1
|
Mitra R, Richhariya S, Hasan G. Orai-mediated calcium entry determines activity of central dopaminergic neurons by regulation of gene expression. eLife 2024; 12:RP88808. [PMID: 38289659 PMCID: PMC10945566 DOI: 10.7554/elife.88808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Maturation and fine-tuning of neural circuits frequently require neuromodulatory signals that set the excitability threshold, neuronal connectivity, and synaptic strength. Here, we present a mechanistic study of how neuromodulator-stimulated intracellular Ca2+ signals, through the store-operated Ca2+ channel Orai, regulate intrinsic neuronal properties by control of developmental gene expression in flight-promoting central dopaminergic neurons (fpDANs). The fpDANs receive cholinergic inputs for release of dopamine at a central brain tripartite synapse that sustains flight (Sharma and Hasan, 2020). Cholinergic inputs act on the muscarinic acetylcholine receptor to stimulate intracellular Ca2+ release through the endoplasmic reticulum (ER) localised inositol 1,4,5-trisphosphate receptor followed by ER-store depletion and Orai-mediated store-operated Ca2+ entry (SOCE). Analysis of gene expression in fpDANs followed by genetic, cellular, and molecular studies identified Orai-mediated Ca2+ entry as a key regulator of excitability in fpDANs during circuit maturation. SOCE activates the transcription factor trithorax-like (Trl), which in turn drives expression of a set of genes, including Set2, that encodes a histone 3 lysine 36 methyltransferase (H3K36me3). Set2 function establishes a positive feedback loop, essential for receiving neuromodulatory cholinergic inputs and sustaining SOCE. Chromatin-modifying activity of Set2 changes the epigenetic status of fpDANs and drives expression of key ion channel and signalling genes that determine fpDAN activity. Loss of activity reduces the axonal arborisation of fpDANs within the MB lobe and prevents dopamine release required for the maintenance of long flight.
Collapse
Affiliation(s)
- Rishav Mitra
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| | - Shlesha Richhariya
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| |
Collapse
|
2
|
Chen CK, Kawano T, Yanagisawa M, Hayashi Y. Forward genetic screen of Caenorhabditis elegans mutants with impaired sleep reveals a crucial role of neuronal diacylglycerol kinase DGK-1 in regulating sleep. Genetics 2023; 225:iyad140. [PMID: 37682636 DOI: 10.1093/genetics/iyad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/19/2023] [Indexed: 09/10/2023] Open
Abstract
The sleep state is widely observed in animals. The molecular mechanisms underlying sleep regulation, however, remain largely unclear. In the nematode Caenorhabditis elegans, developmentally timed sleep (DTS) and stress-induced sleep (SIS) are 2 types of quiescent behaviors that fulfill the definition of sleep and share conserved sleep-regulating molecules with mammals. To identify novel sleep-regulating molecules, we conducted an unbiased forward genetic screen based on DTS phenotypes. We isolated 2 mutants, rem8 and rem10, that exhibited significantly disrupted DTS and SIS. The causal gene of the abnormal sleep phenotypes in both mutants was mapped to dgk-1, which encodes diacylglycerol kinase. Perhaps due to the diminished SIS, dgk-1 mutant worms exhibited decreased survival following exposure to a noxious stimulus. Pan-neuronal and/or cholinergic expression of dgk-1 partly rescued the dgk-1 mutant defects in DTS, SIS, and post-stress survival. Moreover, we revealed that pkc-1/nPKC participates in sleep regulation and counteracts the effect of dgk-1; the reduced DTS, SIS, and post-stress survival rate were partly suppressed in the pkc-1; dgk-1 double mutant compared with the dgk-1 single mutant. Excessive sleep observed in the pkc-1 mutant was also suppressed in the pkc-1; dgk-1 double mutant, implying that dgk-1 has a complicated mode of action. Our findings indicate that neuronal DGK-1 is essential for normal sleep and that the counterbalance between DGK-1 and PKC-1 is crucial for regulating sleep and mitigating post-stress damage.
Collapse
Affiliation(s)
- Chung-Kuan Chen
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Taizo Kawano
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Life Science Center for Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
3
|
Stanhope SC, Brandwine-Shemmer T, Blum HR, Doud EH, Jannasch A, Mosley AL, Minke B, Weake VM. Proteome-wide quantitative analysis of redox cysteine availability in the Drosophila melanogaster eye reveals oxidation of phototransduction machinery during blue light exposure and age. Redox Biol 2023; 63:102723. [PMID: 37146512 DOI: 10.1016/j.redox.2023.102723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023] Open
Abstract
The retina is one of the highest oxygen-consuming tissues because visual transduction and light signaling processes require large amounts of ATP. Thus, because of the high energy demand, oxygen-rich environment, and tissue transparency, the eye is susceptible to excess production of reactive oxygen species (ROS) resulting in oxidative stress. Oxidative stress in the eye is associated with the development and progression of ocular diseases including cataracts, glaucoma, age-related macular degeneration, and diabetic retinopathy. ROS can modify and damage cellular proteins, but can also be involved in redox signaling. In particular, the thiol groups of cysteines can undergo reversible or irreversible oxidative post-translational modifications (PTMs). Identifying the redox-sensitive cysteines on a proteome-wide scale provides insight into those proteins that act as redox sensors or become irreversibly damaged upon exposure to oxidative stress. In this study, we profiled the redox proteome of the Drosophila eye under prolonged, high intensity blue light exposure and age using iodoacetamide isobaric label sixplex reagents (iodo-TMT) to identify changes in cysteine availability. Although redox metabolite analysis of the major antioxidant, glutathione, revealed similar ratios of its oxidized and reduced form in aged or light-stressed eyes, we observed different changes in the redox proteome under these conditions. Both conditions resulted in significant oxidation of proteins involved in phototransduction and photoreceptor maintenance but affected distinct targets and cysteine residues. Moreover, redox changes induced by blue light exposure were accompanied by a large reduction in light sensitivity that did not arise from a reduction in the photopigment level, suggesting that the redox-sensitive cysteines we identified in the phototransduction machinery might contribute to light adaptation. Our data provide a comprehensive description of the redox proteome of Drosophila eye tissue under light stress and aging and suggest how redox signaling might contribute to light adaptation in response to acute light stress.
Collapse
Affiliation(s)
- Sarah C Stanhope
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Tal Brandwine-Shemmer
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada (IMRIC), Edmond and Lily Safra Center for Brain Sciences (ELSC), Faculty of Medicine, The Hebrew University, Jerusalem, 91120, Israel
| | - Hannah R Blum
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Emma H Doud
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Amber Jannasch
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Amber L Mosley
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Baruch Minke
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada (IMRIC), Edmond and Lily Safra Center for Brain Sciences (ELSC), Faculty of Medicine, The Hebrew University, Jerusalem, 91120, Israel
| | - Vikki M Weake
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
4
|
Križaj D, Cordeiro S, Strauß O. Retinal TRP channels: Cell-type-specific regulators of retinal homeostasis and multimodal integration. Prog Retin Eye Res 2023; 92:101114. [PMID: 36163161 PMCID: PMC9897210 DOI: 10.1016/j.preteyeres.2022.101114] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 02/05/2023]
Abstract
Transient receptor potential (TRP) channels are a widely expressed family of 28 evolutionarily conserved cationic ion channels that operate as primary detectors of chemical and physical stimuli and secondary effectors of metabotropic and ionotropic receptors. In vertebrates, the channels are grouped into six related families: TRPC, TRPV, TRPM, TRPA, TRPML, and TRPP. As sensory transducers, TRP channels are ubiquitously expressed across the body and the CNS, mediating critical functions in mechanosensation, nociception, chemosensing, thermosensing, and phototransduction. This article surveys current knowledge about the expression and function of the TRP family in vertebrate retinas, which, while dedicated to transduction and transmission of visual information, are highly susceptible to non-visual stimuli. Every retinal cell expresses multiple TRP subunits, with recent evidence establishing their critical roles in paradigmatic aspects of vertebrate vision that include TRPM1-dependent transduction of ON bipolar signaling, TRPC6/7-mediated ganglion cell phototransduction, TRP/TRPL phototransduction in Drosophila and TRPV4-dependent osmoregulation, mechanotransduction, and regulation of inner and outer blood-retina barriers. TRP channels tune light-dependent and independent functions of retinal circuits by modulating the intracellular concentration of the 2nd messenger calcium, with emerging evidence implicating specific subunits in the pathogenesis of debilitating diseases such as glaucoma, ocular trauma, diabetic retinopathy, and ischemia. Elucidation of TRP channel involvement in retinal biology will yield rewards in terms of fundamental understanding of vertebrate vision and therapeutic targeting to treat diseases caused by channel dysfunction or over-activation.
Collapse
Affiliation(s)
- David Križaj
- Departments of Ophthalmology, Neurobiology, and Bioengineering, University of Utah, Salt Lake City, USA
| | - Soenke Cordeiro
- Institute of Physiology, Faculty of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Olaf Strauß
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität, Humboldt-University, The Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
5
|
Vitamin A Deficiency Alters the Phototransduction Machinery and Distinct Non-Vision-Specific Pathways in the Drosophila Eye Proteome. Biomolecules 2022; 12:biom12081083. [PMID: 36008977 PMCID: PMC9405971 DOI: 10.3390/biom12081083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
The requirement of vitamin A for the synthesis of the visual chromophore and the light-sensing pigments has been studied in vertebrate and invertebrate model organisms. To identify the molecular mechanisms that orchestrate the ocular response to vitamin A deprivation, we took advantage of the fact that Drosophila melanogaster predominantly requires vitamin A for vision, but not for development or survival. We analyzed the impacts of vitamin A deficiency on the morphology, the lipidome, and the proteome of the Drosophila eye. We found that chronic vitamin A deprivation damaged the light-sensing compartments and caused a dramatic loss of visual pigments, but also decreased the molar abundance of most phototransduction proteins that amplify and transduce the visual signal. Unexpectedly, vitamin A deficiency also decreased the abundances of specific subunits of mitochondrial TCA cycle and respiratory chain components but increased the levels of cuticle- and lens-related proteins. In contrast, we found no apparent effects of vitamin A deficiency on the ocular lipidome. In summary, chronic vitamin A deficiency decreases the levels of most components of the visual signaling pathway, but also affects molecular pathways that are not vision-specific and whose mechanistic connection to vitamin A remains to be elucidated.
Collapse
|
6
|
Song Z, Zhou Y, Feng J, Juusola M. Multiscale 'whole-cell' models to study neural information processing - New insights from fly photoreceptor studies. J Neurosci Methods 2021; 357:109156. [PMID: 33775669 DOI: 10.1016/j.jneumeth.2021.109156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 11/26/2022]
Abstract
Understanding a neuron's input-output relationship is a longstanding challenge. Arguably, these signalling dynamics can be better understood if studied at three levels of analysis: computational, algorithmic and implementational (Marr, 1982). But it is difficult to integrate such analyses into a single platform that can realistically simulate neural information processing. Multiscale dynamical "whole-cell" modelling, a recent systems biology approach, makes this possible. Dynamical "whole-cell" models are computational models that aim to account for the integrated function of numerous genes or molecules to behave like virtual cells in silico. However, because constructing such models is laborious, only a couple of examples have emerged since the first one, built for Mycoplasma genitalium bacterium, was reported in 2012. Here, we review dynamic "whole-cell" neuron models for fly photoreceptors and how these have been used to study neural information processing. Specifically, we review how the models have helped uncover the mechanisms and evolutionary rules of quantal light information sampling and integration, which underlie light adaptation and further improve our understanding of insect vision.
Collapse
Affiliation(s)
- Zhuoyi Song
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China; Zhangjiang Fudan International Innovation Center, Shanghai, China.
| | - Yu Zhou
- School of Computing, Engineering and Physical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China; MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China; Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Mikko Juusola
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
7
|
Chen C, Wang H, Liu Z, Chen X, Tang J, Meng F, Shi W. Population Genomics Provide Insights into the Evolution and Adaptation of the Eastern Honey Bee (Apis cerana). Mol Biol Evol 2020; 35:2260-2271. [PMID: 29931308 PMCID: PMC6107058 DOI: 10.1093/molbev/msy130] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mechanisms by which organisms adapt to variable environments are a fundamental question in evolutionary biology and are important to protect important species in response to a changing climate. An interesting candidate to study this question is the honey bee Apis cerana, a keystone pollinator with a wide distribution throughout a large variety of climates, that exhibits rapid dispersal. Here, we resequenced the genome of 180 A. cerana individuals from 18 populations throughout China. Using a population genomics approach, we observed considerable genetic variation in A. cerana. Patterns of genetic differentiation indicate high divergence at the subspecies level, and physical barriers rather than distance are the driving force for population divergence. Estimations of divergence time suggested that the main branches diverged between 300 and 500 Ka. Analyses of the population history revealed a substantial influence of the Earth's climate on the effective population size of A. cerana, as increased population sizes were observed during warmer periods. Further analyses identified candidate genes under natural selection that are potentially related to honey bee cognition, temperature adaptation, and olfactory. Based on our results, A. cerana may have great potential in response to climate change. Our study provides fundamental knowledge of the evolution and adaptation of A. cerana.
Collapse
Affiliation(s)
- Chao Chen
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing, China
| | - Huihua Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiguang Liu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiao Chen
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiao Tang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fanming Meng
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Wei Shi
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing, China
| |
Collapse
|
8
|
Light-Induced Opening of the TRP Channel in Isolated Membrane Patches Excised from Photosensitive Microvilli from Drosophila Photoreceptors. Neuroscience 2018; 396:66-72. [PMID: 30458219 DOI: 10.1016/j.neuroscience.2018.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 11/20/2022]
Abstract
Drosophila phototransduction occurs in light-sensitive microvilli arranged in a longitudinal structure of the photoreceptor, termed the rhabdomere. Rhodopsin (Rh), isomerized by light, couples to G-protein, which activates phospholipase C (PLC), which in turn cleaves phosphatidylinositol 4,5-bisphosphate (PIP2) generating diacylglycerol (DAG), inositol trisphosphate and H+. This pathway opens the light-dependent channels, transient receptor potential (TRP) and transient receptor potential like (TRPL). PLC and TRP are held together in a protein assembly by the scaffold protein INAD. We report that the channels can be photoactivated in on-cell rhabdomeric patches and in excised patches by DAG. In excised patches, addition of PLC-activator, m-3M3FBS, or G-protein-activator, GTP-γ-S, opened TRP. These reagents were ineffective in PLC-mutant norpA and in the presence of PLC inhibitor U17322. However, DAG activated TRP even when PLC was pharmacologically or mutationally suppressed. These observations indicate that PLC, G-protein, and TRP were retained functional in these patches. DAG also activated TRP in the protein kinase C (PKC) mutant, inaC, excluding the possibility that PKC could mediate DAG-dependent TRP activation. Labeling diacylglycerol kinase (DGK) by fusion of fluorescent mCherry (mCherry-DGK) indicates that DGK, which returns DAG to dark levels, is highly expressed in the microvilli. In excised patches, TRP channels could be light-activated in the presence of GTP, which is required for G-protein activation. The evidence indicates that the proteins necessary for phototransduction are retained functionally after excision and that DAG is necessary and sufficient for TRP opening. This work opens up unique possibilities for studying, in sub-microscopic native membrane patches, the ubiquitous phosphoinositide signaling pathway and its regulatory mechanisms in unprecedented detail.
Collapse
|
9
|
Assessing the relevance of light for fungi: Implications and insights into the network of signal transmission. ADVANCES IN APPLIED MICROBIOLOGY 2016; 76:27-78. [PMID: 21924971 DOI: 10.1016/b978-0-12-387048-3.00002-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Light represents an important environmental cue, which provides information enabling fungi to prepare and react to the different ambient conditions between day and night. This adaptation requires both anticipation of the changing conditions, which is accomplished by daily rhythmicity of gene expression brought about by the circadian clock, and reaction to sudden illumination. Besides perception of the light signal, also integration of this signal with other environmental cues, most importantly nutrient availability, necessitates light-dependent regulation of signal transduction pathways and metabolic pathways. An influence of light and/or the circadian clock is known for the cAMP pathway, heterotrimeric G-protein signaling, mitogen-activated protein kinases, two-component phosphorelays, and Ca(2+) signaling. Moreover, also the target of rapamycin signaling pathway and reactive oxygen species as signal transducing elements are assumed to be connected to the light-response pathway. The interplay of the light-response pathway with signaling cascades results in light-dependent regulation of primary and secondary metabolism, morphology, development, biocontrol activity, and virulence. The frequent use of fungi in biotechnology as well as analysis of fungi in the artificial environment of a laboratory therefore requires careful consideration of still operative evolutionary heritage of these organisms. This review summarizes the diverse effects of light on fungi and the mechanisms they apply to deal both with the information content and with the harmful properties of light. Additionally, the implications of the reaction of fungi to light in a laboratory environment for experimental work and industrial applications are discussed.
Collapse
|
10
|
Ressurreição M, Kirk RS, Rollinson D, Emery AM, Page NM, Walker AJ. Sensory Protein Kinase Signaling in Schistosoma mansoni Cercariae: Host Location and Invasion. J Infect Dis 2015; 212:1787-97. [PMID: 26401028 PMCID: PMC4633769 DOI: 10.1093/infdis/jiv464] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/11/2015] [Indexed: 11/16/2022] Open
Abstract
Schistosoma mansoni cercariae display specific behavioral responses to abiotic/biotic stimuli enabling them to locate and infect the definitive human host. Here we report the effect of such stimulants on signaling pathways of cercariae in relation to host finding and invasion. Cercariae exposed to various light/temperature regimens displayed modulated protein kinase C (PKC), extracellular signal–regulated kinase (ERK) and p38 mitogen-activated protein kinase (p38 MAPK) activities, with distinct responses at 37°C and intense light/dark, when compared to 24°C under normal light. Kinase activities were localized to regions including the oral sensory papillae, acetabular ducts, tegument, acetabular glands, and nervous system. Furthermore, linoleic acid modulated PKC and ERK activities concurrent with the temporal release of acetabular gland components. Attenuation of PKC, ERK, and p38 MAPK activities significantly reduced gland component release, particularly in response to linoleic acid, demonstrating the importance of these signaling pathways to host penetration mechanisms.
Collapse
Affiliation(s)
- Margarida Ressurreição
- Molecular Parasitology Laboratory, School of Life Sciences, Kingston University, Kingston Upon Thames
| | - Ruth S Kirk
- Molecular Parasitology Laboratory, School of Life Sciences, Kingston University, Kingston Upon Thames
| | - David Rollinson
- Department of Life Sciences, The Natural History Museum, London, United Kingdom
| | - Aidan M Emery
- Department of Life Sciences, The Natural History Museum, London, United Kingdom
| | - Nigel M Page
- Molecular Parasitology Laboratory, School of Life Sciences, Kingston University, Kingston Upon Thames
| | - Anthony J Walker
- Molecular Parasitology Laboratory, School of Life Sciences, Kingston University, Kingston Upon Thames
| |
Collapse
|
11
|
Hu W, Wang T, Wang X, Han J. Ih channels control feedback regulation from amacrine cells to photoreceptors. PLoS Biol 2015; 13:e1002115. [PMID: 25831426 PMCID: PMC4382183 DOI: 10.1371/journal.pbio.1002115] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/23/2015] [Indexed: 12/02/2022] Open
Abstract
In both vertebrates and invertebrates, photoreceptors’ output is regulated by feedback signals from interneurons that contribute to several important visual functions. Although synaptic feedback regulation of photoreceptors is known to occur in Drosophila, many questions about the underlying molecular mechanisms and physiological implementation remain unclear. Here, we systematically investigated these questions using a broad range of experimental methods. We isolated two Ih mutant fly lines that exhibit rhythmic photoreceptor depolarization without light stimulation. We discovered that Ih channels regulate glutamate release from amacrine cells by modulating calcium channel activity. Moreover, we showed that the eye-enriched kainate receptor (EKAR) is expressed in photoreceptors and receives the glutamate signal released from amacrine cells. Finally, we presented evidence that amacrine cell feedback regulation helps maintain light sensitivity in ambient light. Our findings suggest plausible molecular underpinnings and physiological effects of feedback regulation from amacrine cells to photoreceptors. These results provide new mechanistic insight into how synaptic feedback regulation can participate in network processing by modulating neural information transfer and circuit excitability. A systematic study of the Drosophila visual system clarifies the molecular mechanisms and physiological effects of feedback regulation of photoreceptors by amacrine cells, essential for maintaining light sensitivity. Feedback regulation is a common feature of neural circuits during the process of acquiring information. Therefore, it is important to understand how this phenomenon occurs. Using the primary visual system of the fruit fly Drosophila melanogaster as a model, we systematically investigated the molecular mechanisms and the physiological implementation of feedback regulation from amacrine cells (second order neurons that are present in the lamina) to photoreceptors. We isolated two fly lines with mutations in the gene that encodes for the ion channel known as Ih, whose photoreceptors exhibited rhythmic depolarizations in the absence of light stimulation. We demonstrated that Ih channels function in amacrine cells to regulate the release of the neurotransmitter glutamate by modulating the activity of the voltage-gated calcium channel, Cac. We further found that the glutamate signal released by amacrine cells is sensed and transduced by glutamate receptors expressed by the photoreceptors. Finally, we showed that this feedback regulation is critical for maintaining light sensitivity in the presence of ambient light. Our results suggest that regulation of synaptic feedback in a neuronal network modulates information transfer and circuit excitability.
Collapse
Affiliation(s)
- Wen Hu
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tingting Wang
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiao Wang
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Junhai Han
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- * E-mail:
| |
Collapse
|
12
|
Abstract
This is the first of two reviews that include some of the studies that we, members of the Pak lab and collaborators, carried out from 1998 to 2010 on the functional and physical interactions among several Drosophila phototransduction components. The report includes our studies on the regulations and/or the functions of arrestin II (Arr2), norpA (PLC), inactivation no afterpotential D (INAD), transient receptor potential (TRP), TRP-like (TRPL), inactivation no afterpotential E (INAE), and Porin.
Collapse
Affiliation(s)
- Hung-Tat Leung
- Department of Biological Sciences, Grambling State University, 403 Main St., Grambling, LA 71245, USA.
| | | | | |
Collapse
|
13
|
Pak WL, Shino S, Leung HT. PDA (prolonged depolarizing afterpotential)-defective mutants: the story of nina's and ina's--pinta and santa maria, too. J Neurogenet 2012; 26:216-37. [PMID: 22283778 PMCID: PMC3433705 DOI: 10.3109/01677063.2011.642430] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Our objective is to present a comprehensive view of the PDA (prolonged depolarizing afterpotential)-defective Drosophila mutants, nina's and ina's, from the discussion of the PDA and the PDA-based mutant screening strategy to summaries of the knowledge gained through the studies of mutants generated using the strategy. The PDA is a component of the light-evoked photoreceptor potential that is generated when a substantial fraction of rhodopsin is photoconverted to its active form, metarhodopsin. The PDA-based mutant screening strategy was adopted to enhance the efficiency and efficacy of ERG (electroretinogram)-based screening for identifying phototransduction-defective mutants. Using this strategy, two classes of PDA-defective mutants were identified and isolated, nina and ina, each comprising multiple complementation groups. The nina mutants are characterized by allele-dependent reduction in the major rhodopsin, Rh1, whereas the ina mutants display defects in some aspects of functions related to the transduction channel, TRP (transient receptor potential). The signaling proteins that have been identified and elucidated through the studies of nina mutants include the Drosophila opsin protein (NINAE), the chaperone protein for nascent opsin (NINAA), and the multifunctional protein, NINAC, required in multiple steps of the Drosophila phototransduction cascade. Also identified by the nina mutants are some of the key enzymes involved in the biogenesis of the rhodopsin chromophore. As for the ina mutants, they led to the discovery of the scaffold protein, INAD, responsible for the nucleation of the supramolecular signaling complex. Also identified by the ina mutants is one of the key members of the signaling complex, INAC (ePKC), and two other proteins that are likely to be important, though their roles in the signaling cascade have not yet been fully elucidated. In most of these cases, the protein identified is the first member of its class to be so recognized.
Collapse
Affiliation(s)
- William L Pak
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA.
| | | | | |
Collapse
|
14
|
Pak WL, Leung HT. Genetic Approaches to Visual Transduction in Drosophila melanogaster. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820308242] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Hardie RC. Phototransduction mechanisms in Drosophila microvillar photoreceptors. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/wmts.20] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Abstract
Inherited retinal degeneration in Drosophila has been explored for insights into similar processes in humans. Based on the mechanisms, I divide these mutations in Drosophila into three classes. The first consists of genes that control the specialization of photoreceptor cells including the morphogenesis of visual organelles (rhabdomeres) that house the visual signaling proteins. The second class contains genes that regulate the activity or level of the major rhodopsin, Rh1, which is the light sensor and also provides a structural role for the maintenance of rhabdomeres. Some mutations in Rh1 (NinaE) are dominant due to constitutive activity or folding defects, like autosomal dominant retinitis pigmentosa (ADRP) in humans. The third class consists of genes that control the Ca ( 2+) influx directly or indirectly by promoting the turnover of the second messenger and regeneration of PIP 2, or mediate the Ca ( 2+) -dependent regulation of the visual response. These gene products are critical for the increase in cytosolic Ca ( 2+ ) following light stimulation to initiate negative regulatory events. Here I will focus on the signaling mechanisms underlying the degeneration in norpA, and in ADRP-type NinaE mutants that produce misfolded Rh1. Accumulation of misfolded Rh1 in the ER triggers the unfolded protein response (UPR), while endosomal accumulation of activated Rh1 may initiate autophagy in norpA. Both autophagy and the UPR are beneficial for relieving defective endosomal trafficking and the ER stress, respectively. However, when photoreceptors fail to cope with the persistence of these stresses, a cell death program is activated leading to retinal degeneration.
Collapse
Affiliation(s)
- Bih-Hwa Shieh
- Department of Pharmacology, Center for Molecular Neuroscience and Vision Research Center, Vanderbilt University, Nashville, TN USA.
| |
Collapse
|
17
|
Liu W, Wen W, Wei Z, Yu J, Ye F, Liu CH, Hardie R, Zhang M. The INAD Scaffold Is a Dynamic, Redox-Regulated Modulator of Signaling in the Drosophila Eye. Cell 2011; 145:1088-101. [DOI: 10.1016/j.cell.2011.05.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 03/08/2011] [Accepted: 05/04/2011] [Indexed: 01/08/2023]
|
18
|
Albert AP. Gating Mechanisms of Canonical Transient Receptor Potential Channel Proteins: Role of Phosphoinositols and Diacylglycerol. TRANSIENT RECEPTOR POTENTIAL CHANNELS 2011; 704:391-411. [DOI: 10.1007/978-94-007-0265-3_22] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Regulation of TRP signalling by ion channel translocation between cell compartments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:545-72. [PMID: 21290316 DOI: 10.1007/978-94-007-0265-3_30] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The TRP (transient receptor potential) family of ion channels is a heterogeneous family of calcium permeable cation channels that is subdivided into seven subfamilies: TRPC ("Canonical"), TRPV ("Vanilloid"), TRPM ("Melastatin"), TRPA ("Ankyrin"), TRPN ("NOMPC"), TRPP ("Polycystin"), and TRPML ("Mucolipin"). TRP-mediated ion currents across the cell membrane are determined by the single channel conductance, by the fraction of activated channels, and by the total amount of TRP channels present at the plasma membrane. In many cases, the amount of TRP channels at the plasma membrane is altered in response to physiological stimuli by translocation of channels to and from the plasma membrane. Regulated translocation has been described for channels of the TRPC, TRPV, TRPM, and TRPA family and is achieved by vesicular transport of these channels along cellular exocytosis and endocytosis pathways. This review summarizes the stimuli and signalling cascades involved in the translocation of TRP channels and highlights interactions of TRP channels with proteins of the endocytosis and exocytosis machineries.
Collapse
|
20
|
Paffett ML, Riddle MA, Kanagy NL, Resta TC, Walker BR. Altered protein kinase C regulation of pulmonary endothelial store- and receptor-operated Ca2+ entry after chronic hypoxia. J Pharmacol Exp Ther 2010; 334:753-60. [PMID: 20576798 PMCID: PMC2939669 DOI: 10.1124/jpet.110.165563] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 06/23/2010] [Indexed: 11/22/2022] Open
Abstract
Chronic hypoxia (CH)-induced pulmonary hypertension is associated with decreased basal pulmonary artery endothelial cell (EC) Ca(2+), which correlates with reduced store-operated Ca(2+) (SOC) entry. Protein kinase C (PKC) attenuates SOC entry in ECs. Therefore, we hypothesized that PKC has a greater inhibitory effect on EC SOC and receptor-operated Ca(2+) entry after CH. To test this hypothesis, we assessed SOC in the presence or absence of the nonselective PKC inhibitor GF109203X [2-[1-(3-dimethylaminopropyl)-1H-indol-3-yl]-3-(1H-indol-3-yl)maleimide] in freshly isolated, Fura-2-loaded ECs obtained from intrapulmonary arteries of control and CH rats (4 weeks at 0.5 atm). We found that SOC entry and 1-oleoyl-2-acetyl-sn-glycerol (OAG)- and ATP-induced Ca(2+) influx were attenuated in ECs from CH rats versus controls, and GF109203X restored SOC and OAG responses to the level of controls. In contrast, nonselective PKC inhibition with GF109203X or the selective PKC(epsilon) inhibitor myristoylated V1-2 attenuated ATP-induced Ca(2+) entry in ECs from control but not CH pulmonary arteries. ATP-induced Ca(2+) entry was also attenuated by the T-type voltage-gated Ca(2+) channel (VGCC) inhibitor mibefradil in control cells. Consistent with the presence of endothelial T-type VGCC, we observed depolarization-induced Ca(2+) influx in control cells that was inhibited by mibefradil. This response was largely absent in ECs from CH arteries. We conclude that CH enhances PKC-dependent inhibition of SOC- and OAG-induced Ca(2+) entry. Furthermore, these data suggest that CH may reduce the ATP-dependent Ca(2+) entry that is mediated, in part, by PKCepsilon and mibefradil-sensitive Ca(2+) channels in control cells.
Collapse
Affiliation(s)
- Michael L Paffett
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.
| | | | | | | | | |
Collapse
|
21
|
Sanxaridis PD, Tsunoda S. A forward genetic screen in Drosophila melanogaster to identify mutations affecting INAD localization in photoreceptor cells. Fly (Austin) 2010; 4:95-103. [PMID: 20404479 DOI: 10.4161/fly.4.2.11861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In Drosophila photoreceptors, the multivalent PDZ protein INAD interacts with multiple signaling components and localizes complexes to the rhabdomere, a subcellular compartment specialized for phototransduction. Since this localization is critical for signaling, we conducted a genetic screen of the third chromosome for mutations that result in mislocalization of an INAD-GFP fusion protein. We identified seven mutant lines that fall into two complementation groups, idl (INAD localization)-A and idl-B. We show that idl-A mutants fail to complement with chaoptic (chp) mutants. Since chaoptin is a structural component of the rhabdomere, mislocalization of INAD may be a secondary effect of the retinal degeneration in chp and idl-A mutants. Genetic complementation and DNA sequencing reveal that the two idl-B mutants represent new alleles of trp, a gene encoding the major light-activated channel. The molecular change in each allele affects a highly conserved residue in either an ankyrin domain on the N-terminus or in the S6 transmembrane domain of TRP. These changes lead to the loss of TRP protein. TRP has previously been shown to anchor INAD in the rhabdomeres, therefore the independent identification of two trp alleles validates our screen for INAD-GFP localization. One possibility is that a limited number of proteins are required for localizing INAD-signaling complexes. A similar screen of the X and second chromosomes may be required to find the remaining players involved.
Collapse
|
22
|
Katz B, Minke B. Drosophila photoreceptors and signaling mechanisms. Front Cell Neurosci 2009; 3:2. [PMID: 19623243 PMCID: PMC2701675 DOI: 10.3389/neuro.03.002.2009] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 05/11/2009] [Indexed: 01/10/2023] Open
Abstract
Fly eyes have been a useful biological system in which fundamental principles of sensory signaling have been elucidated. The physiological optics of the fly compound eye, which was discovered in the Musca, Calliphora and Drosophila flies, has been widely exploited in pioneering genetic and developmental studies. The detailed photochemical cycle of bistable photopigments has been elucidated in Drosophila using the genetic approach. Studies of Drosophila phototransduction using the genetic approach have led to the discovery of novel proteins crucial to many biological processes. A notable example is the discovery of the inactivation no afterpotential D scaffold protein, which binds the light-activated channel, its activator the phospholipase C and it regulator protein kinase C. An additional protein discovered in the Drosophila eye is the light-activated channel transient receptor potential (TRP), the founding member of the diverse and widely spread TRP channel superfamily. The fly eye has thus played a major role in the molecular identification of processes and proteins with prime importance.
Collapse
Affiliation(s)
- Ben Katz
- Department of Physiology, Kühne Minerva Center for Studies of Visual Transduction, Faculty of Medicine, The Hebrew UniversityJerusalem, Israel
| | - Baruch Minke
- Department of Physiology, Kühne Minerva Center for Studies of Visual Transduction, Faculty of Medicine, The Hebrew UniversityJerusalem, Israel
| |
Collapse
|
23
|
Regulation of Drosophila TRPC channels by lipid messengers. Cell Calcium 2009; 45:566-73. [DOI: 10.1016/j.ceca.2009.03.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 03/10/2009] [Accepted: 03/12/2009] [Indexed: 12/13/2022]
|
24
|
Lu H, Leung HT, Wang N, Pak WL, Shieh BH. Role of Ca2+/calmodulin-dependent protein kinase II in Drosophila photoreceptors. J Biol Chem 2009; 284:11100-9. [PMID: 19254957 DOI: 10.1074/jbc.m806956200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca(2+) modulates the visual response in both vertebrates and invertebrates. In Drosophila photoreceptors, an increase of cytoplasmic Ca(2+) mimics light adaptation. Little is known regarding the mechanism, however. We explored the role of the sole Drosophila Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) to mediate light adaptation. CaMKII has been implicated in the phosphorylation of arrestin 2 (Arr2). However, the functional significance of Arr2 phosphorylation remains debatable. We identified retinal CaMKII by anti-CaMKII antibodies and by its Ca(2+)-dependent autophosphorylation. Moreover, we show that phosphorylation of CaMKII is greatly enhanced by okadaic acid, and indeed, purified PP2A catalyzes the dephosphorylation of CaMKII. Significantly, we demonstrate that anti-CaMKII antibodies co-immunoprecipitate, and CaMKII fusion proteins pull down the catalytic subunit of PP2A from fly extracts, indicating that PP2A interacts with CaMKII to form a protein complex. To investigate the function of CaMKII in photoreceptors, we show that suppression of CaMKII in transgenic flies affects light adaptation and increases prolonged depolarizing afterpotential amplitude, whereas a reduced PP2A activity brings about reduced prolonged depolarizing afterpotential amplitude. Taken together, we conclude that CaMKII is involved in the negative regulation of the visual response affecting light adaptation, possibly by catalyzing phosphorylation of Arr2. Moreover, the CaMKII activity appears tightly regulated by the co-localized PP2A.
Collapse
Affiliation(s)
- Haiqin Lu
- Department of Pharmacology, Center for Molecular Neuroscience, and Vision Research Center, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
25
|
Systems analysis of the single photon response in invertebrate photoreceptors. Proc Natl Acad Sci U S A 2008; 105:10354-9. [PMID: 18653755 DOI: 10.1073/pnas.0711884105] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photoreceptors of Drosophila compound eye employ a G protein-mediated signaling pathway that transduces single photons into transient electrical responses called "quantum bumps" (QB). Although most of the molecular components of this pathway are already known, the system-level understanding of the mechanism of QB generation has remained elusive. Here, we present a quantitative model explaining how QBs emerge from stochastic nonlinear dynamics of the signaling cascade. The model shows that the cascade acts as an "integrate and fire" device and explains how photoreceptors achieve reliable responses to light although keeping low background in the dark. The model predicts the nontrivial behavior of mutants that enhance or suppress signaling and explains the dependence on external calcium, which controls feedback regulation. The results provide insight into physiological questions such as single-photon response efficiency and the adaptation of response to high incident-light level. The system-level analysis enabled by modeling phototransduction provides a foundation for understanding G protein signaling pathways less amenable to quantitative approaches.
Collapse
|
26
|
Wang T, Wang X, Xie Q, Montell C. The SOCS box protein STOPS is required for phototransduction through its effects on phospholipase C. Neuron 2008; 57:56-68. [PMID: 18184564 DOI: 10.1016/j.neuron.2007.11.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 09/14/2007] [Accepted: 11/08/2007] [Indexed: 10/22/2022]
Abstract
Phosphoinositide-specific phospholipase C (PLC) isozymes play roles in a diversity of processes including Drosophila phototransduction. In fly photoreceptor cells, the PLCbeta encoded by norpA is critical for activation of TRP channels. Here, we describe a PLCbeta regulator, STOPS, which encodes a SOCS box protein. Mutation of stops resulted in a reduced concentration of NORPA and a defect in stopping signaling following cessation of the light stimulus. NORPA has been proposed to have dual roles as a PLC- and GTPase-activating protein (GAP). We found that the slow termination resulting from expressing low levels of wild-type NORPA was suppressed by addition of normal amounts of an altered NORPA, which had wild-type GAP activity, but no PLC activity. STOPS is the first protein identified that specifically regulates PLCbeta protein concentration. Moreover, this work demonstrates that a PLCbeta derivative that does not promote TRP channel activation, still contributes to signaling in vivo.
Collapse
Affiliation(s)
- Tao Wang
- Department of Biological Chemistry, Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
27
|
Abstract
Drosophila visual signaling, a G-protein-coupled phospholipase Cbeta (PLCbeta)-mediated mechanism, is regulated by eye-protein kinase C (PKC) that promotes light adaptation and fast deactivation, most likely via phosphorylation of inactivation no afterpotential D (INAD) and TRP (transient receptor potential). To reveal the critical phosphatases that dephosphorylate INAD, we used several biochemical analyses and identified protein phosphatase 2A (PP2A) as a candidate. Importantly, the catalytic subunit of PP2A, microtubule star (MTS), is copurified with INAD, and an elevated phosphorylation of INAD by eye-PKC was observed in three mts heterozygotes. To explore whether PP2A (MTS) regulates dephosphorylation of INAD by counteracting eye-PKC [INAC (inactivation no afterpotential C] in vivo, we performed ERG recordings. We discovered that inaC(P209) was semidominant, because inaC(P209) heterozygotes displayed abnormal light adaptation and slow deactivation. Interestingly, the deactivation defect of inaC(P209) heterozygotes was rescued by the mts(XE2258) heterozygous background. In contrast, mts(XE2258) failed to modify the severe deactivation of norpA(P16), indicating that MTS does not modulate NORPA (no receptor potential A) (PLCbeta). Together, our results strongly indicate that dephosphorylation of INAD is catalyzed by PP2A, and a reduction of PP2A can compensate for a partial loss of function in eye-PKC, restoring the fast deactivation kinetics in vivo. We thus propose that the fast deactivation of the visual response is modulated in part by the phosphorylation of INAD.
Collapse
|
28
|
Peng L, Popescu DC, Wang N, Shieh BH. Anchoring TRP to the INAD macromolecular complex requires the last 14 residues in its carboxyl terminus. J Neurochem 2007; 104:1526-35. [PMID: 18036153 DOI: 10.1111/j.1471-4159.2007.05096.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Drosophila transient-receptor-potential (TRP) is a Ca2+ channel responsible for the light-dependent depolarization of photoreceptors. TRP is anchored to a macromolecular complex by tethering to inactivation-no-afterpotential D (INAD). We previously reported that INAD associated with the carboxyl tail of TRP via its third post-synaptic density protein 95, discs-large, zonular occludens-1 domain. In this paper, we further explored the molecular basis of the INAD interaction and demonstrated the requirement of the last 14 residues of TRP, with the critical contribution of Gly1262, Val1266, Trp1274, and Leu1275. We also revealed by pull-down assays that the last 14 residues of TRP comprised the minimal sequence that competes with the endogenous TRP from fly extracts, leading to the co-purification of a partial INAD complex containing INAD, no-receptor-potential A, and eye-protein kinase C (PKC). Eye-PKC is critical for the negative regulation of the visual signaling and was shown to phosphorylate TRP in vivo. To uncover the substrates of eye-PKC in the INAD complex, we designed a complex-dependent eye-PKC assay, which utilized endogenous INAD complexes isolated from flies. We demonstrate that activated eye-PKC phosphorylates INAD, TRP but not no-receptor-potential A. Moreover, phosphorylation of TRP is dependent on the presence of both eye-PKC and INAD. Together, these findings indicate that stable kinase-containing protein complexes may be isolated by pull-down assays, and used in this modified kinase assay to investigate phosphorylation of the proteins in the complex. We conclude that TRP associates with INAD via its last 14 residues to facilitate its regulation by eye-PKC that fine-tunes the visual signaling.
Collapse
Affiliation(s)
- Li Peng
- Department of Pharmacology, Center for Molecular Neuroscience, and Vanderbilt Vision Research Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|
29
|
Abstract
Store-operated calcium (SOC) entry is the major route of calcium influx in non-excitable cells, especially immune cells. The best characterized store-operated current, I(CRAC), is carried by calcium release activated calcium (CRAC) channels. The existence of the phenomenon of store-operated calcium influx was proposed almost two decades ago. However, in spite of rigorous research by many laboratories, the identity of the key molecules participating in the process has remained a mystery. In all these years, multiple different approaches have been adopted by countless researchers to identify the molecular players in this fundamental process. Along the way, many crucial discoveries have been made, some of which have been summarized here. The last couple of years have seen significant breakthroughs in the field-identification of STIM1 as the store Ca(2+) sensor and CRACM1 (Orai1) as the pore-forming subunit of the CRAC channel. The field is now actively engaged in deciphering the gating mechanism of CRAC channels. We summarize here the latest progress in this direction.
Collapse
Affiliation(s)
- Monika Vig
- Laboratory of Allergy and Immunology, Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA 02215, USA
| | - Jean-Pierre Kinet
- Laboratory of Allergy and Immunology, Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA 02215, USA
- Correspondence should be addressed to: Jean-Pierre Kinet, 617 667 1324 (phone), 617 667 1323 (fax),
| |
Collapse
|
30
|
Abstract
The Drosophila TRPC channels TRP and TRPL are the founding members of the TRP superfamily of ion channels, proteins likely to be important components of calcium influx pathways. The activation of these channels in the context of fly phototransduction is one of the few in vivo models for TRPC channel activation and has served as a paradigm for understanding TRPC function. TRP and TRPL are activated by G-protein coupled PI(4,5)P(2) hydrolysis through a mechanism in which IP(3) receptor mediated calcium release seems dispensable. Recent analysis has provided compelling evidence that the accurate turnover of PI(4,5)P(2) generated lipid messengers in essential for regulating TRP and TRPL activity. TRP channels also appear to exist in the context of a macromolecular complex containing key components involved in activation such as phospholipase Cbeta and protein kinase C. This complex may be important for activation. The role of these protein and lipid elements in regulating TRP and TRPL activity is discussed in this review.
Collapse
Affiliation(s)
- Padinjat Raghu
- Inositide Laboratory, Babraham Institute, Babraham Research Campus, Cambridge CB2 4AT, UK.
| |
Collapse
|
31
|
Popescu DC, Ham AJL, Shieh BH. Scaffolding protein INAD regulates deactivation of vision by promoting phosphorylation of transient receptor potential by eye protein kinase C in Drosophila. J Neurosci 2006; 26:8570-7. [PMID: 16914683 PMCID: PMC1577681 DOI: 10.1523/jneurosci.1478-06.2006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Drosophila visual signaling is one of the fastest G-protein-coupled transduction cascades, because effector and modulatory proteins are organized into a macromolecular complex ("transducisome"). Assembly of the complex is orchestrated by inactivation no afterpotential D (INAD), which colocalizes the transient receptor potential (TRP) Ca2+ channel, phospholipase Cbeta, and eye protein kinase C (eye-PKC), for more efficient signal transduction. Eye-PKC is critical for deactivation of vision. Moreover, deactivation is regulated by the interaction between INAD and TRP, because abrogation of this interaction in InaD(p215) results in slow deactivation similar to that of inaC(p209) lacking eye-PKC. To elucidate the mechanisms whereby eye-PKC modulates deactivation, here we demonstrate that eye-PKC, via tethering to INAD, phosphorylates TRP in vitro. We reveal that Ser982 of TRP is phosphorylated by eye-PKC in vitro and, importantly, in the fly eye, as shown by mass spectrometry. Furthermore, transgenic expression of modified TRP bearing an Ala substitution leads to slow deactivation of the visual response similar to that of InaD(p215). These results suggest that the INAD macromolecular complex plays an essential role in termination of the light response by promoting efficient phosphorylation at Ser982 of TRP for fast deactivation of the visual signaling.
Collapse
|
32
|
Cronin MA, Lieu MH, Tsunoda S. Two stages of light-dependent TRPL-channel translocation in Drosophila photoreceptors. J Cell Sci 2006; 119:2935-44. [PMID: 16787936 DOI: 10.1242/jcs.03049] [Citation(s) in RCA: 281] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transient receptor potential (TRP) channels across species are expressed in sensory receptor cells, and often localized to specialized subcellular sites. In Drosophila photoreceptors, TRP-like (TRPL) channels are localized to the signaling compartment, the rhabdomere, in the dark, and undergo light-induced translocation into the cell body as a mechanism for long-term light-adaptation. We show that translocation of TRPL channels occurs in two distinct stages, first to the neighboring stalk membrane then to the basolateral membrane. In the first stage, light-induced translocation occurs within 5 minutes, whereas the second stage takes over 6 hours. The exclusive apical localization of TRPL channels in the first stage of translocation suggests that channels are released from the rhabdomere and diffuse laterally through the membrane into the adjoining stalk membrane. In the second stage, TRPL channels are localized in the basolateral membrane, implicating a different transport mechanism. Genetic analyses suggest that activation of the other light-activated TRP channel and eye-protein-kinase C (eye-PKC) are both required for the second stage of TRPL translocation in R1 to R6 photoreceptor cells, whereas only phospholipase C (PLC) is required for the first stage. Finally, we show that arrestin2 is required for the rhabdomeric localization and stability of TRPL channels.
Collapse
Affiliation(s)
- Michelle A Cronin
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | | | | |
Collapse
|
33
|
Burton BG. Adaptation of single photon responses in photoreceptors of the housefly, Musca domestica: a novel spectral analysis. Vision Res 2006; 46:622-35. [PMID: 16321420 DOI: 10.1016/j.visres.2005.09.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 05/29/2005] [Accepted: 09/20/2005] [Indexed: 11/15/2022]
Abstract
The absorption of a photon by a photoreceptor triggers a small voltage fluctuation termed the 'bump'. Here, in the housefly, I introduce the bispectrum of photoreceptor noise to characterise the bump under dim light. The bispectrum provides explicit phase information and is not contaminated by Gaussian background noise. Over the photon rates examined (<10(4) s(-1)), I show that bumps are minimum-phase, noise spectra are little affected by natural variations in bump shape and bumps adapt such that amplitude is approximately proportional to duration squared. In the dark exists a 'dark event', which I suggest represents spontaneous activation of G-protein.
Collapse
|
34
|
Evans NE, Forth MKL, Simpson AK, Mason MJ. Inhibition by calyculin A and okadaic acid of the Ca(2+) release-activated Ca(2+) entry pathway in rat basophilic leukemia cells: evidence for regulation by type 1/2A serine/threonine phosphatase activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1718:32-43. [PMID: 16297373 DOI: 10.1016/j.bbamem.2005.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Revised: 10/10/2005] [Accepted: 10/12/2005] [Indexed: 11/18/2022]
Abstract
Using a combination of fluorescence measurements of intracellular Ca(2+) ion concentration ([Ca(2+)](i)) and membrane potential we have investigated the sensitivity to serine/threonine phosphatase inhibition of Ca(2+) entry stimulated by activation of the Ca(2+) release-activated Ca(2+) (CRAC) entry pathway in rat basophilic leukemia cells. In both suspension and adherent cells, addition of the type 1/2A phosphatase inhibitor calyculin A, during activation of CRAC uptake, resulted in a fall in [Ca(2+)](i) to near preactivation levels. Pre-treatment with calyculin A abolished the component of the Ca(2+) rise associated with activation of CRAC uptake and inhibited Mn(2+) entry, consistent with a requirement of phosphatase activity for activation of the pathway. Depletion of intracellular Ca(2+) stores is accompanied by a large depolarisation which is absolutely dependent upon Ca(2+) entry via the CRAC uptake pathway. Application of calyculin A or okadaic acid, a structurally unrelated phosphatase antagonist inhibits this depolarisation. Taken in concert, these data demonstrate a marked sensitivity of the CRAC entry pathway to inhibition by calyculin A and okadaic acid.
Collapse
Affiliation(s)
- Nicholas E Evans
- Department of Physiology, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | | | | | | |
Collapse
|
35
|
del Pilar Gomez M, Nasi E. Calcium-independent, cGMP-mediated light adaptation in invertebrate ciliary photoreceptors. J Neurosci 2005; 25:2042-9. [PMID: 15728844 PMCID: PMC6726048 DOI: 10.1523/jneurosci.5129-04.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Calcium is thought to be essential for adaptation of sensory receptor cells. However, the transduction cascade of hyperpolarizing, ciliary photoreceptors of the scallop does not use IP3-mediated Ca release, and the light-sensitive conductance is not measurably permeable to Ca2+. Therefore, two typical mechanisms that couple the light response to [Ca]i changes seem to be lacking in these photoreceptors. Using fluorescent indicators, we determined that, unlike in their microvillar counterparts, photostimulation of ciliary cells under voltage clamp indeed evokes no detectable change in cytosolic Ca. Notwithstanding, these cells exhibit all of the hallmarks of light adaptation, including response range compression, sensitivity shift, and photoresponse acceleration. A possible mediator of Ca-independent sensory adaptation is cGMP, the second messenger that regulates the light-sensitive conductance; cGMP and 8-bromo cGMP not only activate light-dependent K channels but also reduce the amplitude of the light response to an extent greatly in excess of that expected from simple occlusion between light and chemical stimulation. In addition, these substances accelerate the time course of the photocurrent. Tests with pharmacological antagonists suggest that protein kinase G may be a downstream effector that controls, in part, the cGMP-triggered changes in photoresponse properties during light adaptation. However, additional messengers are likely to be implicated, especially in the regulation of response kinetics. These observations suggest a novel feedback inhibition pathway for signaling sensory adaptation.
Collapse
Affiliation(s)
- Maria del Pilar Gomez
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | |
Collapse
|
36
|
Gu Y, Oberwinkler J, Postma M, Hardie RC. Mechanisms of light adaptation in Drosophila photoreceptors. Curr Biol 2005; 15:1228-34. [PMID: 16005297 DOI: 10.1016/j.cub.2005.05.058] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 04/27/2005] [Accepted: 05/23/2005] [Indexed: 11/20/2022]
Abstract
Phototransduction in Drosophila is mediated by a phospholipase C (PLC) cascade culminating in activation of transient receptor potential (TRP) channels. Ca(2+) influx via these channels is required for light adaptation, but although several molecular targets of Ca(2+)-dependent feedback have been identified, their contribution to adaptation is unclear. By manipulating cytosolic Ca(2+) via the Na(+)/Ca(2+) exchange equilibrium, we found that Ca(2+) inhibited the light-induced current (LIC) over a range corresponding to steady-state light-adapted Ca(2+) levels (0.1-10 microM Ca(2+)) and accurately mimicked light adaptation. However, PLC activity monitored with genetically targeted PIP(2)-sensitive ion channels (Kir2.1) was first inhibited by much higher (>/= approximately 50 microM) Ca(2+) levels, which occur only transiently in vivo. Ca(2+)-dependent inhibition of PLC, but not the LIC, was impaired in mutants (inaC) of protein kinase C (PKC). The results indicate that light adaptation is primarily mediated downstream of PLC and independently of PKC by Ca(2+)-dependent inhibition of TRP channels. This is interpreted as a strategy to prevent inhibition of PLC by global steady-state light-adapted Ca(2+) levels, whereas rapid inhibition of PLC by local Ca(2+) transients is required to terminate the response and ensures that PIP(2) reserves are not depleted during stimulation.
Collapse
Affiliation(s)
- Yuchun Gu
- Department of Anatomy, Cambridge University, Downing Street, Cambridge CB2 3DY, United Kingdom.
| | | | | | | |
Collapse
|
37
|
Franchi L, Fulci V, Macino G. Protein kinase C modulates light responses in Neurospora by regulating the blue light photoreceptor WC-1. Mol Microbiol 2005; 56:334-45. [PMID: 15813728 DOI: 10.1111/j.1365-2958.2005.04545.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Neurospora protein kinase C (NPKC) is a regulator of light responsive genes. We have studied the function of NPKC in light response by investigating its biochemical and functional interaction with the blue light photoreceptor white-collar 1 (WC-1), showing that activation of NPKC leads to a significant decrease in WC-1 protein levels. Furthermore, we show that WC-1 and NPKC interact in a light-regulated manner in vivo, and that protein kinase C (PKC) phosphorylates WC-1 in vitro. We designed dominant negative and constitutively active forms of PKC which are able to induce either a large increase of WC-1 protein level or a strong reduction respectively. Moreover, these changes in PKC activity result in an altered light response. As WC-1 is a key component of Neurospora circadian clock and regulates the clock oscillator component FRQ we investigated the effect of NPKC-mutated forms on FRQ levels. We show that changes in PKC activity affect FRQ levels and the robustness of the circadian clock. Together these data identify NPKC as a novel component of the Neurospora light signal transduction pathway that modulates the circadian clock.
Collapse
Affiliation(s)
- Lisa Franchi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biotecnologie Cellulari ed Ematologia, Sezione di Genetica Molecolare, Università di Roma La Sapienza, Policlinico Umberto I, Viale Regina Elena 324, 00161 Roma, Italy
| | | | | |
Collapse
|
38
|
Wang T, Xu H, Oberwinkler J, Gu Y, Hardie RC, Montell C. Light activation, adaptation, and cell survival functions of the Na+/Ca2+ exchanger CalX. Neuron 2005; 45:367-78. [PMID: 15694324 DOI: 10.1016/j.neuron.2004.12.046] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 11/30/2004] [Accepted: 12/22/2004] [Indexed: 10/25/2022]
Abstract
In sensory neurons, Ca(2+) entry is crucial for both activation and subsequent attenuation of signaling. Influx of Ca(2+) is counterbalanced by Ca(2+) extrusion, and Na(+)/Ca(2+) exchange is the primary mode for rapid Ca(2+) removal during and after sensory stimulation. However, the consequences on sensory signaling resulting from mutations in Na(+)/Ca(2+) exchangers have not been described. Here, we report that mutations in the Drosophila Na(+)/Ca(2+) exchanger calx have a profound effect on activity-dependent survival of photoreceptor cells. Loss of CalX activity resulted in a transient response to light, a dramatic decrease in signal amplification, and unusually rapid adaptation. Conversely, overexpression of CalX had reciprocal effects and greatly suppressed the retinal degeneration caused by constitutive activity of the TRP channel. These results illustrate the critical role of Ca(2+) for proper signaling and provide genetic evidence that Ca(2+) overload is responsible for a form of retinal degeneration resulting from defects in the TRP channel.
Collapse
Affiliation(s)
- Tao Wang
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
39
|
Delmas P, Crest M, Brown DA. Functional organization of PLC signaling microdomains in neurons. Trends Neurosci 2004; 27:41-7. [PMID: 14698609 DOI: 10.1016/j.tins.2003.10.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Patrick Delmas
- Intégration des Informations Sensorielles, CNRS, UMR 6150, IFR Jean Roche, Faculté de Médecine, Boulevard Pierre Dramard, 13916 Marseille, France.
| | | | | |
Collapse
|
40
|
Abstract
Cyclic nucleotide-gated (CNG) ion channels were first discovered in rod photoreceptors, where they are responsible for the primary electrical signal of the photoreceptor in response to light. CNG channels are highly specialized membrane proteins that open an ion-permeable pore across the membrane in response to the direct binding of intracellular cyclic nucleotides. CNG channels have been identified in a number of other tissues, including the brain, where their roles are only beginning to be appreciated. Recently, significant progress has been made in understanding the molecular mechanisms underlying their functional specializations. From these studies, a picture is beginning to emerge for how the binding of cyclic nucleotide is transduced into the opening of the pore and how this allosteric transition is modulated by various physiological effectors.
Collapse
Affiliation(s)
- Kimberly Matulef
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, USA.
| | | |
Collapse
|
41
|
Agam K, Frechter S, Minke B. Activation of the Drosophila TRP and TRPL channels requires both Ca2+ and protein dephosphorylation. Cell Calcium 2004; 35:87-105. [PMID: 14706283 DOI: 10.1016/j.ceca.2003.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The Transient Receptor Potential (TRP) proteins constitute a large and diverse family of channel proteins, which is conserved through evolution. TRP channel proteins have critical functions in many tissues and cell types, but their gating mechanism is an enigma. In the present study patch-clamp whole-cell recordings was applied to measure the TRP- and TRP-like (TRPL)-dependent currents in isolated Drosophila ommatidia. Also, voltage responses to light and to metabolic stress were recorded from the eye in vivo. We report new insight into the gating of the Drosophila light-sensitive TRP and TRPL channels, by which both Ca2+ and protein dephosphorylation are required for channel activation. ATP depletion or inhibition of protein kinase C activated the TRP channels, while photo-release of caged ATP or application of phorbol ester antagonized channels openings in the dark. Furthermore, Mg(2+)-dependent stable phosphorylation event by ATPgammaS or protein phosphatase inhibition by calyculin A abolished activation of the TRP and TRPL channels. While a high reduction of cellular Ca2+ abolished channel activation, subsequent application of Ca2+ combined with ATP depletion induced a robust dark current that was reminiscent of light responses. The results suggest that the combined action of Ca2+ and protein dephosphorylation activate the TRP and TRPL channels, while protein phosphorylation by PKC antagonized channels openings.
Collapse
Affiliation(s)
- Keren Agam
- Department of Physiology, The Kühne Minerva Center for Studies of Visual Transduction, The Hebrew University, Hadassah Medical School, Jerusalem 91120, Israel
| | | | | |
Collapse
|
42
|
Oberwinkler J. Calcium homeostasis in fly photoreceptor cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 514:539-83. [PMID: 12596943 DOI: 10.1007/978-1-4615-0121-3_32] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
In fly photoreceptor cells, two processes dominate the Ca2+ homeostasis: light-induced Ca2+ influx through members of the TRP family of ion channels, and Ca2+ extrusion by Na+/Ca2+ exchange. Ca2+ release from intracellular stores is quantitatively insignificant. Both, the light-activated channels and the Ca2+-extruding exchangers are located in or close to the rhabdomeric microvilli, small protrusions of the plasma membrane. The microvilli also contain the molecular machinery necessary for generating quantum bumps, short electrical responses caused by the absorption of a single photon. Due to this anatomical arrangement, the light-induced Ca2+ influx results in two separate Ca2+ signals that have different functions: a global, homogeneous increase of the Ca2+ concentration in the cell body, and rapid but large amplitude Ca2+ transients in the microvilli. The global rise of the Ca2+ concentration mediates light adaptation, via regulatory actions on the phototransduction cascade, the voltage-gated K+ channels and small pigment granules controlling the light intensity. The local Ca2+ transients in the microvilli are responsible for shaping the quantum bumps into fast, all-or-nothing events. They achieve this by facilitating strongly the phototransduction cascade at early stages ofthe light response and subsequently inhibiting it. Many molecular targets of these feedback mechanisms have been identified and characterized due to the availability of numerous Drosophila mutant showing defects in the phototransduction.
Collapse
|
43
|
Abstract
In Drosophila photoreceptors, the light-sensitive current is mediated downstream of phospholipase C by TRP (transient receptor potential) channels. Recent evidence suggests that Drosophila TRP channels are activated by diacylglycerol (DAG) or its metabolites (polyunsaturated fatty acids), possibly in combination with the reduction in phosphatidyl inositol 4,5 bisphosphate (PIP2). Consistent with this view, diacylglycerol kinase is identified as a key enzyme required for response termination. Signaling is critically dependent upon efficient PIP2 synthesis; mutants of this pathway in combination with genetically targeted PIP2 reporters provide unique insights into the kinetics and regulation of PIP2 turnover. Recent evidence indicates that a growing number of mammalian TRP homologues are also regulated by lipid messengers, including DAG, arachidonic acid, and PIP2.
Collapse
Affiliation(s)
- Roger C Hardie
- Department of Anatomy, Cambridge University, Downing St Cambridge CB2 3DY, United Kingdom.
| |
Collapse
|
44
|
Abstract
The light-sensitive current in Drosophila photoreceptors is mediated by transient receptor potential (TRP) channels, at least two members of which (TRP and TRPL) are activated downstream of phospholipase C (PLC) in response to light. Recent evidence is reviewed suggesting that Drosophila TRP channels are activated by one or more lipid products of PLC activity: namely diacylglycerol (DAG), its metabolites (polyunsaturated fatty acids) or the reduction in phosphatidylinositol 4,5-bisphosphate (PIP(2)). The most compelling evidence for this view comes from analysis of rdgA mutants which are unable to effectively metabolise DAG due to a defect in DAG kinase. The rdgA mutation leads to constitutive activation of both TRP and TRPL channels and dramatically increases sensitivity to light in hypomorphic mutations of PLC and G protein.
Collapse
Affiliation(s)
- Roger C Hardie
- Department of Anatomy, Cambridge University, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|
45
|
Reid EA, Cao Z, Wang Y, Leite Browning ML, Newkirk RF, Chaudhuri G, Townsel JG. Molecular cloning and identification of a putative PKC epsilon cDNA from Limulus polyphemus brain. Life Sci 2003; 72:961-76. [PMID: 12493576 DOI: 10.1016/s0024-3205(02)02343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The protein kinase C (PKC) family of enzymes is broadly distributed and has been implicated in a diverse array of cellular functions. Recent evidence supporting PKC involvement in the regulation of the Limulus choline cotransporter prompted us to clone PKC from a Limulus central nervous system (CNS) cDNA library. An Aplysia californica calcium independent PKC (Apl II) cDNA probe was used to screen the library and 5' RACE SMART PCR was used to obtain the full-length sequence. The resulting cDNA, which included 5' and 3' nontranslation regions, was 4675 bp. Analysis of the encoded peptide sequence using the Swiss-prot database revealed at least 58% identity to PKC epsilon. A commercial polyclonal antibody against PKC epsilon was used in Western blots to positively label a 30 kDa protein from Limulus CNS and the expressed fusion protein of the encoded sequence. These data support the presence of a newly identified PKC-like homolog in Limulus which likely represents a PKC epsilon equivalent.
Collapse
Affiliation(s)
- Easton A Reid
- Department of Anatomy and Physiology, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN 37208, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Piccoli G, Del Pilar Gomez M, Nasi E. Role of protein kinase C in light adaptation of molluscan microvillar photoreceptors. J Physiol 2002; 543:481-94. [PMID: 12205183 PMCID: PMC2290511 DOI: 10.1113/jphysiol.2002.022772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The mechanisms by which Ca2+ regulates light adaptation in microvillar photoreceptors remain poorly understood. Protein kinase C (PKC) is a likely candidate, both because some sub-types are activated by Ca2+ and because of its association with the macromolecular 'light-transduction complex' in Drosophila. We investigated the possible role of PKC in the modulation of the light response in molluscan photoreceptors. Western blot analysis with isoform-specific antibodies revealed the presence of PKCalpha in retinal homogenates. Immunocytochemistry in isolated cell preparations confirmed PKCalpha localization in microvillar photoreceptors, preferentially confined to the light-sensing lobe. Light stimulation induced translocation of PKCalpha immunofluorescence to the photosensitive membrane, an effect that provides independent evidence for PKC activation by illumination; a similar outcome was observed after incubation with the phorbol ester PMA. Several chemically distinct activators of PKC, such as phorbol-12-myristate-13-acetate (PMA), (-)indolactam V and 1,2,-dioctanoyl-sn-glycerol (DOG) inhibited the light response of voltage-clamped microvillar photoreceptors, but were ineffective in ciliary photoreceptors, in which light does not activate the G(q)/PLC cascade, nor elevates intracellular Ca2+. Pharmacological inhibition of PKC antagonized the desensitization produced by adapting lights and also caused a small, but consistent enhancement of basal sensitivity. These results strongly support the involvement of PKC activation in the light-dependent regulation of response sensitivity. However, unlike adapting background light or elevation of [Ca2+]i, PKC activators did not speed up the photoresponse, nor did PKC inhibitors antagonize the accelerating effects of background adaptation, suggesting that modulation of photoresponse time course may involve a separate Ca2+-dependent signal.
Collapse
Affiliation(s)
- Giuseppe Piccoli
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | |
Collapse
|
47
|
Dabdoub A, Payne R, Jinks RN. Protein kinase C-induced disorganization and endocytosis of photosensitive membrane in Limulus ventral photoreceptors. J Comp Neurol 2002; 442:217-25. [PMID: 11774337 DOI: 10.1002/cne.10091] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Protein kinase C (PKC) desensitizes the light response in photoreceptors from the ventral optic nerve of the horseshoe crab Limulus. Photoisomerization of Limulus rhodopsin leads to phosphoinositide hydrolysis, resulting in the production of inositol trisphosphate and diacylglycerol (DAG). Inositol trisphosphate mobilizes intracellular stores of Ca(2+), resulting in photoreceptor excitation in Limulus, while DAG may activate PKC. We investigated whether PKC-mediated desensitization of the photoresponse is accompanied by ultrastructural changes in the rhodopsin-bearing photosensitive membrane (rhabdom) in Limulus ventral photoreceptors. PKC activation by (-)-indolactam V in darkness induces disorganization and swelling of the rhodopsin-containing microvilli and endocytosis of rhabdomeral membrane. The effects of (-)-indolactam V on dark-adapted photoreceptor ultrastructure are reversible, are stereospecific, are blocked by coapplication of PKC inhibitors, and closely match those induced by continuous, bright light. Rhabdom disorganization and endocytosis via PKC activation may, therefore, contribute to desensitization of the light-adapted photoreceptor.
Collapse
Affiliation(s)
- Alain Dabdoub
- National Institutes of Health, NIDCD, Rockville, Maryland 20850, USA
| | | | | |
Collapse
|
48
|
|
49
|
Sun D, Steele JE. Regulation of intracellular calcium in dispersed fat body trophocytes of the cockroach, Periplaneta americana, by hypertrehalosemic hormone. JOURNAL OF INSECT PHYSIOLOGY 2001; 47:1399-1408. [PMID: 12770146 DOI: 10.1016/s0022-1910(01)00130-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Incubation of trophocytes from dissaggregated fat body of Periplaneta americana with either of the hypertrehalosemic hormones, HTH-I or HTH-II, leads to an increase in the cytosolic concentration of Ca(2+) from approximately 80 to approximately 310nM with a rise time of approximately 110s. The Ca(2+) concentration then declines to the resting level during the ensuing 5min. In the absence of extracellular Ca(2+) the increase in [Ca(2+)](i) due to HTH is limited to approximately 100nM. The calmodulin inhibitors calmidazolium and W-7 also limit to a similar degree the ability of HTH to increase [Ca(2+)](i). Phorbol 12-myristate 13-acetate, an activator of protein kinase C, was shown to block Ca(2+) entry through the plasma membrane. Additional evidence to support the view that HTH enhances Ca(2+) influx has been obtained by measuring the quenching of fura-2 fluorescence when Ca(2+) is replaced with Mn(2+).
Collapse
Affiliation(s)
- D Sun
- Department of Zoology, The University of Western Ontario, Ont., N6A 5B7, London, Canada
| | | |
Collapse
|
50
|
Abstract
SUMMARY
As in most invertebrate microvillar photoreceptors, phototransduction in Drosophila melanogaster uses a G-protein-coupled phosphoinositide pathway, whereby hydrolysis of phosphatidyl inositol 4,5-bisphosphate (PIP2) by phospholipase C generates inositol 1,4,5-trisphosphate (InsP3) and diacyl glycerol (DAG), leading to activation of two classes of Ca2+-permeable light-sensitive channel, encoded by the trp and trpl genes. In some invertebrate photoreceptors, excitation is mediated by release of Ca2+ from intracellular stores by InsP3; however, in Drosophila melanogaster, recent evidence suggests instead that a lipid messenger, such as DAG, its metabolites and/or the reduction in PIP2 levels, may mediate excitation. Like vertebrate rods, Drosophila melanogaster photoreceptors generate quantum bumps in response to single photons, but their kinetics is approximately 10–100 times faster, and this reflects a fundamentally different strategy incorporating a threshold, positive and negative feedback by Ca2+ acting downstream of phospholipase C and a refractory period.
Collapse
Affiliation(s)
- R C Hardie
- Cambridge University, Department of Anatomy, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|