1
|
Ribatti D. The Discovery of the Pericytes: A Historical Note. Clin Anat 2025. [PMID: 40346904 DOI: 10.1002/ca.24291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Accepted: 04/29/2025] [Indexed: 05/12/2025]
Abstract
Pericytes are adventitial cells located within the basement membranes of capillaries and post-capillary venules. Because they have multiple cytoplasmic processes and distinctive cytoskeletal elements, and envelope endothelial cells, pericytes are considered cells that stabilize the vessel wall, controlling endothelial cell proliferation and thereby the growth of new capillaries. Several molecules are involved in controlling and modulating the interactions between pericytes and endothelial cells, such as platelet-derived growth factor beta (PDGFβ), transforming growth factor beta (TGFβ), and angiopoietins (Angs).
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Bari, Italy
| |
Collapse
|
2
|
Brunmaier LAE, Ozdemir T, Walker TW. Angiogenesis: Biological Mechanisms and In Vitro Models. Ann Biomed Eng 2025:10.1007/s10439-025-03721-2. [PMID: 40210793 DOI: 10.1007/s10439-025-03721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/25/2025] [Indexed: 04/12/2025]
Abstract
The translation of biomedical devices and drug research is an expensive and long process with a low probability of receiving FDA approval. Developing physiologically relevant in vitro models with human cells offers a solution to not only improving the odds of FDA approval but also to expand our ability to study complex in vivo systems in a simpler fashion. Animal models remain the standard for pre-clinical testing; however, the data from animal models is an unreliable extrapolation when anticipating a human response in clinical trials, thus contributing to the low rates of translation. In this review, we focus on in vitro vascular or angiogenic models because of the incremental role that the vascular system plays in the translation of biomedical research. The first section of this review discusses the most common angiogenic cytokines that are used in vitro to initiate angiogenesis, followed by angiogenic inhibitors where both initiators and inhibitors work to maintain vascular homeostasis. Next, we evaluate previously published in vitro models, where we evaluate capturing the physical environment for biomimetic in vitro modeling. These topics provide a foundation of parameters that must be considered to improve and achieve vascular biomimicry. Finally, we summarize these topics to suggest a path forward with the goal of engineering human in vitro models that emulate the in vivo environment and provide a platform for biomedical device and drug screening that produces data to support clinical translation.
Collapse
Affiliation(s)
- Laura A E Brunmaier
- Nanoscience and Biomedical Engineering Department, South Dakota School of Mines & Technology, 501 E St. Joseph St., Rapid City, SD, 57701, USA
| | - Tugba Ozdemir
- Nanoscience and Biomedical Engineering Department, South Dakota School of Mines & Technology, 501 E St. Joseph St., Rapid City, SD, 57701, USA
| | - Travis W Walker
- Karen M. Swindler Department of Chemical and Biological Engineering, South Dakota School of Mines & Technology, 501 E St. Joseph St., Rapid City, SD, 57701, USA.
| |
Collapse
|
3
|
Rash BG, Ramdas KN, Agafonova N, Naioti E, McClain-Moss L, Zainul Z, Varnado B, Peterson K, Brown M, Leal T, Kopcho S, Carballosa R, Patel P, Brody M, Herskowitz B, Fuquay A, Rodriguez S, Jacobson AF, Leon R, Pfeffer M, Schwartzbard JB, Botbyl J, Oliva AA, Hare JM. Allogeneic mesenchymal stem cell therapy with laromestrocel in mild Alzheimer's disease: a randomized controlled phase 2a trial. Nat Med 2025; 31:1257-1266. [PMID: 40065171 PMCID: PMC12003194 DOI: 10.1038/s41591-025-03559-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 01/29/2025] [Indexed: 04/18/2025]
Abstract
Alzheimer's disease (AD) is characterized by progressive cognitive decline, severe brain atrophy and neuroinflammation. We conducted a randomized, double-blind, placebo-controlled, parallel-group phase 2a clinical trial that tested the safety and efficacy of laromestrocel, a bone-marrow-derived, allogeneic mesenchymal stem-cell therapy, in slowing AD clinical progression, atrophy and neuroinflammation. Participants across ten centers in the United States were randomly assigned 1:1:1:1 to four infusion groups: group 1 (placebo; four monthly infusions, n = 12); group 2 (25 million cells, one infusion followed by three monthly infusions of placebo, n = 13); group 3 (25 million cells; four monthly doses, n = 13); and group 4 (100 million cells; four monthly doses, n = 11). The study met its primary end point of safety; the rate of treatment-emergent serious adverse events within 4 weeks of any infusion was similar in all four groups: group 1, 0% (95% CI 0-26.5%); group 2, 7.7% (95% CI 0.2-36%); group 3, 7.7% (95% CI 0.2-36%) and group 4, 9.1% (95% CI 0.2-41.3%). Additionally, there were no reported infusion-related reactions, hypersensitivities or amyloid-related imaging abnormalities. Laromestrocel improved clinical assessments at 39 weeks compared to placebo, as measured by a composite AD score (secondary end point was met: group 2 versus placebo change: 0.38; 95% CI -0.06-0.82), Montreal cognitive assessment and the Alzheimer's Disease Cooperative Study Activities of Daily Living. At 39 weeks, Laromestrocel slowed the decline of whole brain volume compared to placebo (n = 10) by 48.4% for all treatment groups combined (groups 2-4: P = 0.005; n = 32) and left hippocampal volume by 61.9% (groups 2-4, P = 0.021; n = 32), and reduced neuroinflammation as measured by diffusion tensor imaging. The change in bilateral hippocampal atrophy correlated with the change in mini-mental state exam scores (R = 0.41, P = 0.0075) in all study patients (N = 42). Collectively these results support safety of single and multiple doses of laromestrocel treatment for mild AD and provide indications of efficacy in combating decline of brain volume and potentially cognitive function. Larger-scale clinical trials of laromestrocel in AD are warranted. ClinicalTrials.gov registration: NCT05233774 .
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Mark Brody
- Brain Matters Research, Delray Beach, FL, USA
| | | | - Ana Fuquay
- Brain Matters Research, Delray Beach, FL, USA
| | | | - Alan F Jacobson
- Allied Clinical Trials, Miami, FL, USA
- Fusion Medical & Research Clinic, Miami, FL, USA
| | | | | | | | | | | | - Joshua M Hare
- Longeveron, Miami, FL, USA.
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
4
|
Pham AVQ, Na Y, Suk G, Yang C, Kang SM, Lee J, Choi H, Kim W, Chi SW, Han S, Choi HW, Kim H, Kim C. Identification of Tie2 as a sensor for reactive oxygen species and its therapeutic implication. Redox Biol 2025; 81:103555. [PMID: 39993340 PMCID: PMC11903958 DOI: 10.1016/j.redox.2025.103555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/03/2025] [Accepted: 02/17/2025] [Indexed: 02/26/2025] Open
Abstract
Psoriasis is a chronic inflammatory disease characterized by hyperproliferation of keratinocytes and abnormal blood vessels. As hyperproliferation is driven by pro-inflammatory cytokines produced by activated immune cells, therapeutic strategies often target these cytokines to manage the disease. However, the role of abnormally developed blood vessels has often been overlooked in treatment approaches. In this study, we focused on blood vessels in psoriatic lesions and investigated the potential interplay between immune and endothelial cells by adopting imiquimod treated mice as in vivo model, together with various cell biological, biochemical, and structural analyses. We found that activated immune cells can generate reactive oxygen species, subsequently inducing oxidative stress in endothelial cells. Oxidative stress impairs endothelial cell layer integrity, thereby facilitating transendothelial migration of immune cells. Mechanistically, oxidative conditions inhibit Tie2 activation, potentially by modifying its cysteine residues, leading to deactivation of its vessel-stabilizing functions. Additionally, we demonstrated that reactivating Tie2 under such conditions could restore endothelial barrier function and alleviate the disease. These results suggest that Tie2 serves as a receptor that is directly responsive to oxidative environments, thereby modulating its kinase activity. Furthermore, we suggest that Tie2 reactivation is a promising alternative therapeutic approach for psoriasis.
Collapse
Affiliation(s)
- An Vuong Quynh Pham
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Yongwoo Na
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Gyeongseo Suk
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Chansik Yang
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - So Min Kang
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Joonha Lee
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Hongseo Choi
- Department of Molecular Science & Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Wook Kim
- Department of Molecular Science & Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Sung Wook Chi
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Sangyeul Han
- Ingenia Therapeutics, 34 Coolidge Ave. 2nd Floor, Watertown, MA, 02472, United States
| | - Hae Woong Choi
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Hyeonwoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea; KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Chungho Kim
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
5
|
Miao L, Lu Y, Nusrat A, Fan G, Zhang S, Zhao L, Wu CL, Guo H, Huyen TLN, Zheng Y, Fan ZC, Shou W, Schwartz RJ, Liu Y, Kumar A, Sui H, Serysheva II, Burns AR, Wan LQ, Zhou B, Evans SM, Wu M. Tunneling nanotube-like structures regulate distant cellular interactions during heart formation. Science 2025; 387:eadd3417. [PMID: 40080583 DOI: 10.1126/science.add3417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/26/2024] [Accepted: 01/03/2025] [Indexed: 03/15/2025]
Abstract
In the developing mammalian heart, the endocardium and the myocardium are separated by so-called cardiac jelly. Communication between the endocardium and the myocardium is essential for cardiac morphogenesis. How membrane-localized receptors and ligands achieve interaction across the cardiac jelly is not understood. Working in developing mouse cardiac morphogenesis models, we used a variety of cellular, imaging, and genetic approaches to elucidate this question. We found that myocardium and endocardium interacted directly through microstructures termed tunneling nanotube-like structures (TNTLs). TNTLs extended from cardiomyocytes (CMs) to contact endocardial cells (ECs) directly. TNTLs transported cytoplasmic proteins, transduced signals between CMs and ECs, and initiated myocardial growth toward the heart lumen to form ventricular trabeculae-like structures. Loss of TNTLs disturbed signaling interactions and, subsequently, ventricular patterning.
Collapse
Affiliation(s)
- Lianjie Miao
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Yangyang Lu
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Anika Nusrat
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Guizhen Fan
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shaohua Zhang
- New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Luqi Zhao
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Chia-Ling Wu
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Hongyan Guo
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Trang Le Nu Huyen
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, University of Cincinnati, 3333 Brunet Avenue, Cincinnati, OH, USA
| | - Zhen-Chuan Fan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Weinian Shou
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Yu Liu
- Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Ashok Kumar
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Haixin Sui
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alan R Burns
- College of Optometry, University of Houston, Houston, TX, USA
| | - Leo Q Wan
- Departments of Biomedical Engineering and Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Bin Zhou
- New Cornerstone Investigator Institute, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Sylvia M Evans
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mingfu Wu
- Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| |
Collapse
|
6
|
Kuronishi M, Ozawa Y, Kimura T, Li SD, Kato Y. Development of a Microvessel Density Gene Signature and Its Application in Precision Medicine. CANCER RESEARCH COMMUNICATIONS 2025; 5:398-408. [PMID: 39835481 PMCID: PMC11880750 DOI: 10.1158/2767-9764.crc-24-0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/08/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
SIGNIFICANCE A novel gene signature for MVD was developed. This MVD gene score enables the estimation of MVD, reflecting the sensitivity to antiangiogenic inhibitors, in transcriptomic datasets. We demonstrated the utility of the MVD gene score together with a T cell-inflamed gene signature for potential future use as a clinical biomarker.
Collapse
Affiliation(s)
| | - Yoichi Ozawa
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Japan
| | - Takayuki Kimura
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Japan
| | | | - Yu Kato
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Japan
| |
Collapse
|
7
|
Li G, Gao J, Ding P, Gao Y. The role of endothelial cell-pericyte interactions in vascularization and diseases. J Adv Res 2025; 67:269-288. [PMID: 38246244 PMCID: PMC11725166 DOI: 10.1016/j.jare.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Endothelial cells (ECs) and pericytes (PCs) are crucial components of the vascular system, with ECs lining the inner layer of blood vessels and PCs surrounding capillaries to regulate blood flow and angiogenesis. Intercellular communication between ECs and PCs is vital for the formation, stability, and function of blood vessels. Various signaling pathways, such as the vascular endothelial growth factor/vascular endothelial growth factor receptor pathway and the platelet-derived growth factor-B/platelet-derived growth factor receptor-β pathway, play roles in communication between ECs and PCs. Dysfunctional communication between these cells is associated with various diseases, including vascular diseases, central nervous system disorders, and certain types of cancers. AIM OF REVIEW This review aimed to explore the diverse roles of ECs and PCs in the formation and reshaping of blood vessels. This review focused on the essential signaling pathways that facilitate communication between these cells and investigated how disruptions in these pathways may contribute to disease. Additionally, the review explored potential therapeutic targets, future research directions, and innovative approaches, such as investigating the impact of EC-PCs in novel systemic diseases, addressing resistance to antiangiogenic drugs, and developing novel antiangiogenic medications to enhance therapeutic efficacy. KEY SCIENTIFIC CONCEPTS OF REVIEW Disordered EC-PC intercellular signaling plays a role in abnormal blood vessel formation, thus contributing to the progression of various diseases and the development of resistance to antiangiogenic drugs. Therefore, studies on EC-PC intercellular interactions have high clinical relevance.
Collapse
Affiliation(s)
- Gan Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| | - Peng Ding
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Youshui Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| |
Collapse
|
8
|
Vakili S, Cao K. Angiopoietin-2: A Therapeutic Target for Vascular Protection in Hutchinson-Gilford Progeria Syndrome. Int J Mol Sci 2024; 25:13537. [PMID: 39769300 PMCID: PMC11676795 DOI: 10.3390/ijms252413537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a pediatric condition characterized by clinical features that resemble accelerated aging. The abnormal accumulation of a toxic form of the lamin A protein known as progerin disrupts cellular functions, leading to various complications, including growth retardation, loss of subcutaneous fat, abnormal skin, alopecia, osteoporosis, and progressive joint contractures. Death primarily occurs as the result of complications from progressive atherosclerosis, especially from cardiac disease, such as myocardial infarction or heart failure, or cerebrovascular disease like stroke. Despite the availability of lonafarnib, the only US Food and Drug Administration-approved treatment for HGPS, cardiovascular complications remain the leading cause of morbidity and mortality in affected patients. Defective angiogenesis-the process of forming new blood vessels from existing ones-plays a crucial role in the development of cardiovascular disease. A recent study suggests that Angiopoietin-2 (Ang2), a pro-angiogenic growth factor that regulates angiogenesis and vascular stability, may offer therapeutic potential for the treatment of HGPS. In this review, we describe the clinical features and key cellular processes impacted by progerin and discuss the therapeutic potential of Ang2 in addressing these challenges.
Collapse
Affiliation(s)
| | - Kan Cao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA;
| |
Collapse
|
9
|
Li H, Wang R, Xu P, Yuan C, Huang M, Jiang L. Elucidating the molecular basis of PECAM-1 and Tie2 interaction from binding dynamics and complex formation. Biochem Biophys Res Commun 2024; 735:150484. [PMID: 39094232 DOI: 10.1016/j.bbrc.2024.150484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Endothelial hyperpermeability-induced vascular dysfunction is a prevalent and significant characteristic in critical illnesses such as sepsis and other conditions marked by acute systemic inflammation. Platelet endothelial cell adhesion molecule-1 (PECAM-1) and Tie2 serve as transmembrane receptors within endothelial cells (ECs), playing pivotal roles not only in maintaining EC-EC junctions but also in influencing vasculogenesis, vessel homeostasis, and vascular remodeling. OBJECTIVES At present, the molecular basis of the PECAM-1-Tie2 interaction remains inadequately elucidated. In the study, recombinant soluble PECAM-1 (sPECAM-1) and Tie2 (sTie2) were expressed by Drosophila S2 and HEK293 expression systems, respectively. The interactions between sPECAM-1 and sTie2 were investigated using the Surface Plasmon Resonance (SPR) and size-exclusion chromatography methods. An immunofluorescence assay was used to detect the binding of sPECAM-1 and sTie2 on endothelial cells. RESULTS PECAM-1 was found to bind with sTie2 in a sodium and pH-dependent manner as confirmed by the ELISA, the D5-D6 domains of PECAM-1 might play a crucial role in binding with sTie2. Surface Plasmon Resonance (SPR) results showed that the full length of sPECAM-1 has the strongest binding affinity (KD = 48.4 nM) with sTie2, compared to sPECAM-1-D1-D4 and sPECAM-1-D1-D2. This result is consistent with that in the ELISA. In addition, size-exclusion chromatography demonstrated that sPECAM-1, sTie2, and Ang1 can form a ternary complex. CONCLUSION In this study, we determined that sPECAM-1 binds to sTie2 in a pH and sodium-dependent manner. The full length of sPECAM-1 has the strongest binding affinity, and the D5-D6 domains in sPECAM-1 play a crucial role in the interaction between sPECAM-1 and sTie2.
Collapse
Affiliation(s)
- Hao Li
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Rui Wang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China; The National & Local Joint Engineering Research Center on Biopharmaceutical and Photodynamic Therapy Technologies, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, China; The National & Local Joint Engineering Research Center on Biopharmaceutical and Photodynamic Therapy Technologies, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
10
|
Bucher V, Graf H, Zander J, Liebchen U, Hackner D, Gräfe C, Bender M, Zoller M, Scharf C. Angiopoietin II in Critically Ill Septic Patients: A Post Hoc Analysis of the DRAK Study. Biomedicines 2024; 12:2436. [PMID: 39595003 PMCID: PMC11591998 DOI: 10.3390/biomedicines12112436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024] Open
Abstract
INTRODUCTION Angiopoietin II (Ang-II) plays a pivotal role in the development of microcirculatory dysfunction as it provokes endothelial barrier disruption in patients with sepsis or septic shock. In particular, those with acute kidney injury show high Ang-II concentrations. So far, it is unclear which covariates influence Ang-II concentration in the early phase of sepsis, especially if extracorporeal therapies also do. METHODS Ang-II concentrations were measured in 171 patients with sepsis after the first day of antibiotic treatment between 03/2013 and 01/2015. Ang-II was correlated with potential influencing factors (Spearman correlation). A multivariate model was established including the significant correlating parameters. The Mann-Whitney U test and the Kruskal-Wallis test were used to detect significant differences in Ang-II concentration. RESULTS The median Ang-II concentration was 8015 pg/mL (interquartile range (IQR): 5024-14,185). A total of forty patients were treated with kidney replacement therapy (KRT) and 20 were supported by venovenous extracorporeal membrane oxygenation (vv-ECMO). Sequential organ failure assessment (SOFA) score (r = 0.541), creatinine clearance (r = -0.467), urinary output (r = -0.289), interleukin (IL)-6 (r = 0.529), C-reactive protein (CRP) (r = 0.241), platelet count (r = -0.419), bilirubin (r = 0.565), lactate (r = 0.322), KRT (r = 0.451), and fluid balance (r = 0.373) significantly correlated with Ang-II concentration and were included in the multivariate model. There, creatinine clearance (p < 0.01, b = -26.3, 95% confidence interval (CI) -41.8--10.8), fluid balance (p = 0.002, b = 0.92, 95% CI 0.33-1.51), and CRP (p = 0.004, b = 127.6, 95% CI 41.6-213.7) were associated with Ang-II concentration. Furthermore, patients with KRT (median: 15,219 pg/mL, IQR: 10,548-20,270) had significantly (p < 0.01) higher Ang-II concentrations than those with vv-ECMO support (median: 6412 pg/mL, IQR: 5246-10,257) or those without extracorporeal therapy (median: 7156 pg/mL, IQR: 4409-12,741). CONCLUSION Increased CRP, positive fluid balance, and impaired kidney function were associated with higher Ang-II concentrations in critically ill patients in the early stage of sepsis in this post hoc analysis. In particular, patients with KRT had very high Ang-II concentrations, whereas the use of vv-ECMO was not related to higher Ang-II concentrations. The significance for clinical practice should be clarified by a prospective study with standardized measurements.
Collapse
Affiliation(s)
- Veronika Bucher
- Department of Anaesthesiology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Helen Graf
- Department of Anaesthesiology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | | | - Uwe Liebchen
- Department of Anaesthesiology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Danilo Hackner
- Department of Anaesthesiology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Caroline Gräfe
- Department of Anaesthesiology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Martin Bender
- Department of Anaesthesiology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Michael Zoller
- Department of Anaesthesiology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Christina Scharf
- Department of Anaesthesiology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany
| |
Collapse
|
11
|
Kaussikaa S, Prasad MK, Ramkumar KM. Nrf2 Activation in Keratinocytes: A Central Role in Diabetes-Associated Wound Healing. Exp Dermatol 2024; 33:e15189. [PMID: 39373525 DOI: 10.1111/exd.15189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/28/2024] [Accepted: 09/21/2024] [Indexed: 10/08/2024]
Abstract
Wound healing is a complex biological process crucial for tissue repair, wherein keratinocytes play a pivotal role in initiating, sustaining and completing the cascade. Various local and systemic factors, such as lifestyle, age metabolic disorders and vascular insufficiency, can influence this process, and in the context of diabetic wounds, disrupted biological mechanisms, including inflammation, tissue hypoxia, decrease in collagen production along with increased oxidative stress and keratinocyte dysfunction, contribute to delayed healing. During re-epithelialisation, keratinocytes undergo rapid multiplication and migration, forming a dense hyperproliferative epithelial layer that restores the epidermal barrier. Nuclear factor-erythroid 2-related factor (Nrf2), a vital transcription factor, emerges as a central regulator in managing antioxidant proteins and detoxifying enzymes, serving as a guardian against elevated reactive oxygen species (ROS) levels during stress. Nrf2 also orchestrates angiogenesis and anti-inflammatory responses crucial for wound repair. Studies demonstrate that under high-glucose conditions, Nrf2 activation promotes wound healing by enhancing cell proliferation and migration while reducing apoptosis. Nrf2 activators stimulate endogenous antioxidant production, thereby mitigating oxidative stress. Furthermore, Nrf2 upregulation is associated with decreased expression of cytokines such as TNF-α and IL- 6. Recent research underscores the potential of bioactive molecules, including dietary polyphenols, traditional medicinal compounds and pharmacological agents, in activating Nrf2 and preventing diseases such as diabetes due to their robust antioxidative properties. This review aims to investigate the activation of Nrf2 by these bioactive molecules in cultured keratinocytes and animal models, elucidating the key molecular regulatory mechanisms involved in alleviating oxidative stress and facilitating the diabetic wound healing process. Understanding these complex pathways may offer insights into novel therapeutic strategies for enhanced wound healing in diabetes-associated complications.
Collapse
Affiliation(s)
- Srinivasan Kaussikaa
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Murali Krishna Prasad
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
12
|
Shekatkar M, Kheur S, Deshpande S, Sakhare S, Sanap A, Kheur M, Bhonde R. Critical appraisal of the chorioallantoic membrane model for studying angiogenesis in preclinical research. Mol Biol Rep 2024; 51:1026. [PMID: 39340708 DOI: 10.1007/s11033-024-09956-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Angiogenesis, the biological mechanism by which new blood vessels are generated from existing ones, plays a vital role in growth and development. Effective preclinical screening is necessary for the development of medications that may enhance or inhibit angiogenesis in the setting of different disorders. Traditional in vitro and, in vivo models of angiogenesis are laborious and time-consuming, necessitating advanced infrastructure for embryo culture. MAIN BODY A challenge encountered by researchers studying angiogenesis is the lack of appropriate techniques to evaluate the impact of regulators on the angiogenic response. An ideal test should possess reliability, technical simplicity, easy quantifiability, and, most importantly, physiological relevance. The CAM model, leveraging the extraembryonic membrane of the chicken embryo, offers a unique combination of accessibility, low cost, and rapid development, making it an attractive option for angiogenesis assays. This review evaluates the strengths and limitations of the CAM model in the context of its anatomical and physiological properties, and its relevance to human pathophysiological conditions. Its abundant capillary network makes it a common choice for studying angiogenesis. The CAM assay serves as a substitute for animal models and offers a natural setting for developing blood vessels and the many elements involved in the intricate interaction with the host. Despite its advantages, the CAM model's limitations are notable. These include species-specific responses that may not always extrapolate to humans and the ethical considerations of using avian embryos. We discuss methodological adaptations that can mitigate some of these limitations and propose future directions to enhance the translational relevance of this model. This review underscores the CAM model's valuable role in angiogenesis research and aims to guide researchers in optimizing its use for more predictive and robust preclinical studies. CONCLUSION The highly vascularized chorioallantoic membrane (CAM) of fertilized chicken eggs is a cost-effective and easily available method for screening angiogenesis, in comparison to other animal models.
Collapse
Affiliation(s)
- Madhura Shekatkar
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Supriya Kheur
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India.
| | - Shantanu Deshpande
- Department of Pediatric and Preventive Dentistry, Bharati Vidyapeeth (Deemed to be University), Dental College and Hospital, Navi Mumbai, India
| | - Swapnali Sakhare
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Avinash Sanap
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Mohit Kheur
- Department of Prosthodontics, M.A. Rangoonwala College of Dental Sciences and Research Centre, Pune, Maharashtra, India
| | - Ramesh Bhonde
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|
13
|
Zhou W, Zhang Q, Chen J, Gan J, Li Y, Zou J. Angiopoietin-4 expression and potential mechanisms in carcinogenesis: Current achievements and perspectives. Clin Exp Med 2024; 24:224. [PMID: 39294405 PMCID: PMC11410924 DOI: 10.1007/s10238-024-01449-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/23/2024] [Indexed: 09/20/2024]
Abstract
As one of the factors regulating tumour angiogenesis, angiopoietin-4 (ANGPT4), which plays an important role in promoting tumour proliferation, survival, expansion and angiogenesis, is highly expressed in some tumours, such as lung adenocarcinoma, glioblastoma and ovarian cancer. This may be related to the fact that ANGPT4 affects the blood vessels and lymphatic system of the tumour. Specifically, ANGPT4 could play an effective role in promoting cancer by affecting the tyrosine kinase receptor TIE2, ERK1/2 and PI3K/AKT signalling pathways. Therefore, ANGPT4 may be an important biomarker for the occurrence and development of cancer and poor prognosis. In addition, the inhibition of ANGPT4 may be a useful cancer treatment. This paper reviews the latest preclinical research on ANGPT4, emphasizes its role in tumourigenesis and broadens our understanding of the carcinogenic function of ANGPT4 and the development of ANGPT4 inhibitors. This is the latest version of the revised version of the previous article.
Collapse
Affiliation(s)
- Wenchao Zhou
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qunfeng Zhang
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Junling Chen
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jinpeng Gan
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| | - Juan Zou
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
- The Second Affiliated Hospital, Department of Gynecology, Hunan Province Key Laboratory of Tumor Cellular Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
14
|
Zhang J, Su J, Zhou Y, Lu J. Evaluating the efficacy and safety of trebananib in treating ovarian cancer and non-ovarian cancer patients: a meta-analysis and systematic review. Expert Rev Anticancer Ther 2024; 24:881-891. [PMID: 38970210 DOI: 10.1080/14737140.2024.2377793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/21/2024] [Indexed: 07/08/2024]
Abstract
OBJECTIVES Due to its anti-angiogenic properties, trebananib is frequently employed in the treatment of cancer patients, particularly those with ovarian cancer. We conducted a meta-analysis to assess the efficacy and safety profile of trebananib in combination with other drugs for treating both ovarian and non-ovarian cancer patients. METHODS Our search encompassed PubMed, Medline, Cochrane, and Embase databases, with a focus on evaluating study quality. Data extraction was conducted from randomized controlled trials (RCTs), and RevMan 5.3 facilitated result analysis. RESULTS Combining trebananib with other drugs extended progression-free survival (PFS) [HR 0.81, (95%CI: 0.65, 0.99), p = 0.04] and overall survival (OS) [HR 0.88, (95%CI: 0.79, 1.00), p = 0.04] in ovarian cancer patients. Ovarian cancer patients exhibited a higher objective response rate (ORR) with trebananib compared to non-ovarian cancer cohorts. Moreover, the incorporation of trebananib into the standard treatment regimen for malignant tumors did not significantly elevate drug-related adverse events [RR 1.05, (95% CI: 1.00, 1.11), p = 0.05]. CONCLUSION Trebananib plus other drugs can improve the PFS, OS and ORR in patients with cancer, especially ovarian cancer. Our recommendation is to use trebananib plus other drugs to treat advanced cancer, and to continuously monitor and manage drug-related adverse events. REGISTRATION PROSPERO (No. CRD42023466988).
Collapse
Affiliation(s)
- Jialin Zhang
- Department of Oncology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Jingyang Su
- Department of General internal medicine, Tongde Hospital Affiliated to Zhejiang Chinese Medical University (Tongde Hospital of Zhejiang Province), Hangzhou, China
| | - Yeyue Zhou
- Department of Oncology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Jinhua Lu
- Department of Oncology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
15
|
Ou KL, Chen CK, Huang JJ, Chang WW, Hsieh Li SM, Jiang TX, Widelitz RB, Lansford R, Chuong CM. Adaptive patterning of vascular network during avian skin development: Mesenchymal plasticity and dermal vasculogenesis. Cells Dev 2024; 179:203922. [PMID: 38688358 PMCID: PMC11633821 DOI: 10.1016/j.cdev.2024.203922] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
A vasculature network supplies blood to feather buds in the developing skin. Does the vasculature network during early skin development form by sequential sprouting from the central vasculature or does local vasculogenesis occur first that then connect with the central vascular tree? Using transgenic Japanese quail Tg(TIE1p.H2B-eYFP), we observe that vascular progenitor cells appear after feather primordia formation. The vasculature then radiates out from each bud and connects with primordial vessels from neighboring buds. Later they connect with the central vasculature. Epithelial-mesenchymal recombination shows local vasculature is patterned by the epithelium, which expresses FGF2 and VEGF. Perturbing noggin expression leads to abnormal vascularization. To study endothelial origin, we compare transcriptomes of TIE1p.H2B-eYFP+ cells collected from the skin and aorta. Endothelial cells from the skin more closely resemble skin dermal cells than those from the aorta. The results show developing chicken skin vasculature is assembled by (1) physiological vasculogenesis from the peripheral tissue, and (2) subsequently connects with the central vasculature. The work implies mesenchymal plasticity and convergent differentiation play significant roles in development, and such processes may be re-activated during adult regeneration. SUMMARY STATEMENT: We show the vasculature network in the chicken skin is assembled using existing feather buds as the template, and endothelia are derived from local bud dermis and central vasculature.
Collapse
Affiliation(s)
- Kuang-Ling Ou
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America; Ostrow School of Dentistry of the University of Southern California, Los Angeles, CA, United States of America; Burn Center, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Kuan Chen
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Junxiang J Huang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA, United States of America; Graduate Programs in Biomedical and Biological Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - William Weijen Chang
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America; Integrative Stem Cell Center, China Medical University, Taichung, Taiwan; Institute of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Shu-Man Hsieh Li
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America; Ostrow School of Dentistry of the University of Southern California, Los Angeles, CA, United States of America
| | - Ting-Xin Jiang
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Randall B Widelitz
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Rusty Lansford
- Department of Radiology and Developmental Neuroscience Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States of America; Department of Radiology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America.
| |
Collapse
|
16
|
Zhang Y, Shen X, Deng S, Chen Q, Xu B. Neural Regulation of Vascular Development: Molecular Mechanisms and Interactions. Biomolecules 2024; 14:966. [PMID: 39199354 PMCID: PMC11353022 DOI: 10.3390/biom14080966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
As a critical part of the circulatory system, blood vessels transport oxygen and nutrients to every corner of the body, nourishing each cell, and also remove waste and toxins. Defects in vascular development and function are closely associated with many diseases, such as heart disease, stroke, and atherosclerosis. In the nervous system, the nervous and vascular systems are intricately connected in both development and function. First, peripheral blood vessels and nerves exhibit parallel distribution patterns. In the central nervous system (CNS), nerves and blood vessels form a complex interface known as the neurovascular unit. Second, the vascular system employs similar cellular and molecular mechanisms as the nervous system for its development. Third, the development and function of CNS vasculature are tightly regulated by CNS-specific signaling pathways and neural activity. Additionally, vascular endothelial cells within the CNS are tightly connected and interact with pericytes, astrocytes, neurons, and microglia to form the blood-brain barrier (BBB). The BBB strictly controls material exchanges between the blood and brain, maintaining the brain's microenvironmental homeostasis, which is crucial for the normal development and function of the CNS. Here, we comprehensively summarize research on neural regulation of vascular and BBB development and propose directions for future research.
Collapse
Affiliation(s)
- Yu Zhang
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Xinyu Shen
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Shunze Deng
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Qiurong Chen
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Bing Xu
- School of Life Sciences, Nantong University, Nantong 226019, China
| |
Collapse
|
17
|
Lazovic B, Nguyen HT, Ansarizadeh M, Wigge L, Kohl F, Li S, Carracedo M, Kettunen J, Krimpenfort L, Elgendy R, Richter K, De Silva L, Bilican B, Singh P, Saxena P, Jakobsson L, Hong X, Eklund L, Hicks R. Human iPSC and CRISPR targeted gene knock-in strategy for studying the somatic TIE2 L914F mutation in endothelial cells. Angiogenesis 2024; 27:523-542. [PMID: 38771392 PMCID: PMC11303492 DOI: 10.1007/s10456-024-09925-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/22/2024] [Indexed: 05/22/2024]
Abstract
Induced pluripotent stem cell (iPSC) derived endothelial cells (iECs) have emerged as a promising tool for studying vascular biology and providing a platform for modelling various vascular diseases, including those with genetic origins. Currently, primary ECs are the main source for disease modelling in this field. However, they are difficult to edit and have a limited lifespan. To study the effects of targeted mutations on an endogenous level, we generated and characterized an iPSC derived model for venous malformations (VMs). CRISPR-Cas9 technology was used to generate a novel human iPSC line with an amino acid substitution L914F in the TIE2 receptor, known to cause VMs. This enabled us to study the differential effects of VM causative mutations in iECs in multiple in vitro models and assess their ability to form vessels in vivo. The analysis of TIE2 expression levels in TIE2L914F iECs showed a significantly lower expression of TIE2 on mRNA and protein level, which has not been observed before due to a lack of models with endogenous edited TIE2L914F and sparse patient data. Interestingly, the TIE2 pathway was still significantly upregulated and TIE2 showed high levels of phosphorylation. TIE2L914F iECs exhibited dysregulated angiogenesis markers and upregulated migration capability, while proliferation was not affected. Under shear stress TIE2L914F iECs showed reduced alignment in the flow direction and a larger cell area than TIE2WT iECs. In summary, we developed a novel TIE2L914F iPSC-derived iEC model and characterized it in multiple in vitro models. The model can be used in future work for drug screening for novel treatments for VMs.
Collapse
Affiliation(s)
- Bojana Lazovic
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Hoang-Tuan Nguyen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Finnadvance Ltd., Oulu, Finland
| | - Mohammadhassan Ansarizadeh
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Leif Wigge
- Data Sciences and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Franziska Kohl
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Songyuan Li
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Miguel Carracedo
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Luc Krimpenfort
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ramy Elgendy
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Kati Richter
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Laknee De Silva
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Bilada Bilican
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Pratik Saxena
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lars Jakobsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Xuechong Hong
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Ryan Hicks
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK.
| |
Collapse
|
18
|
Ayalew W, Wu X, Tarekegn GM, Sisay Tessema T, Naboulsi R, Van Damme R, Bongcam-Rudloff E, Edea Z, Chu M, Enquahone S, Liang C, Yan P. Whole Genome Scan Uncovers Candidate Genes Related to Milk Production Traits in Barka Cattle. Int J Mol Sci 2024; 25:6142. [PMID: 38892330 PMCID: PMC11172929 DOI: 10.3390/ijms25116142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
In this study, our primary aim was to explore the genomic landscape of Barka cattle, a breed recognized for high milk production in a semi-arid environment, by focusing on genes with known roles in milk production traits. We employed genome-wide analysis and three selective sweep detection methods (ZFST, θπ ratio, and ZHp) to identify candidate genes associated with milk production and composition traits. Notably, ACAA1, P4HTM, and SLC4A4 were consistently identified by all methods. Functional annotation highlighted their roles in crucial biological processes such as fatty acid metabolism, mammary gland development, and milk protein synthesis. These findings contribute to understanding the genetic basis of milk production in Barka cattle, presenting opportunities for enhancing dairy cattle production in tropical climates. Further validation through genome-wide association studies and transcriptomic analyses is essential to fully exploit these candidate genes for selective breeding and genetic improvement in tropical dairy cattle.
Collapse
Affiliation(s)
- Wondossen Ayalew
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.A.); (X.W.); (M.C.)
- Institute of Biotechnology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
| | - Xiaoyun Wu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.A.); (X.W.); (M.C.)
| | - Getinet Mekuriaw Tarekegn
- Institute of Biotechnology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
- Scotland’s Rural College (SRUC), Easter Bush Campus, Roslin Institute Building, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Tesfaye Sisay Tessema
- Institute of Biotechnology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
| | - Rakan Naboulsi
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institute, Tomtebodavägen 18A, 17177 Stockholm, Sweden
| | - Renaud Van Damme
- Department of Animal Biosciences, Bioinformatics Section, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden (E.B.-R.)
| | - Erik Bongcam-Rudloff
- Department of Animal Biosciences, Bioinformatics Section, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden (E.B.-R.)
| | - Zewdu Edea
- Ethiopian Bio and Emerging Technology Institute, Addis Ababa P.O. Box 5954, Ethiopia;
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.A.); (X.W.); (M.C.)
| | - Solomon Enquahone
- Institute of Biotechnology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.A.); (X.W.); (M.C.)
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.A.); (X.W.); (M.C.)
| |
Collapse
|
19
|
Brouillard P, Murtomäki A, Leppänen VM, Hyytiäinen M, Mestre S, Potier L, Boon LM, Revencu N, Greene A, Anisimov A, Salo MH, Hinttala R, Eklund L, Quéré I, Alitalo K, Vikkula M. Loss-of-function mutations of the TIE1 receptor tyrosine kinase cause late-onset primary lymphedema. J Clin Invest 2024; 134:e173586. [PMID: 38820174 PMCID: PMC11245153 DOI: 10.1172/jci173586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/24/2024] [Indexed: 06/02/2024] Open
Abstract
Primary lymphedema (PL), characterized by tissue swelling, fat accumulation, and fibrosis, results from defects in lymphatic vessels or valves caused by mutations in genes involved in development, maturation, and function of the lymphatic vascular system. Pathogenic variants in various genes have been identified in about 30% of PL cases. By screening of a cohort of 755 individuals with PL, we identified two TIE1 (tyrosine kinase with immunoglobulin- and epidermal growth factor-like domains 1) missense variants and one truncating variant, all predicted to be pathogenic by bioinformatic algorithms. The TIE1 receptor, in complex with TIE2, binds angiopoietins to regulate the formation and remodeling of blood and lymphatic vessels. The premature stop codon mutant encoded an inactive truncated extracellular TIE1 fragment with decreased mRNA stability, and the amino acid substitutions led to decreased TIE1 signaling activity. By reproducing the two missense variants in mouse Tie1 via CRISPR/Cas9, we showed that both cause edema and are lethal in homozygous mice. Thus, our results indicate that TIE1 loss-of-function variants can cause lymphatic dysfunction in patients. Together with our earlier demonstration that ANGPT2 loss-of-function mutations can also cause PL, our results emphasize the important role of the ANGPT2/TIE1 pathway in lymphatic function.
Collapse
Affiliation(s)
- Pascal Brouillard
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Aino Murtomäki
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Veli-Matti Leppänen
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Marko Hyytiäinen
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sandrine Mestre
- Department of Vascular Medicine, Centre de Référence des Maladies Lymphatiques et Vasculaires Rares, Inserm IDESP, CHU Montpellier, Université de Montpellier, Montpellier, France
| | - Lucas Potier
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Laurence M. Boon
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
- Center for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc, University of Louvain, VASCERN-VASCA Reference Centre, Brussels, Belgium
| | - Nicole Revencu
- Center for Human Genetics, Cliniques Universitaires Saint-Luc, University of Louvain, Brussels, Belgium
| | - Arin Greene
- Department of Plastic and Oral Surgery, Lymphedema Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrey Anisimov
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Miia H. Salo
- Biocenter Oulu, Research Unit of Clinical Medicine and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Reetta Hinttala
- Biocenter Oulu, Research Unit of Clinical Medicine and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Isabelle Quéré
- Department of Vascular Medicine, Centre de Référence des Maladies Lymphatiques et Vasculaires Rares, Inserm IDESP, CHU Montpellier, Université de Montpellier, Montpellier, France
| | - Kari Alitalo
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
- WELBIO department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
20
|
Kessler S, Burke B, Andrieux G, Schinköthe J, Hamberger L, Kacza J, Zhan S, Reasoner C, Dutt TS, Kaukab Osman M, Henao-Tamayo M, Staniek J, Villena Ossa JF, Frank DT, Ma W, Ulrich R, Cathomen T, Boerries M, Rizzi M, Beer M, Schwemmle M, Reuther P, Schountz T, Ciminski K. Deciphering bat influenza H18N11 infection dynamics in male Jamaican fruit bats on a single-cell level. Nat Commun 2024; 15:4500. [PMID: 38802391 PMCID: PMC11130286 DOI: 10.1038/s41467-024-48934-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
Jamaican fruit bats (Artibeus jamaicensis) naturally harbor a wide range of viruses of human relevance. These infections are typically mild in bats, suggesting unique features of their immune system. To better understand the immune response to viral infections in bats, we infected male Jamaican fruit bats with the bat-derived influenza A virus (IAV) H18N11. Using comparative single-cell RNA sequencing, we generated single-cell atlases of the Jamaican fruit bat intestine and mesentery. Gene expression profiling showed that H18N11 infection resulted in a moderate induction of interferon-stimulated genes and transcriptional activation of immune cells. H18N11 infection was predominant in various leukocytes, including macrophages, B cells, and NK/T cells. Confirming these findings, human leukocytes, particularly macrophages, were also susceptible to H18N11, highlighting the zoonotic potential of this bat-derived IAV. Our study provides insight into a natural virus-host relationship and thus serves as a fundamental resource for future in-depth characterization of bat immunology.
Collapse
Affiliation(s)
- Susanne Kessler
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bradly Burke
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Geoffroy Andrieux
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Jan Schinköthe
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Lea Hamberger
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johannes Kacza
- BioImaging Core Facility, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Shijun Zhan
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Clara Reasoner
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Taru S Dutt
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Maria Kaukab Osman
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Marcela Henao-Tamayo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Julian Staniek
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany
| | - Jose Francisco Villena Ossa
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany
| | - Dalit T Frank
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Wenjun Ma
- Department of Veterinary Pathobiology and Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Reiner Ulrich
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Toni Cathomen
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between DKFZ and Medical Center - University of Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Reuther
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tony Schountz
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Kevin Ciminski
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
21
|
Sunohara M, Morikawa S, Shimada K, Suzuki K. Spatiotemporal expression profiles of c-Mpl mRNA in the tooth germ: Comparative expression dynamics of vascularization-related genes. Ann Anat 2024; 253:152227. [PMID: 38336176 DOI: 10.1016/j.aanat.2024.152227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/06/2023] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Vascularization is an essential event for both embryonic organ development and tissue repair in adults. During mouse tooth development, endothelial cells migrate into dental papilla during the cap stage, and form blood vessels through angiogenesis. Megakaryocytes and/or platelets, as other hematopoietic cells, express angiogenic molecules and can promote angiogenesis in adult tissues. However, it remains unknown which cells are responsible for attracting and leading blood vessels through the dental papilla during tooth development. METHODS Here we analyzed the spatiotemporal expression of c-Mpl mRNA in developing molar teeth of fetal mice. Expression patterns were then compared with those of several markers of hematopoietic cells as well as of angiogenic elements including CD41, erythropoietin receptor, CD34, angiopoietin-1 (Ang-1), Tie-2, and vascular endothelial growth factor receptor2 (VEGFR2) through in situ hybridization or immunohistochemistry. RESULTS Cells expressing c-Mpl mRNA was found in several parts of the developing tooth germ, including the peridental mesenchyme, dental papilla, enamel organ, and dental lamina. This expression occurred in a spatiotemporally controlled fashion. CD41-expressing cells were not detected during tooth development. The spatiotemporal expression pattern of c-Mpl mRNA in the dental papilla was similar to that of Ang-1, which preceded invasion of endothelial cells. Eventually, at the early bell stage, the c-Mpl mRNA signal was detected in morphologically differentiating odontoblasts that accumulated in the periphery of the dental papilla along the inner enamel epithelium layer of the future cusp region. CONCLUSION During tooth development, several kinds of cells express c-Mpl mRNA in a spatiotemporally controlled fashion, including differentiating odontoblasts. We hypothesize that c-Mpl-expressing cells appearing in the forming dental papilla at the cap stage are odontoblast progenitor cells that migrate to the site of odontoblast differentiation. There they attract vascular endothelial cells into the forming dental papilla and lead cells toward the inner enamel epithelium layer through production of angiogenic molecules (e.g., Ang-1) during migration to the site of differentiation. C-Mpl may regulate apoptosis and/or proliferation of expressing cells in order to execute normal development of the tooth.
Collapse
Affiliation(s)
- Masataka Sunohara
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan.
| | - Shigeru Morikawa
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuto Shimada
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
| | - Kingo Suzuki
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan
| |
Collapse
|
22
|
Chen YC, Martins TA, Marchica V, Panula P. Angiopoietin 1 and integrin beta 1b are vital for zebrafish brain development. Front Cell Neurosci 2024; 17:1289794. [PMID: 38235293 PMCID: PMC10792015 DOI: 10.3389/fncel.2023.1289794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction Angiopoietin 1 (angpt1) is essential for angiogenesis. However, its role in neurogenesis is largely undiscovered. This study aimed to identify the role of angpt1 in brain development, the mode of action of angpt1, and its prime targets in the zebrafish brain. Methods We investigated the effects of embryonic brain angiogenesis and neural development using qPCR, in situ hybridization, microangiography, retrograde labeling, and immunostaining in the angpt1sa14264, itgb1bmi371, tekhu1667 mutant fish and transgenic overexpression of angpt1 in the zebrafish larval brains. Results We showed the co-localization of angpt1 with notch, delta, and nestin in the proliferation zone in the larval brain. Additionally, lack of angpt1 was associated with downregulation of TEK tyrosine kinase, endothelial (tek), and several neurogenic factors despite upregulation of integrin beta 1b (itgb1b), angpt2a, vascular endothelial growth factor aa (vegfaa), and glial markers. We further demonstrated that the targeted angpt1sa14264 and itgb1bmi371 mutant fish showed severely irregular cerebrovascular development, aberrant hindbrain patterning, expansion of the radial glial progenitors, downregulation of cell proliferation, deficiencies of dopaminergic, histaminergic, and GABAergic populations in the caudal hypothalamus. In contrast to angpt1sa14264 and itgb1bmi371 mutants, the tekhu1667 mutant fish regularly grew with no apparent phenotypes. Notably, the neural-specific angpt1 overexpression driven by the elavl3 (HuC) promoter significantly increased cell proliferation and neuronal progenitor cells but decreased GABAergic neurons, and this neurogenic activity was independent of its typical receptor tek. Discussion Our results prove that angpt1 and itgb1b, besides regulating vascular development, act as a neurogenic factor via notch and wnt signaling pathways in the neural proliferation zone in the developing brain, indicating a novel role of dual regulation of angpt1 in embryonic neurogenesis that supports the concept of angiopoietin-based therapeutics in neurological disorders.
Collapse
Affiliation(s)
- Yu-Chia Chen
- Department of Anatomy, University of Helsinki, Helsinki, Finland
- Zebrafish Unit, Helsinki Institute of Life Science (HiLIFE), Helsinki, Finland
| | - Tomás A. Martins
- Department of Anatomy, University of Helsinki, Helsinki, Finland
- Zebrafish Unit, Helsinki Institute of Life Science (HiLIFE), Helsinki, Finland
| | - Valentina Marchica
- Department of Anatomy, University of Helsinki, Helsinki, Finland
- Zebrafish Unit, Helsinki Institute of Life Science (HiLIFE), Helsinki, Finland
| | - Pertti Panula
- Department of Anatomy, University of Helsinki, Helsinki, Finland
- Zebrafish Unit, Helsinki Institute of Life Science (HiLIFE), Helsinki, Finland
| |
Collapse
|
23
|
Chi Y, Yu S, Yin J, Liu D, Zhuo M, Li X. Role of Angiopoietin/Tie2 System in Sepsis: A Potential Therapeutic Target. Clin Appl Thromb Hemost 2024; 30:10760296241238010. [PMID: 38449088 PMCID: PMC10921858 DOI: 10.1177/10760296241238010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024] Open
Abstract
Sepsis is a disorder of host response caused by severe infection that can lead to life-threatening organ dysfunction. There is no specific treatment for sepsis. Although there are many different pathogens that can cause sepsis, endothelial dysfunction is a frequent mechanism resulting in vascular leakage and coagulation problem. Recent studies on the regulatory pathways of vascular endothelium have shown that the disturbance of angiopoietin (Ang) /Tie2 axis can induce endothelial cell activation, which is the core pathogenesis of sepsis. In this review, we aim to discuss the regulation of Ang/Tie2 axis and the biomarkers involved in the context of sepsis. Also, we attempt to explore the prospective and feasibility of Ang/Tie2 axis as a potential target for sepsis intervention to improve clinical outcomes.
Collapse
Affiliation(s)
- Yawen Chi
- Department of Critical Care Medicine, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Sihan Yu
- Department of Critical Care Medicine, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jia Yin
- Department of Critical Care Medicine, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Danyan Liu
- Department of Critical Care Medicine, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Mengke Zhuo
- Department of Critical Care Medicine, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xu Li
- Department of Critical Care Medicine, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
24
|
Lyu QR, Fu K. Tissue-specific Cre driver mice to study vascular diseases. Vascul Pharmacol 2023; 153:107241. [PMID: 37923099 DOI: 10.1016/j.vph.2023.107241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Vascular diseases, including atherosclerosis and abdominal aneurysms, are the primary cause of mortality and morbidity among the elderly worldwide. The life quality of patients is significantly compromised due to inadequate therapeutic approaches and limited drug targets. To expand our comprehension of vascular diseases, gene knockout (KO) mice, especially conditional knockout (cKO) mice, are widely used for investigating gene function and mechanisms of action. The Cre-loxP system is the most common method for generating cKO mice. Numerous Cre driver mice have been established to study the main cell types that compose blood vessels, including endothelial cells, smooth muscle cells, and fibroblasts. Here, we first discuss the characteristics of each layer of the arterial wall. Next, we provide an overview of the representative Cre driver mice utilized for each of the major cell types in the vessel wall and their most recent applications in vascular biology. We then go over Cre toxicity and discuss the practical methods for minimizing Cre interference in experimental outcomes. Finally, we look into the future of tissue-specific Cre drivers by introducing the revolutionary single-cell RNA sequencing and dual recombinase system.
Collapse
Affiliation(s)
- Qing Rex Lyu
- Medical Research Center, Chongqing General Hospital, Chongqing 401147, China; Chongqing Academy of Medical Sciences, Chongqing 401147, China.
| | - Kailong Fu
- Department of Traditional Chinese Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| |
Collapse
|
25
|
Chen T, Zhou H, Yuan S, Deng X, Li Y, Chen N, You J, Li R, Li T, Zheng Y, Luo M, Lv H, Wu J, Wang L. Glycation of fibronectin impairs angiopoietin-1/Tie-2 signaling through uncoupling Tie-2-α5β1 integrin crosstalk. Cell Signal 2023; 112:110916. [PMID: 37806542 DOI: 10.1016/j.cellsig.2023.110916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
The dysfunction of angiopoietin-1 (Ang-1)/Tie-2 signaling pathways has been implicated in diabetic complications. However, the underlying molecular mechanisms remain unclear. Fibronectin (FN) is thought to have an important role in regulating Ang-1/Tie-2 signaling activation. But no previous study has investigated the effects of FN glycation on Ang-1/Tie-2 signaling. In the present study, FN was glycated by methylglyoxal (MGO) to investigate whether the glycation of FN contributes to diabetes-induced Ang-1/Tie-2 signaling impairment and to understand the molecular mechanisms involved. The results demonstrated that MGO-glycated FN significantly impaired Ang-1-evoked phosphorylation of Tie-2 and Akt, Ang-1-induced endothelial cell migration and tube formation and Ang-1-mediated cell survival. The glycation of FN also inhibited the binding of α5β1 integrin to Tie-2. Moreover, FN was remarkably modified by AGEs in aortae derived from db/db mice, indicating the glycation of FN in vivo. Ang-1-induced aortic ring vessel outgrowth and Ang-1-mediated cell survival were also both significantly inhibited in aortae from db/db mice compared to that from the wild type littermates. Moreover, FN, rather than glycated FN partly restored aortic ring angiogenesis in db/db mice, indicating that the angiogenesis defect in the db/db mice are due to FN glycation. Collectively, the results in the present study suggest that the glycation of FN impairs Ang-1/Tie-2 signaling pathway by uncoupling Tie-2-α5β1 integrin crosstalk. This may provide a mechanism for Ang-1/Tie-2 signaling dysfunction and angiogenesis failure in diabetic ischaemic diseases.
Collapse
Affiliation(s)
- Tangting Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Haiyan Zhou
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Shuangshuang Yuan
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Xin Deng
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Yongjie Li
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Ni Chen
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Jingcan You
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Rong Li
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Tian Li
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Youkun Zheng
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Mao Luo
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China
| | - Hongbin Lv
- Department of Ophthalmology, the Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Jianbo Wu
- Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China.
| | - Liqun Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China; Basic Medicine Research Innovation Center for cardiometabolic diseases,Ministry of Education, Southwest Medical University, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, China.
| |
Collapse
|
26
|
Lin Y, Luo G, Liu Q, Yang R, Sol Reinach P, Yan D. METTL3-Mediated RNA m6A Modification Regulates the Angiogenic Behaviors of Retinal Endothelial Cells by Methylating MMP2 and TIE2. Invest Ophthalmol Vis Sci 2023; 64:18. [PMID: 37819742 PMCID: PMC10573643 DOI: 10.1167/iovs.64.13.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/17/2023] [Indexed: 10/13/2023] Open
Abstract
Purpose N6-methyladenosine (m6A) is a commonly occurring modification of mRNAs, catalyzed by a complex containing methyltransferase like 3 (METTL3). Our research aims to explore how METTL3-dependent m6A modification affects the functions of retinal endothelial cells (RECs). Methods An oxygen-induced retinopathy (OIR) mouse model was established, and RECs were isolated using magnetic beads method. Human retinal microvascular endothelial cells (HRMECs) were treated with normoxia (21% O2) or hypoxia (1% O2). Dot blot assay determined m6A modification levels. Quantitative RT-PCR and Western blot detected the mRNA and protein expression levels of the target candidates, respectively. Genes were knocked down by small interfering RNA transfection. Matrigel-based angiogenesis and transwell assays evaluated the abilities of endothelial tube formation and migration, respectively. Methylated RNA immunoprecipitation-qPCR determined the levels of m6A modification in the target genes. Results The m6A modification levels were significantly upregulated in the retinas and RECs of OIR mice. Exposure to hypoxia significantly elevated both METTL3 expression and m6A modification levels in HRMECs. METTL3 knockdown curtailed endothelial tube formation and migration in vitro under both normoxic and hypoxic conditions. Concurrently, this knockdown in HRMECs resulted in reduced m6A modification levels of MMP2 and TIE2 transcripts, subsequently leading to a decrease in their respective protein expressions. Notably, knockdown of MMP2 and TIE2 also markedly inhibited the angiogenic activities of HRMECs. Conclusions METTL3-mediated m6A modification promotes the angiogenic behaviors of RECs by targeting MMP2 and TIE2, suggesting its significance in retinal angiogenesis and METTL3 as a potential therapeutic target.
Collapse
Affiliation(s)
- Yong Lin
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Guangying Luo
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qi Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Rusen Yang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Peter Sol Reinach
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dongsheng Yan
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
27
|
Xiaolin X, Xiaozhi L, Guoping H, Hongwei L, Jinkuo G, Xiyun B, Zhen T, Xiaofang M, Yanxia L, Na X, Chunyan Z, Rui G, Kuan W, Cheng Z, Cuancuan W, Mingyong L, Xinping D. Overfit deep neural network for predicting drug-target interactions. iScience 2023; 26:107646. [PMID: 37680476 PMCID: PMC10480310 DOI: 10.1016/j.isci.2023.107646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/28/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023] Open
Abstract
Drug-target interactions (DTIs) prediction is an important step in drug discovery. As traditional biological experiments or high-throughput screening are high cost and time-consuming, many deep learning models have been developed. Overfitting must be avoided when training deep learning models. We propose a simple framework, called OverfitDTI, for DTI prediction. In OverfitDTI, a deep neural network (DNN) model is overfit to sufficiently learn the features of the chemical space of drugs and the biological space of targets. The weights of trained DNN model form an implicit representation of the nonlinear relationship between drugs and targets. Performance of OverfitDTI on three public datasets showed that the overfit DNN models fit the nonlinear relationship with high accuracy. We identified fifteen compounds that interacted with TEK, a receptor tyrosine kinase contributing to vascular homeostasis, and the predicted AT9283 and dorsomorphin were experimentally demonstrated as inhibitors of TEK in human umbilical vein endothelial cells (HUVECs).
Collapse
Affiliation(s)
- Xiao Xiaolin
- Department of Cardiology, Tianjin Fifth Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin Fifth Central Hospital, Tianjin, China
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, China
| | - Liu Xiaozhi
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin Fifth Central Hospital, Tianjin, China
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, China
| | - He Guoping
- Geriatrics Department, Traditional Chinese Medicine Hospital of Binhai New Area, Tianjin, China
| | - Liu Hongwei
- School of Clinical Medicine, North China University of Science and Technology, Tangshan, Hebei, China
- Department of Anesthesiology, Tangshan Maternal and Child Health Hospital, Tangshan, Hebei, China
| | - Guo Jinkuo
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin Fifth Central Hospital, Tianjin, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Bian Xiyun
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin Fifth Central Hospital, Tianjin, China
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, China
| | - Tian Zhen
- Deepwater Technology Research Institute, China National Offshore Oil Corporation, Tianjin, China
| | - Ma Xiaofang
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin Fifth Central Hospital, Tianjin, China
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, China
| | - Li Yanxia
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin Fifth Central Hospital, Tianjin, China
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, China
| | - Xue Na
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin Fifth Central Hospital, Tianjin, China
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, China
| | - Zhang Chunyan
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin Fifth Central Hospital, Tianjin, China
- Central Laboratory, Tianjin Fifth Central Hospital, Tianjin, China
| | - Gao Rui
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin Fifth Central Hospital, Tianjin, China
| | - Wang Kuan
- Department of Cardiology, Tianjin Fifth Central Hospital, Tianjin, China
| | - Zhang Cheng
- Department of Cardiology, Tianjin Fifth Central Hospital, Tianjin, China
| | - Wang Cuancuan
- Department of Cardiology, Tianjin Fifth Central Hospital, Tianjin, China
| | - Liu Mingyong
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin Fifth Central Hospital, Tianjin, China
- Department of Urology, Tianjin Fifth Central Hospital, Tianjin, China
| | - Du Xinping
- Department of Cardiology, Tianjin Fifth Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin Fifth Central Hospital, Tianjin, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
28
|
Sato-Nishiuchi R, Doiguchi M, Morooka N, Sekiguchi K. Polydom/SVEP1 binds to Tie1 and promotes migration of lymphatic endothelial cells. J Cell Biol 2023; 222:e202208047. [PMID: 37338522 PMCID: PMC10281526 DOI: 10.1083/jcb.202208047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 04/13/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
Polydom is an extracellular matrix protein involved in lymphatic vessel development. Polydom-deficient mice die immediately after birth due to defects in lymphatic vessel remodeling, but the mechanism involved is poorly understood. Here, we report that Polydom directly binds to Tie1, an orphan receptor in the Angiopoietin-Tie axis, and facilitates migration of lymphatic endothelial cells (LECs) in a Tie1-dependent manner. Polydom-induced LEC migration is diminished by PI3K inhibitors but not by an ERK inhibitor, suggesting that the PI3K/Akt signaling pathway is involved in Polydom-induced LEC migration. In line with this possibility, Akt phosphorylation in LECs is enhanced by Polydom although no significant Tie1 phosphorylation is induced by Polydom. LECs also exhibited nuclear exclusion of Foxo1, a signaling event downstream of Akt activation, which was impaired in Polydom-deficient mice. These findings indicate that Polydom is a physiological ligand for Tie1 and participates in lymphatic vessel development through activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Ryoko Sato-Nishiuchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University , Suita, Japan
| | - Masamichi Doiguchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University , Suita, Japan
| | - Nanami Morooka
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University , Suita, Japan
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kiyotoshi Sekiguchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University , Suita, Japan
| |
Collapse
|
29
|
Edwards W, Greco TM, Miner GE, Barker NK, Herring L, Cohen S, Cristea IM, Conlon FL. Quantitative proteomic profiling identifies global protein network dynamics in murine embryonic heart development. Dev Cell 2023; 58:1087-1105.e4. [PMID: 37148880 PMCID: PMC10330608 DOI: 10.1016/j.devcel.2023.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 01/27/2023] [Accepted: 04/14/2023] [Indexed: 05/08/2023]
Abstract
Defining the mechanisms that govern heart development is essential for identifying the etiology of congenital heart disease. Here, quantitative proteomics was used to measure temporal changes in the proteome at critical stages of murine embryonic heart development. Global temporal profiles of the over 7,300 proteins uncovered signature cardiac protein interaction networks that linked protein dynamics with molecular pathways. Using this integrated dataset, we identified and demonstrated a functional role for the mevalonate pathway in regulating the cell cycle of embryonic cardiomyocytes. Overall, our proteomic datasets are a resource for studying events that regulate embryonic heart development and contribute to congenital heart disease.
Collapse
Affiliation(s)
- Whitney Edwards
- Department of Biology and Genetics, McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, UNC-Chapel Hill, Chapel Hill, NC, 27599 USA
| | - Todd M Greco
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Gregory E Miner
- Department of Cell Biology and Physiology, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalie K Barker
- Department of Pharmacology, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura Herring
- Department of Pharmacology, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah Cohen
- Department of Cell Biology and Physiology, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Frank L Conlon
- Department of Biology and Genetics, McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, UNC-Chapel Hill, Chapel Hill, NC, 27599 USA.
| |
Collapse
|
30
|
Thompson M, Sakabe M, Verba M, Hao J, Meadows SM, Lu QR, Xin M. PRDM16 regulates arterial development and vascular integrity. Front Physiol 2023; 14:1165379. [PMID: 37324380 PMCID: PMC10267475 DOI: 10.3389/fphys.2023.1165379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Proper vascular formation is regulated by multiple signaling pathways. The vascular endothelial growth factor (VEGF) signaling promotes endothelial proliferation. Notch and its downstream targets act to lead endothelial cells toward an arterial fate through regulation of arterial gene expression. However, the mechanisms of how endothelial cells (ECs) in the artery maintain their arterial characteristics remain unclear. Here, we show that PRDM16 (positive regulatory domain-containing protein 16), a zinc finger transcription factor, is expressed in arterial ECs, but not venous ECs in developing embryos and neonatal retinas. Endothelial-specific deletion of Prdm16 induced ectopic venous marker expression in the arterial ECs and reduced vascular smooth muscle cell (vSMC) recruitment around arteries. Whole-genome transcriptome analysis using isolated brain ECs show that the expression of Angpt2 (encoding ANGIOPOIETIN2, which inhibits vSMC recruitment) is upregulated in the Prdm16 knockout ECs. Conversely, forced expression of PRDM16 in venous ECs is sufficient to induce arterial gene expression and repress the ANGPT2 level. Together, these results reveal an arterial cell-autonomous function for PRDM16 in suppressing venous characteristics in arterial ECs.
Collapse
Affiliation(s)
- Michael Thompson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Masahide Sakabe
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Mark Verba
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Jiukuan Hao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Stryder M. Meadows
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Q. Richard Lu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Mei Xin
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
31
|
Zaka Khosravi S, Molaei Ramshe S, Allahbakhshian Farsani M, Moonesi M, Marofi F, Hagh MF. An overview of the molecular and clinical significance of the angiopoietin system in leukemia. J Recept Signal Transduct Res 2023:1-12. [PMID: 37186553 DOI: 10.1080/10799893.2023.2204983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The angiogenesis efficacy in solid tumors and hematological malignancies has been identified for more than twenty years. Although the exact role of angiogenesis in leukemia as a common hematological malignancy has not yet been extensively studied, its effect is demonstrated on the initiation and maintenance of a favorable microenvironment for leukemia cell proliferation. The angiopoietin family is a defined molecular mediator for angiogenesis, which contributes to vascular permeability and angiogenesis initiation. They participate in the angiogenesis process by binding to tyrosine kinase receptors (Tie) on endothelial cells. Considering the role of angiogenesis in leukemia development and the crucial effects of the Ang-Tie system in angiogenesis regulation, many studies have focused on the correlation between the Ang-Tie system and leukemia diagnosis, monitoring, and treatment. In this study, we reviewed the Ang-Tie system's potential diagnostic and therapeutic effects in different types of leukemia in the gene expression level analysis approach. The angiopoietin family context-dependent manner prevents us from defining its actual function in leukemia, emphasizing the need for more comprehensive studies.
Collapse
Affiliation(s)
- Saeed Zaka Khosravi
- Department of Immunology, Faculty of Medicine, Division of Hematology and Transfusion Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Molaei Ramshe
- Department of Neurobiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mehdi Allahbakhshian Farsani
- Department of Laboratory Hematology and Blood Bank, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Moonesi
- Department of Immunology, Faculty of Medicine, Division of Hematology and Transfusion Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Department of Immunology, Faculty of Medicine, Division of Hematology and Transfusion Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Farshdousti Hagh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
Ebeling S, Kowalczyk A, Perez-Vazquez D, Mattiola I. Regulation of tumor angiogenesis by the crosstalk between innate immunity and endothelial cells. Front Oncol 2023; 13:1171794. [PMID: 37234993 PMCID: PMC10206118 DOI: 10.3389/fonc.2023.1171794] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/10/2023] [Indexed: 05/28/2023] Open
Abstract
Endothelial cells and immune cells are major regulators of cancer progression and prognosis. Endothelial cell proliferation and angiogenesis are required for providing nutrients and oxygen to the nascent tumor and infiltration of immune cells to the tumor is dependent on endothelial cell activation. Myeloid cells and innate lymphocytes have an important role in shaping the tumor microenvironment by crosstalking with cancer cells and structural cells, including endothelial cells. Innate immune cells can modulate the activation and functions of tumor endothelial cells, and, in turn, endothelial cell expression of adhesion molecules can affect immune cell extravasation. However, the mechanisms underlying this bidirectional crosstalk are not fully understood. In this review, we will provide an overview of the current knowledge on the pathways regulating the crosstalk between innate immune cells and endothelial cells during tumor progression and discuss their potential contribution to the development of novel anti-tumor therapeutic approaches.
Collapse
Affiliation(s)
- Svenja Ebeling
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
- Laboratory of Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Anita Kowalczyk
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
- Laboratory of Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Diego Perez-Vazquez
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
- Laboratory of Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Irene Mattiola
- Institute of Microbiology, Infectious Diseases and Immunology (I-MIDI), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and the Berlin Institute of Health, Berlin, Germany
- Laboratory of Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| |
Collapse
|
33
|
Chopra M, Bhagwani A, Kumar H. The Provenance, Providence, and Position of Endothelial Cells in Injured Spinal Cord Vascular Pathology. Cell Mol Neurobiol 2023; 43:1519-1535. [PMID: 35945301 PMCID: PMC11412425 DOI: 10.1007/s10571-022-01266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/21/2022] [Indexed: 11/03/2022]
Abstract
Endothelial cells (ECs) and pericytes are present in all blood vessels. Their position confers an important role in controlling oxygen and nutrient transportation to the different organs. ECs can adopt different morphologies based on their need and functions. Both ECs and pericytes express different surface markers that help in their identification, but heterogeneity and overlapping between markers among different cells pose a challenge for their precise identification. Spatiotemporal association of ECs and pericytes have great importance in sprout formation and vessel stabilization. Any traumatic injury in CNS may lead to vascular damage along with neuronal damage. Hence, ECs-pericyte interaction by physical contact and paracrine molecules is crucial in recovering the epicenter region by promoting angiogenesis. ECs can transform into other types of cells through endothelial-mesenchymal transition (EndMT), promoting wound healing in the epicenter region. Various signaling pathways mediate the interaction of ECs with pericytes that have an extensive role in angiogenesis. In this review, we discussed ECs and pericytes surface markers, the spatiotemporal association and interaction of ECs-pericytes, and signaling associated with the pathology of traumatic SCI. Linking the brain or spinal cord-specific pathologies and human vascular pathology will pave the way toward identifying new therapeutic targets and developing innovative preventive strategies. Endothelial-pericyte interaction strategic for formation of functional neo-vessels that are crucial for neurological recovery.
Collapse
Affiliation(s)
- Manjeet Chopra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Ankita Bhagwani
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
34
|
Hußmann M, Schulte D, Weischer S, Carlantoni C, Nakajima H, Mochizuki N, Stainier DYR, Zobel T, Koch M, Schulte-Merker S. Svep1 is a binding ligand of Tie1 and affects specific aspects of facial lymphatic development in a Vegfc-independent manner. eLife 2023; 12:82969. [PMID: 37097004 PMCID: PMC10129328 DOI: 10.7554/elife.82969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 04/08/2023] [Indexed: 04/26/2023] Open
Abstract
Multiple factors are required to form functional lymphatic vessels. Here, we uncover an essential role for the secreted protein Svep1 and the transmembrane receptor Tie1 during the development of subpopulations of the zebrafish facial lymphatic network. This specific aspect of the facial network forms independently of Vascular endothelial growth factor C (Vegfc) signalling, which otherwise is the most prominent signalling axis in all other lymphatic beds. Additionally, we find that multiple specific and newly uncovered phenotypic hallmarks of svep1 mutants are also present in tie1, but not in tie2 or vegfc mutants. These phenotypes are observed in the lymphatic vasculature of both head and trunk, as well as in the development of the dorsal longitudinal anastomotic vessel under reduced flow conditions. Therefore, our study demonstrates an important function for Tie1 signalling during lymphangiogenesis as well as blood vessel development in zebrafish. Furthermore, we show genetic interaction between svep1 and tie1 in vivo, during early steps of lymphangiogenesis, and demonstrate that zebrafish as well as human Svep1/SVEP1 protein bind to the respective Tie1/TIE1 receptors in vitro. Since compound heterozygous mutations for SVEP1 and TIE2 have recently been reported in human glaucoma patients, our data have clinical relevance in demonstrating a role for SVEP1 in TIE signalling in an in vivo setting.
Collapse
Affiliation(s)
- Melina Hußmann
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| | - Dörte Schulte
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| | - Sarah Weischer
- Münster Imaging Network, Cells in Motion Interfaculty Centre, Faculty of Biology, WWU Münster, Münster, Germany
| | - Claudia Carlantoni
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - Hiroyuki Nakajima
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - Thomas Zobel
- Münster Imaging Network, Cells in Motion Interfaculty Centre, WWU Münster, Münster, Germany
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stefan Schulte-Merker
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| |
Collapse
|
35
|
Wälchli T, Bisschop J, Carmeliet P, Zadeh G, Monnier PP, De Bock K, Radovanovic I. Shaping the brain vasculature in development and disease in the single-cell era. Nat Rev Neurosci 2023; 24:271-298. [PMID: 36941369 PMCID: PMC10026800 DOI: 10.1038/s41583-023-00684-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/23/2023]
Abstract
The CNS critically relies on the formation and proper function of its vasculature during development, adult homeostasis and disease. Angiogenesis - the formation of new blood vessels - is highly active during brain development, enters almost complete quiescence in the healthy adult brain and is reactivated in vascular-dependent brain pathologies such as brain vascular malformations and brain tumours. Despite major advances in the understanding of the cellular and molecular mechanisms driving angiogenesis in peripheral tissues, developmental signalling pathways orchestrating angiogenic processes in the healthy and the diseased CNS remain incompletely understood. Molecular signalling pathways of the 'neurovascular link' defining common mechanisms of nerve and vessel wiring have emerged as crucial regulators of peripheral vascular growth, but their relevance for angiogenesis in brain development and disease remains largely unexplored. Here we review the current knowledge of general and CNS-specific mechanisms of angiogenesis during brain development and in brain vascular malformations and brain tumours, including how key molecular signalling pathways are reactivated in vascular-dependent diseases. We also discuss how these topics can be studied in the single-cell multi-omics era.
Collapse
Affiliation(s)
- Thomas Wälchli
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland.
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada.
| | - Jeroen Bisschop
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB & Department of Oncology, KU Leuven, Leuven, Belgium
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Philippe P Monnier
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Donald K. Johnson Research Institute, Krembil Research Institute, Krembil Discovery Tower, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Science and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ivan Radovanovic
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
| |
Collapse
|
36
|
Investigation of SAMD1 ablation in mice. Sci Rep 2023; 13:3000. [PMID: 36810619 PMCID: PMC9944271 DOI: 10.1038/s41598-023-29779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
SAM domain-containing protein 1 (SAMD1) has been implicated in atherosclerosis, as well as in chromatin and transcriptional regulation, suggesting a versatile and complex biological function. However, its role at an organismal level is currently unknown. Here, we generated SAMD1-/- and SAMD1+/- mice to explore the role of SAMD1 during mouse embryogenesis. Homozygous loss of SAMD1 was embryonic lethal, with no living animals seen after embryonic day 18.5. At embryonic day 14.5, organs were degrading and/or incompletely developed, and no functional blood vessels were observed, suggesting failed blood vessel maturation. Sparse red blood cells were scattered and pooled, primarily near the embryo surface. Some embryos had malformed heads and brains at embryonic day 15.5. In vitro, SAMD1 absence impaired neuronal differentiation processes. Heterozygous SAMD1 knockout mice underwent normal embryogenesis and were born alive. Postnatal genotyping showed a reduced ability of these mice to thrive, possibly due to altered steroidogenesis. In summary, the characterization of SAMD1 knockout mice suggests a critical role of SAMD1 during developmental processes in multiple organs and tissues.
Collapse
|
37
|
Smeland MF, Brouillard P, Prescott T, Boon LM, Hvingel B, Nordbakken CV, Nystad M, Holla ØL, Vikkula M. Biallelic ANGPT2 loss-of-function causes severe early-onset non-immune hydrops fetalis. J Med Genet 2023; 60:57-64. [PMID: 34876502 PMCID: PMC9811075 DOI: 10.1136/jmedgenet-2021-108179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/09/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Hydrops fetalis, a pathological fluid accumulation in two or more body compartments, is aetiologically heterogeneous. We investigated a consanguineous family with recurrent pregnancy loss due to severe early-onset non-immune hydrops fetalis. METHODS AND RESULTS Whole exome sequencing in four fetuses with hydrops fetalis revealed that they were homozygous for the angiopoietin-2 (ANGPT2) variant Chr8 (GRCh37/Hg19): 6385085T>C, NM_001147.2:c.557A>G. The substitution introduces a cryptic, exonic splice site predicted to result in loss of 10 nucleotides with subsequent shift in reading frame, leading to a premature stop codon. RNA analysis in the heterozygous parents demonstrated loss of detectable mutant allele, indicative of loss-of-function via nonsense-mediated mRNA decay. Serum ANGPT2 levels were reduced in the parents. In a pregnancy with a healthy, heterozygous child, transiently increased fetal nuchal translucency was noted. CONCLUSION Pathogenic heterozygous ANGPT2 missense variants were recently shown to cause autosomal dominant primary lymphoedema. ANGPT2 is a ligand of the TIE1-TIE2 (tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 1 and 2) pathway. It is critical to the formation and remodelling of blood and lymphatic vessels and is involved in vessel maintenance. ANGPT2 knockout mice die from generalised lymphatic dysfunction. We show here that a homozygous pathogenic variant causes loss-of-function and results in severe early-onset hydrops fetalis. This is the first report of an autosomal recessive ANGPT2-related disorder in humans.
Collapse
Affiliation(s)
- Marie F. Smeland
- Department of Medical Genetics, University Hospital of North Norway, Tromsø, Norway
| | - Pascal Brouillard
- Human Molecular Genetics, de Duve Institute, Universite catholique de Louvain, Brussels, Belgium
| | - Trine Prescott
- Department of Medical Genetics, Telemark Hospital, Skien, Norway
| | - Laurence M Boon
- Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Centre, University Hospital Saint-Luc, Bruxelles, Belgium
| | - Bodil Hvingel
- Department of Obstetrics and Gynecology, University Hospital of North Norway, Tromsø, Norway
| | - Cecilie V Nordbakken
- Department of Clinical Pathology, University Hospital of North Norway, Tromsø, Norway
| | - Mona Nystad
- Department of Obstetrics and Gynecology, University Hospital of North Norway, Tromsø, Norway,Department of Clinical Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Øystein L. Holla
- Department of Medical Genetics, Telemark Hospital, Skien, Norway
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, Universite catholique de Louvain, Brussels, Belgium,Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Centre, University Hospital Saint-Luc, Bruxelles, Belgium
| |
Collapse
|
38
|
Gonzalez-Cortes JH, Martinez-Pacheco VA, Gonzalez-Cantu JE, Bilgic A, de Ribot FM, Sudhalkar A, Mohamed-Hamsho J, Kodjikian L, Mathis T. Current Treatments and Innovations in Diabetic Retinopathy and Diabetic Macular Edema. Pharmaceutics 2022; 15:pharmaceutics15010122. [PMID: 36678750 PMCID: PMC9866607 DOI: 10.3390/pharmaceutics15010122] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023] Open
Abstract
Diabetic retinopathy (DR) is one of the leading causes of blindness worldwide. Multiple treatment options have been used over time to attempt to modify the natural progression of the disease in both proliferative diabetic retinopathy (PDR) and diabetic macular edema (DME). These two retinal complications are the result of microvascular occlusions and vascular hyperpermeability and are considered one of the leading causes of irreversible blindness in patients of working age. It is now well demonstrated that PDR and DME are associated with increased levels of inflammatory and pro-angiogenic factors in the ocular compartment. To date, laser photocoagulation, vascular endothelial growth factor (VEGF) inhibitors, and corticosteroids have demonstrated efficacy in their treatment in large randomized controlled trials and in real-life observational studies. This manuscript aims to provide a comprehensive review of current treatments, including the main drugs used in diabetic pathologic manifestations, as well as new therapeutic alternatives, such as extended-release intraocular devices.
Collapse
Affiliation(s)
- Jesus H. Gonzalez-Cortes
- Ophthalmology Department, School of Medicine, University Hospital “Dr. Jose Eleuterio Gonzalez”, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico
- Correspondence: ; Tel.: +52-8182545652
| | - Victor A. Martinez-Pacheco
- Retina and Vitreous Department, Hospital de Nuestra Señora de la Luz, Universidad Nacional Autónoma de México, Mexico City 06030, Mexico
| | - Jesus E. Gonzalez-Cantu
- Ophthalmology Department, Instituto Avalos, University Galileo, Guatemala City 01010, Guatemala
| | - Alper Bilgic
- Alphavision Augenarztpraxis, 27568 Bremerhaven, Germany
| | - Francesc March de Ribot
- Department of Ophthalmology, Otago University, Dunedin 9016, New Zealand
- Department of Ophthalmology, Girona University, 17004 Girona, Spain
| | | | - Jesus Mohamed-Hamsho
- Ophthalmology Department, School of Medicine, University Hospital “Dr. Jose Eleuterio Gonzalez”, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico
| | - Laurent Kodjikian
- Service d’Ophtalmologie, Centre Hospitalier Universitaire de la Croix-Rousse, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, 69004 Lyon, France
- Unité Mixte de Recherche—Centre National de la Recherche Scientifique 5510, Matéis, Villeurbanne, 69004 Lyon, France
| | - Thibaud Mathis
- Service d’Ophtalmologie, Centre Hospitalier Universitaire de la Croix-Rousse, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, 69004 Lyon, France
- Unité Mixte de Recherche—Centre National de la Recherche Scientifique 5510, Matéis, Villeurbanne, 69004 Lyon, France
| |
Collapse
|
39
|
Downs KM. The mouse allantois: new insights at the embryonic-extraembryonic interface. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210251. [PMID: 36252214 PMCID: PMC9574631 DOI: 10.1098/rstb.2021.0251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/20/2022] [Indexed: 12/23/2022] Open
Abstract
During the early development of Placentalia, a distinctive projection emerges at the posterior embryonic-extraembryonic interface of the conceptus; its fingerlike shape presages maturation into the placental umbilical cord, whose major role is to shuttle fetal blood to and from the chorion for exchange with the mother during pregnancy. Until recently, the biology of the cord's vital vascular anlage, called the body stalk/allantois in humans and simply the allantois in rodents, has been largely unknown. Here, new insights into the development of the mouse allantois are featured, from its origin and mechanism of arterial patterning through its union with the chorion. Key to generating the allantois and its critical functions are the primitive streak and visceral endoderm, which together are sufficient to create the entire fetal-placental connection. Their newly discovered roles at the embryonic-extraembryonic interface challenge conventional wisdom, including the physical limits of the primitive streak, its function as sole purveyor of mesoderm in the mouse, potency of visceral endoderm, and the putative role of the allantois in the germ line. With this working model of allantois development, understanding a plethora of hitherto poorly understood orphan diseases in humans is now within reach. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Karen M. Downs
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
40
|
Liu P, Lavine JA, Fawzi A, Quaggin SE, Thomson BR. Angiopoietin-1 Is Required for Vortex Vein and Choriocapillaris Development in Mice. Arterioscler Thromb Vasc Biol 2022; 42:1413-1427. [PMID: 36172864 PMCID: PMC9613622 DOI: 10.1161/atvbaha.122.318151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND The choroidal vasculature, including the choriocapillaris and vortex veins, is essential for providing nutrients to the metabolically demanding photoreceptors and retinal pigment epithelium. Choroidal vascular dysfunction leads to vision loss and is associated with age-related macular degeneration and the poorly understood pachychoroid diseases including central serous chorioretinopathy and polypoidal choroidal vasculopathy that are characterized by formation of dilated pachyvessels throughout the choroid. METHODS Using neural crest-specific Angpt1 knockout mice, we show that Angiopoietin 1, a ligand of the endothelial receptor TEK (also known as Tie2) is essential for choriocapillaris development and vortex vein patterning. RESULTS Lacking choroidal ANGPT1, neural crest-specific Angpt1 knockout eyes exhibited marked choriocapillaris attenuation and 50% reduction in number of vortex veins, with only 2 vortex veins present in the majority of eyes. Shortly after birth, dilated choroidal vessels resembling human pachyvessels were observed extending from the remaining vortex veins and displacing the choriocapillaris, leading to retinal pigment epithelium dysfunction and subretinal neovascularization similar to that seen in pachychoroid disease. CONCLUSIONS Together, these findings identify a new role for ANGPT1 in ocular vascular development and demonstrate a clear link between vortex vein dysfunction, pachyvessel formation, and disease.
Collapse
Affiliation(s)
- Pan Liu
- Section of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago IL, USA
- Feinberg Cardiovascular and Renal Research Inst. Chicago, IL, USA
| | - Jeremy A. Lavine
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Amani Fawzi
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Susan E Quaggin
- Section of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago IL, USA
- Feinberg Cardiovascular and Renal Research Inst. Chicago, IL, USA
| | - Benjamin R. Thomson
- Feinberg Cardiovascular and Renal Research Inst. Chicago, IL, USA
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
41
|
Naranjo O, Osborne O, Torices S, Toborek M. In Vivo Targeting of the Neurovascular Unit: Challenges and Advancements. Cell Mol Neurobiol 2022; 42:2131-2146. [PMID: 34086179 PMCID: PMC9056891 DOI: 10.1007/s10571-021-01113-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/28/2021] [Indexed: 12/26/2022]
Abstract
The blood-brain barrier (BBB) is essential for the homeostasis of the central nervous system (CNS). Functions of the BBB are performed by the neurovascular unit (NVU), which consists of endothelial cells, pericytes, astrocytes, microglia, basement membrane, and neurons. NVU cells interact closely and together are responsible for neurovascular coupling, BBB integrity, and transendothelial fluid transport. Studies have shown that NVU dysfunction is implicated in several acute and chronic neurological diseases, including Alzheimer's disease, multiple sclerosis, and stroke. The mechanisms of NVU disruption remain poorly understood, partially due to difficulties in selective targeting of NVU cells. In this review, we discuss the relative merits of available protein markers and drivers of the NVU along with recent advancements that have been made in the field to increase efficiency and specificity of NVU research.
Collapse
Affiliation(s)
- Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Olivia Osborne
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland.
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Gautier Bldg., Room 528, 1011 NW 15th Street, Miami, FL, 33136, USA.
| |
Collapse
|
42
|
Neffeová K, Olejníčková V, Naňka O, Kolesová H. Development and diseases of the coronary microvasculature and its communication with the myocardium. WIREs Mech Dis 2022; 14:e1560. [DOI: 10.1002/wsbm.1560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 04/12/2022] [Accepted: 04/27/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Kristýna Neffeová
- Institute of Anatomy, First Faculty of Medicine Charles University Prague Czech Republic
| | - Veronika Olejníčková
- Institute of Anatomy, First Faculty of Medicine Charles University Prague Czech Republic
- Institute of Physiology Czech Academy of Science Prague Czech Republic
| | - Ondřej Naňka
- Institute of Anatomy, First Faculty of Medicine Charles University Prague Czech Republic
| | - Hana Kolesová
- Institute of Anatomy, First Faculty of Medicine Charles University Prague Czech Republic
- Institute of Physiology Czech Academy of Science Prague Czech Republic
| |
Collapse
|
43
|
Lin Y, Dong M, Liu Z, Xu M, Huang Z, Liu H, Gao Y, Zhou W. A strategy of vascular-targeted therapy for liver fibrosis. Hepatology 2022; 76:660-675. [PMID: 34940991 PMCID: PMC9543235 DOI: 10.1002/hep.32299] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS No effective treatments are available for liver fibrosis. Angiogenesis is deeply involved in liver fibrogenesis. However, current controversial results suggest it is difficult to treat liver fibrosis through vascular targeting. There are three different microvessels in liver: portal vessels, liver sinusoids, and central vessels. The changes and roles for each of the three different vessels during liver fibrogenesis are unclear. We propose that they play different roles during liver fibrogenesis, and a single vascular endothelial cell (EC) regulator is not enough to fully regulate these three vessels to treat liver fibrosis. Therefore, a combined regulation of multiple different EC regulatory signaling pathway may provide new strategies for the liver fibrosis therapy. Herein, we present a proof-of-concept strategy by combining the regulation of leukocyte cell-derived chemotaxin 2 (LECT2)/tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 1 signaling with that of vascular endothelial growth factor (VEGF)/recombinant VEGF (rVEGF) signaling. APPROACH AND RESULTS The CCl4 -induced mouse liver fibrosis model and NASH model were both used. During fibrogenesis, vascular changes occurred at very early stage, and different liver vessels showed different changes and played different roles: decreased portal vessels, increased sinusoid capillarization and the increased central vessels the increase of portal vessels alleviates liver fibrosis, the increase of central vessels aggravates liver fibrosis, and the increase of sinusoid capillarization aggravates liver fibrosis. The combinational treatment of adeno-associated viral vector serotype 9 (AAV9)-LECT2-short hairpin RNA (shRNA) and rVEGF showed improved therapeutic effects, but it led to serious side effects. The combination of AAV9-LECT2-shRNA and bevacizumab showed both improved therapeutic effects and decreased side effects. CONCLUSIONS Liver vascular changes occurred at very early stage of fibrogenesis. Different vessels play different roles in liver fibrosis. The combinational treatment of AAV9-LECT2-shRNA and bevacizumab could significantly improve the therapeutic effects on liver fibrosis.
Collapse
Affiliation(s)
- Yuan Lin
- Department of PathologyShunde HospitalSouthern Medical University (The First People’s Hospital of Shunde Foshan)FoshanChina,State Key Laboratory of Organ Failure ResearchDepartment of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Meng‐Qi Dong
- State Key Laboratory of Organ Failure ResearchDepartment of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Zhi‐Min Liu
- State Key Laboratory of Organ Failure ResearchDepartment of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Meng Xu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorNanfang HospitalFirst Clinical Medical CollegeSouthern Medical UniversityGuangzhouChina
| | - Zhi‐Hao Huang
- State Key Laboratory of Organ Failure ResearchDepartment of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Hong‐Juan Liu
- Department of BioinformationSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Yi Gao
- General Surgery CenterDepartment of Hepatobiliary Surgery IIGuangdong ProvincialResearch Center for Artificial Organ and Tissue EngineeringGuangzhou Clinical Research and Transformation Center for Artificial LiverInstitute of Regenerative MedicineZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Wei‐Jie Zhou
- Department of PathologyShunde HospitalSouthern Medical University (The First People’s Hospital of Shunde Foshan)FoshanChina,State Key Laboratory of Organ Failure ResearchDepartment of PathologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina,Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorNanfang HospitalFirst Clinical Medical CollegeSouthern Medical UniversityGuangzhouChina,General Surgery CenterDepartment of Hepatobiliary Surgery IIGuangdong ProvincialResearch Center for Artificial Organ and Tissue EngineeringGuangzhou Clinical Research and Transformation Center for Artificial LiverInstitute of Regenerative MedicineZhujiang HospitalSouthern Medical UniversityGuangzhouChina,Microbiome Medicine CenterZhujiang HospitalSouthern Medical UniversityGuangzhouChina,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| |
Collapse
|
44
|
Pahl KS, Pabon-Ramos WM, Jeng MR. How we approach localized vascular anomalies. Pediatr Blood Cancer 2022; 69 Suppl 3:e29321. [PMID: 36070210 DOI: 10.1002/pbc.29321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 01/19/2023]
Abstract
Vascular anomalies are a group of disorders divided into two distinct subtypes: vascular tumors and vascular malformations. Vascular tumors are proliferative in nature, while malformations are nonproliferative. Simple, localized vascular malformations refer to a group of malformations that are localized to a single area of involvement. These simple malformations include capillary, lymphatic, venous, and arteriovenous malformations. The pediatric hematologists and oncologists are becoming increasingly involved in the diagnosis and management of these disorders. This review presents four cases as a means to discuss the diagnosis, clinical and imaging features, and management strategies of simple, localized vascular malformations.
Collapse
Affiliation(s)
- Kristy S Pahl
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Waleska M Pabon-Ramos
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Michael R Jeng
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
45
|
Glycation of Tie-2 Inhibits Angiopoietin-1 Signaling Activation and Angiopoietin-1-Induced Angiogenesis. Int J Mol Sci 2022; 23:ijms23137137. [PMID: 35806141 PMCID: PMC9266685 DOI: 10.3390/ijms23137137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023] Open
Abstract
The impairment of the angiopoietin-1 (Ang-1)/Tie-2 signaling pathway has been thought to play a critical role in diabetic complications. However, the underlying mechanisms remain unclear. The present study aims to investigate the effects of Tie-2 glycation on Ang-1 signaling activation and Ang-1-induced angiogenesis. We identified that Tie-2 was modified by advanced glycation end products (AGEs) in aortae derived from high fat diet (HFD)-fed mice and in methylglyoxal (MGO)-treated human umbilical vein endothelial cells (HUVECs). MGO-induced Tie-2 glycation significantly inhibited Ang-1-evoked Tie-2 and Akt phosphorylation and Ang-1-regulated endothelial cell migration and tube formation, whereas the blockade of AGE formation by aminoguanidine remarkably rescued Ang-1 signaling activation and Ang-1-induced angiogenesis in vitro. Furthermore, MGO treatment markedly increased AGE cross-linking of Tie-2 in cultured aortae ex vivo and MGO-induced Tie-2 glycation also significantly decreased Ang-1-induced vessel outgrow from aortic rings. Collectively, these data suggest that Tie-2 may be modified by AGEs in diabetes mellitus and that Tie-2 glycation inhibits Ang-1 signaling activation and Ang-1-induced angiogenesis. This may provide a novel mechanism for Ang-1/Tie-2 signal dysfunction and angiogenesis failure in diabetic ischaemic diseases.
Collapse
|
46
|
Wang R, Yang M, Jiang L, Huang M. Role of Angiopoietin-Tie axis in vascular and lymphatic systems and therapeutic interventions. Pharmacol Res 2022; 182:106331. [PMID: 35772646 DOI: 10.1016/j.phrs.2022.106331] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/11/2022] [Accepted: 06/24/2022] [Indexed: 12/29/2022]
Abstract
The Angiopoietin (Ang)-Tyrosine kinase with immunoglobulin-like and EGF-like domains (Tie) axis is an endothelial cell-specific ligand-receptor signaling pathway necessary for vascular and lymphatic development. The Ang-Tie axis is involved in regulating angiogenesis, vascular remodeling, vascular permeability, and inflammation to maintain vascular quiescence. Disruptions in the Ang-Tie axis are involved in many vascular and lymphatic system diseases and play an important role in physiological and pathological vascular conditions. Given recent advances in the Ang-Tie axis in the vascular and lymphatic systems, this review focuses on the multiple functions of the Ang-Tie axis in inflammation-induced vascular permeability, vascular remodeling, atherosclerosis, ocular angiogenesis, tumor angiogenesis, and metastasis. A summary of relevant therapeutic approaches to the Ang-Tie axis, including therapeutic antibodies, recombinant proteins and small molecule drugs are also discussed. The purpose of this review is to provide new hypotheses and identify potential therapeutic strategies based on the Ang-Tie signaling axis for the treatment of vascular and lymphatic-related diseases.
Collapse
Affiliation(s)
- Rui Wang
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Moua Yang
- Division of Hemostasis & Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA02215, United States
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China.
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China.
| |
Collapse
|
47
|
Qi S, Deng S, Lian Z, Yu K. Novel Drugs with High Efficacy against Tumor Angiogenesis. Int J Mol Sci 2022; 23:6934. [PMID: 35805939 PMCID: PMC9267017 DOI: 10.3390/ijms23136934] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis is involved in physiological and pathological processes in the body. Tumor angiogenesis is a key factor associated with tumor growth, progression, and metastasis. Therefore, there is great interest in developing antiangiogenic strategies. Hypoxia is the basic initiating factor of tumor angiogenesis, which leads to the increase of vascular endothelial growth factor (VEGF), angiopoietin (Ang), hypoxia-inducible factor (HIF-1), etc. in hypoxic cells. The pathways of VEGF and Ang are considered to be critical steps in tumor angiogenesis. A number of antiangiogenic drugs targeting VEGF/VEGFR (VEGF receptor) or ANG/Tie2, or both, are currently being used for cancer treatment, or are still in various stages of clinical development or preclinical evaluation. This article aims to review the mechanisms of angiogenesis and tumor angiogenesis and to focus on new drugs and strategies for the treatment of antiangiogenesis. However, antitumor angiogenic drugs alone may not be sufficient to eradicate tumors. The molecular chaperone heat shock protein 90 (HSP90) is considered a promising molecular target. The VEGFR system and its downstream signaling molecules depend on the function of HSP90. This article also briefly introduces the role of HSP90 in angiogenesis and some HSP90 inhibitors.
Collapse
Affiliation(s)
- Shiyu Qi
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Shoulong Deng
- National Health Commission (NHC) of China Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China;
| | - Zhengxing Lian
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
48
|
Meltzer M, Eliash N, Azoulay Z, Hadad U, Papo N. In vitro inhibition of cancer angiogenesis and migration by a nanobody that targets the orphan receptor Tie1. Cell Mol Life Sci 2022; 79:312. [PMID: 35604495 PMCID: PMC11072481 DOI: 10.1007/s00018-022-04336-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/28/2022]
Abstract
The human signaling molecules Tie1 and Tie2 receptor tyrosine kinases (RTKs) play important pathophysiological roles in many diseases, including different cancers. The activity of Tie1 is mediated mainly through the downstream angiopoietin-1 (Ang1)-dependent activation of Tie2, rendering both Tie 1 and the Tie1/Tie2/Ang1 axis attractive putative targets for therapeutic intervention. However, the development of inhibitors that target Tie1 and an understanding of their effect on Tie2 and on the Tie1/Tie2/Ang1 axis remain unfulfilled tasks, due, largely, to the facts that Tie1 is an orphan receptor and is difficult to produce and use in the quantities required for immune antibody library screens. In a search for a selective inhibitor of this orphan receptor, we sought to exploit the advantages (e.g., small size that allows binding to hidden epitopes) of non-immune nanobodies and to simultaneously overcome their limitations (i.e., low expression and stability). We thus performed expression, stability, and affinity screens of yeast-surface-displayed naïve and predesigned synthetic (non-immune) nanobody libraries against the Tie1 extracellular domain. The screens yielded a nanobody with high expression and good affinity and specificity for Tie1, thereby yielding preferential binding for Tie1 over Tie2. The stability, selectivity, potency, and therapeutic potential of this synthetic nanobody were profiled using in vitro and cell-based assays. The nanobody triggered Tie1-dependent inhibition of RTK (Tie2, Akt, and Fak) phosphorylation and angiogenesis in endothelial cells, as well as suppression of human glioblastoma cell viability and migration. This study opens the way to developing nanobodies as therapeutics for different cancers associated with Tie1 activation.
Collapse
Affiliation(s)
- May Meltzer
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, 1 Ben-Gurion Avenue, 8410501, Beer-Sheva, Israel
| | - Noam Eliash
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, 1 Ben-Gurion Avenue, 8410501, Beer-Sheva, Israel
| | - Ziv Azoulay
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, 1 Ben-Gurion Avenue, 8410501, Beer-Sheva, Israel
| | - Uzi Hadad
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, 1 Ben-Gurion Avenue, 8410501, Beer-Sheva, Israel.
| |
Collapse
|
49
|
GEINDREAU M, BRUCHARD M, VEGRAN F. Role of Cytokines and Chemokines in Angiogenesis in a Tumor Context. Cancers (Basel) 2022; 14:cancers14102446. [PMID: 35626056 PMCID: PMC9139472 DOI: 10.3390/cancers14102446] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Tumor growth in solid cancers requires adequate nutrient and oxygen supply, provided by blood vessels created by angiogenesis. Numerous studies have demonstrated that this mechanism plays a crucial role in cancer development and appears to be a well-defined hallmark of cancer. This process is carefully regulated, notably by cytokines with pro-angiogenic or anti-angiogenic features. In this review, we will discuss the role of cytokines in the modulation of angiogenesis. In addition, we will summarize the therapeutic approaches based on cytokine modulation and their clinical approval. Abstract During carcinogenesis, tumors set various mechanisms to help support their development. Angiogenesis is a crucial process for cancer development as it drives the creation of blood vessels within the tumor. These newly formed blood vessels insure the supply of oxygen and nutrients to the tumor, helping its growth. The main factors that regulate angiogenesis are the five members of the vascular endothelial growth factor (VEGF) family. Angiogenesis is a hallmark of cancer and has been the target of new therapies this past few years. However, angiogenesis is a complex phenomenon with many redundancy pathways that ensure its maintenance. In this review, we will first describe the consecutive steps forming angiogenesis, as well as its classical regulators. We will then discuss how the cytokines and chemokines present in the tumor microenvironment can induce or block angiogenesis. Finally, we will focus on the therapeutic arsenal targeting angiogenesis in cancer and the challenges they have to overcome.
Collapse
Affiliation(s)
- Mannon GEINDREAU
- Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.G.); (M.B.)
- CRI INSERM UMR1231 ‘Lipids, Nutrition and Cancer’ Team CAdiR, 21000 Dijon, France
| | - Mélanie BRUCHARD
- Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.G.); (M.B.)
- CRI INSERM UMR1231 ‘Lipids, Nutrition and Cancer’ Team CAdiR, 21000 Dijon, France
- Centre Georges-François Leclerc, UNICANCER, 21000 Dijon, France
- LipSTIC Labex, 21000 Dijon, France
| | - Frédérique VEGRAN
- Université de Bourgogne Franche-Comté, 21000 Dijon, France; (M.G.); (M.B.)
- CRI INSERM UMR1231 ‘Lipids, Nutrition and Cancer’ Team CAdiR, 21000 Dijon, France
- Centre Georges-François Leclerc, UNICANCER, 21000 Dijon, France
- LipSTIC Labex, 21000 Dijon, France
- Correspondence:
| |
Collapse
|
50
|
Qu X, Harmelink C, Baldwin HS. Endocardial-Myocardial Interactions During Early Cardiac Differentiation and Trabeculation. Front Cardiovasc Med 2022; 9:857581. [PMID: 35600483 PMCID: PMC9116504 DOI: 10.3389/fcvm.2022.857581] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023] Open
Abstract
Throughout the continuum of heart formation, myocardial growth and differentiation occurs in concert with the development of a specialized population of endothelial cells lining the cardiac lumen, the endocardium. Once the endocardial cells are specified, they are in close juxtaposition to the cardiomyocytes, which facilitates communication between the two cell types that has been proven to be critical for both early cardiac development and later myocardial function. Endocardial cues orchestrate cardiomyocyte proliferation, survival, and organization. Additionally, the endocardium enables oxygenated blood to reach the cardiomyocytes. Cardiomyocytes, in turn, secrete factors that promote endocardial growth and function. As misregulation of this delicate and complex endocardial-myocardial interplay can result in congenital heart defects, further delineation of underlying genetic and molecular factors involved in cardiac paracrine signaling will be vital in the development of therapies to promote cardiac homeostasis and regeneration. Herein, we highlight the latest research that has advanced the elucidation of endocardial-myocardial interactions in early cardiac morphogenesis, including endocardial and myocardial crosstalk necessary for cellular differentiation and tissue remodeling during trabeculation, as well as signaling critical for endocardial growth during trabeculation.
Collapse
Affiliation(s)
- Xianghu Qu
- Department of Pediatrics (Cardiology), Vanderbilt University Medical Center, Nashville, TN, United States
| | - Cristina Harmelink
- Department of Pediatrics (Cardiology), Vanderbilt University Medical Center, Nashville, TN, United States
| | - H. Scott Baldwin
- Department of Pediatrics (Cardiology), Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Cell and Development Biology, Vanderbilt University, Nashville, TN, United States
- *Correspondence: H. Scott Baldwin
| |
Collapse
|