1
|
Mercer M, Dasgupta A, Pawłowski K, Buszczak M. Bourbon and Mycbp function with Otu to promote Sxl protein expression in the Drosophila female germline. Proc Natl Acad Sci U S A 2025; 122:e2426524122. [PMID: 40215271 PMCID: PMC12012553 DOI: 10.1073/pnas.2426524122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/06/2025] [Indexed: 04/24/2025] Open
Abstract
In Drosophila ovaries, germ cells differentiate through several stages of cyst development before entering meiosis. This early differentiation program depends on both the stepwise deployment of specific regulatory mechanisms and on maintenance of germline sexual identity. The study of female sterile mutations that result in formation of germ cell tumors has been invaluable in identifying the mechanisms that control these developmental events. Here, we characterize the germ cell-enriched gene bourbon (bbn), null mutants of which cause the formation of a mixture of agametic ovarioles and cystic germ cell tumors. We performed proteomic analysis and found Bbn forms a complex with Ovarian tumor (Otu), a protein previously linked with regulation of the sex determination factor Sex lethal (Sxl), and the Drosophila ortholog of c-Myc binding protein (Mycbp). Loss of Mycbp also results in the formation of cystic germ cell tumors. Bbn promotes the stability of Otu and fosters interactions between Otu and Mycbp. Germ cells from bbn and Mycbp mutants display a loss of Sxl expression specifically in the germline. Transgenic rescue experiments show the bbn sterile phenotype is independent from Sxl splicing defects. Further evidence suggests Otu physically interacts with and promotes Sxl protein stability. This function does not depend on Otu's deubiquitinase activity. Last, we find the human orthologs of Otu and Mycbp, OTUD4, and MYCBP, also physically interact, suggesting conservation of function. Together these data provide insights into how a conserved complex promotes the germline expression of Sxl protein and the differentiation of Drosophila germ cells.
Collapse
Affiliation(s)
- Marianne Mercer
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Anirban Dasgupta
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Krzysztof Pawłowski
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
- HHMI Research Laboratories, University of Texas Southwestern Medical School, Dallas, TX75390
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
2
|
Zhang R, Shi P, Xu S, Ming Z, Liu Z, He Y, Dai J, Matunis E, Xu J, Ma Q. Soma-germline communication drives sex maintenance in the Drosophila testis. Natl Sci Rev 2024; 11:nwae215. [PMID: 39183747 PMCID: PMC11342250 DOI: 10.1093/nsr/nwae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 08/27/2024] Open
Abstract
In adult gonads, disruption of somatic sexual identity leads to defective gametogenesis and infertility. However, the underlying mechanisms by which somatic signals regulate germline cells to achieve proper gametogenesis remain unclear. In our previous study, we introduced the chinmoSex Transformation (chinmoST ) mutant Drosophila testis phenotype as a valuable model for investigating the mechanisms underlying sex maintenance. In chinmoST testes, depletion of the Janus Kinase-Signal Transducer and Activator of Transcription downstream effector Chinmo from somatic cyst stem cells (CySCs) feminizes somatic cyst cells and arrests germline differentiation. Here, we use single-cell RNA sequencing to uncover chinmoST -specific cell populations and their transcriptomic changes during sex transformation. Comparative analysis of intercellular communication networks between wild-type and chinmoST testes revealed disruptions in several soma-germline signaling pathways in chinmoST testes. Notably, the insulin signaling pathway exhibited significant enhancement in germline stem cells (GSCs). Chinmo cleavage under targets and tagmentation (CUT&Tag) assay revealed that Chinmo directly regulates two male sex determination factors, doublesex (dsx) and fruitless (fru), as well as Ecdysone-inducible gene L2 (ImpL2), a negative regulator of the insulin signaling pathway. Further genetic manipulations confirmed that the impaired gametogenesis observed in chinmoST testes was partly contributed by dysregulation of the insulin signaling pathway. In summary, our study demonstrates that somatic sex maintenance promotes normal spermatogenesis through Chinmo-mediated conserved sex determination and the insulin signaling pathway. Our work offers new insights into the complex mechanisms of somatic stem cell sex maintenance and soma-germline communication at the single-cell level. Additionally, our discoveries highlight the potential significance of stem cell sex instability as a novel mechanism contributing to testicular tumorigenesis.
Collapse
Affiliation(s)
- Rui Zhang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Peiyu Shi
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shuyang Xu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhe Ming
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zicong Liu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuanyuan He
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Junbiao Dai
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Erika Matunis
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jin Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qing Ma
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
3
|
Wang H, Ying J, Mao Z, Wang B, Ye Z, Chen Y, Chen J, Zhang C, Li J, Zhuo J. Identification and functional analysis of the female determiner gene in the bean bug, Riptortus pedestris. PEST MANAGEMENT SCIENCE 2024; 80:1240-1248. [PMID: 37934463 DOI: 10.1002/ps.7853] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/21/2023] [Accepted: 11/07/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Homing-based gene drives targeting sex-specific lethal genes have been used for genetic control. Additionally, understanding insect sex determination provides new targets for managing insect pests. While sex determination mechanisms in holometabolous insects have been thoroughly studied and employed in pest control, the study of the sex determination pathway in hemimetabolous insects is limited to only a few species. Riptortus pedestris (Fabricius; Hemiptera: Heteroptera), commonly known as the bean bug, is a significant pest for soybeans. Nonetheless, the mechanism of its sex determination and the target gene for genetic control are not well understood. RESULTS We identified Rpfmd as the female determiner gene in the sex determination pathway of R. pedestris. Rpfmd encodes a female-specific serine/arginine-rich protein of 436 amino acids and one non-sex-specific short protein of 98 amino acids. Knockdown of Rpfmd in R. pedestris nymphs caused death of molting females with masculinized somatic morphology but did not affect male development. Knockdown of Rpfmd in newly emerged females inhibited ovary development, while maternal-mediated RNA interference (RNAi) knockdown of Rpfmd expression resulted in male-only offspring. Transcriptome sequencing revealed that Rpfmd regulates X chromosome dosage compensation and influences various biological processes in females but has no significant effect on males. Moreover, RNAi mediated knockdown of Rpfmd-C had no influence on the development of R. pedestris, suggesting that Rpfmd regulates sex determination through female-specific splicing isoforms. We also found that Rpfmd pre-mRNA alternative splicing regulation starts at the 24-h embryo stage, indicating the activation of sex differentiation. CONCLUSION Our study confirms that Rpfmd, particularly its female-specific isoform (Rpfmd-F), is the female determiner gene that regulates sex differentiation in R. pedestris. Knockdown of Rpfmd results in female-specific lethality without affecting males, making it a promising target for genetic control of this soybean pest throughout its development stages. Additionally, our findings improve the understanding of the sex-determination mechanism in hemimetabolous insects. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Haiqiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jinjun Ying
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zeping Mao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Biyun Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zhuangxin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Youyuan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Chuanxi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Junmin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jichong Zhuo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Liu J, Rayes D, Akbari OS. A Fluorescent Sex-Sorting Technique for Insects with the Demonstration in Drosophila melanogaster. GEN BIOTECHNOLOGY 2024; 3:35-44. [PMID: 38415050 PMCID: PMC10895710 DOI: 10.1089/genbio.2023.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/09/2024] [Indexed: 02/29/2024]
Abstract
Recent advances in insect genetic engineering offer alternative genetic biocontrol solutions to control populations of pests and disease vectors. While success has been achieved, sex-sorting remains problematic for scaling many genetic biocontrol interventions. Here, we describe the development of a genetically stable sex-sorting technique for female and male selection with a proof of concept in Drosophila melanogaster termed SEPARATOR (Sexing Element Produced by Alternative RNA-splicing of A Transgenic Observable Reporter). This elegant approach utilizes dominantly expressed fluorescent proteins and differentially spliced introns to ensure sex-specific expression. The system has the potential for adaptability to various insect species and application for high-throughput insect sex-sorting.
Collapse
Affiliation(s)
- Junru Liu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Danny Rayes
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Omar S. Akbari
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
5
|
Kazama Y, Kobayashi T, Filatov DA. Evolution of sex-determination in dioecious plants: From active Y to X/A balance? Bioessays 2023; 45:e2300111. [PMID: 37694687 PMCID: PMC11475520 DOI: 10.1002/bies.202300111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Sex chromosomes in plants have been known for a century, but only recently have we begun to understand the mechanisms behind sex determination in dioecious plants. Here, we discuss evolution of sex determination, focusing on Silene latifolia, where evolution of separate sexes is consistent with the classic "two mutations" model-a loss of function male sterility mutation and a gain of function gynoecium suppression mutation, which turned an ancestral hermaphroditic population into separate males and females. Interestingly, the gynoecium suppression function in S. latifolia evolved via loss of function in at least two sex-linked genes and works via gene dosage balance between sex-linked, and autosomal genes. This system resembles X/A-ratio-based sex determination systems in Drosophila and Rumex, and could represent a steppingstone in the evolution of X/A-ratio-based sex determination from an active Y system.
Collapse
Affiliation(s)
- Yusuke Kazama
- Graduate school of Bioscience and BiotechnologyFukui Prefectural UniversityEiheiji‐choFukuiJapan
- RIKEN Nishina CenterWakoSaitamaJapan
| | - Taiki Kobayashi
- Graduate school of Bioscience and BiotechnologyFukui Prefectural UniversityEiheiji‐choFukuiJapan
| | | |
Collapse
|
6
|
Liu J, Rayes D, Akbari OS. A fluorescent sex-sorting technique for insects with the demonstration in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.553026. [PMID: 37645836 PMCID: PMC10462037 DOI: 10.1101/2023.08.11.553026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Recent advances in insect genetic engineering offer alternative genetic biocontrol solutions to control populations of pests and disease vectors. While success has been achieved, sex-sorting remains problematic for scaling many genetic biocontrol interventions. Here we describe the development of a sex-sorting technique for female and male selection with a proof-of-concept in D. melanogaster termed SEPARATOR (Sexing Element Produced by Alternative RNA-splicing of A Transgenic Observable Reporter). This approach utilizes dominant fluorescent proteins and differentially spliced introns to ensure sex-specific expression. The system has the potential for adaptability to various insect species and application for high-throughput insect sex-sorting.
Collapse
Affiliation(s)
- Junru Liu
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Danny Rayes
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Omar S. Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
7
|
Saccone G. A history of the genetic and molecular identification of genes and their functions controlling insect sex determination. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103873. [PMID: 36400424 DOI: 10.1016/j.ibmb.2022.103873] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The genetics of the sex determination regulatory cascade in Drosophila melanogaster has a fascinating history, interlinked with the foundation of the Genetics discipline itself. The discovery that alternative splicing rather than differential transcription is the molecular mechanism underlying the upstream control of sex differences in the Drosophila model system was surprising. This notion is now fully integrated into the scientific canon, appearing in many genetics textbooks and online education resources. In the last three decades, it was a key reference point for starting evolutionary studies in other insect species by using homology-based approaches. This review will introduce a very brief history of Drosophila genetics. It will describe the genetic and molecular approaches applied for the identifying and cloning key genes involved in sex determination in Drosophila and in many other insect species. These comparative analyses led to supporting the idea that sex-determining pathways have evolved mainly by recruiting different upstream signals/genes while maintaining widely conserved intermediate and downstream regulatory genes. The review also provides examples of the link between technological advances and research achievements, to stimulate reflections on how science is produced. It aims to hopefully strengthen the related historical and conceptual knowledge of general readers of other disciplines and of younger geneticists, often focused on the latest technical-molecular approaches.
Collapse
Affiliation(s)
- Giuseppe Saccone
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126, Naples, Italy.
| |
Collapse
|
8
|
Meyer BJ. Mechanisms of sex determination and X-chromosome dosage compensation. Genetics 2022; 220:6498458. [PMID: 35100381 PMCID: PMC8825453 DOI: 10.1093/genetics/iyab197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/25/2021] [Indexed: 12/03/2022] Open
Abstract
Abnormalities in chromosome number have the potential to disrupt the balance of gene expression and thereby decrease organismal fitness and viability. Such abnormalities occur in most solid tumors and also cause severe developmental defects and spontaneous abortions. In contrast to the imbalances in chromosome dose that cause pathologies, the difference in X-chromosome dose used to determine sexual fate across diverse species is well tolerated. Dosage compensation mechanisms have evolved in such species to balance X-chromosome gene expression between the sexes, allowing them to tolerate the difference in X-chromosome dose. This review analyzes the chromosome counting mechanism that tallies X-chromosome number to determine sex (XO male and XX hermaphrodite) in the nematode Caenorhabditis elegans and the associated dosage compensation mechanism that balances X-chromosome gene expression between the sexes. Dissecting the molecular mechanisms underlying X-chromosome counting has revealed how small quantitative differences in intracellular signals can be translated into dramatically different fates. Dissecting the process of X-chromosome dosage compensation has revealed the interplay between chromatin modification and chromosome structure in regulating gene expression over vast chromosomal territories.
Collapse
Affiliation(s)
- Barbara J Meyer
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720-3204, USA
| |
Collapse
|
9
|
Genomic and cDNA selection-amplification identifies transcriptome-wide binding sites for the Drosophila protein sex-lethal. PLoS One 2021; 16:e0250592. [PMID: 34029324 PMCID: PMC8143406 DOI: 10.1371/journal.pone.0250592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/11/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Downstream targets for a large number of RNA-binding proteins remain to be identified. The Drosophila master sex-switch protein Sex-lethal (SXL) is an RNA-binding protein that controls splicing, polyadenylation, or translation of certain mRNAs to mediate female-specific sexual differentiation. Whereas some targets of SXL are known, previous studies indicate that additional targets of SXL have escaped genetic screens. METHODOLOGY/PRINCIPAL FINDINGS Here, we have used an alternative molecular approach of GEnomic Selective Enrichment of Ligands by Exponential enrichment (GESELEX) using both the genomic DNA and cDNA pools from several Drosophila developmental stages to identify new potential targets of SXL. Our systematic analysis provides a comprehensive view of the Drosophila transcriptome for potential SXL-binding sites. CONCLUSION/SIGNIFICANCE We have successfully identified new SXL-binding sites in the Drosophila transcriptome. We discuss the significance of our analysis and that the newly identified binding sites and sequences could serve as a useful resource for the research community. This approach should also be applicable to other RNA-binding proteins for which downstream targets are unknown.
Collapse
|
10
|
Farboud B, Novak CS, Nicoll M, Quiogue A, Meyer BJ. Dose-dependent action of the RNA binding protein FOX-1 to relay X-chromosome number and determine C. elegans sex. eLife 2020; 9:62963. [PMID: 33372658 PMCID: PMC7787662 DOI: 10.7554/elife.62963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/23/2020] [Indexed: 12/25/2022] Open
Abstract
We demonstrate how RNA binding protein FOX-1 functions as a dose-dependent X-signal element to communicate X-chromosome number and thereby determine nematode sex. FOX-1, an RNA recognition motif protein, triggers hermaphrodite development in XX embryos by causing non-productive alternative pre-mRNA splicing of xol-1, the master sex-determination switch gene that triggers male development in XO embryos. RNA binding experiments together with genome editing demonstrate that FOX-1 binds to multiple GCAUG and GCACG motifs in a xol-1 intron, causing intron retention or partial exon deletion, thereby eliminating male-determining XOL-1 protein. Transforming all motifs to GCAUG or GCACG permits accurate alternative splicing, demonstrating efficacy of both motifs. Mutating subsets of both motifs partially alleviates non-productive splicing. Mutating all motifs blocks it, as does transforming them to low-affinity GCUUG motifs. Combining multiple high-affinity binding sites with the twofold change in FOX-1 concentration between XX and XO embryos achieves dose-sensitivity in splicing regulation to determine sex.
Collapse
Affiliation(s)
- Behnom Farboud
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, United States
| | - Catherine S Novak
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, United States
| | - Monique Nicoll
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, United States
| | - Alyssa Quiogue
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, United States
| | - Barbara J Meyer
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, United States
| |
Collapse
|
11
|
Xu J, Liu W, Yang D, Chen S, Chen K, Liu Z, Yang X, Meng J, Zhu G, Dong S, Zhang Y, Zhan S, Wang G, Huang Y. Regulation of olfactory-based sex behaviors in the silkworm by genes in the sex-determination cascade. PLoS Genet 2020; 16:e1008622. [PMID: 32520935 PMCID: PMC7307793 DOI: 10.1371/journal.pgen.1008622] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/22/2020] [Accepted: 05/04/2020] [Indexed: 11/28/2022] Open
Abstract
Insect courtship and mating depend on integration of olfactory, visual, and tactile cues. Compared to other insects, Bombyx mori, the domesticated silkworm, has relatively simple sexual behaviors as it cannot fly. Here by using CRISPR/Cas9 and electrophysiological techniques we found that courtship and mating behaviors are regulated in male silk moths by mutating genes in the sex determination cascade belonging to two conserved pathways. Loss of Bmdsx gene expression significantly reduced the peripheral perception of the major pheromone component bombykol by reducing expression of the product of the BmOR1 gene which completely blocked courtship in adult males. Interestingly, we found that mating behavior was regulated independently by another sexual differentiation gene, Bmfru. Loss of Bmfru completely blocked mating, but males displayed normal courtship behavior. Lack of Bmfru expression significantly reduced the perception of the minor pheromone component bombykal due to the down regulation of BmOR3 expression; further, functional analysis revealed that loss of the product of BmOR3 played a key role in terminating male mating behavior. Our results suggest that Bmdsx and Bmfru are at the base of the two primary pathways that regulate olfactory-based sexual behavior. The fundamental insect sexual behaviors, courtship and mating, result from successful integration of olfactory, vision, tactile and other complex innate behaviors. In the widely used insect model, Drosophila melanogaster, the sex determination cascade genes fruitless and doublesex are involved in the regulation of courtship and mating behaviors; however, little is known about the function of these sexual differentiation genes in regulating sex behaviors of Lepidoptera. Here we combine genetics and electrophysiology to investigate regulation pathway of sexual behaviors in the model lepidopteran insect, the domesticated silk moth, Bombyx mori. Our results support the presence of two genetic pathways in B. mori, named Bmdsx-BmOR1-bombykol and Bmfru-BmOR3-bombykal, which control distinct aspects of male sexual behavior that are modulated by olfaction. This is the first comprehensive report about the role of sex differentiation genes in the male sexual behavior in the silk moth.
Collapse
Affiliation(s)
- Jun Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Wei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dehong Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Shuqing Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Kai Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Zulian Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xu Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jing Meng
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guanheng Zhu
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Shuanglin Dong
- Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yong Zhang
- Department of Biology, University of Nevada, Reno, Nevada, United States of America
| | - Shuai Zhan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (GW); (YH)
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (GW); (YH)
| |
Collapse
|
12
|
Kandul NP, Liu J, Hsu AD, Hay BA, Akbari OS. A drug-inducible sex-separation technique for insects. Nat Commun 2020; 11:2106. [PMID: 32355156 PMCID: PMC7193620 DOI: 10.1038/s41467-020-16020-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/07/2020] [Indexed: 11/16/2022] Open
Abstract
Here, we describe a drug-inducible genetic system for insect sex-separation that demonstrates proof-of-principle for positive sex selection in D. melanogaster. The system exploits the toxicity of commonly used broad-spectrum antibiotics geneticin and puromycin to kill the non-rescued sex. Sex-specific rescue is achieved by inserting sex-specific introns into the coding sequences of antibiotic-resistance genes. When raised on geneticin-supplemented food, the sex-sorter line establishes 100% positive selection for female progeny, while the food supplemented with puromycin positively selects 100% male progeny. Since the described system exploits conserved sex-specific splicing mechanisms and reagents, it has the potential to be adaptable to other insect species of medical and agricultural importance.
Collapse
Affiliation(s)
- Nikolay P Kandul
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92092, USA
| | - Junru Liu
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92092, USA
| | - Alexander D Hsu
- Division of Biology and Biological Engineering, MC 156-29, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Bruce A Hay
- Division of Biology and Biological Engineering, MC 156-29, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92092, USA.
- Division of Biology and Biological Engineering, MC 156-29, California Institute of Technology, Pasadena, CA, 91125, USA.
- Tata Institute for Genetics and Society-UCSD, La Jolla, CA, USA.
| |
Collapse
|
13
|
Moschall R, Rass M, Rossbach O, Lehmann G, Kullmann L, Eichner N, Strauss D, Meister G, Schneuwly S, Krahn MP, Medenbach J. Drosophila Sister-of-Sex-lethal reinforces a male-specific gene expression pattern by controlling Sex-lethal alternative splicing. Nucleic Acids Res 2019; 47:2276-2288. [PMID: 30590805 PMCID: PMC6411925 DOI: 10.1093/nar/gky1284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/04/2018] [Accepted: 12/14/2018] [Indexed: 01/14/2023] Open
Abstract
In Drosophila, female development is governed by a single RNA-binding protein, Sex-lethal (Sxl), that controls the expression of key factors involved in dosage compensation, germline homeostasis and the establishment of female morphology and behaviour. Sxl expression in female flies is maintained by an auto-regulatory, positive feedback loop with Sxl controlling splicing of its own mRNA. Until now, it remained unclear how males prevent accidental triggering of the Sxl expression cascade and protect themselves against runaway protein production. Here, we identify the protein Sister-of-Sex-lethal (Ssx) as an inhibitor of Sxl auto-regulatory splicing. Sxl and Ssx have a comparable RNA-binding specificity and compete for binding to RNA regulatory elements present in the Sxl transcript. In cultured Drosophila cells, Sxl-induced changes to alternative splicing can be reverted by the expression of Ssx. Moreover, in adult male flies ablation of the ssx gene results in a low level of productive Sxl mRNA splicing and Sxl protein production in isolated, clonal cell populations. In sum, this demonstrates that Ssx safeguards male animals against Sxl protein production to reinforce a stable, male-specific gene expression pattern.
Collapse
Affiliation(s)
- Rebecca Moschall
- Institute of Biochemistry I, University of Regensburg, Universitaetsstrasse 31, D-93053 Regensburg, Germany
| | - Mathias Rass
- Institute of Zoology, University of Regensburg, Universitaetsstrasse 31, D-93053 Regensburg, Germany
| | - Oliver Rossbach
- Institute of Biochemistry, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Gerhard Lehmann
- Institute of Biochemistry I, University of Regensburg, Universitaetsstrasse 31, D-93053 Regensburg, Germany
| | - Lars Kullmann
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Universitaetsstrasse 31, D-93053 Regensburg, Germany
| | - Norbert Eichner
- Institute of Biochemistry I, University of Regensburg, Universitaetsstrasse 31, D-93053 Regensburg, Germany
| | - Daniela Strauss
- Institute of Biochemistry I, University of Regensburg, Universitaetsstrasse 31, D-93053 Regensburg, Germany
| | - Gunter Meister
- Institute of Biochemistry I, University of Regensburg, Universitaetsstrasse 31, D-93053 Regensburg, Germany
| | - Stephan Schneuwly
- Institute of Zoology, University of Regensburg, Universitaetsstrasse 31, D-93053 Regensburg, Germany
| | - Michael P Krahn
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Universitaetsstrasse 31, D-93053 Regensburg, Germany.,Medical Clinic D, University of Muenster, Domagkstrasse 3, D-48149 Muenster, Germany
| | - Jan Medenbach
- Institute of Biochemistry I, University of Regensburg, Universitaetsstrasse 31, D-93053 Regensburg, Germany
| |
Collapse
|
14
|
Boehm V, Britto-Borges T, Steckelberg AL, Singh KK, Gerbracht JV, Gueney E, Blazquez L, Altmüller J, Dieterich C, Gehring NH. Exon Junction Complexes Suppress Spurious Splice Sites to Safeguard Transcriptome Integrity. Mol Cell 2018; 72:482-495.e7. [DOI: 10.1016/j.molcel.2018.08.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/24/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022]
|
15
|
Chen L, Weinmeister R, Kralovicova J, Eperon LP, Vorechovsky I, Hudson AJ, Eperon IC. Stoichiometries of U2AF35, U2AF65 and U2 snRNP reveal new early spliceosome assembly pathways. Nucleic Acids Res 2017; 45:2051-2067. [PMID: 27683217 PMCID: PMC5389562 DOI: 10.1093/nar/gkw860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/16/2016] [Indexed: 12/24/2022] Open
Abstract
The selection of 3΄ splice sites (3΄ss) is an essential early step in mammalian RNA splicing reactions, but the processes involved are unknown. We have used single molecule methods to test whether the major components implicated in selection, the proteins U2AF35 and U2AF65 and the U2 snRNP, are able to recognize alternative candidate sites or are restricted to one pre-specified site. In the presence of adenosine triphosphate (ATP), all three components bind in a 1:1 stoichiometry with a 3΄ss. Pre-mRNA molecules with two alternative 3΄ss can be bound concurrently by two molecules of U2AF or two U2 snRNPs, so none of the components are restricted. However, concurrent occupancy inhibits splicing. Stoichiometric binding requires conditions consistent with coalescence of the 5΄ and 3΄ sites in a complex (I, initial), but if this cannot form the components show unrestricted and stochastic association. In the absence of ATP, when complex E forms, U2 snRNP association is unrestricted. However, if protein dephosphorylation is prevented, an I-like complex forms with stoichiometric association of U2 snRNPs and the U2 snRNA is base-paired to the pre-mRNA. Complex I differs from complex A in that the formation of complex A is associated with the loss of U2AF65 and 35.
Collapse
Affiliation(s)
- Li Chen
- University of Leicester, Leicester Institute for Structural and Chemical Biology and Department of Molecular and Cell Biology, Leicester LE1 9HN, UK
| | - Robert Weinmeister
- University of Leicester, Leicester Institute for Structural and Chemical Biology and Department of Molecular and Cell Biology, Leicester LE1 9HN, UK
| | - Jana Kralovicova
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Lucy P Eperon
- University of Leicester, Leicester Institute for Structural and Chemical Biology and Department of Molecular and Cell Biology, Leicester LE1 9HN, UK
| | - Igor Vorechovsky
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Andrew J Hudson
- University of Leicester, Leicester Institute for Structural and Chemical Biology and Department of Chemistry, Leicester LE1 7RH, UK
| | - Ian C Eperon
- University of Leicester, Leicester Institute for Structural and Chemical Biology and Department of Molecular and Cell Biology, Leicester LE1 9HN, UK
| |
Collapse
|
16
|
Rogell B, Fischer B, Rettel M, Krijgsveld J, Castello A, Hentze MW. Specific RNP capture with antisense LNA/DNA mixmers. RNA (NEW YORK, N.Y.) 2017; 23:1290-1302. [PMID: 28476952 PMCID: PMC5513073 DOI: 10.1261/rna.060798.117] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/25/2017] [Indexed: 05/07/2023]
Abstract
RNA-binding proteins (RBPs) play essential roles in RNA biology, responding to cellular and environmental stimuli to regulate gene expression. Important advances have helped to determine the (near) complete repertoires of cellular RBPs. However, identification of RBPs associated with specific transcripts remains a challenge. Here, we describe "specific ribonucleoprotein (RNP) capture," a versatile method for the determination of the proteins bound to specific transcripts in vitro and in cellular systems. Specific RNP capture uses UV irradiation to covalently stabilize protein-RNA interactions taking place at "zero distance." Proteins bound to the target RNA are captured by hybridization with antisense locked nucleic acid (LNA)/DNA oligonucleotides covalently coupled to a magnetic resin. After stringent washing, interacting proteins are identified by quantitative mass spectrometry. Applied to in vitro extracts, specific RNP capture identifies the RBPs bound to a reporter mRNA containing the Sex-lethal (Sxl) binding motifs, revealing that the Sxl homolog sister of Sex lethal (Ssx) displays similar binding preferences. This method also revealed the repertoire of RBPs binding to 18S or 28S rRNAs in HeLa cells, including previously unknown rRNA-binding proteins.
Collapse
Affiliation(s)
- Birgit Rogell
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Bernd Fischer
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mandy Rettel
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Jeroen Krijgsveld
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Alfredo Castello
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Matthias W Hentze
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| |
Collapse
|
17
|
Moschall R, Gaik M, Medenbach J. Promiscuity in post-transcriptional control of gene expression: Drosophila sex-lethal and its regulatory partnerships. FEBS Lett 2017; 591:1471-1488. [PMID: 28391641 PMCID: PMC5488161 DOI: 10.1002/1873-3468.12652] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/08/2017] [Accepted: 04/04/2017] [Indexed: 12/28/2022]
Abstract
The Drosophila RNA‐binding protein Sex‐lethal (Sxl) is a potent post‐transcriptional regulator of gene expression that controls female development. It regulates the expression of key factors involved in sex‐specific differences in morphology, behavior, and dosage compensation. Functional Sxl protein is only expressed in female flies, where it binds to U‐rich RNA motifs present in its target mRNAs to regulate their fate. Sxl is a very versatile regulator that, by shuttling between the nucleus and the cytoplasm, can regulate almost all aspects of post‐transcriptional gene expression including RNA processing, nuclear export, and translation. For these functions, Sxl employs multiple interactions to either antagonize RNA‐processing factors or to recruit various coregulators, thus allowing it to establish a female‐specific gene expression pattern. Here, we summarize the current knowledge about Sxl function and review recent mechanistic and structural studies that further our understanding of how such a seemingly ‘simple’ RNA‐binding protein can exert this plethora of different functions.
Collapse
Affiliation(s)
| | - Monika Gaik
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Medenbach
- Institute of Biochemistry I, University of Regensburg, Germany
| |
Collapse
|
18
|
Wongpalee SP, Vashisht A, Sharma S, Chui D, Wohlschlegel JA, Black DL. Large-scale remodeling of a repressed exon ribonucleoprotein to an exon definition complex active for splicing. eLife 2016; 5. [PMID: 27882870 PMCID: PMC5122456 DOI: 10.7554/elife.19743] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 11/02/2016] [Indexed: 12/31/2022] Open
Abstract
Polypyrimidine-tract binding protein PTBP1 can repress splicing during the exon definition phase of spliceosome assembly, but the assembly steps leading to an exon definition complex (EDC) and how PTBP1 might modulate them are not clear. We found that PTBP1 binding in the flanking introns allowed normal U2AF and U1 snRNP binding to the target exon splice sites but blocked U2 snRNP assembly in HeLa nuclear extract. Characterizing a purified PTBP1-repressed complex, as well as an active early complex and the final EDC by SILAC-MS, we identified extensive PTBP1-modulated changes in exon RNP composition. The active early complex formed in the absence of PTBP1 proceeded to assemble an EDC with the eviction of hnRNP proteins, the late recruitment of SR proteins, and binding of the U2 snRNP. These results demonstrate that during early stages of splicing, exon RNP complexes are highly dynamic with many proteins failing to bind during PTBP1 arrest. DOI:http://dx.doi.org/10.7554/eLife.19743.001
Collapse
Affiliation(s)
- Somsakul Pop Wongpalee
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Ajay Vashisht
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
| | - Shalini Sharma
- Department of Basic Medical Sciences, University of Arizona, Phoenix, United States
| | - Darryl Chui
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, United States
| | - Douglas L Black
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
19
|
Kralovicova J, Vorechovsky I. Alternative splicing of U2AF1 reveals a shared repression mechanism for duplicated exons. Nucleic Acids Res 2016; 45:417-434. [PMID: 27566151 PMCID: PMC5224494 DOI: 10.1093/nar/gkw733] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 12/30/2022] Open
Abstract
The auxiliary factor of U2 small nuclear ribonucleoprotein (U2AF) facilitates branch point (BP) recognition and formation of lariat introns. The gene for the 35-kD subunit of U2AF gives rise to two protein isoforms (termed U2AF35a and U2AF35b) that are encoded by alternatively spliced exons 3 and Ab, respectively. The splicing recognition sequences of exon 3 are less favorable than exon Ab, yet U2AF35a expression is higher than U2AF35b across tissues. We show that U2AF35b repression is facilitated by weak, closely spaced BPs next to a long polypyrimidine tract of exon Ab. Each BP lacked canonical uridines at position -2 relative to the BP adenines, with efficient U2 base-pairing interactions predicted only for shifted registers reminiscent of programmed ribosomal frameshifting. The BP cluster was compensated by interactions involving unpaired cytosines in an upstream, EvoFold-predicted stem loop (termed ESL) that binds FUBP1/2. Exon Ab inclusion correlated with predicted free energies of mutant ESLs, suggesting that the ESL operates as a conserved rheostat between long inverted repeats upstream of each exon. The isoform-specific U2AF35 expression was U2AF65-dependent, required interactions between the U2AF-homology motif (UHM) and the α6 helix of U2AF35, and was fine-tuned by exon Ab/3 variants. Finally, we identify tandem homologous exons regulated by U2AF and show that their preferential responses to U2AF65-related proteins and SRSF3 are associated with unpaired pre-mRNA segments upstream of U2AF-repressed 3′ss. These results provide new insights into tissue-specific subfunctionalization of duplicated exons in vertebrate evolution and expand the repertoire of exon repression mechanisms that control alternative splicing.
Collapse
Affiliation(s)
- Jana Kralovicova
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Igor Vorechovsky
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| |
Collapse
|
20
|
Simon CR, Siviero F, Monesi N. Beyond DNA puffs: What can we learn from studying sciarids? Genesis 2016; 54:361-78. [PMID: 27178805 DOI: 10.1002/dvg.22946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 11/07/2022]
Abstract
Members of the Sciaridae family attracted the interest of researchers because of the demonstration that the DNA puff regions, which are formed in the salivary gland polytene chromosomes at the end of the fourth larval instar, constitute sites of developmentally regulated gene amplification. Besides contributing to a deeper understanding of the process of gene amplification, the study of sciarids has also provided important insights on other biological processes such as sex determination, programmed cell death, insect immunity, telomere maintenance, and nucleolar organizing regions (NOR) formation. Open questions in sciarids include among others, early development, the role of noncoding RNAs in gene amplification and the relationship between gene amplification and transcription in DNA puff forming regions. These and other questions can now be pursued with next generation sequencing techniques and experiments using RNAi experiments, since this latter technique has been shown to be feasible in sciarids. These new perspectives in the field of sciarid biology open the opportunity to consolidate sciarid species as important emerging models. genesis 54:361-378, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Claudio Roberto Simon
- Departamento de Biologia Estrutural, Universidade Federal do Triângulo Mineiro-UFTM, Instituto de Ciências Biológicas e Naturais, Uberaba, MG, Brazil, CEP 38025-015
| | - Fábio Siviero
- Departamento de Biologia Celular e do Desenvolvimento, Universidade de São Paulo, Instituto de Ciências Biomédicas, São Paulo, SP, Brazil, CEP 05508-900
| | - Nadia Monesi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| |
Collapse
|
21
|
Abstract
The U2AF heterodimer is generally accepted to play a vital role in defining functional 3' splice sites in pre-mRNA splicing. Given prevalent mutations in U2AF, particularly in the U2AF1 gene (which encodes for the U2AF35 subunit) in blood disorders and other human cancers, there are renewed interests in these classic splicing factors to further understand their regulatory functions in RNA metabolism in both physiological and disease settings. We recently reported that U2AF has a maximal capacity to directly bind ˜88% of functional 3' splice sites in the human genome and that numerous U2AF binding events also occur in various exonic and intronic locations, thus providing additional mechanisms for the regulation of alternative splicing besides their traditional role in titrating weak splice sites in the cell. These findings, coupled with the existence of multiple related proteins to both U2AF65 and U2AF35, beg a series of questions on the universal role of U2AF in functional 3' splice site definition, their binding specificities in vivo, potential mechanisms to bypass their requirement for certain intron removal events, contribution of splicing-independent functions of U2AF to important cellular functions, and the mechanism for U2AF mutations to invoke specific diseases in humans.
Collapse
Affiliation(s)
- Tongbin Wu
- a Department of Medicine ; University of California, San Diego ; La Jolla , CA USA
| | | |
Collapse
|
22
|
Laohakieat K, Aketarawong N, Isasawin S, Thitamadee S, Thanaphum S. The study of the transformer gene from Bactrocera dorsalis and B. correcta with putative core promoter regions. BMC Genet 2016; 17:34. [PMID: 26833079 PMCID: PMC4736151 DOI: 10.1186/s12863-016-0342-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/25/2016] [Indexed: 12/31/2022] Open
Abstract
Background The transformer (tra) is a sex determining switch in different orders of insects, including Diptera, as in the family Tephritidae. The lifelong autoregulatory loop of tra female-specific splicing can be reset by the intervention of male-specific primary signals (M factor). In early development, the functional female and truncated male TRA proteins relay the sexual fates to the alternative splicing of a bisexual switch gene, doublesex (dsx) cascading the sexual differentiation processes. Bactrocera dorsalis (Hendel) and Bactrocera correcta (Bezzi) are among the Bactrocera model worldwide key pests. Area-wide integrated pest management using the male-only Sterile Insect Technique (SIT) relying on genetic sexing systems is effective in control programs. We undertook the molecular characterization and comparative studies of the tra orthologues in the Bactrocera species, including the Salaya1 genetic sexing strain (GSS). Results RT-PCR revealed that B. dorsalis tra (Bdtra) and B. correcta tra (Bctra) transcripts contained conservation of both constitutive exons and male-specific exons as in other Bactrocera. However, new Bdtra male-specific exons were retained, diversifying the pattern of the male-specifically spliced transcripts. The coding sequences of tra were highly conserved in Bactrocera (86–95 %) but less so among related genera (61–65 %) within the same Tephritidae family. A conservation of deduced amino acid sequences (18 residues), called the TEP region, was identified to be distinctive among tephritids. The 5’ regulatory sequence containing many structural characteristics of the putative core promoter was discovered in B. correcta. The expression patterns of Bdtra and Bctra were sex-specifically spliced and the signals relayed to the dsx genes in the adult wild-types. However, the coexistence of male- and female-specifically spliced transcripts (980 and 626 bp, respectively) of the B. dorsalis wild-type strain was found in the Salaya1 GSS adult males. The Bdtra RNA interference masculinized the XX karyotype females into pseudomales, but their testes were mostly not well developed. Conclusions Bdtra and Bctra have sex-specific splicing, similar to Bactroceras, Ceratitis capitata (Wiedemann), and Anastrephas. A newly identified TEP region is proposed in tephritids. A putative core promoter has been discovered in Bctra. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0342-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kamoltip Laohakieat
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand.
| | - Nidchaya Aketarawong
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand.
| | - Siriwan Isasawin
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand.
| | - Siripong Thitamadee
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand.
| | - Sujinda Thanaphum
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand.
| |
Collapse
|
23
|
Sohail M, Xie J. Diverse regulation of 3' splice site usage. Cell Mol Life Sci 2015; 72:4771-93. [PMID: 26370726 PMCID: PMC11113787 DOI: 10.1007/s00018-015-2037-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/12/2015] [Accepted: 09/03/2015] [Indexed: 01/13/2023]
Abstract
The regulation of splice site (SS) usage is important for alternative pre-mRNA splicing and thus proper expression of protein isoforms in cells; its disruption causes diseases. In recent years, an increasing number of novel regulatory elements have been found within or nearby the 3'SS in mammalian genes. The diverse elements recruit a repertoire of trans-acting factors or form secondary structures to regulate 3'SS usage, mostly at the early steps of spliceosome assembly. Their mechanisms of action mainly include: (1) competition between the factors for RNA elements, (2) steric hindrance between the factors, (3) direct interaction between the factors, (4) competition between two splice sites, or (5) local RNA secondary structures or longer range loops, according to the mode of protein/RNA interactions. Beyond the 3'SS, chromatin remodeling/transcription, posttranslational modifications of trans-acting factors and upstream signaling provide further layers of regulation. Evolutionarily, some of the 3'SS elements seem to have emerged in mammalian ancestors. Moreover, other possibilities of regulation such as that by non-coding RNA remain to be explored. It is thus likely that there are more diverse elements/factors and mechanisms that influence the choice of an intron end. The diverse regulation likely contributes to a more complex but refined transcriptome and proteome in mammals.
Collapse
Affiliation(s)
- Muhammad Sohail
- Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| | - Jiuyong Xie
- Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.
- Department of Biochemistry and Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
24
|
Sxl-Dependent, tra/tra2-Independent Alternative Splicing of the Drosophila melanogaster X-Linked Gene found in neurons. G3-GENES GENOMES GENETICS 2015; 5:2865-74. [PMID: 26511498 PMCID: PMC4683657 DOI: 10.1534/g3.115.023721] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Somatic sexual determination and behavior in Drosophila melanogaster are under the control of a genetic cascade initiated by Sex lethal (Sxl). In the female soma, SXL RNA-binding protein regulates the splicing of transformer (tra) transcripts into a female-specific form. The RNA-binding protein TRA and its cofactor TRA2 function in concert in females, whereas SXL, TRA, and TRA2 are thought to not function in males. To better understand sex-specific regulation of gene expression, we analyzed male and female head transcriptome datasets for expression levels and splicing, quantifying sex-biased gene expression via RNA-Seq and qPCR. Our data uncouple the effects of Sxl and tra/tra2 in females in the-sex-biased alternative splicing of head transcripts from the X-linked locus found in neurons (fne), encoding a pan-neuronal RNA-binding protein of the ELAV family. We show that FNE protein levels are downregulated by Sxl in female heads, also independently of tra/tra2. We argue that this regulation may have important sexually dimorphic consequences for the regulation of nervous system development or function.
Collapse
|
25
|
Singh R. Bioinformatics Analysis to Identify RNA-Protein Interactions in Oogenesis. Methods Mol Biol 2015; 1328:231-41. [PMID: 26324442 DOI: 10.1007/978-1-4939-2851-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Hundreds of RNA-binding proteins are known, but the biological functions are known for only a few of them. They regulate various aspects of RNA processing or biogenesis such as splicing, polyadenylation, and translation. Here I describe a bioinformatics approach that we developed to identify potential new mRNA target(s) of the Drosophila master sex-switch protein Sex-lethal (SXL) by combining computational analysis with genetic and biochemical investigation. This approach could be used to identify new RNA-protein interactions during oogenesis in the female germline and should be applicable to numerous other posttranscriptional regulatory events.
Collapse
Affiliation(s)
- Ravinder Singh
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA,
| |
Collapse
|
26
|
Catania F, Schmitz J. On the path to genetic novelties: insights from programmed DNA elimination and RNA splicing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:547-61. [PMID: 26140477 DOI: 10.1002/wrna.1293] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/29/2015] [Accepted: 06/06/2015] [Indexed: 12/17/2022]
Abstract
Understanding how genetic novelties arise is a central goal of evolutionary biology. To this end, programmed DNA elimination and RNA splicing deserve special consideration. While programmed DNA elimination reshapes genomes by eliminating chromatin during organismal development, RNA splicing rearranges genetic messages by removing intronic regions during transcription. Small RNAs help to mediate this class of sequence reorganization, which is not error-free. It is this imperfection that makes programmed DNA elimination and RNA splicing excellent candidates for generating evolutionary novelties. Leveraging a number of these two processes' mechanistic and evolutionary properties, which have been uncovered over the past years, we present recently proposed models and empirical evidence for how splicing can shape the structure of protein-coding genes in eukaryotes. We also chronicle a number of intriguing similarities between the processes of programmed DNA elimination and RNA splicing, and highlight the role that the variation in the population-genetic environment may play in shaping their target sequences.
Collapse
Affiliation(s)
- Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Jürgen Schmitz
- Institute of Experimental Pathology (ZMBE), University of Münster, Münster, Germany
| |
Collapse
|
27
|
Hennig J, Sattler M. Deciphering the protein-RNA recognition code: Combining large-scale quantitative methods with structural biology. Bioessays 2015; 37:899-908. [DOI: 10.1002/bies.201500033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Janosch Hennig
- Institute of Structural Biology; Helmholtz Zentrum M; ü; nchen; München Germany
- Department Chemie; Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy; Technische Universität München; Garching Germany
| | - Michael Sattler
- Institute of Structural Biology; Helmholtz Zentrum M; ü; nchen; München Germany
- Department Chemie; Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy; Technische Universität München; Garching Germany
| |
Collapse
|
28
|
Hamm RL, Meisel RP, Scott JG. The evolving puzzle of autosomal versus Y-linked male determination in Musca domestica. G3 (BETHESDA, MD.) 2014; 5:371-84. [PMID: 25552607 PMCID: PMC4349091 DOI: 10.1534/g3.114.014795] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/27/2014] [Indexed: 11/18/2022]
Abstract
Sex determination is one of the most rapidly evolving developmental pathways, but the factors responsible for this fast evolution are not well resolved. The house fly, Musca domestica, is an ideal model for studying sex determination because house fly sex determination is polygenic and varies considerably between populations. Male house flies possess a male-determining locus, the M factor, which can be located on the Y or X chromosome or any of the five autosomes. There can be a single M or multiple M factors present in an individual male, in heterozygous or homozygous condition. Males with multiple copies of M skew the sex ratio toward the production of males. Potentially in response to these male-biased sex ratios, an allele of the gene transformer, Md-tra(D), promotes female development in the presence of one or multiple M factors. There have been many studies to determine the linkage and frequency of these male determining factors and the frequency of Md-tra(D) chromosomes in populations from around the world. This review provides a summary of the information available to date regarding the patterns of distribution of autosomal, X-linked and Y-linked M factors, the relative frequencies of the linkage of M, the changes in frequencies found in field populations, and the fitness of males with autosomal M factors vs. Y-linked M. We evaluate this natural variation in the house fly sex determination pathway in light of models of the evolution of sex determination.
Collapse
Affiliation(s)
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204
| | - Jeffrey G Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York 14853
| |
Collapse
|
29
|
Hennig J, Militti C, Popowicz GM, Wang I, Sonntag M, Geerlof A, Gabel F, Gebauer F, Sattler M. Structural basis for the assembly of the Sxl–Unr translation regulatory complex. Nature 2014; 515:287-90. [DOI: 10.1038/nature13693] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 07/16/2014] [Indexed: 01/16/2023]
|
30
|
Nagaraju J, Gopinath G, Sharma V, Shukla J. Lepidopteran Sex Determination: A Cascade of Surprises. Sex Dev 2014; 8:104-12. [DOI: 10.1159/000357483] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
31
|
Bechara EG, Sebestyén E, Bernardis I, Eyras E, Valcárcel J. RBM5, 6, and 10 differentially regulate NUMB alternative splicing to control cancer cell proliferation. Mol Cell 2013; 52:720-33. [PMID: 24332178 DOI: 10.1016/j.molcel.2013.11.010] [Citation(s) in RCA: 270] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/18/2013] [Accepted: 10/22/2013] [Indexed: 12/25/2022]
Abstract
RBM5, a regulator of alternative splicing of apoptotic genes, and its highly homologous RBM6 and RBM10 are RNA-binding proteins frequently deleted or mutated in lung cancer. We report that RBM5/6 and RBM10 antagonistically regulate the proliferative capacity of cancer cells and display distinct positional effects in alternative splicing regulation. We identify the Notch pathway regulator NUMB as a key target of these factors in the control of cell proliferation. NUMB alternative splicing, which is frequently altered in lung cancer, can regulate colony and xenograft tumor formation, and its modulation recapitulates or antagonizes the effects of RBM5, 6, and 10 in cell colony formation. RBM10 mutations identified in lung cancer cells disrupt NUMB splicing regulation to promote cell growth. Our results reveal a key genetic circuit in the control of cancer cell proliferation.
Collapse
Affiliation(s)
- Elias G Bechara
- Centre de Regulació Genòmica, Dr. Aiguader, 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Endre Sebestyén
- Universitat Pompeu Fabra, Dr. Aiguader, 88, 08003 Barcelona, Spain
| | | | - Eduardo Eyras
- Universitat Pompeu Fabra, Dr. Aiguader, 88, 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Juan Valcárcel
- Centre de Regulació Genòmica, Dr. Aiguader, 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, Dr. Aiguader, 88, 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Dr. Aiguader, 88, 08003 Barcelona, Spain.
| |
Collapse
|
32
|
Horiuchi K, Kawamura T, Iwanari H, Ohashi R, Naito M, Kodama T, Hamakubo T. Identification of Wilms' tumor 1-associating protein complex and its role in alternative splicing and the cell cycle. J Biol Chem 2013; 288:33292-302. [PMID: 24100041 DOI: 10.1074/jbc.m113.500397] [Citation(s) in RCA: 272] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Wilms' tumor 1-associating protein (WTAP) is a putative splicing regulator that is thought to be required for cell cycle progression through the stabilization of cyclin A2 mRNA and mammalian early embryo development. To further understand how WTAP acts in the context of the cellular machinery, we identified its interacting proteins in human umbilical vein endothelial cells and HeLa cells using shotgun proteomics. Here we show that WTAP forms a novel protein complex including Hakai, Virilizer homolog, KIAA0853, RBM15, the arginine/serine-rich domain-containing proteins BCLAF1 and THRAP3, and certain general splicing regulators, most of which have reported roles in post-transcriptional regulation. The depletion of these respective components of the complex resulted in reduced cell proliferation along with G2/M accumulation. Double knockdown of the serine/arginine-rich (SR)-like proteins BCLAF1 and THRAP3 by siRNA resulted in a decrease in the nuclear speckle localization of WTAP, whereas the nuclear speckles were intact. Furthermore, we found that the WTAP complex regulates alternative splicing of the WTAP pre-mRNA by promoting the production of a truncated isoform, leading to a change in WTAP protein expression. Collectively, these findings show that the WTAP complex is a novel component of the RNA processing machinery, implying an important role in both posttranscriptional control and cell cycle regulation.
Collapse
Affiliation(s)
- Keiko Horiuchi
- From the Department of Quantitative Biology and Medicine and
| | | | | | | | | | | | | |
Collapse
|
33
|
Weng R, Chin JSR, Yew JY, Bushati N, Cohen SM. miR-124 controls male reproductive success in Drosophila. eLife 2013; 2:e00640. [PMID: 23795292 PMCID: PMC3679528 DOI: 10.7554/elife.00640] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/16/2013] [Indexed: 12/24/2022] Open
Abstract
Many aspects of social behavior are controlled by sex-specific pheromones. Gender-appropriate production of the sexually dimorphic transcription factors doublesex and fruitless controls sexual differentiation and sexual behavior. miR-124 mutant males exhibited increased male–male courtship and reduced reproductive success with females. Females showed a strong preference for wild-type males over miR-124 mutant males when given a choice of mates. These effects were traced to aberrant pheromone production. We identified the sex-specific splicing factor transformer as a functionally significant target of miR-124 in this context, suggesting a role for miR-124 in the control of male sexual differentiation and behavior, by limiting inappropriate expression of the female form of transformer. miR-124 is required to ensure fidelity of gender-appropriate pheromone production in males. Use of a microRNA provides a secondary means of controlling the cascade of sex-specific splicing events that controls sexual differentiation in Drosophila. DOI:http://dx.doi.org/10.7554/eLife.00640.001 Like many animals, the fruit fly Drosophila uses pheromones to influence sexual behaviour, with males and females producing different versions of these chemicals. One of the pheromones produced by male flies, for example, is a chemical called 11-cis-vaccenyl-acetate (cVA), which is an aphrodisiac for female flies and an anti-aphrodisiac for males. The production of the correct pheromones in each sex is genetically controlled using a process called splicing that allows a single gene to be expressed as two or more different proteins. A variety of proteins called splicing factors ensures that splicing results in the production of the correct pheromones for each sex. Sometimes, however, the process by which sex genes are expressed as proteins can be ‘leaky’, which results in the wrong proteins being produced for one or both sexes. Small RNA molecules called microRNAs act in some genetic pathways to limit the leaky expression of genes, and a microRNA called miR-124 carries out this function in the developing brain Drosophila. Now, Weng et al. show that miR-124 also helps to regulate sex-specific splicing and thereby to control pheromone production and sexual behaviour. Mutant male flies lacking miR-124 were less successful than wild-type males at mating with female flies, and were almost always rejected if a female fly was given a choice between a mutant male and a wild-type male. Moreover, both wild-type and mutant male flies were more likely to initiate courtship behaviour towards another male if it lacked miR-124 than if it did not. The mutant male flies produced less cVA than wild-type males, but more of other pheromones called pentacosenes, which is consistent with the observed behaviour because cVA attracts females and repels males, whereas pentacosenes act as aphrodisiacs for male flies in large amounts. Weng et al. showed that these changes in the production of pheromones were caused by an increased expression of the female version of a splicing factor called transformer in the mutant males, but further work is needed to understand this process in detail. DOI:http://dx.doi.org/10.7554/eLife.00640.002
Collapse
Affiliation(s)
- Ruifen Weng
- Institute for Molecular and Cell Biology , Singapore , Singapore ; Department of Biological Sciences , National University of Singapore , Singapore , Singapore
| | | | | | | | | |
Collapse
|
34
|
Ruiz MF, Sarno F, Zorrilla S, Rivas G, Sánchez L. Biochemical and functional analysis of Drosophila-sciara chimeric sex-lethal proteins. PLoS One 2013; 8:e65171. [PMID: 23762307 PMCID: PMC3677924 DOI: 10.1371/journal.pone.0065171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/21/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The Drosophila SXL protein controls sex determination and dosage compensation. It is a sex-specific factor controlling splicing of its own Sxl pre-mRNA (auto-regulation), tra pre-mRNA (sex determination) and msl-2 pre-mRNA plus translation of msl-2 mRNA (dosage compensation). Outside the drosophilids, the same SXL protein has been found in both sexes so that, in the non-drosophilids, SXL does not appear to play the key discriminating role in sex determination and dosage compensation that it plays in Drosophila. Comparison of SXL proteins revealed that its spatial organisation is conserved, with the RNA-binding domains being highly conserved, whereas the N- and C-terminal domains showing significant variation. This manuscript focuses on the evolution of the SXL protein itself and not on regulation of its expression. METHODOLOGY Drosophila-Sciara chimeric SXL proteins were produced. Sciara SXL represents the non-sex-specific function of ancient SXL in the non-drosophilids from which presumably Drosophila SXL evolved. Two questions were addressed. Did the Drosophila SXL protein have affected their functions when their N- and C-terminal domains were replaced by the corresponding ones of Sciara? Did the Sciara SXL protein acquire Drosophila sex-specific functions when the Drosophila N- and C-terminal domains replaced those of Sciara? The chimeric SXL proteins were analysed in vitro to study their binding affinity and cooperative properties, and in vivo to analyse their effect on sex determination and dosage compensation by producing Drosophila flies that were transgenic for the chimeric SXL proteins. CONCLUSIONS The sex-specific properties of extant Drosophila SXL protein depend on its global structure rather than on a specific domain. This implies that the modifications, mainly in the N- and C-terminal domains, that occurred in the SXL protein during its evolution within the drosophilid lineage represent co-evolutionary changes that determine the appropriate folding of SXL to carry out its sex-specific functions.
Collapse
Affiliation(s)
- María Fernanda Ruiz
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Francesca Sarno
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Silvia Zorrilla
- Instituto de Química-Física “Rocasolano”, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Germán Rivas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Lucas Sánchez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
35
|
The Am-tra2 gene is an essential regulator of female splice regulation at two levels of the sex determination hierarchy of the honeybee. Genetics 2012; 192:1015-26. [PMID: 22942126 PMCID: PMC3522149 DOI: 10.1534/genetics.112.143925] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Heteroallelic and homo- or hemiallelic Complementary sex determiner (Csd) proteins determine sexual fate in the honeybee (Apis mellifera) by controlling the alternative splicing of the downstream gene fem (feminizer). Thus far, we have little understanding of how heteroallelic Csd proteins mediate the splicing of female fem messenger RNAs (mRNAs) or how Fem proteins direct the splicing of honeybee dsx (Am-dsx) pre-mRNAs. Here, we report that Am-tra2, which is an ortholog of Drosophila melanogaster tra2, is an essential component of female splicing of the fem and Am-dsx transcripts in the honeybee. The Am-tra2 transcripts are alternatively (but non-sex-specifically) spliced, and they are translated into six protein isoforms that all share the basic RNA-binding domain/RS (arginine/serine) domain structure. Knockdown studies showed that the Am-tra2 gene is required to splice fem mRNAs into the productive female and nonproductive male forms. We suggest that the Am-Tra2 proteins are essential regulators of fem pre-mRNA splicing that, together with heteroallelic Csd proteins and/or Fem proteins, implement the female pathway. In males, the Am-Tra2 proteins may enhance the switch of fem transcripts into the nonproductive male form when heteroallelic Csd proteins are absent. This dual function of Am-Tra2 proteins possibly enhances and stabilizes the binary decision process of male/female splicing. Our knockdown studies also imply that the Am-Tra2 protein is an essential regulator for Am-dsx female splice regulation, suggesting an ancestral role in holometabolous insects. We also provide evidence that the Am-tra2 gene has an essential function in honeybee embryogenesis that is unrelated to sex determination.
Collapse
|
36
|
Cao W, Razanau A, Feng D, Lobo VG, Xie J. Control of alternative splicing by forskolin through hnRNP K during neuronal differentiation. Nucleic Acids Res 2012; 40:8059-71. [PMID: 22684629 PMCID: PMC3439897 DOI: 10.1093/nar/gks504] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The molecular basis of cell signal-regulated alternative splicing at the 3′ splice site remains largely unknown. We isolated a protein kinase A-responsive ribonucleic acid (RNA) element from a 3′ splice site of the synaptosomal-associated protein 25 (Snap25) gene for forskolin-inhibited splicing during neuronal differentiation of rat pheochromocytoma PC12 cells. The element binds specifically to heterogeneous nuclear ribonucleo protein (hnRNP) K in a phosphatase-sensitive way, which directly competes with the U2 auxiliary factor U2AF65, an essential component of early spliceosomes. Transcripts with similarly localized hnRNP K target motifs upstream of alternative exons are enriched in genes often associated with neurological diseases. We show that such motifs upstream of the Runx1 exon 6 also bind hnRNP K, and importantly, hnRNP K is required for forskolin-induced repression of the exon. Interestingly, this exon encodes the peptide domain that determines the switch of the transcriptional repressor/activator activity of Runx1, a change known to be critical in specifying neuron lineages. Consistent with an important role of the target genes in neurons, knocking down hnRNP K severely disrupts forskolin-induced neurite growth. Thus, through hnRNP K, the neuronal differentiation stimulus forskolin targets a critical 3′ splice site component of the splicing machinery to control alternative splicing of crucial genes. This also provides a regulated direct competitor of U2AF65 for cell signal control of 3′ splice site usage.
Collapse
Affiliation(s)
- Wenguang Cao
- Department of Physiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | | | | | | | | |
Collapse
|
37
|
Abstract
Alternative splicing expands the coding capacity of metazoan genes, and it was largely genetic studies in the fruit-fly Drosophila melanogaster that established the principle that regulated alternative splicing results in tissue- and stage-specific protein isoforms with different functions in development. Alternative splicing is particularly prominent in germ cells, muscle and the central nervous system where it modulates the expression of various proteins including cell-surface molecules and transcription factors. Studies in flies have given us numerous insights into alternative splicing in terms of upstream regulation, the exquisite diversity of their forms and the key differential cellular functions of alternatively spliced gene products. The current inundation of transcriptome sequencing data from Drosophila provides an unprecedented opportunity to gain a comprehensive view of alternative splicing.
Collapse
Affiliation(s)
- Julian P Venables
- Université Montpellier 2, UMR 5535, Institut de Génétique Moléculaire de Montpellier, CNRS, 1919 Route de Mende, 34293 Montpellier cedex 05, France
| | | | | |
Collapse
|
38
|
The translation initiation factor eIF4E regulates the sex-specific expression of the master switch gene Sxl in Drosophila melanogaster. PLoS Genet 2011; 7:e1002185. [PMID: 21829374 PMCID: PMC3145617 DOI: 10.1371/journal.pgen.1002185] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 05/20/2011] [Indexed: 11/27/2022] Open
Abstract
In female fruit flies, Sex-lethal (Sxl) turns off the X chromosome dosage compensation system by a mechanism involving a combination of alternative splicing and translational repression of the male specific lethal-2 (msl-2) mRNA. A genetic screen identified the translation initiation factor eif4e as a gene that acts together with Sxl to repress expression of the Msl-2 protein. However, eif4e is not required for Sxl mediated repression of msl-2 mRNA translation. Instead, eif4e functions as a co-factor in Sxl-dependent female-specific alternative splicing of msl-2 and also Sxl pre-mRNAs. Like other factors required for Sxl regulation of splicing, eif4e shows maternal-effect female-lethal interactions with Sxl. This female lethality can be enhanced by mutations in other co-factors that promote female-specific splicing and is caused by a failure to properly activate the Sxl-positive autoregulatory feedback loop in early embryos. In this feedback loop Sxl proteins promote their own synthesis by directing the female-specific alternative splicing of Sxl-Pm pre-mRNAs. Analysis of pre-mRNA splicing when eif4e activity is compromised demonstrates that Sxl-dependent female-specific splicing of both Sxl-Pm and msl-2 pre-mRNAs requires eif4e activity. Consistent with a direct involvement in Sxl-dependent alternative splicing, eIF4E is associated with unspliced Sxl-Pm pre-mRNAs and is found in complexes that contain early acting splicing factors—the U1/U2 snRNP protein Sans-fils (Snf), the U1 snRNP protein U1-70k, U2AF38, U2AF50, and the Wilms' Tumor 1 Associated Protein Fl(2)d—that have been directly implicated in Sxl splicing regulation. Gene expression in eukaryotes is a complex process that occurs in several discrete steps. Some of those steps are separated into different sub-cellular compartments and thus might be expected to occur independently of one another and involve entirely distinct factors. For example pre-mRNA splicing takes place in the nucleus where it is coupled with transcription, while mRNA translation requires export to the cytoplasm and ribosome loading. We describe studies on the fruit fly Drosophila which indicate that a cytoplasmic translation initiation factor, the cap binding protein eIF4E, plays a key role in alternative splicing in the nucleus. When eIF4E activity is compromised, we observe defects in sex-specific splicing of pre-mRNAs that are regulated by the sex determination master switch gene Sex-lethal. Our data argue that eIF4E likely plays a direct role in the regulation of alternative splicing by Sex-lethal.
Collapse
|
39
|
Martín I, Ruiz MF, Sánchez L. The gene transformer-2 of Sciara (Diptera, Nematocera) and its effect on Drosophila sexual development. BMC DEVELOPMENTAL BIOLOGY 2011; 11:19. [PMID: 21406087 PMCID: PMC3068122 DOI: 10.1186/1471-213x-11-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 03/15/2011] [Indexed: 11/29/2022]
Abstract
BACKGROUND The gene transformer-2, which is involved in sex determination, has been studied in Drosophila, Musca, Ceratitis, Anastrepha and Lucilia. All these members of Diptera belong to the suborder Brachycera. In this work, it is reported the isolation and characterisation of genes transformer-2 of the dipterans Sciara ocellaris and Bradysia coprophila (formerly Sciara coprophila), which belong to the much less extensively analysed Sciaridae Family of the Suborder Nematocera, which is paraphyletic with respect to Suborder Brachycera. RESULTS The transformer-2 genes of the studied Sciara species were found to be transcribed in both sexes during development and adult life, in both the soma and germ lines. They produced a single primary transcript, which follows the same alternative splicing in both sexes, giving rise to different mRNAs isoforms. In S. ocellaris the most abundant mRNA isoform encoded a full-length protein of 251 amino acids, while that of B. coprophila encoded a protein of 246 amino acids. Both showed the features of the SR protein family. The less significant mRNA isoforms of both species encoded truncated, presumably non-functional Transformer-2 proteins. The comparison of the functional Sciara Transformer-2 proteins among themselves and those of other insects revealed the greatest degree of conservation in the RRM domain and linker region. In contrast, the RS1 and RS2 domains showed extensive variation with respect to their number of amino acids and their arginine-serine (RS) dipeptide content. The expression of S. ocellaris Transformer-2 protein in Drosophila XX pseudomales lacking the endogenous transformer-2 function caused their partial feminisation. CONCLUSIONS The transformer-2 genes of both Sciaridae species encode a single protein in both sexes that shares the characteristics of the Transformer-2 proteins of other insects. These proteins showed conserved sex-determination function in Drosophila; i.e., they were able to form a complex with the endogenous Drosophila Transformer protein that controls the female-specific splicing of the Drosophila doublesex pre-mRNA. However, it appears that the complex formed between the Drosophila Transformer protein and the Sciara Transformer-2 protein is less effective at inducing the female-specific splicing of the endogenous Drosophila doublesex pre-mRNA than the DrosophilaTransformer-Transformer2 complex. This suggests the existence of species-specific co-evolution of the Transformer and Transformer-2 proteins.
Collapse
Affiliation(s)
- Iker Martín
- Centro de Investigaciones Biológicas (C.S.I.C.), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María F Ruiz
- Centro de Investigaciones Biológicas (C.S.I.C.), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Lucas Sánchez
- NEIKER-TEKNALIA, Berreaga 1, 48160-Derio, Vizcaya, Spain
| |
Collapse
|
40
|
Hartmann B, Castelo R, Miñana B, Peden E, Blanchette M, Rio DC, Singh R, Valcárcel J. Distinct regulatory programs establish widespread sex-specific alternative splicing in Drosophila melanogaster. RNA (NEW YORK, N.Y.) 2011; 17:453-468. [PMID: 21233220 PMCID: PMC3039145 DOI: 10.1261/rna.2460411] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/22/2010] [Indexed: 05/30/2023]
Abstract
In Drosophila melanogaster, female-specific expression of Sex-lethal (SXL) and Transformer (TRA) proteins controls sex-specific alternative splicing and/or translation of a handful of regulatory genes responsible for sexual differentiation and behavior. Recent findings in 2009 by Telonis-Scott et al. document widespread sex-biased alternative splicing in fruitflies, including instances of tissue-restricted sex-specific splicing. Here we report results arguing that some of these novel sex-specific splicing events are regulated by mechanisms distinct from those established by female-specific expression of SXL and TRA. Bioinformatic analysis of SXL/TRA binding sites, experimental analysis of sex-specific splicing in S2 and Kc cells lines and of the effects of SXL knockdown in Kc cells indicate that SXL-dependent and SXL-independent regulatory mechanisms coexist within the same cell. Additional determinants of sex-specific splicing can be provided by sex-specific differences in the expression of RNA binding proteins, including Hrp40/Squid. We report that sex-specific alternative splicing of the gene hrp40/squid leads to sex-specific differences in the levels of this hnRNP protein. The significant overlap between sex-regulated alternative splicing changes and those induced by knockdown of hrp40/squid and the presence of related sequence motifs enriched near subsets of Hrp40/Squid-regulated and sex-regulated splice sites indicate that this protein contributes to sex-specific splicing regulation. A significant fraction of sex-specific splicing differences are absent in germline-less tudor mutant flies. Intriguingly, these include alternative splicing events that are differentially spliced in tissues distant from the germline. Collectively, our results reveal that distinct genetic programs control widespread sex-specific splicing in Drosophila melanogaster.
Collapse
|
41
|
Salvemini M, Polito C, Saccone G. Fruitless alternative splicing and sex behaviour in insects: an ancient and unforgettable love story? J Genet 2011; 89:287-99. [PMID: 20876995 DOI: 10.1007/s12041-010-0040-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Courtship behaviours are common features of animal species that reproduce sexually. Typically, males are involved in courting females. Insects display an astonishing variety of courtship strategies primarily based on innate stereotyped responses to various external stimuli. In Drosophila melanogaster, male courtship requires proteins encoded by the fruitless (fru) gene that are produced in different sex-specific isoforms via alternative splicing. Drosophila mutant flies with loss-of-function alleles of the fru gene exhibit blocked male courtship behaviour. However, various individual steps in the courtship ritual are disrupted in fly strains carrying different fru alleles. These findings suggest that fru is required for specific steps in courtship. In distantly related insect species, various fru paralogues were isolated, which shows conservation of sex-specific alternative splicing and protein expression in neural tissues and suggests an evolutionary functional conservation of fru in the control of male-specific courtship behaviour. In this review, we report the seminal findings regarding the fru gene, its splicing regulation and evolution in insects.
Collapse
Affiliation(s)
- Marco Salvemini
- Department of Biological Sciences, University of Naples Federico II, 80134, Naples, Italy
| | | | | |
Collapse
|
42
|
de Almagro MC, Mencia N, Noé V, Ciudad CJ. Coding polypurine hairpins cause target-induced cell death in breast cancer cells. Hum Gene Ther 2011; 22:451-63. [PMID: 20942657 DOI: 10.1089/hum.2010.102] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Polypurine reverse-Hoogsteen hairpins (PPRHs) are double-stranded DNA molecules formed by two polypurine stretches linked by a pentathymidine loop, with intramolecular reverse-Hoogsteen bonds that allow a hairpin structure. PPRHs bind to polypyrimidine targets by Watson-Crick bonds maintaining simultaneously a hairpin structure due to intramolecular Hoogsteen bonds. Previously, we described the ability of Template-PPRHs to decrease mRNA levels because these PPRHs target the template DNA strand interfering with the transcription process. Now, we designed Coding-PPRHs, a new type of PPRHs that directly target the pre-mRNA. The dihydrofolate reductase (dhfr) gene was selected as a target in breast cancer therapy. These PPRHs caused a high degree of cytotoxicity and a decrease in DHFR mRNA and protein levels, but by a different mechanism of action than Template-PPRHs. Coding-PPRHs interfere with the splicing process by competing with U2 auxiliary factor 65 for binding to the polypyrimidine target sequence, leading to a lower amount of mature mRNA. These new PPRHs showed high specificity as no off-target effects were found. The application of these molecules as therapeutic tools was tested in breast cancer cells resistant to methotrexate, obtaining a noticeable cytotoxicity even though the dhfr locus was amplified. Coding-PPRHs can be considered as new molecules to decrease gene expression at the mRNA level and an alternative to other antisense molecules.
Collapse
Affiliation(s)
- M Cristina de Almagro
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, E-08028 Barcelona, Spain
| | | | | | | |
Collapse
|
43
|
Cheng Y, Wang J, Shao J, Chen Q, Mo F, Ma L, Han X, Zhang J, Chen C, Zhang C, Lin S, Yu J, Zheng S, Lin SC, Lin B. Identification of novel SNPs by next-generation sequencing of the genomic region containing the APC gene in colorectal cancer patients in China. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:315-25. [PMID: 20569184 DOI: 10.1089/omi.2010.0018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We described an approach of identifying single nucleotide polymorphisms (SNPs) in complete genomic regions of key genes including promoters, exons, introns, and downstream sequences by combining long-range polymerase chain reaction (PCR) or NimbleGen sequence capture with next-generation sequencing. Using the adenomatous polyposis coli (APC) gene as an example, we identified 210 highly reliable SNPs by next-generation sequencing analysis program MAQ and Samtools, of which 69 were novel ones, in the 123-kb APC genomic region in 27 pair of colorectal cancers and normal adjacent tissues. We confirmed all of the eight randomly selected high-quality SNPs by allele-specific PCR, suggesting that our false discovery rate is negligible. We identified 11 SNPs in the exonic region, including one novel SNP that was not previously reported. Although 10 of them are synonymous, they were predicted to affect splicing by creating or removing exonic splicing enhancers or exonic splicing silencers. We also identified seven SNPs in the upstream region of the APC gene, three of which were only identified in the cancer tissues. Six of these upstream SNPs were predicted to affect transcription factor binding. We also observed that long-range PCR was better in capturing GC-rich regions than the NimbleGen sequence capture technique.
Collapse
Affiliation(s)
- Yin Cheng
- Systems Biology Division, Zhejiang-California International Nanosystems Institute (ZCNI), Zhejiang University, Hangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Shukla JN, Nagaraju J. Doublesex: a conserved downstream gene controlled by diverse upstream regulators. J Genet 2010; 89:341-56. [DOI: 10.1007/s12041-010-0046-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
45
|
Shukla JN, Jadhav S, Nagaraju J. Novel female-specific splice form of dsx in the silkworm, Bombyx mori. Genetica 2010; 139:23-31. [PMID: 20714790 DOI: 10.1007/s10709-010-9479-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 07/29/2010] [Indexed: 11/28/2022]
Abstract
The Bombyx mori doublesex (Bmdsx), a homologue of doublesex of Drosophila, is the bottom most gene of the sex determination cascade. Bmdsx plays a very crucial role in somatic sexual development. Its pre-mRNA sex-specifically splices to generate two splice variants; one encodes female-specific and the other encodes male-specific polypeptides which differ only at their C-termini. The open reading frame of Bmdsx consists of 5 exons, of which exons 3 and 4 are female-specific and are skipped in males. In the present study, we have identified a third splice form of the Bmdsx which is specific only to females and differs from the previously reported Bmdsxf isoform by the presence of 15 bp sequence. This new female splice form is generated as a result of alternative 5' splice site selection in the third exon adding additional 15 bp sequence in exon 3 which results in alteration of the reading frame leading to incorporation of an early stop codon. Thus the protein encoded by this splice form is 20 aa shorter than the known BmDsxF. Initial results obtained from the study of dsx homologues in Saturniid silkmoths suggest that both the female-specific Dsx proteins are essential for female sexual differentiation. It remains to be seen whether female-specific multiple splice forms of dsx are characteristic feature of only silkmoths or widespread among lepidopterans. The findings that sex determination mechanism is unique in lepidopterans offer an opportunity to develop genetic sexing methods in beneficial as well as economically destructive lepidopteran pests.
Collapse
Affiliation(s)
- Jayendra Nath Shukla
- Centre of Excellence for Genetics and Genomics of Silkmoths, Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, Tuljaguda, Nampally, Hyderabad, 500001, India
| | | | | |
Collapse
|
46
|
Insect sex determination: it all evolves around transformer. Curr Opin Genet Dev 2010; 20:376-83. [DOI: 10.1016/j.gde.2010.05.001] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 04/23/2010] [Accepted: 05/04/2010] [Indexed: 01/20/2023]
|
47
|
A flexible RNA backbone within the polypyrimidine tract is required for U2AF65 binding and pre-mRNA splicing in vivo. Mol Cell Biol 2010; 30:4108-19. [PMID: 20606010 DOI: 10.1128/mcb.00531-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The polypyrimidine tract near the 3' splice site is important for pre-mRNA splicing. Using pseudouridine incorporation and in vivo RNA-guided RNA pseudouridylation, we have identified two important uridines in the polypyrimidine tract of adenovirus pre-mRNA. Conversion of either uridine into pseudouridine leads to a splicing defect in Xenopus oocytes. Using a variety of molecular biology methodologies, we show that the splicing defect is due to the failure of U2AF(65) to recognize the pseudouridylated polypyrimidine tract. This negative impact on splicing is pseudouridine specific, as no effect is observed when the uridine is changed to other naturally occurring nucleotides. Given that pseudouridine favors a C-3'-endo structure, our results suggest that it is backbone flexibility that is key to U2AF binding. Indeed, locking the key uridine in the C-3'-endo configuration while maintaining its uridine identity blocks U2AF(65) binding and splicing. This pseudouridine effect can also be applied to other pre-mRNA polypyrimidine tracts. Thus, our work demonstrates that in vivo binding of U2AF(65) to a polypyrimidine tract requires a flexible RNA backbone.
Collapse
|
48
|
Nlend Nlend R, Meyer K, Schümperli D. Repair of pre-mRNA splicing: prospects for a therapy for spinal muscular atrophy. RNA Biol 2010; 7:430-40. [PMID: 20523126 DOI: 10.4161/rna.7.4.12206] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Recent analyses of complete genomes have revealed that alternative splicing became more prevalent and important during eukaryotic evolution. Alternative splicing augments the protein repertoire--particularly that of the human genome--and plays an important role in the development and function of differentiated cell types. However, splicing is also extremely vulnerable, and defects in the proper recognition of splicing signals can give rise to a variety of diseases. In this review, we discuss splicing correction therapies, by using the inherited disease Spinal Muscular Atrophy (SMA) as an example. This lethal early childhood disorder is caused by deletions or other severe mutations of SMN1, a gene coding for the essential survival of motoneurons protein. A second gene copy present in humans and few non-human primates, SMN2, can only partly compensate for the defect because of a single nucleotide change in exon 7 that causes this exon to be skipped in the majority of mRNAs. Thus SMN2 is a prime therapeutic target for SMA. In recent years, several strategies based on small molecule drugs, antisense oligonucleotides or in vivo expressed RNAs have been developed that allow a correction of SMN2 splicing. For some of these, a therapeutic benefit has been demonstrated in mouse models for SMA. This means that clinical trials of such splicing therapies for SMA may become possible in the near future.
Collapse
|
49
|
Sarno F, Ruiz MF, Eirín-López JM, Perondini ALP, Selivon D, Sánchez L. The gene transformer-2 of Anastrepha fruit flies (Diptera, Tephritidae) and its evolution in insects. BMC Evol Biol 2010; 10:140. [PMID: 20465812 PMCID: PMC2885393 DOI: 10.1186/1471-2148-10-140] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 05/13/2010] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND In the tephritids Ceratitis, Bactrocera and Anastrepha, the gene transformer provides the memory device for sex determination via its auto-regulation; only in females is functional Tra protein produced. To date, the isolation and characterisation of the gene transformer-2 in the tephritids has only been undertaken in Ceratitis, and it has been shown that its function is required for the female-specific splicing of doublesex and transformer pre-mRNA. It therefore participates in transformer auto-regulatory function. In this work, the characterisation of this gene in eleven tephritid species belonging to the less extensively analysed genus Anastrepha was undertaken in order to throw light on the evolution of transformer-2. RESULTS The gene transformer-2 produces a protein of 249 amino acids in both sexes, which shows the features of the SR protein family. No significant partially spliced mRNA isoform specific to the male germ line was detected, unlike in Drosophila. It is transcribed in both sexes during development and in adult life, in both the soma and germ line. The injection of Anastrepha transformer-2 dsRNA into Anastrepha embryos caused a change in the splicing pattern of the endogenous transformer and doublesex pre-mRNA of XX females from the female to the male mode. Consequently, these XX females were transformed into pseudomales. The comparison of the eleven Anastrepha Transformer-2 proteins among themselves, and with the Transformer-2 proteins of other insects, suggests the existence of negative selection acting at the protein level to maintain Transformer-2 structural features. CONCLUSIONS These results indicate that transformer-2 is required for sex determination in Anastrepha through its participation in the female-specific splicing of transformer and doublesex pre-mRNAs. It is therefore needed for the auto-regulation of the gene transformer. Thus, the transformer/transfomer-2 > doublesex elements at the bottom of the cascade, and their relationships, probably represent the ancestral state (which still exists in the Tephritidae, Calliphoridae and Muscidae lineages) of the extant cascade found in the Drosophilidae lineage (in which tra is just another component of the sex determination gene cascade regulated by Sex-lethal). In the phylogenetic lineage that gave rise to the drosophilids, evolution co-opted for Sex-lethal, modified it, and converted it into the key gene controlling sex determination.
Collapse
Affiliation(s)
- Francesca Sarno
- Centro de Investigaciones Biológicas (C.S.I.C.), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María F Ruiz
- Centro de Investigaciones Biológicas (C.S.I.C.), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - José M Eirín-López
- CHROMEVOL-XENOMAR Group, Departamento de Biología Celular y Molecular, Universidade da Coruña, 15071 A Coruña, Spain
| | - André LP Perondini
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-0900 Sao Paulo, Brazil
| | - Denise Selivon
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-0900 Sao Paulo, Brazil
| | - Lucas Sánchez
- Centro de Investigaciones Biológicas (C.S.I.C.), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
50
|
Abstract
The collection of components required to carry out the intricate processes involved in generating and maintaining a living, breathing and, sometimes, thinking organism is staggeringly complex. Where do all of the parts come from? Early estimates stated that about 100,000 genes would be required to make up a mammal; however, the actual number is less than one-quarter of that, barely four times the number of genes in budding yeast. It is now clear that the 'missing' information is in large part provided by alternative splicing, the process by which multiple different functional messenger RNAs, and therefore proteins, can be synthesized from a single gene.
Collapse
|