Lehn
- Groupe – Transfert de Gènes et Thérapie Génique, UMR 1078 – Génétique, Génomique Fonctionnelle et BiotechnologiesUniversité de Brest, INSERM, CHU de Brest 22 Avenue Camille Desmoulins 29238 Brest Cedex France
| | - Bruno Pitard
- CRCINA, INSERMUniversity of Angers, University of Nantes 49000 and 44000 Nantes France
| | - Herve Cheradame
- LAMBE, CNRS, Université Evry, CEAUniversité Paris–Saclay 91025 Evry France
- LAMBE, UCPUniversité Paris–Seine 91025 Evry France
| | - Cécile Huin
- Equipe Chimie des Polymères, Institut Parisien de Chimie Moléculaire, CNRS, Sorbonne Université 4 Place Jussieu 75005 Paris France
- Université Evry 91025 Evry France
| | - Philippe Guégan
- Equipe Chimie des Polymères, Institut Parisien de Chimie Moléculaire, CNRS, Sorbonne Université 4 Place Jussieu 75005 Paris France
| |
Collapse
|
19
|
Tang Q, Xia H, Liang W, Huo X, Wei X. Synthesis and characterization of zinc oxide nanoparticles from Morus nigra and its anticancer activity of AGS gastric cancer cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 202:111698. [DOI: 10.1016/j.jphotobiol.2019.111698] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 12/18/2022]
|
20
|
Li Y, Jiang W, Niu Q, Sun Y, Meng C, Tan L, Song C, Qiu X, Liao Y, Ding C. eIF2α-CHOP-BCl-2/JNK and IRE1α-XBP1/JNK signaling promote apoptosis and inflammation and support the proliferation of Newcastle disease virus. Cell Death Dis 2019; 10:891. [PMID: 31767828 PMCID: PMC6877643 DOI: 10.1038/s41419-019-2128-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/14/2019] [Accepted: 11/04/2019] [Indexed: 12/23/2022]
Abstract
Newcastle disease virus (NDV) causes severe infectious disease in poultry and selectively kills tumor cells, by inducing apoptosis and cytokines secretion. In this report, we study the mechanisms underlying NDV-induced apoptosis by investigating the unfolded protein response (UPR). We found that NDV infection activated all three branches of the UPR signaling (PERK-eIF2α, ATF6, and IRE1α) and triggered apoptosis, in avian cells (DF-1 and CEF) and in various human cancer cell types (HeLa, Cal27, HN13, A549, H1299, Huh7, and HepG2). Interestingly, the suppression of either apoptosis or UPR led to impaired NDV proliferation. Meanwhile, the inhibition of UPR by 4-PBA protected cells from NDV-induced apoptosis. Further study revealed that activation of PERK-eIF2α induced the expression of transcription factor CHOP, which subsequently promoted apoptosis by downregulating BCL-2/MCL-1, promoting JNK signaling and suppressing AKT signaling. In parallel, IRE1α mediated the splicing of XBP1 mRNA and resulted in the translation and nuclear translocation of XBP1s, thereby promoting the transcription of ER chaperones and components of ER-associated degradation (ERAD). Furthermore, IRE1α promoted apoptosis and cytokines secretion via the activation of JNK signaling. Knock down and overexpression studies showed that CHOP, IRE1α, XBP1, and JNK supported efficient virus proliferation. Our study demonstrates that the induction of eIF2α-CHOP-BCL-2/JNK and IRE1α-XBP1/JNK signaling cascades promote apoptosis and cytokines secretion, and these signaling cascades support NDV proliferation.
Collapse
Affiliation(s)
- Yanrong Li
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P. R. China
| | - Weiyu Jiang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P. R. China
| | - Qiaona Niu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P. R. China
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P. R. China
| | - Chunchun Meng
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P. R. China
| | - Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P. R. China
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P. R. China
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P. R. China
| | - Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P. R. China.
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P. R. China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, P. R. China.
| |
Collapse
|
21
|
Maes ME, Grosser JA, Fehrman RL, Schlamp CL, Nickells RW. Completion of BAX recruitment correlates with mitochondrial fission during apoptosis. Sci Rep 2019; 9:16565. [PMID: 31719602 PMCID: PMC6851089 DOI: 10.1038/s41598-019-53049-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/23/2019] [Indexed: 12/30/2022] Open
Abstract
BAX, a member of the BCL2 gene family, controls the committed step of the intrinsic apoptotic program. Mitochondrial fragmentation is a commonly observed feature of apoptosis, which occurs through the process of mitochondrial fission. BAX has consistently been associated with mitochondrial fission, yet how BAX participates in the process of mitochondrial fragmentation during apoptosis remains to be tested. Time-lapse imaging of BAX recruitment and mitochondrial fragmentation demonstrates that rapid mitochondrial fragmentation during apoptosis occurs after the complete recruitment of BAX to the mitochondrial outer membrane (MOM). The requirement of a fully functioning BAX protein for the fission process was demonstrated further in BAX/BAK-deficient HCT116 cells expressing a P168A mutant of BAX. The mutant performed fusion to restore the mitochondrial network. but was not demonstrably recruited to the MOM after apoptosis induction. Under these conditions, mitochondrial fragmentation was blocked. Additionally, we show that loss of the fission protein, dynamin-like protein 1 (DRP1), does not temporally affect the initiation time or rate of BAX recruitment, but does reduce the final level of BAX recruited to the MOM during the late phase of BAX recruitment. These correlative observations suggest a model where late-stage BAX oligomers play a functional part of the mitochondrial fragmentation machinery in apoptotic cells.
Collapse
Affiliation(s)
- M E Maes
- Department of Ophthalmology and Visual Sciences, University of Wisconsin - Madison, Madison, WI, USA.,Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - J A Grosser
- Department of Ophthalmology and Visual Sciences, University of Wisconsin - Madison, Madison, WI, USA
| | - R L Fehrman
- Department of Ophthalmology and Visual Sciences, University of Wisconsin - Madison, Madison, WI, USA
| | - C L Schlamp
- Department of Ophthalmology and Visual Sciences, University of Wisconsin - Madison, Madison, WI, USA
| | - R W Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
22
|
Dogra N, Balaraman RP, Kohli P. Chemically Engineered Synthetic Lipid Vesicles for Sensing and Visualization of Protein-Bilayer Interactions. Bioconjug Chem 2019; 30:2136-2149. [PMID: 31314501 DOI: 10.1021/acs.bioconjchem.9b00366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
From pathogen intrusion to immune response, the cell membrane plays an important role in signal transduction. Such signals are important for cellular proliferation and survival. However, measurement of these subtle signals through the lipid membrane scaffold is challenging. We present a chromatic model membrane vesicle system engineered to covalently bind with lysine residues of protein molecules for investigation of cellular interactions and signaling. We discovered that different protein molecules induced differential spectroscopic signals, which is based on the chemical and physical properties of protein interacting at the vesicle surface. The observed chromatic response (CR) for bound protein molecules with higher molecular weight was much larger (∼5-15×) than those for low molecular weight proteins. Through mass spectrometry (MS), we found that only 6 out of 60 (10%) lysine groups present in bovine serum albumin (BSA) were accessible to the membrane of the vesicles. Finally, a "sphere-shell" model representing the protein-vesicle complex was used for evaluating the contribution of van der Waals interactions between proteins and vesicles. Our analysis points to contributions from van der Waals, hydrophobic, and electrostatic interactions toward observed CR signals resulting from molecular interactions at the vesicle membrane surface. Overall, this study provided a convenient, chromatic, semiquantitative method of detecting biomolecules and their interactions with model membranes at sub-nanomolar concentration.
Collapse
Affiliation(s)
- Navneet Dogra
- Department of Chemistry and Biochemistry , Southern Illinois University , Carbondale , Illinois 62901 , United States.,IBM T. J. Watson Research Center , Yorktown Heights , New York 10058 , United States.,Department of Genetics and Genomic Sciences , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Rajesh P Balaraman
- Department of Chemistry and Biochemistry , Southern Illinois University , Carbondale , Illinois 62901 , United States
| | - Punit Kohli
- Department of Chemistry and Biochemistry , Southern Illinois University , Carbondale , Illinois 62901 , United States
| |
Collapse
|
23
|
Qu W, Mai Z, Zhang C, Du M, Yang F, Chen T. Time-lapse FRET analysis reveals the ability of Bax dimer to trigger mitochondrial outer membrane permeabilization. Biochem Biophys Res Commun 2019; 514:881-887. [PMID: 31084935 DOI: 10.1016/j.bbrc.2019.05.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 10/26/2022]
Abstract
Bax oligomerization is essential for triggering mitochondrial outer membrane permeabilization (MOMP) in many apoptotic programs. However, it is controversial whether Bax dimer is sufficient to trigger MOMP. In this report, multiple Gaussian function-based FRET analysis (Multi-Gaussian FRET analysis) was used to dissect the dimerization and then tetramerization of Bax in relation to MOMP. Multi-Gaussian FRET analysis on the time-lapse FRET images of single living cells co-expressing CFP-Bax and YFP-Bax revealed that formation of mitochondrial Bax homodimers preceded MOMP within 3 min and Bax dimer transformed into tetramer within 6 min concomitantly with complete MOMP within 10 min, providing direct evidence in support of the sufficient ability of Bax dimers to trigger MOMP at least in natural cells.
Collapse
Affiliation(s)
- Wenfeng Qu
- MOE Key Laboratory of Laser Life Science & College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Zihao Mai
- MOE Key Laboratory of Laser Life Science & College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Chenshuang Zhang
- MOE Key Laboratory of Laser Life Science & College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Mengyan Du
- MOE Key Laboratory of Laser Life Science & College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Fangfang Yang
- MOE Key Laboratory of Laser Life Science & College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science & College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
24
|
Li Q, Ding Y, Gao Y, Zhang F, Zhu H, Ding M. Effects of TNFR1 gene silencing on early apoptosis of marbofloxacin-treated chondrocytes from juvenile dogs. Toxicology 2019; 422:53-59. [PMID: 31005593 DOI: 10.1016/j.tox.2019.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/27/2019] [Accepted: 04/16/2019] [Indexed: 11/26/2022]
Abstract
Quinolones (QNs)-induced cartilaginous lesions in juvenile animals by chondrocyte apoptosis is an important toxic effect, which results in the restriction of their use in pediatrics. However, limited data about QNs chondrotoxicity are available for evaluation of the potential toxicity in both animals and human cartilage. To explore whether tumor necrosis factor/its receptor (TNF/TNFR1) signaling pathway is involved in the early apoptosis of marbofloxacin-induced chondrocytes, canine juvenile chondrocytes were treated with 0, 20, 50 and 100 μg/mL marbofloxacin. Results showed that the apoptosis rates of the chondrocytes at 2, 8 and 24 h were significantly increased in a concentration- and time-dependent manner (P < 0.05). The mRNA levels of apoptosis-related factors in TNF/TNFR1 signaling pathways and the protein levels of TNFα and TNFR1 were increased in canine chondrocytes treated with 20-100 μg/mL marbofloxacin (P < 0.05) while TNFR1 gene silencing significantly decreased the chondrocyte apoptosis and inhibited the mRNA expression of TNF/TNFR1 downstream signaling molecules after 100 μg/mL marbofloxacin treatment at 8 h (P < 0.01). It was confirmed that activated TNF/TNFR1 signaling pathway may play a leading role in the early apoptosis of marbofloxacin-induced canine juvenile chondrocytes, which is helpful for clinical estimation or prevention of the risk of QNs.
Collapse
Affiliation(s)
- Qiao Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yi Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuan Gao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Futao Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongmei Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingxing Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
25
|
Zou W, Niu C, Fu Z, Gong C. PNS-R1 inhibits Dex-induced bronchial epithelial cells apoptosis in asthma through mitochondrial apoptotic pathway. Cell Biosci 2019; 9:18. [PMID: 30891181 PMCID: PMC6388479 DOI: 10.1186/s13578-019-0279-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/01/2019] [Indexed: 12/04/2022] Open
Abstract
Dexamethasone (Dex) are widely used for the treatment of asthma. However, they may cause apoptosis of bronchial epithelial cells and delay the recovery of asthma. Therefore, it is an urgent problem to find effective drugs to reduce this side effects. Panax notoginseng saponins R1 (PNS-R1) is known to exhibit anti-oxidative and anti-apoptotic properties in many diseases. We aim to investigate whether PNS-R1 can reduce Dex-induced apoptosis in bronchial epithelial cells. In this study, the anti-apoptotic effects of PNS-R1 were investigated by conducting in vitro and in vivo. Annexin V-FITC/PI staining flow cytometry analysis and TUNEL assay were conducted to detect apoptotic cells. Mitochondrial membrane potential was detected by JC-1 analysis. Western blotting and immunohistochemical analysis were conducted to measure caspase3, Bcl-2, Bax, Cyt-c, Apaf-1, cleaved-caspase3 and cleaved-caspase9 levels in lung tissues and 16HBE cells. Our findings demonstrated that Dex could induce apoptosis of bronchial epithelial cells and upregulate caspase3 expression of lung tissues. Western blot showed that Dex increased Bax, Cyt-c, Apaf-1, cleaved-caspase9, cleaved-caspase3 expression and decreased Bcl-2 expression. PNS-R1 could suppress Dex-induced apoptosis of bronchial epithelial cells by inhibiting Bax, Cyt-c, Apaf-1, cleaved-caspase9, cleaved-caspase3 expression and upregulating Bcl-2 expression. Flow cytometry analysis showed PNS-R1 alleviated JC-1 positive cells induced by Dex in 16HBE cells. These results showed that PNS-R1 alleviated Dex-induced apoptosis in bronchial epithelial cells by inhibition of mitochondrial apoptosis pathway. Furthermore, our findings highlighted the potential use of PNS-R1 as an adjuvant drug to treat asthma.
Collapse
Affiliation(s)
- Wenjing Zou
- 1Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014 China
| | - Chao Niu
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014 China
| | - Zhou Fu
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014 China
| | - Caihui Gong
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014 China
| |
Collapse
|
26
|
Knight T, Luedtke D, Edwards H, Taub JW, Ge Y. A delicate balance - The BCL-2 family and its role in apoptosis, oncogenesis, and cancer therapeutics. Biochem Pharmacol 2019; 162:250-261. [PMID: 30668936 DOI: 10.1016/j.bcp.2019.01.015] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/18/2019] [Indexed: 01/06/2023]
Abstract
Evasion of apoptosis is fundamental to the pathogenesis of cancer. Members of the B-cell Lymphoma 2 (BCL-2) protein family are key pro- and anti-apoptotic regulators, and in healthy cells are held in a fine, delicate balance - perturbations of which may tip a cell irreversibly towards cellular death or, conversely, allow a cell to permanently escape apoptosis and immortalize itself as a malignant clone. The restoration of this balance or, indeed, adjustment in favor of apoptosis via manipulation of the BCL-2 family, is a promising area in the realm of molecular therapeutics, and one in which breathtaking advances are currently being made. The purpose of this review is to outline the role of the BCL-2 family in apoptosis, to contrast its optimal functioning with those disruptions seen in malignancy, and to provide an overview of the medications both presently available and currently under development which selectively target members of this family.
Collapse
Affiliation(s)
- Tristan Knight
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Children's Hospital of Michigan, Detroit, MI, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Daniel Luedtke
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jeffrey W Taub
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Children's Hospital of Michigan, Detroit, MI, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yubin Ge
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA; Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
27
|
CW EPR and DEER Methods to Determine BCL-2 Family Protein Structure and Interactions: Application of Site-Directed Spin Labeling to BAK Apoptotic Pores. Methods Mol Biol 2018. [PMID: 30536012 DOI: 10.1007/978-1-4939-8861-7_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The continuous wave (CW) and pulse electron paramagnetic resonance (EPR) methods enable the measurement of distances between spin-labeled residues in biopolymers including proteins, providing structural information. Here we describe the CW EPR deconvolution/convolution method and the four-pulse double electron-electron resonance (DEER) approach for distance determination, which were applied to elucidate the organization of the BAK apoptotic pores formed in the lipid bilayers.
Collapse
|
28
|
Luff SA, Kao CY, Papoutsakis ET. Role of p53 and transcription-independent p53-induced apoptosis in shear-stimulated megakaryocytic maturation, particle generation, and platelet biogenesis. PLoS One 2018; 13:e0203991. [PMID: 30231080 PMCID: PMC6145578 DOI: 10.1371/journal.pone.0203991] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/02/2018] [Indexed: 12/18/2022] Open
Abstract
Megakaryocytes (Mks) derive from hematopoietic stem and progenitor cells (HSPCs) in the bone marrow and develop into large, polyploid cells that eventually give rise to platelets. As Mks mature, they migrate from the bone marrow niche into the vasculature, where they are exposed to shear forces from blood flow, releasing Mk particles (platelet-like particles (PLPs), pro/preplatelets (PPTs), and Mk microparticles (MkMPs)) into circulation. We have previously shown that transcription factor p53 is important in Mk maturation, and that physiological levels of shear promote Mk particle generation and platelet biogenesis. Here we examine the role of p53 in the Mk shear-stress response. We show that p53 is acetylated in response to shear in both immature and mature Mks, and that decreased expression of deacetylase HDAC1, and increased expression of the acetyltransferases p300 and PCAF might be responsible for these changes. We also examined the hypothesis that p53 might be involved in the shear-induced Caspase 3 activation, phosphatidylserine (PS) externalization, and increased biogenesis of PLPs, PPTs, and MkMPs. We show that p53 is involved in all these shear-induced processes. We show that in response to shear, acetyl-p53 binds Bax, cytochrome c is released from mitochondria, and Caspase 9 is activated. We also show that shear-stimulated Caspase 9 activation and Mk particle biogenesis depend on transcription-independent p53-induced apoptosis (TIPA), but PS externalization is not. This is the first report to show that shear flow stimulates TIPA and that Caspase 9 activation and Mk-particle biogenesis are directly modulated by TIPA.
Collapse
Affiliation(s)
- Stephanie A. Luff
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
| | - Chen-Yuan Kao
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Eleftherios T. Papoutsakis
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, United States of America
| |
Collapse
|
29
|
Qian Y, Liang X, Yang J, Zhao C, Nie W, Liu L, Yi T, Jiang Y, Geng J, Zhao X, Wei X. Hyaluronan Reduces Cationic Liposome-Induced Toxicity and Enhances the Antitumor Effect of Targeted Gene Delivery in Mice. ACS APPLIED MATERIALS & INTERFACES 2018; 10:32006-32016. [PMID: 30156827 DOI: 10.1021/acsami.8b12393] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cationic nanocarriers are reported to induce cell necrosis, especially in the lungs upon systemic administration. The release of damage-associated molecular patterns, such as mitochondrial DNA from the injured cell may result in the inflammatory toxicity of the nanocarrier, which has largely limited its clinical application. Partial blocking of the surface charge of cationic nanocarriers might improve their safety. As hyaluronan (HA) is an anionic polysaccharide that is widely used for specific binding to CD44 to improve the cellular uptake efficiency in tumor-targeting therapy, in this study, we modified cationic liposomes (LP) with the negatively charged HA at a mass ratio of 10% to prepare targeted HA-modified cationic liposomes (HALP). Cationic liposomes modified with hyaluronan showed significantly less cytotoxicity due to the blockage of their surface charge than the unmodified liposomes. In addition, HA modification helped to reduce cell necrosis in lung tissue and reduced the amount of mitochondria subsequently released, which alleviated pulmonary inflammation in mice. HA-modified liposomes also improved the survival of mice injected with a fatal dose of HALP compared with mice injected with cationic LP. In addition, both serological biochemical analysis and histological examination proved that a liposome modified with HA is a safer carrier for systemic administration than an unmodified liposome. Furthermore, HALP/survivin exhibited an enhanced antitumor effect by inhibiting tumor growth and promoting tumor cell apoptosis compared with the unmodified LP group. In conclusion, compared to the properties of cationic liposomes, liposomes modified with 10% HA (HALP) might be gene vectors with lower toxicity and higher tumor targeting efficiency.
Collapse
Affiliation(s)
- Yanping Qian
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital , Sichuan University , Chengdu 610041 , P. R. China
| | - Xiao Liang
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital , Sichuan University , Chengdu 610041 , P. R. China
| | - Jingyun Yang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital , Sichuan University , No. 17, Block 3, Southern Renmin Road , Chengdu , Sichuan 610041 , P. R. China
| | - Chengjian Zhao
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital , Sichuan University , No. 17, Block 3, Southern Renmin Road , Chengdu , Sichuan 610041 , P. R. China
| | - Wen Nie
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital , Sichuan University , No. 17, Block 3, Southern Renmin Road , Chengdu , Sichuan 610041 , P. R. China
| | - Li Liu
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital , Sichuan University , No. 17, Block 3, Southern Renmin Road , Chengdu , Sichuan 610041 , P. R. China
| | - Tao Yi
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital , Sichuan University , Chengdu 610041 , P. R. China
| | - Yu Jiang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital , Sichuan University , No. 17, Block 3, Southern Renmin Road , Chengdu , Sichuan 610041 , P. R. China
| | - Jia Geng
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital , Sichuan University , No. 17, Block 3, Southern Renmin Road , Chengdu , Sichuan 610041 , P. R. China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital , Sichuan University , Chengdu 610041 , P. R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital , Sichuan University , No. 17, Block 3, Southern Renmin Road , Chengdu , Sichuan 610041 , P. R. China
| |
Collapse
|
30
|
Abstract
Daptomycin, a last-line-of-defense antibiotic for treating Gram-positive infections, is experiencing clinical failure against important infectious agents, including Corynebacterium striatum The recent transition of daptomycin to generic status is projected to dramatically increase availability, use, and clinical failure. Here we confirm the genetic mechanism of high-level daptomycin resistance (HLDR; MIC = >256 µg/ml) in C. striatum, which evolved within a patient during daptomycin therapy, a phenotype recapitulated in vitro In all 8 independent cases tested, loss-of-function mutations in phosphatidylglycerol synthase (pgsA2) were necessary and sufficient for high-level daptomycin resistance. Through lipidomic and biochemical analysis, we demonstrate that daptomycin's activity is dependent on the membrane phosphatidylglycerol (PG) concentration. Until now, the verification of PG as the in vivo target of daptomycin has proven difficult since tested cell model systems were not viable without membrane PG. C. striatum becomes daptomycin resistant at a high level by removing PG from the membrane and changing the membrane composition to maintain viability. This work demonstrates that loss-of-function mutation in pgsA2 and the loss of membrane PG are necessary and sufficient to produce high-level resistance to daptomycin in C. striatumIMPORTANCE Antimicrobial resistance threatens the efficacy of antimicrobial treatment options, including last-line-of-defense drugs. Understanding how this resistance develops can help direct antimicrobial stewardship efforts and is critical to designing the next generation of antimicrobial therapies. Here we determine how Corynebacterium striatum, a skin commensal and opportunistic pathogen, evolved high-level resistance to a drug of last resort, daptomycin. Through a single mutation, this pathogen was able to remove the daptomycin's target, phosphatidylglycerol (PG), from the membrane and evade daptomycin's bactericidal activity. We found that additional compensatory changes were not necessary to support the removal of PG and replacement with phosphatidylinositol (PI). The ease with which C. striatum evolved high-level resistance is cause for alarm and highlights the importance of screening new antimicrobials against a wide range of clinical pathogens which may harbor unique capacities for resistance evolution.
Collapse
|
31
|
Mohammad Alizadeh E, Mahdavi M, Jenani Fard F, Chamani S, Farajdokht F, Karimi P. Metformin protects PC12 cells against oxygen-glucose deprivation/reperfusion injury. Toxicol Mech Methods 2018; 28:622-629. [DOI: 10.1080/15376516.2018.1486495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Majid Mahdavi
- Department of Biology, University of Tabriz, Tabriz, Iran
| | | | | | - Fereshteh Farajdokht
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
Jeng PS, Inoue-Yamauchi A, Hsieh JJ, Cheng EH. BH3-Dependent and Independent Activation of BAX and BAK in Mitochondrial Apoptosis. CURRENT OPINION IN PHYSIOLOGY 2018; 3:71-81. [PMID: 30334018 PMCID: PMC6186458 DOI: 10.1016/j.cophys.2018.03.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mitochondria play key roles in mammalian apoptosis, a highly regulated genetic program of cell suicide. Multiple apoptotic signals culminate in mitochondrial outer membrane permeabilization (MOMP), which not only couples the mitochondria to the activation of caspases but also initiates caspase-independent mitochondrial dysfunction. The BCL-2 family proteins are central regulators of MOMP. Multidomain pro-apoptotic BAX and BAK are essential effectors responsible for MOMP, whereas anti-apoptotic BCL-2, BCL-XL, and MCL-1 preserve mitochondrial integrity. The third BCL-2 subfamily of proteins, BH3-only molecules, promotes apoptosis by either activating BAX and BAK or inactivating BCL-2, BCL-XL, and MCL-1. Through an interconnected hierarchical network of interactions, the BCL-2 family proteins integrate developmental and environmental cues to dictate the survival versus death decision of cells by regulating the integrity of the mitochondrial outer membrane. Over the past 30 years, research on the BCL-2-regulated apoptotic pathway has not only revealed its importance in both normal physiological and disease processes, but has also resulted in the first anti-cancer drug targeting protein-protein interactions.
Collapse
Affiliation(s)
- Paul S Jeng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Akane Inoue-Yamauchi
- Department of Pathology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo 162-8666, Japan
| | - James J Hsieh
- Molecular Oncology, Department of Medicine, Siteman Cancer Center, Washington University, St Louis, MO 63110, USA
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| |
Collapse
|
33
|
Hantusch A, Rehm M, Brunner T. Counting on Death – Quantitative aspects of Bcl‐2 family regulation. FEBS J 2018; 285:4124-4138. [DOI: 10.1111/febs.14516] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/27/2018] [Accepted: 05/21/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Annika Hantusch
- Department of Biology Chair of Biochemical Pharmacology University of Konstanz Germany
- Konstanz Research School Chemical Biology University of Konstanz Germany
| | - Markus Rehm
- Department of Physiology & Medical Physics Royal College of Surgeons in Ireland Dublin 2 Ireland
- Centre for Systems Medicine Royal College of Surgeons in Ireland Dublin 2 Ireland
- Institute of Cell Biology and Immunology University of Stuttgart Germany
- Stuttgart Research Center Systems Biology University of Stuttgart Germany
| | - Thomas Brunner
- Department of Biology Chair of Biochemical Pharmacology University of Konstanz Germany
- Konstanz Research School Chemical Biology University of Konstanz Germany
| |
Collapse
|
34
|
Hantusch A, Das KK, García-Sáez AJ, Brunner T, Rehm M. Bax retrotranslocation potentiates Bcl-x L's antiapoptotic activity and is essential for switch-like transitions between MOMP competency and resistance. Cell Death Dis 2018; 9:430. [PMID: 29567940 PMCID: PMC5864878 DOI: 10.1038/s41419-018-0464-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/25/2018] [Accepted: 02/05/2018] [Indexed: 12/26/2022]
Abstract
The rapid, typically all-or-none process of mitochondrial outer membrane permeabilization (MOMP) constitutes a primary cell death decision that is controlled by the Bcl-2 family interactome. However, how strict all-or-none MOMP decisions are governed by and emanate from the dynamic interplay of pro- and antiapoptotic Bcl-2 family members remains incompletely understood. In particular, it is unclear to which extent the shuttling of Bcl-2 family species between lipid and aqueous phases contributes to regulating MOMP sensitivity. Here, we studied the interplay of tBid, Bax, and Bcl-xL, using a combined approach of deterministic mathematical modeling and retrospective as well as prospective experimental testing of model predictions. Systems modeling of the tBid–Bax interplay and their fluxes between cytosol and mitochondrial membranes reproduced experimental data on tBid-triggered Bax activation and oligomerization highly accurately. Extending these studies to analyze the cell-protective role of Bcl-xL strikingly revealed that the activity of Bcl-xL to retrotranslocate activated Bax from membranes back into the cytosol is essential to reproduce or correctly predict experimental outcomes. These included the potency of Bcl-xL in suppressing Bax oligomerization, its role in limiting Bax membrane recruitment, the resistance threshold to low concentrations of MOMP triggers as well as a response potentiaton arising from combinations of tBid and sensitizer BH3-only peptides. Importantly, retrotranslocation activity of Bcl-xL is necessary to strictly separate conditions of MOMP competency and resistance. Our results therefore identify Bax retrotranslocation by Bcl-xL as an indispensable component of the molecular switch by which Bcl-2 family members govern cellular death decisions.
Collapse
Affiliation(s)
- Annika Hantusch
- Department of Biology, Chair of Biochemical Pharmacology, University of Konstanz, 78457, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Kushal K Das
- Interfaculty Institute of Biochemistry, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 4, 72076, Tübingen, Germany
| | - Ana J García-Sáez
- Interfaculty Institute of Biochemistry, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 4, 72076, Tübingen, Germany
| | - Thomas Brunner
- Department of Biology, Chair of Biochemical Pharmacology, University of Konstanz, 78457, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Markus Rehm
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland. .,Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland. .,Institute of Cell Biology and Immunology, University of Stuttgart, 70569, Stuttgart, Germany. .,Stuttgart Research Center Systems Biology, University of Stuttgart, 70569, Stuttgart, Germany.
| |
Collapse
|
35
|
Uren RT, Iyer S, Kluck RM. Pore formation by dimeric Bak and Bax: an unusual pore? Philos Trans R Soc Lond B Biol Sci 2018. [PMID: 28630157 DOI: 10.1098/rstb.2016.0218] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Apoptotic cell death via the mitochondrial pathway occurs in all vertebrate cells and requires the formation of pores in the mitochondrial outer membrane. Two Bcl-2 protein family members, Bak and Bax, form these pores during apoptosis, and how they do so has been investigated for the last two decades. Many of the conformation changes that occur during their transition to pore-forming proteins have now been delineated. Notably, biochemical, biophysical and structural studies indicate that symmetric homodimers are the basic unit of pore formation. Each dimer contains an extended hydrophobic surface that lies on the outer membrane, and is anchored at either end by a transmembrane domain. Membrane-remodelling events such as positive membrane curvature have been reported to accompany apoptotic pore formation, suggesting Bak and Bax form lipidic pores rather than proteinaceous pores. However, it remains unclear how symmetric dimers assemble to porate the membrane. Here, we review how clusters of dimers and their lipid-mediated interactions provide a molecular explanation for the heterogeneous assemblies of Bak and Bax observed during apoptosis.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'.
Collapse
Affiliation(s)
- Rachel T Uren
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Sweta Iyer
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Ruth M Kluck
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, Victoria 3052, Australia .,Department of Medical Biology, The University of Melbourne, 1G Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
36
|
Reddy DN, Singh S, Ho CMW, Patel J, Schlesinger P, Rodgers S, Doctor A, Marshall GR. Design, synthesis, and biological evaluation of stable β 6.3-Helices: Discovery of non-hemolytic antibacterial peptides. Eur J Med Chem 2018; 149:193-210. [PMID: 29501941 DOI: 10.1016/j.ejmech.2018.02.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 01/26/2018] [Accepted: 02/16/2018] [Indexed: 11/25/2022]
Abstract
Gramicidin A, a topical antibiotic made from alternating L and D amino acids, is characterized by its wide central pore; upon insertion into membranes, it forms channels that disrupts ion gradients. We present helical peptidomimetics with this characteristic wide central pore that have been designed to mimic gramicidin A channels. Mimetics were designed using molecular modeling focused on oligomers of heterochiral dipeptides of proline analogs, in particular azaproline (AzPro). Molecular Dynamics simulations in water confirmed the stability of the designed helices. A sixteen-residue Formyl-(AzPro-Pro)8-NHCH2CH2OH helix was synthesized as well as a full thirty-two residue Cbz-(AzPro-Pro)16-OtBu channels. No liposomal lysis activity was observed suggesting lack of channel formation, possibly due to inappropriate hydrogen-bonding interactions in the membrane. These peptidomimetics also did not hemolyze red blood cells, unlike gramicidin A.
Collapse
Affiliation(s)
- Damodara N Reddy
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Sukrit Singh
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chris M W Ho
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Janki Patel
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Paul Schlesinger
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stephen Rodgers
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Allan Doctor
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Garland R Marshall
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
37
|
Differential role of FL-BID and t-BID during verotoxin-1-induced apoptosis in Burkitt's lymphoma cells. Oncogene 2018; 37:2410-2421. [PMID: 29440708 PMCID: PMC5931984 DOI: 10.1038/s41388-018-0123-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 12/08/2017] [Accepted: 12/17/2017] [Indexed: 01/09/2023]
Abstract
The globotriaosylceramide Gb3 is a glycosphingolipid expressed on a subpopulation of germinal center B lymphocytes which has been recognized as the B cell differentiation antigen CD77. Among tumoral cell types, Gb3/CD77 is strongly expressed in Burkitt's lymphoma (BL) cells as well as other solid tumors including breast, testicular and ovarian carcinomas. One known ligand of Gb3/CD77 is Verotoxin-1 (VT-1), a Shiga toxin produced in specific E. coli strains. Previously, we have reported that in BL cells, VT-1 induces apoptosis via a caspase-dependent and mitochondria-dependent pathway. Yet, the respective roles of various apoptogenic factors remained to be deciphered. Here, this apoptotic pathway was found to require cleavage of the BID protein by caspase-8 as well as activation of two other apoptogenic proteins, BAK and BAX. Surprisingly however, t-BID, the truncated form of BID resulting from caspase-8 cleavage, played no role in the conformational changes of BAK and BAX. Rather, their activation occurred under the control of full length BID (FL-BID). Indeed, introducing a non-cleavable form of BID (BID-D59A) into BID-deficient BL cells restored BAK and BAX activation following VT-1 treatment. Still, t-BID was involved along with FL-BID in the BAK-dependent and BAX-dependent cytosolic release of CYT C and SMAC/DIABLO from the mitochondrial intermembrane space: FL-BID was found to control the homo-oligomerization of both BAK and BAX, likely contributing to the initial release of CYT C and SMAC/DIABLO, while t-BID was needed for their hetero-oligomerization and ensuing release amplification. Together, our results reveal a functional cooperation between BAK and BAX during VT-1-induced apoptosis and, unexpectedly, that activation of caspase-8 and production of t-BID were not mandatory for initiation of the cell death process.
Collapse
|
38
|
Ji ZP, Li YX, Shi BX, Zhuang ZN, Yang JY, Guo S, Xu XZ, Xu KS, Li HL. Hypoxia preconditioning protects Ca 2+-ATPase activation of intestinal mucosal cells against R/I injury in a rat liver transplantation model. World J Gastroenterol 2018; 24:360-370. [PMID: 29391758 PMCID: PMC5776397 DOI: 10.3748/wjg.v24.i3.360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/07/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effect of ischaemia and reperfusion (I/R) injury on the Ca2+-ATPase activation in the intestinal tissue of a rat autologous orthotopic liver transplantation model and to determine if hypoxia preconditioning (HP) therapy induces HIF-1α to protect rat intestinal tissue against I/R injury. METHODS Rats received non-lethal hypoxic preconditioning therapy to induce HIF-1α expression. We used an autologous orthotopic liver transplantation model to imitate the I/R injury in intestinal tissue. Then, we detected the microstructure changes in small intestinal tissues, Ca2+-ATPase activity, apoptosis, and inflammation within 48 h postoperatively. RESULTS HIF-1α expression was significantly increased in intestinal tissue at 12 h postoperatively in rats that were exposed to a hypoxic environment for 90 min compared with a non-HP group (HP vs AT, P = 0.0177). Pathological analysis was performed on the intestinal mucosa cells, and the cells in the HP group appeared healthier than the cells in the AT group. The Ca2+-ATPase activity in the small intestinal cells in the AT group was significantly lower after the operation, and the Ca2+-ATPase activity in the HP group recovered faster than that in the AT group at 6 h postoperatively (HP vs AT, P = 0.0106). BCL-2 expression in the HP group was significantly higher than that in the AT group at 12 h postoperatively (HP vs AT P = 0.0010). The expression of the inflammatory factors NO, SOD, IL-6, and TNF-α was significantly lower in the HP group than in the AT group. CONCLUSION Hypoxia-induced HIF-1α could protect intestinal mucosal cells against mitochondrial damage after I/R injury. HP could improve hypoxia tolerance in small intestinal mucosal cells and increase Ca2+-ATPase activity to reduce the apoptosis of and pathological damage to intestinal cells. HP could be a useful way to promote the earlier recovery of intestinal function after graft procedure.
Collapse
Affiliation(s)
- Zhi-Peng Ji
- Department of General Surgery, the Second Hospital of Shandong University, Jinan 250033, Shandong Province, China
| | - Yuan-Xin Li
- Department of Gastrointestinal Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Bao-Xu Shi
- Department of Neurology, People’s Hospital of Rizhaolanshan, Rizhao 276800, Shandong Province, China
| | - Zhuo-Nan Zhuang
- Department of Gastrointestinal Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Jing-Yan Yang
- Department of Pathology, the Second Hospital of Shandong University, Jinan 250033, Shandong Province, China
| | - Sen Guo
- Department of Hepatobiliary Surgery, Qilu Hospital, Shandong University, Jinan 250033, Shandong Province, China
| | - Xiao-Zhou Xu
- Department of Hepatobiliary Surgery, the Second Hospital of Shandong University, Shandong University, Jinan 250033, Shandong Province, China
| | - Ke-Sen Xu
- Department of Hepatobiliary Surgery, the Second Hospital of Shandong University, Shandong University, Jinan 250033, Shandong Province, China
| | - Hai-Lin Li
- Department of Hepatobiliary Surgery, the Second Hospital of Shandong University, Shandong University, Jinan 250033, Shandong Province, China
| |
Collapse
|
39
|
Kim HR, Lee GS, Kim MS, Ryu DG, So HS, Moon HC, Lee YR, Yang SH, Kwon KB. Effects of Banxia Xiexin Decoction () on Cisplatin-Induced Apoptosis of Human A549 Lung Cancer Cells. Chin J Integr Med 2018; 24:436-441. [PMID: 29247342 DOI: 10.1007/s11655-017-2922-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To examinie the synergistic effects of Banxia Xiexin Decoction (, Known as Banhasasim-tang in Korean) extract (BXDE) on cisplatin-induced cytotoxicity in the A549 human lung cancer cell lines. METHODS A549 cells were treated with varying concentrations (50-200 μg/mL) of cisplatin and BXDE alone or in combination for 96 h. We used 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan assay and flow cytometry to analyze cell viability and apoptosis, respectively. RESULTS The exposure of cells to cisplatin and BXDE alone or in combination decreased cell viability dose- and time-dependently (P<0.05), which was found to be mediated by the apoptotic pathway as confirmed by the increase in the annexin V+/propidium iodide- stained cell population and a ladder pattern of discontinuous DNA fragments. Furthermore, the apoptosis was inhibited by the pan-caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone (z-VAD-FMK). CONCLUSIONS BXDE significantly potentiated apoptotic effects of cisplatin in A549 cells. Moreover, apoptosis induced by BXDE might be the pivotal mechanism mediating its chemopreventative action against cancer.
Collapse
Affiliation(s)
- Ha-Rim Kim
- Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk, 54538, South Korea
| | - Guem-San Lee
- Department of Herbology, Wonkwang University School of Korean Medicine, Iksan, Jeonbuk, 54538, South Korea
| | - Mi-Seong Kim
- Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk, 54538, South Korea
| | - Do-Gon Ryu
- Department of Korean Physiology, Wonkwang University School of Korean Medicine, Iksan Jeonbuk, 54538, South Korea
| | - Hong-Seob So
- Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk, 54538, South Korea
| | - Hyoung-Chul Moon
- Institute of Customized Physical Therapy, Gwanju, 62279, South Korea
| | - Young-Rae Lee
- Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk, 54538, South Korea
- Department of Oral Biochemistry, Wonkwang University School of Dentistry, Iksan, Jeonbuk, 54538, South Korea
| | - Sei-Hoon Yang
- Department of Internal Medicine, Wonkwang University School of Medicine, Iksan, Jeonbuk, 54538, South Korea
| | - Kang-Beom Kwon
- Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk, 54538, South Korea.
- Department of Korean Physiology, Wonkwang University School of Korean Medicine, Iksan Jeonbuk, 54538, South Korea.
| |
Collapse
|
40
|
Live-cell imaging to measure BAX recruitment kinetics to mitochondria during apoptosis. PLoS One 2017; 12:e0184434. [PMID: 28880942 PMCID: PMC5589231 DOI: 10.1371/journal.pone.0184434] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/23/2017] [Indexed: 12/03/2022] Open
Abstract
The pro-apoptotic BCL2 gene family member, BAX, plays a pivotal role in the intrinsic apoptotic pathway. Under cellular stress, BAX recruitment to the mitochondria occurs when activated BAX forms dimers, then oligomers, to initiate mitochondria outer membrane permeabilization (MOMP), a process critical for apoptotic progression. The activation and recruitment of BAX to form oligomers has been studied for two decades using fusion proteins with a fluorescent reporter attached in-frame to the BAX N-terminus. We applied high-speed live cell imaging to monitor the recruitment of BAX fusion proteins in dying cells. Data from time-lapse imaging was validated against the activity of endogenous BAX in cells, and analyzed using sigmoid mathematical functions to obtain detail of the kinetic parameters of the recruitment process at individual mitochondrial foci. BAX fusion proteins behave like endogenous BAX during apoptosis. Kinetic studies show that fusion protein recruitment is also minimally affected in cells lacking endogenous BAK or BAX genes, but that the kinetics are moderately, but significantly, different with different fluorescent tags in the fusion constructs. In experiments testing BAX recruitment in 3 different cell lines, our results show that regardless of cell type, once activated, BAX recruitment initiates simultaneously within a cell, but exhibits varying rates of recruitment at individual mitochondrial foci. Very early during BAX recruitment, pro-apoptotic molecules are released in the process of MOMP, but different molecules are released at different times and rates relative to the time of BAX recruitment initiation. These results provide a method for BAX kinetic analysis in living cells and yield greater detail of multiple characteristics of BAX-induced MOMP in living cells that were initially observed in cell free studies.
Collapse
|
41
|
Zhang M, Zheng J, Nussinov R, Ma B. Release of Cytochrome C from Bax Pores at the Mitochondrial Membrane. Sci Rep 2017; 7:2635. [PMID: 28572603 PMCID: PMC5453941 DOI: 10.1038/s41598-017-02825-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
How cytochrome C is released from the mitochondria to the cytosol via Bax oligomeric pores, a process which is required for apoptosis, is still a mystery. Based on experimentally measured residue-residue distances, we recently solved the first atomic model for Bax oligomeric pores at the membranes using computational approaches. Here, we investigate the mechanism at the microsecond time- and nanometer space- scale using MD simulations. Our free energy landscape depicts a low barrier for the permeation of cytochrome C into the Bax C-terminal mouth, with the pathway proceeding to the inner cavity and exiting via the N-terminal mouth. Release is guided by organized charged/hydrophilic surfaces. The hydrophilicity and negative charge of the pore surface gradually increase along the release pathway from the pore entry to the exit opening. Rather than inert passing of the cytochrome C through a rigid pore, the flexible pore may selectively aid the cytochrome C passage. Once the Bax pore is formed in the membrane, with a low energy barrier, the release of cytochrome C may be readily achieved through energy fluctuations. Collectively, our work provides mechanistic insight in atomic detail into the release of cytochrome C through Bax oligomeric pores.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Department of Chemical & Biomolecular Engineering, the University of Akron, Akron, Ohio, 44325, USA
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, the University of Akron, Akron, Ohio, 44325, USA
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, 21702, USA
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
42
|
Li R, Ding C, Zhang J, Xie M, Park D, Ding Y, Chen G, Zhang G, Gilbert-Ross M, Zhou W, Marcus AI, Sun SY, Chen ZG, Sica GL, Ramalingam SS, Magis AT, Fu H, Khuri FR, Curran WJ, Owonikoko TK, Shin DM, Zhou J, Deng X. Modulation of Bax and mTOR for Cancer Therapeutics. Cancer Res 2017; 77:3001-3012. [PMID: 28381544 DOI: 10.1158/0008-5472.can-16-2356] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/18/2016] [Accepted: 03/22/2017] [Indexed: 01/03/2023]
Abstract
A rationale exists for pharmacologic manipulation of the serine (S)184 phosphorylation site of the proapoptotic Bcl2 family member Bax as an anticancer strategy. Here, we report the refinement of the Bax agonist SMBA1 to generate CYD-2-11, which has characteristics of a suitable clinical lead compound. CYD-2-11 targeted the structural pocket proximal to S184 in the C-terminal region of Bax, directly activating its proapoptotic activity by inducing a conformational change enabling formation of Bax homooligomers in mitochondrial membranes. In murine models of small-cell and non-small cell lung cancers, including patient-derived xenograft and the genetically engineered mutant KRAS-driven lung cancer models, CYD-2-11 suppressed malignant growth without evident significant toxicity to normal tissues. In lung cancer patients treated with mTOR inhibitor RAD001, we observed enhanced S184 Bax phosphorylation in lung cancer cells and tissues that inactivates the propaoptotic function of Bax, contributing to rapalog resistance. Combined treatment of CYD-2-11 and RAD001 in murine lung cancer models displayed strong synergistic activity and overcame rapalog resistance in vitro and in vivo Taken together, our findings provide preclinical evidence for a pharmacologic combination of Bax activation and mTOR inhibition as a rational strategy to improve lung cancer treatment. Cancer Res; 77(11); 3001-12. ©2017 AACR.
Collapse
Affiliation(s)
- Rui Li
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Chunyong Ding
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas
| | - Jun Zhang
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Maohua Xie
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Dongkyoo Park
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Ye Ding
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas
| | - Guo Chen
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Guojing Zhang
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Melissa Gilbert-Ross
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Wei Zhou
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Adam I Marcus
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Zhuo G Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Gabriel L Sica
- Department of Pathology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Suresh S Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia
| | | | - Haian Fu
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Walter J Curran
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Taofeek K Owonikoko
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Dong M Shin
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia.
| | - Jia Zhou
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas.
| | - Xingming Deng
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia.
| |
Collapse
|
43
|
Affiliation(s)
- Anthony Letai
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215
| |
Collapse
|
44
|
Maes ME, Schlamp CL, Nickells RW. BAX to basics: How the BCL2 gene family controls the death of retinal ganglion cells. Prog Retin Eye Res 2017; 57:1-25. [PMID: 28064040 DOI: 10.1016/j.preteyeres.2017.01.002] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 12/19/2022]
Abstract
Retinal ganglion cell (RGC) death is the principal consequence of injury to the optic nerve. For several decades, we have understood that the RGC death process was executed by apoptosis, suggesting that there may be ways to therapeutically intervene in this cell death program and provide a more direct treatment to the cells and tissues affected in diseases like glaucoma. A major part of this endeavor has been to elucidate the molecular biological pathways active in RGCs from the point of axonal injury to the point of irreversible cell death. A major component of this process is the complex interaction of members of the BCL2 gene family. Three distinct family members of proteins orchestrate the most critical junction in the apoptotic program of RGCs, culminating in the activation of pro-apoptotic BAX. Once active, BAX causes irreparable damage to mitochondria, while precipitating downstream events that finish off a dying ganglion cell. This review is divided into two major parts. First, we summarize the extent of knowledge of how BCL2 gene family proteins interact to facilitate the activation and function of BAX. This area of investigation has rapidly changed over the last few years and has yielded a dramatically different mechanistic understanding of how the intrinsic apoptotic program is run in mammalian cells. Second, we provided a comprehensive analysis of nearly two decades of investigation of the role of BAX in the process of RGC death, much of which has provided many important insights into the overall pathophysiology of diseases like glaucoma.
Collapse
Affiliation(s)
- Margaret E Maes
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Cassandra L Schlamp
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert W Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
45
|
Bai J, Gong Z, Wang J, Wang C. Enzymatic hydrogelation of self-assembling peptide I4K2and its antibacterial and drug sustained-release activities. RSC Adv 2017. [DOI: 10.1039/c7ra09743c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
I4K2hydrogel induced by plasma amine oxidase (PAO) has antibacterial and drug sustained-release properties.
Collapse
Affiliation(s)
- Jingkun Bai
- Shandong Provincial Key Laboratory of Biopharmaceuticals
- School of Bioscience and Technology
- Weifang Medical University
- Weifang
- P. R. China
| | - Zhongying Gong
- Shandong Provincial Key Laboratory of Biopharmaceuticals
- School of Bioscience and Technology
- Weifang Medical University
- Weifang
- P. R. China
| | - Jingxin Wang
- Centre for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao 266580
- P. R. China
| | - Chengdong Wang
- Qingdao Industrial Energy Storage Research Institute
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- P. R. China
| |
Collapse
|
46
|
Jimah JR, Schlesinger PH, Tolia NH. Liposome Disruption Assay to Examine Lytic Properties of Biomolecules. Bio Protoc 2017; 7:e2433. [PMID: 28932762 DOI: 10.21769/bioprotoc.2433] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Proteins may have three dimensional structural or amino acid features that suggest a role in targeting and disrupting lipids within cell membranes. It is often necessary to experimentally investigate if these proteins and biomolecules are able to disrupt membranes in order to conclusively characterize the function of these biomolecules. Here, we describe an in vitro assay to evaluate the membrane lytic properties of proteins and biomolecules. Large unilamellar vesicles (liposomes) containing carboxyfluorescein at fluorescence-quenching concentrations are treated with the biomolecule of interest. A resulting increase in fluorescence due to leakage of the dye from liposomes and subsequent dilution in the buffer demonstrates that the biomolecule is sufficient for disrupting liposomes and membranes. Additionally, since liposome disruption may occur via pore-formation or via general solubilization of lipids similar to detergents, we provide a method to distinguish between these two mechanisms. Pore-formation can be identified and evaluated by examining the blockade of carboxyfluorescein release with dextran molecules that fit the pore. The methods described here were used to determine that the malaria vaccine candidate CelTOS and proapoptotic Bax disrupt liposomes by pore formation (Saito et al., 2000; Jimah et al., 2016). Since membrane lipid binding by a biomolecule precedes membrane disruption, we recommend the companion protocol: Jimah et al., 2017.
Collapse
Affiliation(s)
- John R Jimah
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, USA
| | - Paul H Schlesinger
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, USA
| | - Niraj H Tolia
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, USA.,Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, USA
| |
Collapse
|
47
|
Jimah JR, Salinas ND, Sala-Rabanal M, Jones NG, Sibley LD, Nichols CG, Schlesinger PH, Tolia NH. Malaria parasite CelTOS targets the inner leaflet of cell membranes for pore-dependent disruption. eLife 2016; 5. [PMID: 27906127 PMCID: PMC5132341 DOI: 10.7554/elife.20621] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 11/14/2016] [Indexed: 01/02/2023] Open
Abstract
Apicomplexan parasites contain a conserved protein CelTOS that, in malaria parasites, is essential for traversal of cells within the mammalian host and arthropod vector. However, the molecular role of CelTOS is unknown because it lacks sequence similarity to proteins of known function. Here, we determined the crystal structure of CelTOS and discovered CelTOS resembles proteins that bind to and disrupt membranes. In contrast to known membrane disruptors, CelTOS has a distinct architecture, specifically binds phosphatidic acid commonly present within the inner leaflet of plasma membranes, and potently disrupts liposomes composed of phosphatidic acid by forming pores. Microinjection of CelTOS into cells resulted in observable membrane damage. Therefore, CelTOS is unique as it achieves nearly universal inner leaflet cellular activity to enable the exit of parasites from cells during traversal. By providing novel molecular insight into cell traversal by apicomplexan parasites, our work facilitates the design of therapeutics against global pathogens.
Collapse
Affiliation(s)
- John R Jimah
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
| | - Nichole D Salinas
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
| | - Monica Sala-Rabanal
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, United States.,Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, United States
| | - Nathaniel G Jones
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, United States.,Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, United States
| | - Paul H Schlesinger
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, United States
| | - Niraj H Tolia
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States.,Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, United States
| |
Collapse
|
48
|
Pro-apoptotic cBid and Bax exhibit distinct membrane remodeling activities: An AFM study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:17-27. [PMID: 27755971 DOI: 10.1016/j.bbamem.2016.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 09/16/2016] [Accepted: 10/13/2016] [Indexed: 11/22/2022]
Abstract
Bcl-2 proteins are key regulators of the mitochondrial outer membrane (MOM) permeabilization that mediates apoptosis. During apoptosis, Bid is cleaved (cBid) and translocates to the MOM, where it activates Bax. Bax then oligomerizes and induces MOM permeabilization. However, little is known about how these proteins affect membrane organization aside from pore formation. In previous studies, we have shown that both cBid and Bax are able to remodel membranes and stabilize curvature. Here, we dissected the independent effects of Bax and cBid on supported lipid structures mimicking the mitochondrial composition by means of atomic force spectroscopy. We show that cBid did not permeabilize the membrane but lowered the membrane breakthrough force. On the other hand, Bax effects were dependent on its oligomeric state. Monomeric Bax did not affect the membrane properties. In contrast, oligomeric Bax lowered the breakthrough force of the membrane, which in the context of pore formation, implies a lowering of the line tension at the edge of the pore.
Collapse
|
49
|
Zhang M, Zheng J, Nussinov R, Ma B. Oncogenic Mutations Differentially Affect Bax Monomer, Dimer, and Oligomeric Pore Formation in the Membrane. Sci Rep 2016; 6:33340. [PMID: 27630059 PMCID: PMC5024136 DOI: 10.1038/srep33340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 08/25/2016] [Indexed: 12/20/2022] Open
Abstract
Dysfunction of Bax, a pro-apoptotic regulator of cellular metabolism is implicated in neurodegenerative diseases and cancer. We have constructed the first atomistic models of the Bax oligomeric pore consisting with experimental residue-residue distances. The models are stable, capturing well double electron-electron resonance (DEER) spectroscopy measurements and provide structural details in line with the DEER data. Comparison with the latest experimental results revealed that our models agree well with both Bax and Bak pores, pointed to a converged structural arrangement for Bax and Bak pore formation. Using multi-scale molecular dynamics simulations, we probed mutational effects on Bax transformation from monomer → dimer → membrane pore formation at atomic resolution. We observe that two cancer-related mutations, G40E and S118I, allosterically destabilize the monomer and stabilize an off-pathway swapped dimer, preventing productive pore formation. This observation suggests a mechanism whereby the mutations may work mainly by over-stabilizing the monomer → dimer transformation toward an unproductive off-pathway swapped-dimer state. Our observations point to misfolded Bax states, shedding light on the molecular mechanism of Bax mutation-elicited cancer. Most importantly, the structure of the Bax pore facilitates future study of releases cytochrome C in atomic detail.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Department of Chemical & Biomolecular Engineering, the University of Akron, Akron, Ohio 44325
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, the University of Akron, Akron, Ohio 44325
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
50
|
Mandal T, Shin S, Aluvila S, Chen HC, Grieve C, Choe JY, Cheng EH, Hustedt EJ, Oh KJ. Assembly of Bak homodimers into higher order homooligomers in the mitochondrial apoptotic pore. Sci Rep 2016; 6:30763. [PMID: 27488021 PMCID: PMC4973285 DOI: 10.1038/srep30763] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/08/2016] [Indexed: 11/09/2022] Open
Abstract
In mitochondrial apoptosis, Bak is activated by death signals to form pores of unknown structure on the mitochondrial outer membrane via homooligomerization. Cytochrome c and other apoptotic factors are released from the intermembrane space through these pores, initiating downstream apoptosis events. Using chemical crosslinking and double electron electron resonance (DEER)-derived distance measurements between specific structural elements in Bak, here we clarify how the Bak pore is assembled. We propose that previously described BH3-in-groove homodimers (BGH) are juxtaposed via the 'α3/α5' interface, in which the C-termini of helices α3 and α5 are in close proximity between two neighboring Bak homodimers. This interface is observed concomitantly with the well-known 'α6:α6' interface. We also mapped the contacts between Bak homodimers and the lipid bilayer based on EPR spectroscopy topology studies. Our results suggest a model for the lipidic Bak pore, whereby the mitochondrial targeting C-terminal helix does not change topology to accommodate the lining of the pore lumen by BGH.
Collapse
Affiliation(s)
- Tirtha Mandal
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, USA
| | - Seungjin Shin
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, USA
| | - Sreevidya Aluvila
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, USA
| | - Hui-Chen Chen
- Human Oncology and Pathogenesis Program and Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Carter Grieve
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, USA
| | - Jun-Yong Choe
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, USA
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program and Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Eric J Hustedt
- Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Kyoung Joon Oh
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, USA
| |
Collapse
|