1
|
Matheson J, Hernández U, Bertram J, Masel J. Human deleterious mutation rate slows adaptation and implies high fitness variance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.09.01.555871. [PMID: 37732183 PMCID: PMC10508744 DOI: 10.1101/2023.09.01.555871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Each new human has an expectedU d = 2 - 10 new deleterious mutations. Using a novel approach to capture complex linkage disequilibria from highU d using genome-wide simulations, we confirm that fitness decline due to the fixation of many slightly deleterious mutations can be compensated by rarer beneficial mutations of larger effect. The evolution of increased genome size and complexity have previously been attributed to a similarly asymmetric pattern of fixations, but we propose that the cause might be highU d rather than the small population size posited as causal by drift barrier theory. High within-population variance in relative fitness is an inevitable consequence of highU d ∼ 2 - 10 combined with inferred human deleterious effect sizes; two individuals will typically differ in fitness by 15-40%. The need to compensate for the deluge of deleterious mutations slows net adaptation (i.e. to the external environment) by ~13%-55%. The rate of beneficial fixations is more sensitive to changes in the mutation rate than the rate of deleterious fixations is. As a surprising consequence of this, an increase (e.g. 10%) in overall mutation rate leads to faster adaptation; this puts to rest dysgenic fears about increasing mutation rates due to rising paternal age.
Collapse
Affiliation(s)
- Joseph Matheson
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
- Department of Ecology, Behavior, and Evolution, University of California San Diego, San Diego, CA, 92093, USA
| | - Ulises Hernández
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Jason Bertram
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
- Department of Mathematics, University of Western Ontario, London ON, Canada
| | - Joanna Masel
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
2
|
Diaz Arenas C, Alvarez M, Wilson RH, Shakhnovich EI, Ogbunugafor CB. Protein Quality Control is a Master Modulator of Molecular Evolution in Bacteria. Genome Biol Evol 2025; 17:evaf010. [PMID: 39837347 PMCID: PMC11789785 DOI: 10.1093/gbe/evaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 01/05/2025] [Accepted: 01/15/2025] [Indexed: 01/23/2025] Open
Abstract
The bacterial protein quality control (PQC) network comprises a set of genes that promote proteostasis (proteome homeostasis) through proper protein folding and function via chaperones, proteases, and protein translational machinery. It participates in vital cellular processes and influences organismal development and evolution. In this review, we examine the mechanistic bases for how the bacterial PQC network influences molecular evolution. We discuss the relevance of PQC components to contemporary issues in evolutionary biology including epistasis, evolvability, and the navigability of protein space. We examine other areas where proteostasis affects aspects of evolution and physiology, including host-parasite interactions. More generally, we demonstrate that the study of bacterial systems can aid in broader efforts to understand the relationship between genotype and phenotype across the biosphere.
Collapse
Affiliation(s)
- Carolina Diaz Arenas
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Maristella Alvarez
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Robert H Wilson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - C Brandon Ogbunugafor
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
3
|
Aguilar-Rodríguez J, Jakobson CM, Jarosz DF. The Hsp90 Molecular Chaperone as a Global Modifier of the Genotype-Phenotype-Fitness Map: An Evolutionary Perspective. J Mol Biol 2024; 436:168846. [PMID: 39481633 PMCID: PMC11608137 DOI: 10.1016/j.jmb.2024.168846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Global modifier genes influence the mapping of genotypes onto phenotypes and fitness through their epistatic interactions with genetic variants on a massive scale. The first such factor to be identified, Hsp90, is a highly conserved molecular chaperone that plays a central role in protein homeostasis. Hsp90 is a "hub of hubs" that chaperones proteins engaged in many key cellular and developmental regulatory networks. These clients, which are enriched in kinases, transcription factors, and E3 ubiquitin ligases, drive diverse cellular functions and are themselves highly connected. By contrast to many other hub proteins, the abundance and activity of Hsp90 changes substantially in response to shifting environmental conditions. As a result, Hsp90 modifies the functional impact of many genetic variants simultaneously in a manner that depends on environmental stress. Studies in diverse organisms suggest that this coupling between Hsp90 function and challenging environments exerts a substantial impact on what parts of the genome are visible to natural selection, expanding adaptive opportunities when most needed. In this Perspective, we explore the multifaceted role of Hsp90 as global modifier of the genotype-phenotype-fitness map as well as its implications for evolution in nature and the clinic.
Collapse
Affiliation(s)
- José Aguilar-Rodríguez
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Biology, Stanford University, Stanford, CA, USA
| | - Christopher M Jakobson
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Tilk S, Frydman J, Curtis C, Petrov DA. Cancers adapt to their mutational load by buffering protein misfolding stress. eLife 2024; 12:RP87301. [PMID: 39585785 PMCID: PMC11588338 DOI: 10.7554/elife.87301] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024] Open
Abstract
In asexual populations that don't undergo recombination, such as cancer, deleterious mutations are expected to accrue readily due to genome-wide linkage between mutations. Despite this mutational load of often thousands of deleterious mutations, many tumors thrive. How tumors survive the damaging consequences of this mutational load is not well understood. Here, we investigate the functional consequences of mutational load in 10,295 human tumors by quantifying their phenotypic response through changes in gene expression. Using a generalized linear mixed model (GLMM), we find that high mutational load tumors up-regulate proteostasis machinery related to the mitigation and prevention of protein misfolding. We replicate these expression responses in cancer cell lines and show that the viability in high mutational load cancer cells is strongly dependent on complexes that degrade and refold proteins. This indicates that the upregulation of proteostasis machinery is causally important for high mutational burden tumors and uncovers new therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Susanne Tilk
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Judith Frydman
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Christina Curtis
- Department of Medicine, Division of Oncology, Stanford University School of MedicineStanfordUnited States
- Department of Genetics, Stanford University School of MedicineStanfordUnited States
- Stanford Cancer Institute, Stanford University School of MedicineStanfordUnited States
| | - Dmitri A Petrov
- Department of Biology, Stanford UniversityStanfordUnited States
- Stanford Cancer Institute, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
5
|
Condic N, Amiji H, Patel D, Shropshire WC, Lermi NO, Sabha Y, John B, Hanson B, Karras GI. Selection for robust metabolism in domesticated yeasts is driven by adaptation to Hsp90 stress. Science 2024; 385:eadi3048. [PMID: 39052788 PMCID: PMC11410103 DOI: 10.1126/science.adi3048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/31/2023] [Accepted: 05/24/2024] [Indexed: 07/27/2024]
Abstract
Protein folding both promotes and constrains adaptive evolution. We uncover this surprising duality in the role of the protein-folding chaperone heat shock protein 90 (Hsp90) in maintaining the integrity of yeast metabolism amid proteotoxic stressors within industrial domestication niches. Ethanol disrupts critical Hsp90-dependent metabolic pathways and exerts strong selective pressure for redundant duplications of key genes within these pathways, yielding the classical genomic signatures of beer and bread domestication. This work demonstrates a mechanism of adaptive canalization in an ecology of major economic importance and highlights Hsp90-dependent variation as an important source of phantom heritability in complex traits.
Collapse
Affiliation(s)
- Natalia Condic
- Department of Genetics, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Hatim Amiji
- Department of Genetics, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Dipak Patel
- Department of Genetics, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - William Charles Shropshire
- Center for Infectious Diseases, Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health at Houston, University of Texas Health Science Center, McGovern Medical School; Houston, TX, USA
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center McGovern Medical School; Houston, TX, USA
- Current address: The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Nejla Ozirmak Lermi
- Department of Genetics, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Youssef Sabha
- Department of Genetics, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Beryl John
- Department of Genetics, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
| | - Blake Hanson
- Center for Infectious Diseases, Department of Epidemiology, Human Genetics and Environmental Sciences, UTHealth School of Public Health at Houston, University of Texas Health Science Center, McGovern Medical School; Houston, TX, USA
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center McGovern Medical School; Houston, TX, USA
| | - Georgios Ioannis Karras
- Department of Genetics, The University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center, UTHealth Houston Graduate School of Biomedical Sciences; Houston, TX, USA
| |
Collapse
|
6
|
Poyatos JF. Design principles of multi-map variation in biological systems. Phys Biol 2024; 21:043001. [PMID: 38949447 DOI: 10.1088/1478-3975/ad5d6c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
Complexity in biology is often described using a multi-map hierarchical architecture, where the genotype, representing the encoded information, is mapped to the functional level, known as the phenotype, which is then connected to a latent phenotype we refer to as fitness. This underlying architecture governs the processes driving evolution. Furthermore, natural selection, along with other neutral forces, can, in turn, modify these maps. At each level, variation is observed. Here, I propose the need to establish principles that can aid in understanding the transformation of variation within this multi-map architecture. Specifically, I will introduce three, related to the presence of modulators, constraints, and the modular channeling of variation. By comprehending these design principles in various biological systems, we can gain better insights into the mechanisms underlying these maps and how they ultimately contribute to evolutionary dynamics.
Collapse
Affiliation(s)
- Juan F Poyatos
- Logic of Genomic Systems Lab (CNB-CSIC), Madrid 28049, Spain
| |
Collapse
|
7
|
Gilkes JM, Frampton RA, Board AJ, Hudson AO, Price TG, Morris VK, Crittenden DL, Muscroft‐Taylor AC, Sheen CR, Smith GR, Dobson RCJ. A new lysine biosynthetic enzyme from a bacterial endosymbiont shaped by genetic drift and genome reduction. Protein Sci 2024; 33:e5083. [PMID: 38924211 PMCID: PMC11201819 DOI: 10.1002/pro.5083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
The effect of population bottlenecks and genome reduction on enzyme function is poorly understood. Candidatus Liberibacter solanacearum is a bacterium with a reduced genome that is transmitted vertically to the egg of an infected psyllid-a population bottleneck that imposes genetic drift and is predicted to affect protein structure and function. Here, we define the function of Ca. L. solanacearum dihydrodipicolinate synthase (CLsoDHDPS), which catalyzes the committed branchpoint reaction in diaminopimelate and lysine biosynthesis. We demonstrate that CLsoDHDPS is expressed in Ca. L. solanacearum and expression is increased ~2-fold in the insect host compared to in planta. CLsoDHDPS has decreased thermal stability and increased aggregation propensity, implying mutations have destabilized the enzyme but are compensated for through elevated chaperone expression and a stabilized oligomeric state. CLsoDHDPS uses a ternary-complex kinetic mechanism, which is to date unique among DHDPS enzymes, has unusually low catalytic ability, but an unusually high substrate affinity. Structural studies demonstrate that the active site is more open, and the structure of CLsoDHDPS with both pyruvate and the substrate analogue succinic-semialdehyde reveals that the product is both structurally and energetically different and therefore evolution has in this case fashioned a new enzyme. Our study suggests the effects of genome reduction and genetic drift on the function of essential enzymes and provides insights on bacteria-host co-evolutionary associations. We propose that bacteria with endosymbiotic lifestyles present a rich vein of interesting enzymes useful for understanding enzyme function and/or informing protein engineering efforts.
Collapse
Affiliation(s)
- Jenna M. Gilkes
- Biomolecular Interaction CentreSchool of Biological Sciences, University of CanterburyChristchurchNew Zealand
- The New Zealand Institute for Plant and Food Research LimitedLincolnNew Zealand
- Callaghan Innovation, University of CanterburyChristchurchNew Zealand
| | - Rebekah A. Frampton
- The New Zealand Institute for Plant and Food Research LimitedLincolnNew Zealand
| | - Amanda J. Board
- Biomolecular Interaction CentreSchool of Biological Sciences, University of CanterburyChristchurchNew Zealand
| | - André O. Hudson
- Rochester Institute of Technology, Thomas H. Gosnell School of Life SciencesRochesterNew YorkUSA
| | - Thomas G. Price
- Biomolecular Interaction CentreSchool of Chemical and Physical Sciences, University of CanterburyChristchurchNew Zealand
| | - Vanessa K. Morris
- Biomolecular Interaction CentreSchool of Biological Sciences, University of CanterburyChristchurchNew Zealand
| | - Deborah L. Crittenden
- Biomolecular Interaction CentreSchool of Chemical and Physical Sciences, University of CanterburyChristchurchNew Zealand
| | | | - Campbell R. Sheen
- Callaghan Innovation, University of CanterburyChristchurchNew Zealand
| | - Grant R. Smith
- The New Zealand Institute for Plant and Food Research LimitedLincolnNew Zealand
| | - Renwick C. J. Dobson
- Biomolecular Interaction CentreSchool of Biological Sciences, University of CanterburyChristchurchNew Zealand
- Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular BiologyUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
8
|
Tawfeeq MT, Voordeckers K, van den Berg P, Govers SK, Michiels J, Verstrepen KJ. Mutational robustness and the role of buffer genes in evolvability. EMBO J 2024; 43:2294-2307. [PMID: 38719995 PMCID: PMC11183146 DOI: 10.1038/s44318-024-00109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/19/2024] [Accepted: 04/17/2024] [Indexed: 06/19/2024] Open
Abstract
Organisms rely on mutations to fuel adaptive evolution. However, many mutations impose a negative effect on fitness. Cells may have therefore evolved mechanisms that affect the phenotypic effects of mutations, thus conferring mutational robustness. Specifically, so-called buffer genes are hypothesized to interact directly or indirectly with genetic variation and reduce its effect on fitness. Environmental or genetic perturbations can change the interaction between buffer genes and genetic variation, thereby unmasking the genetic variation's phenotypic effects and thus providing a source of variation for natural selection to act on. This review provides an overview of our understanding of mutational robustness and buffer genes, with the chaperone gene HSP90 as a key example. It discusses whether buffer genes merely affect standing variation or also interact with de novo mutations, how mutational robustness could influence evolution, and whether mutational robustness might be an evolved trait or rather a mere side-effect of complex genetic interactions.
Collapse
Affiliation(s)
- Mohammed T Tawfeeq
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Karin Voordeckers
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Pieter van den Berg
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | | | - Jan Michiels
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Kevin J Verstrepen
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium.
| |
Collapse
|
9
|
McCutcheon JP, Garber AI, Spencer N, Warren JM. How do bacterial endosymbionts work with so few genes? PLoS Biol 2024; 22:e3002577. [PMID: 38626194 PMCID: PMC11020763 DOI: 10.1371/journal.pbio.3002577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024] Open
Abstract
The move from a free-living environment to a long-term residence inside a host eukaryotic cell has profound effects on bacterial function. While endosymbioses are found in many eukaryotes, from protists to plants to animals, the bacteria that form these host-beneficial relationships are even more diverse. Endosymbiont genomes can become radically smaller than their free-living relatives, and their few remaining genes show extreme compositional biases. The details of how these reduced and divergent gene sets work, and how they interact with their host cell, remain mysterious. This Unsolved Mystery reviews how genome reduction alters endosymbiont biology and highlights a "tipping point" where the loss of the ability to build a cell envelope coincides with a marked erosion of translation-related genes.
Collapse
Affiliation(s)
- John P. McCutcheon
- Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Arkadiy I. Garber
- Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Noah Spencer
- Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Jessica M. Warren
- Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
10
|
Abstract
Understanding the factors that shape viral evolution is critical for developing effective antiviral strategies, accurately predicting viral evolution, and preventing pandemics. One fundamental determinant of viral evolution is the interplay between viral protein biophysics and the host machineries that regulate protein folding and quality control. Most adaptive mutations in viruses are biophysically deleterious, resulting in a viral protein product with folding defects. In cells, protein folding is assisted by a dynamic system of chaperones and quality control processes known as the proteostasis network. Host proteostasis networks can determine the fates of viral proteins with biophysical defects, either by assisting with folding or by targeting them for degradation. In this review, we discuss and analyze new discoveries revealing that host proteostasis factors can profoundly shape the sequence space accessible to evolving viral proteins. We also discuss the many opportunities for research progress proffered by the proteostasis perspective on viral evolution and adaptation.
Collapse
Affiliation(s)
- Jimin Yoon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Jessica E Patrick
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - C Brandon Ogbunugafor
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
11
|
Patel D, Amiji H, Shropshire W, Condic N, Lermi NO, Sabha Y, John B, Hanson B, Karras GI. Ethanol Drives Evolution of Hsp90-Dependent Robustness by Redundancy in Yeast Domestication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.547572. [PMID: 37745611 PMCID: PMC10516021 DOI: 10.1101/2023.07.21.547572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Protein folding promotes and constrains adaptive evolution. We uncover this surprising duality in the role the protein-folding chaperone Hsp90 plays in mediating the interplay between proteome and the genome which acts to maintain the integrity of yeast metabolism in the face of proteotoxic stressors in anthropic niches. Of great industrial relevance, ethanol concentrations generated by fermentation in the making of beer and bread disrupt critical Hsp90-dependent nodes of metabolism and exert strong selective pressure for increased copy number of key genes encoding components of these nodes, yielding the classical genetic signatures of beer and bread domestication. This work establishes a mechanism of adaptive canalization in an ecology of major economic significance and highlights Hsp90-contingent variation as an important source of phantom heritability in complex traits.
Collapse
|
12
|
Spencer N, Łukasik P, Meyer M, Veloso C, McCutcheon JP. No Transcriptional Compensation for Extreme Gene Dosage Imbalance in Fragmented Bacterial Endosymbionts of Cicadas. Genome Biol Evol 2023; 15:evad100. [PMID: 37267326 PMCID: PMC10287537 DOI: 10.1093/gbe/evad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023] Open
Abstract
Bacteria that form long-term intracellular associations with host cells lose many genes, a process that often results in tiny, gene-dense, and stable genomes. Paradoxically, the some of the same evolutionary processes that drive genome reduction and simplification may also cause genome expansion and complexification. A bacterial endosymbiont of cicadas, Hodgkinia cicadicola, exemplifies this paradox. In many cicada species, a single Hodgkinia lineage with a tiny, gene-dense genome has split into several interdependent cell and genome lineages. Each new Hodgkinia lineage encodes a unique subset of the ancestral unsplit genome in a complementary way, such that the collective gene contents of all lineages match the total found in the ancestral single genome. This splitting creates genetically distinct Hodgkinia cells that must function together to carry out basic cellular processes. It also creates a gene dosage problem where some genes are encoded by only a small fraction of cells while others are much more abundant. Here, by sequencing DNA and RNA of Hodgkinia from different cicada species with different amounts of splitting-along with its structurally stable, unsplit partner endosymbiont Sulcia muelleri-we show that Hodgkinia does not transcriptionally compensate to rescue the wildly unbalanced gene and genome ratios that result from lineage splitting. We also find that Hodgkinia has a reduced capacity for basic transcriptional control independent of the splitting process. Our findings reveal another layer of degeneration further pushing the limits of canonical molecular and cell biology in Hodgkinia and may partially explain its propensity to go extinct through symbiont replacement.
Collapse
Affiliation(s)
- Noah Spencer
- Biodesign Center for Mechanisms of Evolution and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Piotr Łukasik
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Mariah Meyer
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Claudio Veloso
- Department of Ecological Sciences, Science Faculty, University of Chile, Santiago, Chile
| | - John P McCutcheon
- Biodesign Center for Mechanisms of Evolution and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
13
|
Taguchi H, Koike-Takeshita A. In vivo client proteins of the chaperonin GroEL-GroES provide insight into the role of chaperones in protein evolution. Front Mol Biosci 2023; 10:1091677. [PMID: 36845542 PMCID: PMC9950496 DOI: 10.3389/fmolb.2023.1091677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Protein folding is often hampered by intermolecular protein aggregation, which can be prevented by a variety of chaperones in the cell. Bacterial chaperonin GroEL is a ring-shaped chaperone that forms complexes with its cochaperonin GroES, creating central cavities to accommodate client proteins (also referred as substrate proteins) for folding. GroEL and GroES (GroE) are the only indispensable chaperones for bacterial viability, except for some species of Mollicutes such as Ureaplasma. To understand the role of chaperonins in the cell, one important goal of GroEL research is to identify a group of obligate GroEL/GroES clients. Recent advances revealed hundreds of in vivo GroE interactors and obligate chaperonin-dependent clients. This review summarizes the progress on the in vivo GroE client repertoire and its features, mainly for Escherichia coli GroE. Finally, we discuss the implications of the GroE clients for the chaperone-mediated buffering of protein folding and their influences on protein evolution.
Collapse
Affiliation(s)
- Hideki Taguchi
- Cell Biology Center, Tokyo Institute of Technology, Yokohama, Japan,*Correspondence: Hideki Taguchi,
| | - Ayumi Koike-Takeshita
- Department of Applied Bioscience, Kanagawa Institute of Technology, Atsugi, Kanagawa, Japan
| |
Collapse
|
14
|
Iyengar BR, Wagner A. Bacterial Hsp90 predominantly buffers but does not potentiate the phenotypic effects of deleterious mutations during fluorescent protein evolution. Genetics 2022; 222:iyac154. [PMID: 36227141 PMCID: PMC9713429 DOI: 10.1093/genetics/iyac154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2022] Open
Abstract
Chaperones facilitate the folding of other ("client") proteins and can thus affect the adaptive evolution of these clients. Specifically, chaperones affect the phenotype of proteins via two opposing mechanisms. On the one hand, they can buffer the effects of mutations in proteins and thus help preserve an ancestral, premutation phenotype. On the other hand, they can potentiate the effects of mutations and thus enhance the phenotypic changes caused by a mutation. We study that how the bacterial Hsp90 chaperone (HtpG) affects the evolution of green fluorescent protein. To this end, we performed directed evolution of green fluorescent protein under low and high cellular concentrations of Hsp90. Specifically, we evolved green fluorescent protein under both stabilizing selection for its ancestral (green) phenotype and directional selection toward a new (cyan) phenotype. While Hsp90 did only affect the rate of adaptive evolution transiently, it did affect the phenotypic effects of mutations that occurred during adaptive evolution. Specifically, Hsp90 allowed strongly deleterious mutations to accumulate in evolving populations by buffering their effects. Our observations show that the role of a chaperone for adaptive evolution depends on the organism and the trait being studied.
Collapse
Affiliation(s)
- Bharat Ravi Iyengar
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, 1015 Lausanne, Switzerland
- Institute for Evolution and Biodiversity, Westfalian Wilhelms—University of Münster, 48149 Münster, Germany
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, 1015 Lausanne, Switzerland
- The Santa Fe Institute, Santa Fe, NM 87501, USA
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, 7600 Stellenbosch, South Africa
| |
Collapse
|
15
|
Ferrarini MG, Dell’Aglio E, Vallier A, Balmand S, Vincent-Monégat C, Hughes S, Gillet B, Parisot N, Zaidman-Rémy A, Vieira C, Heddi A, Rebollo R. Efficient compartmentalization in insect bacteriomes protects symbiotic bacteria from host immune system. MICROBIOME 2022; 10:156. [PMID: 36163269 PMCID: PMC9513942 DOI: 10.1186/s40168-022-01334-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Many insects house symbiotic intracellular bacteria (endosymbionts) that provide them with essential nutrients, thus promoting the usage of nutrient-poor habitats. Endosymbiont seclusion within host specialized cells, called bacteriocytes, often organized in a dedicated organ, the bacteriome, is crucial in protecting them from host immune defenses while avoiding chronic host immune activation. Previous evidence obtained in the cereal weevil Sitophilus oryzae has shown that bacteriome immunity is activated against invading pathogens, suggesting endosymbionts might be targeted and impacted by immune effectors during an immune challenge. To pinpoint any molecular determinants associated with such challenges, we conducted a dual transcriptomic analysis of S. oryzae's bacteriome subjected to immunogenic peptidoglycan fragments. RESULTS We show that upon immune challenge, the bacteriome actively participates in the innate immune response via induction of antimicrobial peptides (AMPs). Surprisingly, endosymbionts do not undergo any transcriptomic changes, indicating that this potential threat goes unnoticed. Immunohistochemistry showed that TCT-induced AMPs are located outside the bacteriome, excluding direct contact with the endosymbionts. CONCLUSIONS This work demonstrates that endosymbiont protection during an immune challenge is mainly achieved by efficient confinement within bacteriomes, which provides physical separation between host systemic response and endosymbionts. Video Abstract.
Collapse
Affiliation(s)
- Mariana Galvão Ferrarini
- Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
| | - Elisa Dell’Aglio
- Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Agnès Vallier
- Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Séverine Balmand
- Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | | | - Sandrine Hughes
- UMR5242, Institut de Génomique Fonctionnelle de Lyon (IGFL), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon (Univ Lyon), F-69007 Lyon, France
| | - Benjamin Gillet
- UMR5242, Institut de Génomique Fonctionnelle de Lyon (IGFL), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon (Univ Lyon), F-69007 Lyon, France
| | - Nicolas Parisot
- Univ Lyon, INSA-Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Anna Zaidman-Rémy
- Univ Lyon, INSA-Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
| | - Abdelaziz Heddi
- Univ Lyon, INSA-Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Rita Rebollo
- Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| |
Collapse
|
16
|
Schön ME, Martijn J, Vosseberg J, Köstlbacher S, Ettema TJG. The evolutionary origin of host association in the Rickettsiales. Nat Microbiol 2022; 7:1189-1199. [PMID: 35798888 PMCID: PMC9352585 DOI: 10.1038/s41564-022-01169-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/30/2022] [Indexed: 12/14/2022]
Abstract
The evolution of obligate host-association of bacterial symbionts and pathogens remains poorly understood. The Rickettsiales are an alphaproteobacterial order of obligate endosymbionts and parasites that infect a wide variety of eukaryotic hosts, including humans, livestock, insects and protists. Induced by their host-associated lifestyle, Rickettsiales genomes have undergone reductive evolution, leading to small, AT-rich genomes with limited metabolic capacities. Here we uncover eleven deep-branching alphaproteobacterial metagenome assembled genomes from aquatic environments, including data from the Tara Oceans initiative and other publicly available datasets, distributed over three previously undescribed Rickettsiales-related clades. Phylogenomic analyses reveal that two of these clades, Mitibacteraceae and Athabascaceae, branch sister to all previously sampled Rickettsiales. The third clade, Gamibacteraceae, branch sister to the recently identified ectosymbiotic ‘Candidatus Deianiraea vastatrix’. Comparative analyses indicate that the gene complement of Mitibacteraceae and Athabascaceae is reminiscent of that of free-living and biofilm-associated bacteria. Ancestral genome content reconstruction across the Rickettsiales species tree further suggests that the evolution of host association in Rickettsiales was a gradual process that may have involved the repurposing of a type IV secretion system. Phylogenomic analyses reveal novel environmental clades of Rickettsiales providing insights into their evolution from free-living to host-associated lifestyle.
Collapse
Affiliation(s)
- Max E Schön
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Joran Martijn
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Julian Vosseberg
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Stephan Köstlbacher
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden. .,Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
17
|
Koganezawa Y, Umetani M, Sato M, Wakamoto Y. History-dependent physiological adaptation to lethal genetic modification under antibiotic exposure. eLife 2022; 11:e74486. [PMID: 35535492 PMCID: PMC9090333 DOI: 10.7554/elife.74486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/08/2022] [Indexed: 12/18/2022] Open
Abstract
Genetic modifications, such as gene deletion and mutations, could lead to significant changes in physiological states or even cell death. Bacterial cells can adapt to diverse external stresses, such as antibiotic exposure, but can they also adapt to detrimental genetic modification? To address this issue, we visualized the response of individual Escherichia coli cells to deletion of the antibiotic resistance gene under chloramphenicol (Cp) exposure, combining the light-inducible genetic recombination and microfluidic long-term single-cell tracking. We found that a significant fraction (∼40%) of resistance-gene-deleted cells demonstrated a gradual restoration of growth and stably proliferated under continuous Cp exposure without the resistance gene. Such physiological adaptation to genetic modification was not observed when the deletion was introduced in 10 hr or more advance before Cp exposure. Resistance gene deletion under Cp exposure disrupted the stoichiometric balance of ribosomal large and small subunit proteins (RplS and RpsB). However, the balance was gradually recovered in the cell lineages with restored growth. These results demonstrate that bacterial cells can adapt even to lethal genetic modifications by plastically gaining physiological resistance. However, the access to the resistance states is limited by the environmental histories and the timings of genetic modification.
Collapse
Affiliation(s)
- Yuta Koganezawa
- Department of Basic Science, Graduate School of Arts and Sciences, The University of TokyoMeguro-kuJapan
| | - Miki Umetani
- Department of Basic Science, Graduate School of Arts and Sciences, The University of TokyoMeguro-kuJapan
- Research Center for Complex Systems Biology, The University of TokyoTokyoJapan
| | - Moritoshi Sato
- Research Center for Complex Systems Biology, The University of TokyoTokyoJapan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of TokyoTokyoJapan
- Universal Biology Institute, The University of TokyoTokyoJapan
| | - Yuichi Wakamoto
- Department of Basic Science, Graduate School of Arts and Sciences, The University of TokyoMeguro-kuJapan
- Research Center for Complex Systems Biology, The University of TokyoTokyoJapan
- Universal Biology Institute, The University of TokyoTokyoJapan
| |
Collapse
|
18
|
Iyengar BR, Wagner A. GroEL/S overexpression helps to purge deleterious mutations and reduce genetic diversity during adaptive protein evolution. Mol Biol Evol 2022; 39:6540901. [PMID: 35234895 PMCID: PMC9188349 DOI: 10.1093/molbev/msac047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chaperones are proteins that help other proteins fold. They also affect the adaptive evolution of their client proteins by buffering the effect of deleterious mutations and increasing the genetic diversity of evolving proteins. We study how the bacterial chaperone GroE (GroEL + GroES) affects the evolution of green fluorescent protein (GFP). To this end we subjected GFP to multiple rounds of mutation and selection for its color phenotype in four replicate E. coli populations, and studied its evolutionary dynamics through high-throughput sequencing and mutant engineering. We evolved GFP both under stabilizing selection for its ancestral (green) phenotype, and to directional selection for a new (cyan) phenotype. We did so both under low and high expression of the chaperone GroE. In contrast to previous work, we observe that GroE does not just buffer but also helps purge deleterious (fluorescence reducing) mutations from evolving populations. In doing so, GroE helps reduce the genetic diversity of evolving populations. In addition, it causes phenotypic heterogeneity in mutants with the same genotype, helping to enhance their fluorescence in some cells, and reducing it in others. Our observations show that chaperones can affect adaptive evolution in more than one way.
Collapse
|
19
|
Nicholson D, Salamina M, Panek J, Helena-Bueno K, Brown CR, Hirt RP, Ranson NA, Melnikov SV. Adaptation to genome decay in the structure of the smallest eukaryotic ribosome. Nat Commun 2022; 13:591. [PMID: 35105900 PMCID: PMC8807834 DOI: 10.1038/s41467-022-28281-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/14/2022] [Indexed: 12/18/2022] Open
Abstract
The evolution of microbial parasites involves the counterplay between natural selection forcing parasites to improve and genetic drifts forcing parasites to lose genes and accumulate deleterious mutations. Here, to understand how this counterplay occurs at the scale of individual macromolecules, we describe cryo-EM structure of ribosomes from Encephalitozoon cuniculi, a eukaryote with one of the smallest genomes in nature. The extreme rRNA reduction in E. cuniculi ribosomes is accompanied with unparalleled structural changes, such as the evolution of previously unknown molten rRNA linkers and bulgeless rRNA. Furthermore, E. cuniculi ribosomes withstand the loss of rRNA and protein segments by evolving an ability to use small molecules as structural mimics of degenerated rRNA and protein segments. Overall, we show that the molecular structures long viewed as reduced, degenerated, and suffering from debilitating mutations possess an array of compensatory mechanisms that allow them to remain active despite the extreme molecular reduction. Many parasitic organisms contain molecular structures that are drastically smaller than analogous structures in non-parasitic organisms. Here the authors describe a cryo-EM structure of the ribosome from E. cuniculi that reveals that it compensated rRNA truncations by evolving the ability to use small molecules as ribosomal building blocks.
Collapse
Affiliation(s)
- David Nicholson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Marco Salamina
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Johan Panek
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Karla Helena-Bueno
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Charlotte R Brown
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert P Hirt
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sergey V Melnikov
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK. .,Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
20
|
Perreau J, Moran NA. Genetic innovations in animal-microbe symbioses. Nat Rev Genet 2021; 23:23-39. [PMID: 34389828 DOI: 10.1038/s41576-021-00395-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
Animal hosts have initiated myriad symbiotic associations with microorganisms and often have maintained these symbioses for millions of years, spanning drastic changes in ecological conditions and lifestyles. The establishment and persistence of these relationships require genetic innovations on the parts of both symbionts and hosts. The nature of symbiont innovations depends on their genetic population structure, categorized here as open, closed or mixed. These categories reflect modes of inter-host transmission that result in distinct genomic features, or genomic syndromes, in symbionts. Although less studied, hosts also innovate in order to preserve and control symbiotic partnerships. New capabilities to sequence host-associated microbial communities and to experimentally manipulate both hosts and symbionts are providing unprecedented insights into how genetic innovations arise under different symbiont population structures and how these innovations function to support symbiotic relationships.
Collapse
Affiliation(s)
- Julie Perreau
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
21
|
A new protein protects a symbiotic relationship. Proc Natl Acad Sci U S A 2021; 118:2109637118. [PMID: 34301876 DOI: 10.1073/pnas.2109637118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
22
|
Kumar CMS, Chugh K, Dutta A, Mahamkali V, Bose T, Mande SS, Mande SC, Lund PA. Chaperonin Abundance Enhances Bacterial Fitness. Front Mol Biosci 2021; 8:669996. [PMID: 34381811 PMCID: PMC8350394 DOI: 10.3389/fmolb.2021.669996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
The ability of chaperonins to buffer mutations that affect protein folding pathways suggests that their abundance should be evolutionarily advantageous. Here, we investigate the effect of chaperonin overproduction on cellular fitness in Escherichia coli. We demonstrate that chaperonin abundance confers 1) an ability to tolerate higher temperatures, 2) improved cellular fitness, and 3) enhanced folding of metabolic enzymes, which is expected to lead to enhanced energy harvesting potential.
Collapse
Affiliation(s)
- C M Santosh Kumar
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Kritika Chugh
- Department of Biotechnology and Bioinformatics, University of Rajasthan, Jaipur, India
| | - Anirban Dutta
- TCS Research, Tata Consultancy Services Ltd., Pune, India
| | - Vishnuvardhan Mahamkali
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
| | - Tungadri Bose
- TCS Research, Tata Consultancy Services Ltd., Pune, India
| | | | - Shekhar C Mande
- Laboratory of Structural Biology, National Centre for Cell Science (NCCS), Pune, India
| | - Peter A Lund
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
23
|
Abstract
DPANN is known as highly diverse, globally widespread, and mostly ectosymbiotic archaeal superphylum. However, this group of archaea was overlooked for a long time, and there were limited in-depth studies reported. In this investigation, 41 metagenome-assembled genomes (MAGs) belonging to the DPANN superphylum were recovered (18 MAGs had average nucleotide identity [ANI] values of <95% and a percentage of conserved proteins [POCP] of >50%, while 14 MAGs showed a POCP of <50%), which were analyzed comparatively with 515 other published DPANN genomes. Mismatches to known 16S rRNA gene primers were identified among 16S rRNA genes of DPANN archaea. Numbers of gene families lost (mostly related to energy and amino acid metabolism) were over three times greater than those gained in the evolution of DPANN archaea. Lateral gene transfer (LGT; ∼45.5% was cross-domain) had facilitated niche adaption of the DPANN archaea, ensuring a delicate equilibrium of streamlined genomes with efficient niche-adaptive strategies. For instance, LGT-derived cytochrome bd ubiquinol oxidase and arginine deiminase in the genomes of “Candidatus Micrarchaeota” could help them better adapt to aerobic acidic mine drainage habitats. In addition, most DPANN archaea acquired enzymes for biosynthesis of extracellular polymeric substances (EPS) and transketolase/transaldolase for the pentose phosphate pathway from Bacteria. IMPORTANCE The domain Archaea is a key research model for gaining insights into the origin and evolution of life, as well as the relevant biogeochemical processes. The discovery of nanosized DPANN archaea has overthrown many aspects of microbiology. However, the DPANN superphylum still contains a vast genetic novelty and diversity that need to be explored. Comprehensively comparative genomic analysis on the DPANN superphylum was performed in this study, with an attempt to illuminate its metabolic potential, ecological distribution and evolutionary history. Many interphylum differences within the DPANN superphylum were found. For example, Altiarchaeota had the biggest genome among DPANN phyla, possessing many pathways missing in other phyla, such as formaldehyde assimilation and the Wood-Ljungdahl pathway. In addition, LGT acted as an important force to provide DPANN archaeal genetic flexibility that permitted the occupation of diverse niches. This study has advanced our understanding of the diversity and genome evolution of archaea.
Collapse
|
24
|
Wein T, Wang Y, Barz M, Stücker FT, Hammerschmidt K, Dagan T. Essential gene acquisition destabilizes plasmid inheritance. PLoS Genet 2021; 17:e1009656. [PMID: 34252089 PMCID: PMC8297927 DOI: 10.1371/journal.pgen.1009656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 07/22/2021] [Accepted: 06/09/2021] [Indexed: 11/25/2022] Open
Abstract
Extra-chromosomal genetic elements are important drivers of evolutionary transformations and ecological adaptations in prokaryotes with their evolutionary success often depending on their ‘utility’ to the host. Examples are plasmids encoding antibiotic resistance genes, which are known to proliferate in the presence of antibiotics. Plasmids carrying an essential host function are recognized as permanent residents in their host. Essential plasmids have been reported in several taxa where they often encode essential metabolic functions; nonetheless, their evolution remains poorly understood. Here we show that essential genes are rarely encoded on plasmids; evolving essential plasmids in Escherichia coli we further find that acquisition of an essential chromosomal gene by a plasmid can lead to plasmid extinction. A comparative genomics analysis of Escherichia isolates reveals few plasmid-encoded essential genes, yet these are often integrated into plasmid-related functions; an example is the GroEL/GroES chaperonin. Experimental evolution of a chaperonin-encoding plasmid shows that the acquisition of an essential gene reduces plasmid fitness regardless of the stability of plasmid inheritance. Our results suggest that essential plasmid emergence leads to a dose effect caused by gene redundancy. The detrimental effect of essential gene acquisition on plasmid inheritance constitutes a barrier for plasmid-mediated lateral gene transfer and supplies a mechanistic understanding for the rarity of essential genes in extra-chromosomal genetic elements. Mobile genetic elements have been extensively studied due to their role as agents of genetic innovation and rapid adaptation in prokaryotes. Specifically, prokaryotic plasmids have been the focus of investigation in the context of bacterial survival under growth limiting conditions with the prime example of resistance to antibiotics and heavy metals. In contrast, plasmids that encode for functions that are essential to their host viability are rarely described. We investigate the evolution of plasmids that encode for genes previously identified as essential for bacterial life. Our analysis of Escherichia isolates reveals only few plasmid-encoded essential genes, which likely function in the plasmid rather than the host life cycle. Following the evolution of plasmids encoding an essential gene in Escherichia coli in real time, we further find that the acquisition of a chromosomal essential gene may lead to plasmid loss. Our study supplies data and a mechanistic understanding on the rarity of essential genes in mobile genetic elements. We conclude that prokaryotic plasmids are rarely essential for their bacterial host.
Collapse
Affiliation(s)
- Tanita Wein
- Institute of General Microbiology, Kiel University, Kiel, Germany
- * E-mail:
| | - Yiqing Wang
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Myriam Barz
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Fenna T. Stücker
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | | | - Tal Dagan
- Institute of General Microbiology, Kiel University, Kiel, Germany
| |
Collapse
|
25
|
Abstract
When laying eggs, plataspid stinkbugs deposit small packets called “symbiont capsules.” Newborn stinkbugs suck the capsules to acquire a bacterial mutualist. Without the symbiont, the babies cannot grow and die. Due to the long-lasting symbiosis, the symbiont has experienced genome reduction and become uncultivable. Within the capsules, however, the symbiont can survive for over a week outside the host. Why and how? Here, we uncover a molecular secret implemented in the symbiont capsules. Mother stinkbugs massively produce a special intestinal secretion protein, PMDP, at the expense of their own survival. PMDP embeds the fragile symbiont cells and protects them within the capsules. The host-provisioned molecule for sustaining symbiosis may be utilized for cultivation and/or preservation of fastidious microorganisms. Microbial symbioses significantly contribute to diverse organisms, where long-lasting associations tend to result in symbiont genome erosion, uncultivability, extinction, and replacement. How such inherently deteriorating symbiosis can be harnessed to stable partnership is of general evolutionary interest. Here, we report the discovery of a host protein essential for sustaining symbiosis. Plataspid stinkbugs obligatorily host an uncultivable and genome-reduced gut symbiont, Ishikawaella. Upon oviposition, females deposit “capsules” for symbiont delivery to offspring. Within the capsules, the fragile symbiotic bacteria survive the harsh conditions outside the host until acquired by newborn nymphs to establish vertical transmission. We identified a single protein dominating the capsule content, which is massively secreted by female-specific intestinal organs, embedding the symbiont cells, and packaged into the capsules. Knockdown of the protein resulted in symbiont degeneration, arrested capsule production, symbiont transmission failure, and retarded nymphal growth, unveiling its essential function for ensuring symbiont survival and vertical transmission. The protein originated from a lineage of odorant-binding protein-like multigene family, shedding light on the origin of evolutionary novelty regarding symbiosis. Experimental suppression of capsule production extended the female’s lifespan, uncovering a substantial cost for maintaining symbiosis. In addition to the host’s guardian protein, the symbiont’s molecular chaperone, GroEL, was overproduced in the capsules, highlighting that the symbiont’s eroding functionality is compensated for by stabilizer molecules of host and symbiont origins. Our finding provides insight into how intimate host–symbiont associations can be maintained over evolutionary time despite the symbiont’s potential vulnerability to degeneration and malfunctioning.
Collapse
|
26
|
Incipient genome erosion and metabolic streamlining for antibiotic production in a defensive symbiont. Proc Natl Acad Sci U S A 2021; 118:2023047118. [PMID: 33883280 PMCID: PMC8092579 DOI: 10.1073/pnas.2023047118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genome reduction is commonly observed in bacteria of several phyla engaging in obligate nutritional symbioses with insects. In Actinobacteria, however, little is known about the process of genome evolution, despite their importance as prolific producers of antibiotics and their increasingly recognized role as defensive partners of insects and other organisms. Here, we show that “Streptomyces philanthi,” a defensive symbiont of digger wasps, has a G+C-enriched genome in the early stages of erosion, with inactivating mutations in a large proportion of genes, causing dependency on its hosts for certain nutrients, which was validated in axenic symbiont cultures. Additionally, overexpressed catabolic and biosynthetic pathways of the bacteria inside the host indicate host–symbiont metabolic integration for streamlining and control of antibiotic production. Genome erosion is a frequently observed result of relaxed selection in insect nutritional symbionts, but it has rarely been studied in defensive mutualisms. Solitary beewolf wasps harbor an actinobacterial symbiont of the genus Streptomyces that provides protection to the developing offspring against pathogenic microorganisms. Here, we characterized the genomic architecture and functional gene content of this culturable symbiont using genomics, transcriptomics, and proteomics in combination with in vitro assays. Despite retaining a large linear chromosome (7.3 Mb), the wasp symbiont accumulated frameshift mutations in more than a third of its protein-coding genes, indicative of incipient genome erosion. Although many of the frameshifted genes were still expressed, the encoded proteins were not detected, indicating post-transcriptional regulation. Most pseudogenization events affected accessory genes, regulators, and transporters, but “Streptomyces philanthi” also experienced mutations in central metabolic pathways, resulting in auxotrophies for biotin, proline, and arginine that were confirmed experimentally in axenic culture. In contrast to the strong A+T bias in the genomes of most obligate symbionts, we observed a significant G+C enrichment in regions likely experiencing reduced selection. Differential expression analyses revealed that—compared to in vitro symbiont cultures—“S. philanthi” in beewolf antennae showed overexpression of genes for antibiotic biosynthesis, the uptake of host-provided nutrients and the metabolism of building blocks required for antibiotic production. Our results show unusual traits in the early stage of genome erosion in a defensive symbiont and suggest tight integration of host–symbiont metabolic pathways that effectively grants the host control over the antimicrobial activity of its bacterial partner.
Collapse
|
27
|
The DnaK Chaperone System Buffers the Fitness Cost of Antibiotic Resistance Mutations in Mycobacteria. mBio 2021; 12:mBio.00123-21. [PMID: 33785614 PMCID: PMC8092207 DOI: 10.1128/mbio.00123-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chaperones aid in protein folding and maintenance of protein integrity. In doing so, they have the unique ability to directly stabilize resistance-conferring amino acid substitutions in drug targets and to counter the stress imparted by these substitutions, thus supporting heritable antimicrobial resistance (AMR). We asked whether chaperones support AMR in Mycobacterium smegmatis, a saprophytic model of Mycobacterium tuberculosis, the causative agent of tuberculosis (TB). We show that DnaK associates with many drug targets and that DnaK associates more with AMR-conferring mutant RNA polymerase (RNAP) than with wild-type RNAP. In addition, frequency-of-resistance (FOR) and fitness studies reveal that the DnaK system of chaperones supports AMR in antimicrobial targets in mycobacteria, including RNAP and the ribosome. These findings highlight chaperones as potential targets for drugs to overcome AMR in mycobacteria, including M. tuberculosis, as well as in other pathogens.IMPORTANCE AMR is a global problem, especially for TB. Here, we show that mycobacterial chaperones support AMR in M. smegmatis, a nonpathogenic model of M. tuberculosis, the causative agent of TB. In particular, the mycobacterial DnaK system of chaperones supports AMR in the antimicrobial targets RNA polymerase and the ribosome. This is the first report showing a role for protein chaperones in mediating AMR in mycobacteria. Given the widespread role of protein chaperones in enabling genomic diversity, we anticipate that our findings can be extended to other microbes.
Collapse
|
28
|
Victor MP, Acharya D, Chakraborty S, Ghosh TC. Chaperone client proteins evolve slower than non-client proteins. Funct Integr Genomics 2020; 20:621-631. [PMID: 32377887 DOI: 10.1007/s10142-020-00740-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/26/2020] [Accepted: 04/17/2020] [Indexed: 11/29/2022]
Abstract
Chaperones are important molecular machinery that assists proteins to attain their native three-dimensional structure crucial for function. Earlier studies using experimental evolution showed that chaperones impose a relaxation of sequence constraints on their "client" proteins, which may lead to the fixation of slightly deleterious mutations on the latter. However, we hypothesized that such a phenomenon might be harmful to the organism in a natural physiological condition. In this study, we investigated the evolutionary rates of chaperone client and non-client proteins in five model organisms from both prokaryotic and eukaryotic lineages. Our study reveals a slower evolutionary rate of chaperone client proteins in all five organisms. Additionally, the slower folding rate and lower aggregation propensity of chaperone client proteins reveal that the chaperone may play an essential role in rescuing the slightly disadvantageous effects due to random mutations and subsequent protein misfolding. However, the fixation of such mutations is less likely to be selected in the natural population.
Collapse
Affiliation(s)
| | - Debarun Acharya
- Department of Microbiology, Bose Institute, Kolkata, West Bengal, India
| | - Sandip Chakraborty
- Division of Bioinformatics, Bose Institute, Kolkata, West Bengal, India.
| | | |
Collapse
|
29
|
Aviner R, Frydman J. Proteostasis in Viral Infection: Unfolding the Complex Virus-Chaperone Interplay. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a034090. [PMID: 30858229 DOI: 10.1101/cshperspect.a034090] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Viruses are obligate intracellular parasites that rely on their hosts for protein synthesis, genome replication, and viral particle production. As such, they have evolved mechanisms to divert host resources, including molecular chaperones, facilitate folding and assembly of viral proteins, stabilize complex structures under constant mutational pressure, and modulate signaling pathways to dampen antiviral responses and prevent premature host death. Biogenesis of viral proteins often presents unique challenges to the proteostasis network, as it requires the rapid and orchestrated production of high levels of a limited number of multifunctional, multidomain, and aggregation-prone proteins. To overcome such challenges, viruses interact with the folding machinery not only as clients but also as regulators of chaperone expression, function, and subcellular localization. In this review, we summarize the main types of interactions between viral proteins and chaperones during infection, examine evolutionary aspects of this relationship, and discuss the potential of using chaperone inhibitors as broad-spectrum antivirals.
Collapse
Affiliation(s)
- Ranen Aviner
- Department of Biology, Stanford University, Stanford, California 94305
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, California 94305.,Department of Genetics, Stanford University, Stanford, California 94305
| |
Collapse
|
30
|
Obligate bacterial endosymbionts limit thermal tolerance of insect host species. Proc Natl Acad Sci U S A 2019; 116:24712-24718. [PMID: 31740601 DOI: 10.1073/pnas.1915307116] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The thermal tolerance of an organism limits its ecological and geographic ranges and is potentially affected by dependence on temperature-sensitive symbiotic partners. Aphid species vary widely in heat sensitivity, but almost all aphids are dependent on the nutrient-provisioning intracellular bacterium Buchnera, which has evolved with aphids for 100 million years and which has a reduced genome potentially limiting heat tolerance. We addressed whether heat sensitivity of Buchnera underlies variation in thermal tolerance among 5 aphid species. We measured how heat exposure of juvenile aphids affects later survival, maturation time, and fecundity. At one extreme, heat exposure of Aphis gossypii enhanced fecundity and had no effect on the Buchnera titer. In contrast, heat suppressed Buchnera populations in Aphis fabae, which suffered elevated mortality, delayed development and reduced fecundity. Likewise, in Acyrthosiphon kondoi and Acyrthosiphon pisum, heat caused rapid declines in Buchnera numbers, as well as reduced survivorship, development rate, and fecundity. Fecundity following heat exposure is severely decreased by a Buchnera mutation that suppresses the transcriptional response of a gene encoding a small heat shock protein. Similarly, absence of this Buchnera heat shock gene may explain the heat sensitivity of Ap. fabae Fluorescent in situ hybridization revealed heat-induced deformation and shrinkage of bacteriocytes in heat-sensitive species but not in heat-tolerant species. Sensitive and tolerant species also differed in numbers and transcriptional responses of heat shock genes. These results show that shifts in Buchnera heat sensitivity contribute to host variation in heat tolerance.
Collapse
|
31
|
Heat Shock Proteins Are Essential Components in Transformation and Tumor Progression: Cancer Cell Intrinsic Pathways and Beyond. Int J Mol Sci 2019; 20:ijms20184507. [PMID: 31514477 PMCID: PMC6769451 DOI: 10.3390/ijms20184507] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 02/08/2023] Open
Abstract
Heat shock protein (HSP) synthesis is switched on in a remarkably wide range of tumor cells, in both experimental animal systems and in human cancer, in which these proteins accumulate in high levels. In each case, elevated HSP concentrations bode ill for the patient, and are associated with a poor outlook in terms of survival in most cancer types. The significance of elevated HSPs is underpinned by their essential roles in mediating tumor cell intrinsic traits such as unscheduled cell division, escape from programmed cell death and senescence, de novo angiogenesis, and increased invasion and metastasis. An increased HSP expression thus seems essential for tumorigenesis. Perhaps of equal significance is the pronounced interplay between cancer cells and the tumor milieu, with essential roles for intracellular HSPs in the properties of the stromal cells, and their roles in programming malignant cells and in the release of HSPs from cancer cells to influence the behavior of the adjacent tumor and infiltrating the normal cells. These findings of a triple role for elevated HSP expression in tumorigenesis strongly support the targeting of HSPs in cancer, especially given the role of such stress proteins in resistance to conventional therapies.
Collapse
|
32
|
Daniyan MO, Przyborski JM, Shonhai A. Partners in Mischief: Functional Networks of Heat Shock Proteins of Plasmodium falciparum and Their Influence on Parasite Virulence. Biomolecules 2019; 9:E295. [PMID: 31340488 PMCID: PMC6681276 DOI: 10.3390/biom9070295] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023] Open
Abstract
The survival of the human malaria parasite Plasmodium falciparum under the physiologically distinct environments associated with their development in the cold-blooded invertebrate mosquito vectors and the warm-blooded vertebrate human host requires a genome that caters to adaptability. To this end, a robust stress response system coupled to an efficient protein quality control system are essential features of the parasite. Heat shock proteins constitute the main molecular chaperone system of the cell, accounting for approximately two percent of the malaria genome. Some heat shock proteins of parasites constitute a large part (5%) of the 'exportome' (parasite proteins that are exported to the infected host erythrocyte) that modify the host cell, promoting its cyto-adherence. In light of their importance in protein folding and refolding, and thus the survival of the parasite, heat shock proteins of P. falciparum have been a major subject of study. Emerging evidence points to their role not only being cyto-protection of the parasite, as they are also implicated in regulating parasite virulence. In undertaking their roles, heat shock proteins operate in networks that involve not only partners of parasite origin, but also potentially functionally associate with human proteins to facilitate parasite survival and pathogenicity. This review seeks to highlight these interplays and their roles in parasite pathogenicity. We further discuss the prospects of targeting the parasite heat shock protein network towards the developments of alternative antimalarial chemotherapies.
Collapse
Affiliation(s)
- Michael O Daniyan
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State 220005, Nigeria.
| | - Jude M Przyborski
- Center of Infectious Diseases, Parasitology, University of Heidelberg Medical School, INF324, 69120 Heidelberg, Germany
| | - Addmore Shonhai
- Department of Biochemistry, School of Mathematical & Natural Sciences, University of Venda, P. Bag X5050, Thohoyandou 0950, South Africa.
| |
Collapse
|
33
|
Gilkes JM, Sheen CR, Frampton RA, Smith GR, Dobson RCJ. The First Purification of Functional Proteins from the Unculturable, Genome-Reduced, Bottlenecked α-Proteobacterium ' Candidatus Liberibacter solanacearum'. PHYTOPATHOLOGY 2019; 109:1141-1148. [PMID: 30887888 DOI: 10.1094/phyto-12-18-0486-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
'Candidatus Liberibacter solanacearum' is an unculturable α-proteobacterium that is the causal agent of zebra chip disease of potato-a major problem in potato-growing areas, because it affects growth and yield. Developing effective treatments for 'Ca. L. solanacearum' has been hampered by the difficulty in functionally characterizing the proteins of this organism, largely because they are not easily expressed and purified in standard expression systems. 'Ca. L. solanacearum' has a reduced genome and its proteins are predicted to be prone to instability and aggregation. Among intracellular-dwelling bacteria, chaperone proteins are conserved and overexpressed to buffer against problems in protein folding. We mimicked this approach for expressing and purifying 'Ca. L. solanacearum' proteins in Escherichia coli by coexpressing them with chaperones. Neither of the representative 'Ca. L. solanacearum' enzymes, dihydrodipicolinate synthase (key in lysine biosynthesis) and pyruvate kinase (involved in glycolysis), were overexpressed in standard E. coli expression plasmids or strains. However, soluble dihydrodipicolinate synthase was successfully coexpressed with GroEL/GroES, while soluble pyruvate kinase was successfully coexpressed with either GroEL/GroES, dnaK/dnaJ/grpE, or a trigger factor. Both enzymes, believed to be key proteins for the organism, were purified by a combination of affinity chromatography and size-exclusion chromatography. Additionally, both 'Ca. L. solanacearum' enzymes are active and have the canonical tetrameric oligomeric structure in solution, consistent with other bacterial orthologs. This is the first study to successfully isolate and functionally characterize proteins from 'Ca. L. solanacearum'. Thus, we provide a general strategy for characterizing its proteins, enabling new research and drug discovery programs to study and manage the pathogenicity of the organism.
Collapse
Affiliation(s)
- Jenna M Gilkes
- 1 Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
- 2 The New Zealand Institute for Plant & Food Research Limited, Lincoln 7608, New Zealand
| | - Campbell R Sheen
- 3 Callaghan Innovation, University of Canterbury, Christchurch 8041, New Zealand; and
| | - Rebekah A Frampton
- 2 The New Zealand Institute for Plant & Food Research Limited, Lincoln 7608, New Zealand
| | - Grant R Smith
- 2 The New Zealand Institute for Plant & Food Research Limited, Lincoln 7608, New Zealand
| | - Renwick C J Dobson
- 1 Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
- 4 Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
34
|
Aguilar-Rodríguez J, Fares MA, Wagner A. Chaperonin overproduction and metabolic erosion caused by mutation accumulation in Escherichia coli. FEMS Microbiol Lett 2019; 366:5509575. [PMID: 31150542 DOI: 10.1093/femsle/fnz121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 05/30/2019] [Indexed: 12/25/2022] Open
Abstract
Bacterial cells adapting to a constant environment tend to accumulate mutations in portions of their genome that are not maintained by selection. This process has been observed in bacteria evolving under strong genetic drift, and especially in bacterial endosymbionts of insects. Here, we study this process in hypermutable Escherichia coli populations evolved through 250 single-cell bottlenecks on solid rich medium in a mutation accumulation experiment that emulates the evolution of bacterial endosymbionts. Using phenotype microarrays monitoring metabolic activity in 95 environments distinguished by their carbon sources, we observe how mutation accumulation has decreased the ability of cells to metabolize most carbon sources. We study if the chaperonin GroEL, which is naturally overproduced in bacterial endosymbionts, can ameliorate the process of metabolic erosion, because of its known ability to buffer destabilizing mutations in metabolic enzymes. Our results indicate that GroEL can slow down the negative phenotypic consequences of genome decay in some environments.
Collapse
Affiliation(s)
- José Aguilar-Rodríguez
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Mario A Fares
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain.,Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland.,The Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
35
|
Melnikov SV, van den Elzen A, Stevens DL, Thoreen CC, Söll D. Loss of protein synthesis quality control in host-restricted organisms. Proc Natl Acad Sci U S A 2018; 115:E11505-E11512. [PMID: 30455292 PMCID: PMC6298100 DOI: 10.1073/pnas.1815992115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intracellular organisms, such as obligate parasites and endosymbionts, typically possess small genomes due to continuous genome decay caused by an environment with alleviated natural selection. Previously, a few species with highly reduced genomes, including the intracellular pathogens Mycoplasma and Microsporidia, have been shown to carry degenerated editing domains in aminoacyl-tRNA synthetases. These defects in the protein synthesis machinery cause inaccurate translation of the genetic code, resulting in significant statistical errors in protein sequences that are thought to help parasites to escape immune response of a host. In this study we analyzed 10,423 complete bacterial genomes to assess conservation of the editing domains in tRNA synthetases, including LeuRS, IleRS, ValRS, ThrRS, AlaRS, and PheRS. We found that, while the editing domains remain intact in free-living species, they are degenerated in the overwhelming majority of host-restricted bacteria. Our work illustrates that massive genome erosion triggered by an intracellular lifestyle eradicates one of the most fundamental components of a living cell: the system responsible for proofreading of amino acid selection for protein synthesis. This finding suggests that inaccurate translation of the genetic code might be a general phenomenon among intercellular organisms with reduced genomes.
Collapse
Affiliation(s)
- Sergey V Melnikov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
| | - Antonia van den Elzen
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520
| | - David L Stevens
- Department of Chemistry, Yale University, New Haven, CT 06511
| | - Carson C Thoreen
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511;
- Department of Chemistry, Yale University, New Haven, CT 06511
| |
Collapse
|
36
|
Juarez-Carreño S, Morante J, Dominguez M. Systemic signalling and local effectors in developmental stability, body symmetry, and size. Cell Stress 2018; 2:340-361. [PMID: 31225459 PMCID: PMC6551673 DOI: 10.15698/cst2018.12.167] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Symmetric growth and the origins of fluctuating asymmetry are unresolved phenomena of biology. Small, and sometimes noticeable, deviations from perfect bilateral symmetry reflect the vulnerability of development to perturbations. The degree of asymmetry is related to the magnitude of the perturbations and the ability of an individual to cope with them. As the left and right sides of an individual were presumed to be genetically identical, deviations of symmetry were traditionally attributed to non-genetic effects such as environmental and developmental noise. In this review, we draw attention to other possible sources of variability, especially to somatic mutations and transposons. Mutations are a major source of phenotypic variability and recent genomic data have highlighted somatic mutations as ubiquitous, even in phenotypically normal individuals. We discuss the importance of factors that are responsible for buffering and stabilizing the genome and for maintaining size robustness and quality through elimination of less-fit or damaged cells. However, the important question that arises from these studies is whether this self-correcting capacity and intrinsic organ size controls are sufficient to explain how symmetric structures can reach an identical size and shape. Indeed, recent discoveries in the fruit fly have uncovered a conserved hormone of the insulin/IGF/relaxin family, Dilp8, that is responsible for stabilizing body size and symmetry in the face of growth perturbations. Dilp8 alarm signals periphery growth status to the brain, where it acts on its receptor Lgr3. Loss of Dilp8-Lgr3 signaling renders flies incapable of detecting growth perturbations and thus maintaining a stable size and symmetry. These findings help to understand how size and symmetry of somatic tissues remain undeterred in noisy environments, after injury or illnesses, and in the presence of accumulated somatic mutations.
Collapse
Affiliation(s)
- Sergio Juarez-Carreño
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Avda Santiago Ramón y Cajal s/n, Campus de Sant Joan, Alicante, Spain
| | - Javier Morante
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Avda Santiago Ramón y Cajal s/n, Campus de Sant Joan, Alicante, Spain
| | - Maria Dominguez
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Avda Santiago Ramón y Cajal s/n, Campus de Sant Joan, Alicante, Spain
| |
Collapse
|
37
|
Groth BR, Huang Y, Monette MJ, Pool JE. Directional selection reduces developmental canalization against genetic and environmental perturbations in Drosophila wings. Evolution 2018; 72:10.1111/evo.13550. [PMID: 29985527 PMCID: PMC7003245 DOI: 10.1111/evo.13550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/01/2018] [Accepted: 07/03/2018] [Indexed: 12/13/2022]
Abstract
Natural selection may enhance or weaken the robustness of phenotypes against genetic or environmental perturbations. However, important aspects of the relationship between adaptive evolution and canalization remain unclear. Recent work showed that the evolution of larger wing size in a high altitude natural population of Drosophila melanogaster was accompanied by decanalized wing development--specifically a loss of robustness to genetic perturbation. But this study did not address environmental robustness, and it compared populations that may have numerous biological differences. Here, we perform artificial selection on this same trait in D. melanogaster (larger wing length) and directly test whether this directional selection resulted in decanalization. We find that in general, size-selected replicates show greater frequencies of wing defects than control replicates both after mutagenesis (genetic perturbation) and when subjected to high temperature stress (environmental perturbation), although the increase in defect frequency varies importantly among replicates. These results support the hypothesis that directional selection may result in the loss of both genetic and environmental robustness-offering a rare window into the relationship between adaptation and canalization.
Collapse
Affiliation(s)
- Benjamin R. Groth
- Laboratory of Genetics, University of Wisconsin-Madison,
Madison, Wisconsin 53706
| | - Yuheng Huang
- Laboratory of Genetics, University of Wisconsin-Madison,
Madison, Wisconsin 53706
| | - Matthew J. Monette
- Laboratory of Genetics, University of Wisconsin-Madison,
Madison, Wisconsin 53706
| | - John E. Pool
- Laboratory of Genetics, University of Wisconsin-Madison,
Madison, Wisconsin 53706
| |
Collapse
|
38
|
Chen B, Feder ME, Kang L. Evolution of heat-shock protein expression underlying adaptive responses to environmental stress. Mol Ecol 2018; 27:3040-3054. [PMID: 29920826 DOI: 10.1111/mec.14769] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/03/2018] [Accepted: 06/07/2018] [Indexed: 12/27/2022]
Abstract
Heat-shock proteins (Hsps) and their cognates are primary mitigators of cell stress. With increasingly severe impacts of climate change and other human modifications of the biosphere, the ability of the heat-shock system to affect evolutionary fitness in environments outside the laboratory and to evolve in response is topic of growing importance. Since the last major reviews, several advances have occurred. First, demonstrations of the heat-shock response outside the laboratory now include many additional taxa and environments. Many of these demonstrations are only correlative, however. More importantly, technical advances in "omic" quantification of nucleic acids and proteins, genomewide association analysis, and manipulation of genes and their expression have enabled the field to move beyond correlation. Several consequent advances are already evident: The pathway from heat-shock gene expression to stress tolerance in nature can be extremely complex, mediated through multiple biological processes and systems, and even multiple species. The underlying genes are more numerous, diverse and variable than previously appreciated, especially with respect to their regulatory variation and epigenetic changes. The impacts and limitations (e.g., due to trade-offs) of natural selection on these genes have become more obvious and better established. At last, as evolutionary capacitors, Hsps may have distinctive impacts on the evolution of other genes and ecological consequences.
Collapse
Affiliation(s)
- Bing Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Martin E Feder
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
39
|
Error-prone protein synthesis in parasites with the smallest eukaryotic genome. Proc Natl Acad Sci U S A 2018; 115:E6245-E6253. [PMID: 29915081 DOI: 10.1073/pnas.1803208115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Microsporidia are parasitic fungi-like organisms that invade the interior of living cells and cause chronic disorders in a broad range of animals, including humans. These pathogens have the tiniest known genomes among eukaryotic species, for which they serve as a model for exploring the phenomenon of genome reduction in obligate intracellular parasites. Here we report a case study to show an apparent effect of overall genome reduction on the primary structure and activity of aminoacyl-tRNA synthetases, indispensable cellular proteins required for protein synthesis. We find that most microsporidian synthetases lack regulatory and eukaryote-specific appended domains and have a high degree of sequence variability in tRNA-binding and catalytic domains. In one synthetase, LeuRS, an apparent sequence degeneration annihilates the editing domain, a catalytic center responsible for the accurate selection of leucine for protein synthesis. Unlike accurate LeuRS synthetases from other eukaryotic species, microsporidian LeuRS is error-prone: apart from leucine, it occasionally uses its near-cognate substrates, such as norvaline, isoleucine, valine, and methionine. Mass spectrometry analysis of the microsporidium Vavraia culicis proteome reveals that nearly 6% of leucine residues are erroneously replaced by other amino acids. This remarkably high frequency of mistranslation is not limited to leucine codons and appears to be a general property of protein synthesis in microsporidian parasites. Taken together, our findings reveal that the microsporidian protein synthesis machinery is editing-deficient, and that the proteome of microsporidian parasites is more diverse than would be anticipated based on their genome sequences.
Collapse
|
40
|
Wallis CP, Richman TR, Filipovska A, Rackham O. Tighter Ligand Binding Can Compensate for Impaired Stability of an RNA-Binding Protein. ACS Chem Biol 2018; 13:1499-1505. [PMID: 29808990 DOI: 10.1021/acschembio.8b00424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It has been widely shown that ligand-binding residues, by virtue of their orientation, charge, and solvent exposure, often have a net destabilizing effect on proteins that is offset by stability conferring residues elsewhere in the protein. This structure-function trade-off can constrain possible adaptive evolutionary changes of function and may hamper protein engineering efforts to design proteins with new functions. Here, we present evidence from a large randomized mutant library screen that, in the case of PUF RNA-binding proteins, this structural relationship may be inverted and that active-site mutations that increase protein activity are also able to compensate for impaired stability. We show that certain mutations in RNA-protein binding residues are not necessarily destabilizing and that increased ligand-binding can rescue an insoluble, unstable PUF protein. We hypothesize that these mutations restabilize the protein via thermodynamic coupling of protein folding and RNA binding.
Collapse
Affiliation(s)
- Christopher P. Wallis
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands 6009, Australia
| | - Tara R. Richman
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands 6009, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands 6009, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands 6009, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| |
Collapse
|
41
|
Lundin E, Tang PC, Guy L, Näsvall J, Andersson DI. Experimental Determination and Prediction of the Fitness Effects of Random Point Mutations in the Biosynthetic Enzyme HisA. Mol Biol Evol 2018; 35:704-718. [PMID: 29294020 PMCID: PMC5850734 DOI: 10.1093/molbev/msx325] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The distribution of fitness effects of mutations is a factor of fundamental importance in evolutionary biology. We determined the distribution of fitness effects of 510 mutants that each carried between 1 and 10 mutations (synonymous and nonsynonymous) in the hisA gene, encoding an essential enzyme in the l-histidine biosynthesis pathway of Salmonella enterica. For the full set of mutants, the distribution was bimodal with many apparently neutral mutations and many lethal mutations. For a subset of 81 single, nonsynonymous mutants most mutations appeared neutral at high expression levels, whereas at low expression levels only a few mutations were neutral. Furthermore, we examined how the magnitude of the observed fitness effects was correlated to several measures of biophysical properties and phylogenetic conservation.We conclude that for HisA: (i) The effect of mutations can be masked by high expression levels, such that mutations that are deleterious to the function of the protein can still be neutral with regard to organism fitness if the protein is expressed at a sufficiently high level; (ii) the shape of the fitness distribution is dependent on the extent to which the protein is rate-limiting for growth; (iii) negative epistatic interactions, on an average, amplified the combined effect of nonsynonymous mutations; and (iv) no single sequence-based predictor could confidently predict the fitness effects of mutations in HisA, but a combination of multiple predictors could predict the effect with a SD of 0.04 resulting in 80% of the mutations predicted within 12% of their observed selection coefficients.
Collapse
Affiliation(s)
- Erik Lundin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Po-Cheng Tang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lionel Guy
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Joakim Näsvall
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
42
|
Quandt EM, Traverse CC, Ochman H. Local genic base composition impacts protein production and cellular fitness. PeerJ 2018; 6:e4286. [PMID: 29362699 PMCID: PMC5774297 DOI: 10.7717/peerj.4286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/01/2018] [Indexed: 01/25/2023] Open
Abstract
The maintenance of a G + C content that is higher than the mutational input to a genome provides support for the view that selection serves to increase G + C contents in bacteria. Recent experimental evidence from Escherichia coli demonstrated that selection for increasing G + C content operates at the level of translation, but the precise mechanism by which this occurs is unknown. To determine the substrate of selection, we asked whether selection on G + C content acts across all sites within a gene or is confined to particular genic regions or nucleotide positions. We systematically altered the G + C contents of the GFP gene and assayed its effects on the fitness of strains harboring each variant. Fitness differences were attributable to the base compositional variation in the terminal portion of the gene, suggesting a connection to the folding of a specific protein feature. Variants containing sequence features that are thought to result in rapid translation, such as low G + C content and high levels of codon adaptation, displayed highly reduced growth rates. Taken together, our results show that purifying selection acting against A and T mutations most likely results from their tendency to increase the rate of translation, which can perturb the dynamics of protein folding.
Collapse
Affiliation(s)
- Erik M Quandt
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States of America
| | - Charles C Traverse
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States of America
| | - Howard Ochman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States of America
| |
Collapse
|
43
|
LaBar T, Adami C. Evolution of drift robustness in small populations. Nat Commun 2017; 8:1012. [PMID: 29044114 PMCID: PMC5647343 DOI: 10.1038/s41467-017-01003-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/10/2017] [Indexed: 11/09/2022] Open
Abstract
Most mutations are deleterious and cause a reduction in population fitness known as the mutational load. In small populations, weakened selection against slightly-deleterious mutations results in an additional fitness reduction. Many studies have established that populations can evolve a reduced mutational load by evolving mutational robustness, but it is uncertain whether small populations can evolve a reduced susceptibility to drift-related fitness declines. Here, using mathematical modeling and digital experimental evolution, we show that small populations do evolve a reduced vulnerability to drift, or ‘drift robustness’. We find that, compared to genotypes from large populations, genotypes from small populations have a decreased likelihood of small-effect deleterious mutations, thus causing small-population genotypes to be drift-robust. We further show that drift robustness is not adaptive, but instead arises because small populations can only maintain fitness on drift-robust fitness peaks. These results have implications for genome evolution in organisms with small effective population sizes. Genetic drift can reduce fitness in small populations by counteracting selection against deleterious mutations. Here, LaBar and Adami demonstrate through a mathematical model and simulations that small populations tend to evolve to drift-robust fitness peaks, which have a low likelihood of slightly-deleterious mutations.
Collapse
Affiliation(s)
- Thomas LaBar
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, 48824, USA.,Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI, 48824, USA
| | - Christoph Adami
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA. .,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, 48824, USA. .,Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Physics and Astronomy, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
44
|
Wernegreen JJ. In it for the long haul: evolutionary consequences of persistent endosymbiosis. Curr Opin Genet Dev 2017; 47:83-90. [PMID: 28934627 DOI: 10.1016/j.gde.2017.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/27/2017] [Accepted: 08/31/2017] [Indexed: 11/30/2022]
Abstract
Phylogenetically independent bacterial lineages have undergone a profound lifestyle shift: from a free-living to obligately host-associated existence. Among these lineages, intracellular bacterial mutualists of insects are among the most intimate, constrained symbioses known. These obligate endosymbionts exhibit severe gene loss and apparent genome deterioration. Evolutionary theory provides a basis to link their unusual genomic features with shifts in fundamental mechanisms - selection, genetic drift, mutation, and recombination. This mini-review highlights recent comparative and experimental research of processes shaping ongoing diversification within these ancient associations. Recent work supports clear contributions of stochastic processes, including genetic drift and exceptionally strong mutational pressure, toward degenerative evolution. Despite possible compensatory mechanisms, genome degradation may constrain how persistent endosymbionts (and their hosts) respond to environmental fluctuations.
Collapse
Affiliation(s)
- Jennifer J Wernegreen
- Nicholas School of the Environment, Duke University, Durham, NC, United States; Center for Genomic and Computational Biology, Duke University, Durham, NC, United States.
| |
Collapse
|
45
|
Medina Munoz M, Pollio AR, White HL, Rio RV. Into the Wild: Parallel Transcriptomics of the Tsetse-Wigglesworthia Mutualism within Kenyan Populations. Genome Biol Evol 2017; 9:2276-2291. [PMID: 28934375 PMCID: PMC5601960 DOI: 10.1093/gbe/evx175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2017] [Indexed: 12/16/2022] Open
Abstract
Tsetse flies (Diptera: Glossinidae) have medical significance as the obligate vectors of African trypanosomes. In addition, tsetse harbor a simple gut microbiota. A predominant gut microbiota member, the Gammaproteobacterium Wigglesworthia spp., has coevolved with tsetse for a significant portion of Glossina radiation proving critical to tsetse fitness. Although multiple roles have been described for Wigglesworthia within colony flies, little research has been dedicated towards functional characterization within wild tsetse. Here, dual RNA-Seq was performed to characterize the tsetse-Wigglesworthia symbiosis within flies captured in Nguruman, Kenya. A significant correlation in Gene Ontology (GO) distribution between tsetse and Wigglesworthia was observed, with homogeneous enrichment in metabolic and transport categories, likely supporting a hallmark of the symbiosis-bidirectional metabolic exchange. Within field flies, highly transcribed Wigglesworthia loci included those involved in B vitamin synthesis and in substrate translocation, including amino acid transporters and multidrug efflux pumps, providing a molecular means for interaction. The universal expression of several Wigglesworthia and G. pallidipes orthologs, putatively involved in nutrient provisioning and resource allocation, was confirmed in sister tsetse species. These transcriptional profiles varied through host age and mating status likely addressing varying symbiont demands and also confirming their global importance within Glossina. This study, not only supports symbiont nutrient provisioning roles, but also serves as a foundation for insight into novel roles and molecular mechanisms associated with vector-microbiota interactions. The role of symbiont B vitamin provisioning towards impacting host epigenetics is discussed. Knowledge of vector-microbiota interactions may lead to the discovery of novel targets in pest control.
Collapse
Affiliation(s)
- Miguel Medina Munoz
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV
| | - Adam R. Pollio
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV
| | - Hunter L. White
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV
| | - Rita V.M. Rio
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV
| |
Collapse
|
46
|
Chaperones rescue the energetic landscape of mutant CFTR at single molecule and in cell. Nat Commun 2017; 8:398. [PMID: 28855508 PMCID: PMC5577305 DOI: 10.1038/s41467-017-00444-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 06/29/2017] [Indexed: 12/14/2022] Open
Abstract
Molecular chaperones are pivotal in folding and degradation of the cellular proteome but their impact on the conformational dynamics of near-native membrane proteins with disease relevance remains unknown. Here we report the effect of chaperone activity on the functional conformation of the temperature-sensitive mutant cystic fibrosis channel (∆F508-CFTR) at the plasma membrane and after reconstitution into phospholipid bilayer. Thermally induced unfolding at 37 °C and concomitant functional inactivation of ∆F508-CFTR are partially suppressed by constitutive activity of Hsc70 and Hsp90 chaperone/co-chaperone at the plasma membrane and post-endoplasmic reticulum compartments in vivo, and at single-molecule level in vitro, indicated by kinetic and thermodynamic remodeling of the mutant gating energetics toward its wild-type counterpart. Thus, molecular chaperones can contribute to functional maintenance of ∆F508-CFTR by reshaping the conformational energetics of its final fold, a mechanism with implication in the regulation of metastable ABC transporters and other plasma membrane proteins activity in health and diseases. The F508 deletion (F508del) in the cystic fibrosis transmembrane conductance regulator (CFTR) is the most common CF causing mutation. Here the authors show that cytosolic chaperones shift the F508del channel conformation to the native fold by kinetic and thermodynamic remodelling of the gating energetics towards that of wild-type CTFR.
Collapse
|
47
|
Predictive Genomic Analyses Inform the Basis for Vitamin Metabolism and Provisioning in Bacteria-Arthropod Endosymbioses. G3-GENES GENOMES GENETICS 2017; 7:1887-1898. [PMID: 28455417 PMCID: PMC5473766 DOI: 10.1534/g3.117.042184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The requirement of vitamins for core metabolic processes creates a unique set of pressures for arthropods subsisting on nutrient-limited diets. While endosymbiotic bacteria carried by arthropods have been widely implicated in vitamin provisioning, the underlying molecular mechanisms are not well understood. To address this issue, standardized predictive assessment of vitamin metabolism was performed in 50 endosymbionts of insects and arachnids. The results predicted that arthropod endosymbionts overall have little capacity for complete de novo biosynthesis of conventional or active vitamin forms. Partial biosynthesis pathways were commonly predicted, suggesting a substantial role in vitamin provisioning. Neither taxonomic relationships between host and symbiont, nor the mode of host-symbiont interaction were clear predictors of endosymbiont vitamin pathway capacity. Endosymbiont genome size and the synthetic capacity of nonsymbiont taxonomic relatives were more reliable predictors. We developed a new software application that also predicted that last-step conversion of intermediates into active vitamin forms may contribute further to vitamin biosynthesis by endosymbionts. Most instances of predicted vitamin conversion were paralleled by predictions of vitamin use. This is consistent with achievement of provisioning in some cases through upregulation of pathways that were retained for endosymbiont benefit. The predicted absence of other enzyme classes further suggests a baseline of vitamin requirement by the majority of endosymbionts, as well as some instances of putative mutualism. Adaptation of this workflow to analysis of other organisms and metabolic pathways will provide new routes for considering the molecular basis for symbiosis on a comprehensive scale.
Collapse
|
48
|
Power provides protection: Genetic robustness in yeast depends on the capacity to generate energy. PLoS Genet 2017; 13:e1006768. [PMID: 28493864 PMCID: PMC5444853 DOI: 10.1371/journal.pgen.1006768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/25/2017] [Accepted: 04/19/2017] [Indexed: 11/19/2022] Open
Abstract
The functional basis of genetic robustness, the ability of organisms to suppress the effects of mutations, remains incompletely understood. We exposed a set of 15 strains of Saccharomyces cerevisiae form diverse environments to increasing doses of the chemical mutagen EMS. The number of the resulting random mutations was similar for all tested strains. However, there were differences in immediate mortality after the mutagenic treatment and in defective growth of survivors. An analysis of gene expression revealed that immediate mortality was lowest in strains with lowest expression of transmembrane proteins, which are rich in thiol groups and thus vulnerable to EMS. A signal of genuine genetic robustness was detected for the other trait, the ability to grow well despite bearing non-lethal mutations. Increased tolerance of such mutations correlated with high expression of genes responsible for the oxidative energy metabolism, suggesting that the negative effect of mutations can be buffered if enough energy is available. We confirmed this finding in three additional tests of the ability to grow on (i) fermentable or non-fermentable sources of carbon, (ii) under chemical inhibition of the electron transport chain and (iii) during overexpression of its key component, cytochrome c. Our results add the capacity to generate energy as a general mechanism of genetic robustness. The ability to suppress phenotypic effects of mutations is termed genetic robustness. Its functional basis and evolutionary origin remain insufficiently understood despite decades of research. In fact, it is still largely untested whether genetic robustness is a trait of substantial, within-species variation. We used a model organism, Saccharomyces cerevisiae, to study both phenotypic signs and functional underpinnings of genetic robustness. We introduced random mutations into a set of well-characterized yeast strain. There was considerable variation in the growth rate among clones recovered after mutagenesis, which is an indication of genetic robustness. Using available data on gene expression for our strains, we found that genetic robustness was strongest among strains with enhanced expression of genes related to the energy metabolism. We reasoned that, regardless of the specific mutations, the capacity to generate metabolic energy may be a general underlying mechanism for buffering the effects of random mutations across the genome. We confirmed this hypothesis in further experiments in which we showed that genetic robustness decreases when the energy metabolism is compromised and increases when it is boosted.
Collapse
|
49
|
Chance and necessity in the genome evolution of endosymbiotic bacteria of insects. ISME JOURNAL 2017; 11:1291-1304. [PMID: 28323281 PMCID: PMC5437351 DOI: 10.1038/ismej.2017.18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/03/2017] [Accepted: 01/18/2017] [Indexed: 02/07/2023]
Abstract
An open question in evolutionary biology is how does the selection–drift balance determine the fates of biological interactions. We searched for signatures of selection and drift in genomes of five endosymbiotic bacterial groups known to evolve under strong genetic drift. Although most genes in endosymbiotic bacteria showed evidence of relaxed purifying selection, many genes in these bacteria exhibited stronger selective constraints than their orthologs in free-living bacterial relatives. Remarkably, most of these highly constrained genes had no role in the host–symbiont interactions but were involved in either buffering the deleterious consequences of drift or other host-unrelated functions, suggesting that they have either acquired new roles or their role became more central in endosymbiotic bacteria. Experimental evolution of Escherichia coli under strong genetic drift revealed remarkable similarities in the mutational spectrum, genome reduction patterns and gene losses to endosymbiotic bacteria of insects. Interestingly, the transcriptome of the experimentally evolved lines showed a generalized deregulation of the genome that affected genes encoding proteins involved in mutational buffering, regulation and amino acid biosynthesis, patterns identical to those found in endosymbiotic bacteria. Our results indicate that drift has shaped endosymbiotic associations through a change in the functional landscape of bacterial genes and that the host had only a small role in such a shift.
Collapse
|
50
|
Shimamura S, Kaneko T, Ozawa G, Matsumoto MN, Koshiishi T, Takaki Y, Kato C, Takai K, Yoshida T, Fujikura K, Barry JP, Maruyama T. Loss of genes related to Nucleotide Excision Repair (NER) and implications for reductive genome evolution in symbionts of deep-sea vesicomyid clams. PLoS One 2017; 12:e0171274. [PMID: 28199404 PMCID: PMC5310779 DOI: 10.1371/journal.pone.0171274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/17/2017] [Indexed: 01/08/2023] Open
Abstract
Intracellular thioautotrophic symbionts of deep-sea vesicomyid clams lack some DNA repair genes and are thought to be undergoing reductive genome evolution (RGE). In this study, we addressed two questions, 1) how these symbionts lost their DNA repair genes and 2) how such losses affect RGE. For the first question, we examined genes associated with nucleotide excision repair (NER; uvrA, uvrB, uvrC, uvrD, uvrD paralog [uvrDp] and mfd) in 12 symbionts of vesicomyid clams belonging to two clades (5 clade I and 7 clade II symbionts). While uvrA, uvrDp and mfd were conserved in all symbionts, uvrB and uvrC were degraded in all clade I symbionts but were apparently intact in clade II symbionts. UvrD was disrupted in two clade II symbionts. Among the intact genes in Ca. Vesicomyosocius okutanii (clade I), expressions of uvrD and mfd were detected by reverse transcription-polymerase chain reaction (RT-PCR), but those of uvrA and uvrDp were not. In contrast, all intact genes were expressed in the symbiont of Calyptogena pacifica (clade II). To assess how gene losses affect RGE (question 2), genetic distances of the examined genes in symbionts from Bathymodiolus septemdierum were shown to be larger in clade I than clade II symbionts. In addition, these genes had lower guanine+cytosine (GC) content and higher repeat sequence densities in clade I than measured in clade II. Our results suggest that NER genes are currently being lost from the extant lineages of vesicomyid clam symbionts. The loss of NER genes and mutY in these symbionts is likely to promote increases in genetic distance and repeat sequence density as well as reduced GC content in genomic genes, and may have facilitated reductive evolution of the genome.
Collapse
Affiliation(s)
- Shigeru Shimamura
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
| | - Takashi Kaneko
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
- Tokyo College of Biotechnology, Kitakoujiya, Ota-ku,Tokyo, Japan
| | - Genki Ozawa
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
- Kitasato University, School of Marine Biosciences, Kitasato Minami-ku Sagamihara-shi Kanagawa, Japan
| | - Mamiko Nishino Matsumoto
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
| | - Takeru Koshiishi
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
| | - Yoshihiro Takaki
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
| | - Chiaki Kato
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
| | - Ken Takai
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
| | - Takao Yoshida
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
- Kitasato University, School of Marine Biosciences, Kitasato Minami-ku Sagamihara-shi Kanagawa, Japan
| | - Katsunori Fujikura
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, 2–15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
| | - James P. Barry
- Monterey Bay Aquarium Research Institute, Moss Landing, California, United States of America
| | - Tadashi Maruyama
- Kitasato University, School of Marine Biosciences, Kitasato Minami-ku Sagamihara-shi Kanagawa, Japan
- Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan
- * E-mail:
| |
Collapse
|