1
|
Kameda T, Saha DK, Ray S, Togashi Y, Asano K. Protocol for calculating binding free energy of RNA:RNA interactions through molecular dynamics simulations using adaptive biasing force technique. STAR Protoc 2024; 5:103223. [PMID: 39083381 PMCID: PMC11342170 DOI: 10.1016/j.xpro.2024.103223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/21/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
The adaptive biasing force (ABF) technique allows sampling to proceed in a flat free energy surface when performing molecular dynamics (MD) simulations. Here, we present a protocol to perform MD simulations using the ABF technique and apply it to calculate the binding free energy of an RNA:RNA interaction. We describe steps for server setup, test running software, and building molecular models. We then detail procedures for running and configuring ABF-MD simulations and analyzing binding free energy and structural change. For complete details on the use and execution of this protocol, please refer to Fujita et al.1 and Kameda et al.2.
Collapse
Affiliation(s)
- Takeru Kameda
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Daniel K Saha
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Sourav Ray
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Yuichi Togashi
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.
| | - Katsura Asano
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA; Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan; Hiroshima Research Center for Healthy Aging, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan.
| |
Collapse
|
2
|
Wu Z, Bezwada D, Cai F, Harris RC, Ko B, Sondhi V, Pan C, Vu HS, Nguyen PT, Faubert B, Cai L, Chen H, Martin-Sandoval M, Do D, Gu W, Zhang Y, Zhang Y, Brooks B, Kelekar S, Zacharias LG, Oaxaca KC, Patricio JS, Mathews TP, Garcia-Bermudez J, Ni M, DeBerardinis RJ. Electron transport chain inhibition increases cellular dependence on purine transport and salvage. Cell Metab 2024; 36:1504-1520.e9. [PMID: 38876105 PMCID: PMC11240302 DOI: 10.1016/j.cmet.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 03/11/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024]
Abstract
Mitochondria house many metabolic pathways required for homeostasis and growth. To explore how human cells respond to mitochondrial dysfunction, we performed metabolomics in fibroblasts from patients with various mitochondrial disorders and cancer cells with electron transport chain (ETC) blockade. These analyses revealed extensive perturbations in purine metabolism, and stable isotope tracing demonstrated that ETC defects suppress de novo purine synthesis while enhancing purine salvage. In human lung cancer, tumors with markers of low oxidative mitochondrial metabolism exhibit enhanced expression of the salvage enzyme hypoxanthine phosphoribosyl transferase 1 (HPRT1) and high levels of the HPRT1 product inosine monophosphate. Mechanistically, ETC blockade activates the pentose phosphate pathway, providing phosphoribosyl diphosphate to drive purine salvage supplied by uptake of extracellular bases. Blocking HPRT1 sensitizes cancer cells to ETC inhibition. These findings demonstrate how cells remodel purine metabolism upon ETC blockade and uncover a new metabolic vulnerability in tumors with low respiration.
Collapse
Affiliation(s)
- Zheng Wu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Divya Bezwada
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Feng Cai
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert C Harris
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bookyung Ko
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Varun Sondhi
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunxiao Pan
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hieu S Vu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Phong T Nguyen
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brandon Faubert
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Ling Cai
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hongli Chen
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Misty Martin-Sandoval
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Duyen Do
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wen Gu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuanyuan Zhang
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuannyu Zhang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bailey Brooks
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sherwin Kelekar
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lauren G Zacharias
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - K Celeste Oaxaca
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joao S Patricio
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas P Mathews
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Javier Garcia-Bermudez
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Min Ni
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
3
|
Bui NL, Chu DT. An introduction to RNA therapeutics and their potentials. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 203:1-12. [PMID: 38359993 DOI: 10.1016/bs.pmbts.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
RNA therapeutics is a biological term regarding the usage of RNA-based molecules for medical purposes. Thanks to the success of mRNA-vaccine production against COVID-19, RNA therapeutics has gained more and more attention and investigation from worldwide scientists. It is considered as one of the promising alternatives for conventional drugs. In this first chapter, we presented an overview of the history and perspectives of RNA therapeutics' development. This chapter also explained the underlying mechanisms of different RNA-based molecules, including antisense oligonucleotide, interfering RNA (iRNA), aptamer, and mRNA, from degrading mRNA to inactivating targeted protein. Although there are many advantages of RNA therapeutics, its challenges in designing RNA chemical structure and the delivery vehicle need to be discussed. We described advanced technologies in the development of drug delivery systems that are positively correlated to the efficacy of the drug. Our aim is to provide a general background of RNA therapeutics to the audience before introducing plenty of more detailed parts, including clinical applications in certain diseases in the following chapters of the "RNA therapeutics" book.
Collapse
Affiliation(s)
- Nhat-Le Bui
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
4
|
Palacios-Pérez M, José MV. A Proposal of the Ur-RNAome. Genes (Basel) 2023; 14:2158. [PMID: 38136981 PMCID: PMC10743229 DOI: 10.3390/genes14122158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
It is widely accepted that the earliest RNA molecules were folded into hairpins or mini-helixes. Herein, we depict the 2D and 3D conformations of those earliest RNA molecules with only RNY triplets, which Eigen proposed as the primeval genetic code. We selected 26 species (13 bacteria and 13 archaea). We found that the free energy of RNY hairpins was consistently lower than that of their corresponding shuffled controls. We found traces of the three ribosomal RNAs (16S, 23S, and 5S), tRNAs, 6S RNA, and the RNA moieties of RNase P and the signal recognition particle. Nevertheless, at this stage of evolution there was no genetic code (as seen in the absence of the peptidyl transferase centre and any vestiges of the anti-Shine-Dalgarno sequence). Interestingly, we detected the anticodons of both glycine (GCC) and threonine (GGU) in the hairpins of proto-tRNA.
Collapse
Affiliation(s)
- Miryam Palacios-Pérez
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Network of Researchers on the Chemical Emergence of Life (NoRCEL), Leeds LS7 3RB, UK
- NoRCEL’s Latin America Hub, 113 Philosophy Hall, University of California, Berkeley, CA 94720, USA
| | - Marco V. José
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Network of Researchers on the Chemical Emergence of Life (NoRCEL), Leeds LS7 3RB, UK
| |
Collapse
|
5
|
Wu Z, Bezwada D, Harris RC, Pan C, Nguyen PT, Faubert B, Cai L, Cai F, Vu HS, Chen H, Sandoval MM, Do D, Gu W, Zhang Y, Ko B, Brooks B, Kelekar S, Zhang Y, Zacharias LG, Oaxaca KC, Mathews TP, Garcia-Bermudez J, Ni M, DeBerardinis RJ. Electron transport chain inhibition increases cellular dependence on purine transport and salvage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540429. [PMID: 37214913 PMCID: PMC10197673 DOI: 10.1101/2023.05.11.540429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cancer cells reprogram their metabolism to support cell growth and proliferation in harsh environments. While many studies have documented the importance of mitochondrial oxidative phosphorylation (OXPHOS) in tumor growth, some cancer cells experience conditions of reduced OXPHOS in vivo and induce alternative metabolic pathways to compensate. To assess how human cells respond to mitochondrial dysfunction, we performed metabolomics in fibroblasts and plasma from patients with inborn errors of mitochondrial metabolism, and in cancer cells subjected to inhibition of the electron transport chain (ETC). All these analyses revealed extensive perturbations in purine-related metabolites; in non-small cell lung cancer (NSCLC) cells, ETC blockade led to purine metabolite accumulation arising from a reduced cytosolic NAD + /NADH ratio (NADH reductive stress). Stable isotope tracing demonstrated that ETC deficiency suppressed de novo purine nucleotide synthesis while enhancing purine salvage. Analysis of NSCLC patients infused with [U- 13 C]glucose revealed that tumors with markers of low oxidative mitochondrial metabolism exhibited high expression of the purine salvage enzyme HPRT1 and abundant levels of the HPRT1 product inosine monophosphate (IMP). ETC blockade also induced production of ribose-5' phosphate (R5P) by the pentose phosphate pathway (PPP) and import of purine nucleobases. Blocking either HPRT1 or nucleoside transporters sensitized cancer cells to ETC inhibition, and overexpressing nucleoside transporters was sufficient to drive growth of NSCLC xenografts. Collectively, this study mechanistically delineates how cells compensate for suppressed purine metabolism in response to ETC blockade, and uncovers a new metabolic vulnerability in tumors experiencing NADH excess.
Collapse
|
6
|
Graczyk A, Radzikowska-Cieciura E, Kaczmarek R, Pawlowska R, Chworos A. Modified Nucleotides for Chemical and Enzymatic Synthesis of Therapeutic RNA. Curr Med Chem 2023; 30:1320-1347. [PMID: 36239720 DOI: 10.2174/0929867330666221014111403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022]
Abstract
In recent years, RNA has emerged as a medium with a broad spectrum of therapeutic potential, however, for years, a group of short RNA fragments was studied and considered therapeutic molecules. In nature, RNA plays both functions, with coding and non-coding potential. For RNA, like any other therapeutic, to be used clinically, certain barriers must be crossed. Among them, there are biocompatibility, relatively low toxicity, bioavailability, increased stability, target efficiency and low off-target effects. In the case of RNA, most of these obstacles can be overcome by incorporating modified nucleotides into its structure. This may be achieved by both, in vitro and in vivo biosynthetic methods, as well as chemical synthesis. Some advantages and disadvantages of each approach are summarized here. The wide range of nucleotide analogues has been tested for their utility as monomers for RNA synthesis. Many of them have been successfully implemented, and a lot of pre-clinical and clinical studies involving modified RNA have been carried out. Some of these medications have already been introduced into clinics. After the huge success of RNA-based vaccines that were introduced into widespread use in 2020, and the introduction to the market of some RNA-based drugs, RNA therapeutics containing modified nucleotides appear to be the future of medicine.
Collapse
Affiliation(s)
- Anna Graczyk
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Ewa Radzikowska-Cieciura
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Renata Kaczmarek
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Roza Pawlowska
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Arkadiusz Chworos
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
7
|
Bheemireddy S, Sandhya S, Srinivasan N, Sowdhamini R. Computational tools to study RNA-protein complexes. Front Mol Biosci 2022; 9:954926. [PMID: 36275618 PMCID: PMC9585174 DOI: 10.3389/fmolb.2022.954926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022] Open
Abstract
RNA is the key player in many cellular processes such as signal transduction, replication, transport, cell division, transcription, and translation. These diverse functions are accomplished through interactions of RNA with proteins. However, protein–RNA interactions are still poorly derstood in contrast to protein–protein and protein–DNA interactions. This knowledge gap can be attributed to the limited availability of protein-RNA structures along with the experimental difficulties in studying these complexes. Recent progress in computational resources has expanded the number of tools available for studying protein-RNA interactions at various molecular levels. These include tools for predicting interacting residues from primary sequences, modelling of protein-RNA complexes, predicting hotspots in these complexes and insights into derstanding in the dynamics of their interactions. Each of these tools has its strengths and limitations, which makes it significant to select an optimal approach for the question of interest. Here we present a mini review of computational tools to study different aspects of protein-RNA interactions, with focus on overall application, development of the field and the future perspectives.
Collapse
Affiliation(s)
- Sneha Bheemireddy
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Sankaran Sandhya
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bengaluru, India
- *Correspondence: Sankaran Sandhya, ; Ramanathan Sowdhamini,
| | | | - Ramanathan Sowdhamini
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bangalore, India
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
- *Correspondence: Sankaran Sandhya, ; Ramanathan Sowdhamini,
| |
Collapse
|
8
|
dos Santos Bronel BA, Anauate AC, Maquigussa E, Boim MA, da Silva Novaes A. Determination of reference genes as a quantitative standard for gene expression analysis in mouse mesangial cells stimulated with TGF-β. Sci Rep 2022; 12:15626. [PMID: 36115882 PMCID: PMC9482652 DOI: 10.1038/s41598-022-19548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
Reverse transcription-quantitative polymerase chain reaction (RT-PCR) is the gold standard technique for gene expression analysis, but the choice of quantitative reference genes (housekeeping genes, HKG) remains challenging. Identify the best HKG is essential for estimating the expression level of target genes. Therefore, the aim of this study was to determine the best HKG for an in vitro model with mouse mesangial cells (MMCs) stimulated with 5 ng/mL of TGF-β. Five candidates HKG were selected: Actb, Hprt, Gapdh, 18S and Ppia. After quantitative expression, the best combination of these genes was analyzed in silico using six software programs. To validate the results, the best genes were used to normalize the expression levels of fibronectin, vimentin and α-SMA. In silico analysis revealed that Ppia, Gapdh and 18S were the most stable genes between the groups. GenEX software and Spearman's correlation determined Ppia and Gapdh as the best HKG pair, and validation of the HKG by normalizing fibronectin, vimentin and α-SMA were consistent with results from the literature. Our results established the combination of Ppia and Gapdh as the best HKG pair for gene expression analysis by RT-PCR in this in vitro model using MMCs treated with TGF-β.
Collapse
|
9
|
The Bootstrap Model of Prebiotic Networks of Proteins and Nucleic Acids. Life (Basel) 2022; 12:life12050724. [PMID: 35629391 PMCID: PMC9144896 DOI: 10.3390/life12050724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
It is not known how life arose from prebiotic physical chemistry. How did fruitful cell-like associations emerge from the two polymer types—informational (nucleic acids, xNAs = DNA or RNA) and functional (proteins)? Our model shows how functional networks could bootstrap from random sequence-independent initial states. For proteins, we adopt the foldamer hypothesis: through persistent nonequilibrium prebiotic syntheses, short random peptides fold and catalyze the elongation of others. The xNAs enter through random binding to the peptides, and all chains can mutate. Chains grow inside colloids that split when they’re large, coupling faster growth speeds to bigger populations. Random and useless at first, these folding and binding events grow protein—xNA networks that resemble today’s protein–protein networks.
Collapse
|
10
|
Gonçalves KB, Appel RJC, Bôas LAV, Cardoso PF, Bôas GTV. Genomic insights into the diversity of non-coding RNAs in Bacillus cereus sensu lato. Curr Genet 2022; 68:449-466. [PMID: 35552506 DOI: 10.1007/s00294-022-01240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/20/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
Bacillus cereus sensu lato is a group of bacteria of medical and agricultural importance in different ecological niches and with controversial taxonomic relationships. Studying the composition of non-coding RNAs (ncRNAs) in several bacterial groups has been an important tool for identifying genetic information and better understanding genetic regulation towards environment adaptation. However, to date, no comparative genomics study of ncRNA has been performed in this group. Thus, this study aimed to identify and characterize the set of ncRNAs from 132 strains of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis to obtain an overview of the diversity and distribution of these genetic elements in these species. We observed that the number of ncRNAs differs in the chromosomes of the three species, but not in the plasmids, when species or phylogenetic clusters were compared. The prevailing functional/structural category was Cis-reg and the most frequent class was Riboswitch. However, in plasmids, the class Group II intron was the most frequent. Also, nine ncRNAs were selected for validation in the strain B. thuringiensis 407 by RT-PCR, which allowed to identify the expression of the ncRNAs. The wide distribution and diversity of ncRNAs in the B. cereus group, and more intensely in B. thuringiensis, may help improve the abilities of these species to adapt to various environmental changes. Further studies should address the expression of these genetic elements in different conditions.
Collapse
Affiliation(s)
- Kátia B Gonçalves
- Depto Biologia Geral, Universidade Estadual de Londrina, Londrina, Brazil
| | | | | | | | | |
Collapse
|
11
|
Hiregange DG, Rivalta A, Bose T, Breiner-Goldstein E, Samiya S, Cimicata G, Kulakova L, Zimmerman E, Bashan A, Herzberg O, Yonath A. Cryo-EM structure of the ancient eukaryotic ribosome from the human parasite Giardia lamblia. Nucleic Acids Res 2022; 50:1770-1782. [PMID: 35100413 PMCID: PMC8860606 DOI: 10.1093/nar/gkac046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/12/2022] [Accepted: 01/25/2022] [Indexed: 12/13/2022] Open
Abstract
Giardiasis is a disease caused by the protist Giardia lamblia. As no human vaccines have been approved so far against it, and resistance to current drugs is spreading, new strategies for combating giardiasis need to be developed. The G. lamblia ribosome may provide a promising therapeutic target due to its distinct sequence differences from ribosomes of most eukaryotes and prokaryotes. Here, we report the cryo-electron microscopy structure of the G. lamblia (WB strain) ribosome determined at 2.75 Å resolution. The ribosomal RNA is the shortest known among eukaryotes, and lacks nearly all the eukaryote-specific ribosomal RNA expansion segments. In contrast, the ribosomal proteins are typically eukaryotic with some species-specific insertions/extensions. Most typical inter-subunit bridges are maintained except for one missing contact site. Unique structural features are located mainly at the ribosome's periphery. These may be exploited as target sites for the design of new compounds that inhibit selectively the parasite's ribosomal activity.
Collapse
Affiliation(s)
- Disha-Gajanan Hiregange
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Andre Rivalta
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tanaya Bose
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elinor Breiner-Goldstein
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sarit Samiya
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Giuseppe Cimicata
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Liudmila Kulakova
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20742-4454, USA
| | - Ella Zimmerman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anat Bashan
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Osnat Herzberg
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20742-4454, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-4454, USA
| | - Ada Yonath
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
12
|
Morozov D, Mironov V, Moryachkov RV, Shchugoreva IA, Artyushenko PV, Zamay GS, Kolovskaya OS, Zamay TN, Krat AV, Molodenskiy DS, Zabluda VN, Veprintsev DV, Sokolov AE, Zukov RA, Berezovski MV, Tomilin FN, Fedorov DG, Alexeev Y, Kichkailo AS. The role of SAXS and molecular simulations in 3D structure elucidation of a DNA aptamer against lung cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:316-327. [PMID: 34458013 PMCID: PMC8379633 DOI: 10.1016/j.omtn.2021.07.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/17/2021] [Indexed: 12/12/2022]
Abstract
Aptamers are short, single-stranded DNA or RNA oligonucleotide molecules that function as synthetic analogs of antibodies and bind to a target molecule with high specificity. Aptamer affinity entirely depends on its tertiary structure and charge distribution. Therefore, length and structure optimization are essential for increasing aptamer specificity and affinity. Here, we present a general optimization procedure for finding the most populated atomistic structures of DNA aptamers. Based on the existed aptamer LC-18 for lung adenocarcinoma, a new truncated LC-18 (LC-18t) aptamer LC-18t was developed. A three-dimensional (3D) shape of LC-18t was reported based on small-angle X-ray scattering (SAXS) experiments and molecular modeling by fragment molecular orbital or molecular dynamic methods. Molecular simulations revealed an ensemble of possible aptamer conformations in solution that were in close agreement with measured SAXS data. The aptamer LC-18t had stronger binding to cancerous cells in lung tumor tissues and shared the binding site with the original larger aptamer. The suggested approach reveals 3D shapes of aptamers and helps in designing better affinity probes.
Collapse
Affiliation(s)
- Dmitry Morozov
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Vladimir Mironov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Roman V. Moryachkov
- Laboratory of Physics of Magnetic Phenomena, Kirensky Institute of Physics, 50/38 Akademgorodok, Krasnoyarsk 660036, Russia
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center SB RAS,” 50 Akademgorodok, Krasnoyarsk 660036, Russia
| | - Irina A. Shchugoreva
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center SB RAS,” 50 Akademgorodok, Krasnoyarsk 660036, Russia
- Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
- Department of Chemistry, Siberian Federal University, 79 Svobodny pr., Krasnoyarsk 660041, Russia
| | - Polina V. Artyushenko
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center SB RAS,” 50 Akademgorodok, Krasnoyarsk 660036, Russia
- Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
- Department of Chemistry, Siberian Federal University, 79 Svobodny pr., Krasnoyarsk 660041, Russia
| | - Galina S. Zamay
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center SB RAS,” 50 Akademgorodok, Krasnoyarsk 660036, Russia
- Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
| | - Olga S. Kolovskaya
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center SB RAS,” 50 Akademgorodok, Krasnoyarsk 660036, Russia
- Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
| | - Tatiana N. Zamay
- Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
| | - Alexey V. Krat
- Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
| | - Dmitry S. Molodenskiy
- European Molecular Biology Laboratory, Hamburg Outstation, Notkestrasse 85, 22603 Hamburg, Germany
| | - Vladimir N. Zabluda
- Laboratory of Physics of Magnetic Phenomena, Kirensky Institute of Physics, 50/38 Akademgorodok, Krasnoyarsk 660036, Russia
| | - Dmitry V. Veprintsev
- Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
| | - Alexey E. Sokolov
- Laboratory of Physics of Magnetic Phenomena, Kirensky Institute of Physics, 50/38 Akademgorodok, Krasnoyarsk 660036, Russia
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center SB RAS,” 50 Akademgorodok, Krasnoyarsk 660036, Russia
| | - Ruslan A. Zukov
- Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
| | - Maxim V. Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON K1N 6N5, Canada
| | - Felix N. Tomilin
- Laboratory of Physics of Magnetic Phenomena, Kirensky Institute of Physics, 50/38 Akademgorodok, Krasnoyarsk 660036, Russia
- Department of Chemistry, Siberian Federal University, 79 Svobodny pr., Krasnoyarsk 660041, Russia
| | - Dmitri G. Fedorov
- Research Center for Computational Design of Advanced Functional Materials, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
| | - Yuri Alexeev
- Computational Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Anna S. Kichkailo
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center “Krasnoyarsk Science Center SB RAS,” 50 Akademgorodok, Krasnoyarsk 660036, Russia
- Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
| |
Collapse
|
13
|
Matzov D, Taoka M, Nobe Y, Yamauchi Y, Halfon Y, Asis N, Zimermann E, Rozenberg H, Bashan A, Bhushan S, Isobe T, Gray MW, Yonath A, Shalev-Benami M. Cryo-EM structure of the highly atypical cytoplasmic ribosome of Euglena gracilis. Nucleic Acids Res 2020; 48:11750-11761. [PMID: 33091122 PMCID: PMC7672448 DOI: 10.1093/nar/gkaa893] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/21/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Ribosomal RNA is the central component of the ribosome, mediating its functional and architectural properties. Here, we report the cryo-EM structure of a highly divergent cytoplasmic ribosome from the single-celled eukaryotic alga Euglena gracilis. The Euglena large ribosomal subunit is distinct in that it contains 14 discrete rRNA fragments that are assembled non-covalently into the canonical ribosome structure. The rRNA is substantially enriched in post-transcriptional modifications that are spread far beyond the catalytic RNA core, contributing to the stabilization of this highly fragmented ribosome species. A unique cluster of five adenosine base methylations is found in an expansion segment adjacent to the protein exit tunnel, such that it is positioned for interaction with the nascent peptide. As well as featuring distinctive rRNA expansion segments, the Euglena ribosome contains four novel ribosomal proteins, localized to the ribosome surface, three of which do not have orthologs in other eukaryotes.
Collapse
Affiliation(s)
- Donna Matzov
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Yoshio Yamauchi
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Yehuda Halfon
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nofar Asis
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ella Zimermann
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Haim Rozenberg
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anat Bashan
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shashi Bhushan
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Michael W Gray
- Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
| | - Ada Yonath
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Moran Shalev-Benami
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
14
|
Tu R, Chen Z, Bao Q, Liu H, Qing G. Crosstalk between oncogenic MYC and noncoding RNAs in cancer. Semin Cancer Biol 2020; 75:62-71. [PMID: 33160022 DOI: 10.1016/j.semcancer.2020.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/09/2020] [Accepted: 10/24/2020] [Indexed: 12/19/2022]
|
15
|
Scossa F, Fernie AR. The evolution of metabolism: How to test evolutionary hypotheses at the genomic level. Comput Struct Biotechnol J 2020; 18:482-500. [PMID: 32180906 PMCID: PMC7063335 DOI: 10.1016/j.csbj.2020.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 01/21/2023] Open
Abstract
The origin of primordial metabolism and its expansion to form the metabolic networks extant today represent excellent systems to study the impact of natural selection and the potential adaptive role of novel compounds. Here we present the current hypotheses made on the origin of life and ancestral metabolism and present the theories and mechanisms by which the large chemical diversity of plants might have emerged along evolution. In particular, we provide a survey of statistical methods that can be used to detect signatures of selection at the gene and population level, and discuss potential and limits of these methods for investigating patterns of molecular adaptation in plant metabolism.
Collapse
Affiliation(s)
- Federico Scossa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics (CREA-GB), Via Ardeatina 546, 00178 Rome, Italy
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
| |
Collapse
|
16
|
Ayyub SA, Varshney U. Translation initiation in mammalian mitochondria- a prokaryotic perspective. RNA Biol 2019; 17:165-175. [PMID: 31696767 DOI: 10.1080/15476286.2019.1690099] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
ATP is generated in mitochondria of eukaryotic cells by oxidative phosphorylation (OXPHOS). The OXPHOS complex, which is crucial for cellular metabolism, comprises of both nuclear and mitochondrially encoded subunits. Also, the occurrence of several pathologies because of mutations in the mitochondrial translation apparatus indicates the importance of mitochondrial translation and its regulation. The mitochondrial translation apparatus is similar to its prokaryotic counterpart due to a common origin of evolution. However, mitochondrial translation has diverged from prokaryotic translation in many ways by reductive evolution. In this review, we focus on mammalian mitochondrial translation initiation, a highly regulated step of translation, and present a comparison with prokaryotic translation.
Collapse
Affiliation(s)
- Shreya Ahana Ayyub
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
17
|
Smith TS, Zoltek MA, Simon MD. Reengineering a tRNA Methyltransferase To Covalently Capture New RNA Substrates. J Am Chem Soc 2019; 141:17460-17465. [PMID: 31626536 DOI: 10.1021/jacs.9b08529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Covalent RNA modifications can alter the function and metabolism of RNA transcripts. Altering the RNA substrate specificities of the enzymes that install these modifications can provide powerful tools to study and manipulate RNA. To develop new tools and probe the plasticity of the substrate specificity of one of these enzymes, we examined the engineerability of the uridine-54 tRNA methyltransferase, TrmA. Starting from a mutant that remains covalently bound to its substrate RNA (E358Q, TrmA*), we were able to use both rational design and a high-throughput sequencing assay to examine the RNA substrates of TrmA*. Although rational engineering substantially changed TrmA* specificity, the rationally designed substrate mutants we developed still retained activity with the wild-type protein. Using high-throughput substrate screening of additional TrmA* mutants, we identified a triple mutant of the substrate RNA (C56A;A58G;C60U) that is efficiently trapped by a TrmA* double mutant (E49R;R51E) but not by the wild-type TrmA*. This work establishes a foundation for using protein engineering to reconfigure substrate specificities of RNA-modifying enzymes and covalently trap RNAs with engineered proteins.
Collapse
Affiliation(s)
- Tyler S Smith
- Department of Molecular Biophysics & Biochemistry , Yale University , New Haven , Connecticut 06511 , United States.,Chemical Biology Institute , Yale University , West Haven , Connecticut 06516 , United States
| | - Madeline A Zoltek
- Department of Molecular Biophysics & Biochemistry , Yale University , New Haven , Connecticut 06511 , United States.,Chemical Biology Institute , Yale University , West Haven , Connecticut 06516 , United States
| | - Matthew D Simon
- Department of Molecular Biophysics & Biochemistry , Yale University , New Haven , Connecticut 06511 , United States.,Chemical Biology Institute , Yale University , West Haven , Connecticut 06516 , United States
| |
Collapse
|
18
|
POLR1B and neural crest cell anomalies in Treacher Collins syndrome type 4. Genet Med 2019; 22:547-556. [PMID: 31649276 PMCID: PMC7056642 DOI: 10.1038/s41436-019-0669-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/23/2019] [Indexed: 11/11/2022] Open
Abstract
Purpose Treacher Collins syndrome (TCS) is a rare autosomal dominant mandibulofacial dysostosis, with a prevalence of 0.2–1/10,000. Features include bilateral and symmetrical malar and mandibular hypoplasia and facial abnormalities due to abnormal neural crest cell (NCC) migration and differentiation. To date, three genes have been identified: TCOF1, POLR1C, and POLR1D. Despite a large number of patients with a molecular diagnosis, some remain without a known genetic anomaly. Methods We performed exome sequencing for four individuals with TCS but who were negative for pathogenic variants in the known causative genes. The effect of the pathogenic variants was investigated in zebrafish. Results We identified three novel pathogenic variants in POLR1B. Knockdown of polr1b in zebrafish induced an abnormal craniofacial phenotype mimicking TCS that was associated with altered ribosomal gene expression, massive p53-associated cellular apoptosis in the neuroepithelium, and reduced number of NCC derivatives. Conclusion Pathogenic variants in the RNA polymerase I subunit POLR1B might induce massive p53-dependent apoptosis in a restricted neuroepithelium area, altering NCC migration and causing cranioskeletal malformations. We identify POLR1B as a new causative gene responsible for a novel TCS syndrome (TCS4) and establish a novel experimental model in zebrafish to study POLR1B-related TCS.
Collapse
|
19
|
Li S, Yu H, Liu Y, Zhang X, Ma F. The lipid strategies in Cunninghamella echinulata for an allostatic response to temperature changes. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
George L, Indig FE, Abdelmohsen K, Gorospe M. Intracellular RNA-tracking methods. Open Biol 2018; 8:rsob.180104. [PMID: 30282659 PMCID: PMC6223214 DOI: 10.1098/rsob.180104] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/03/2018] [Indexed: 12/26/2022] Open
Abstract
RNA tracking allows researchers to visualize RNA molecules in cells and tissues, providing important spatio-temporal information regarding RNA dynamics and function. Methods such as fluorescent in situ hybridization (FISH) and molecular beacons rely on complementary oligonucleotides to label and view endogenous transcripts. Other methods create artificial chimeric transcripts coupled with bacteriophage-derived coat proteins (e.g. MS2, λN) to tag molecules in live cells. In other approaches, endogenous RNAs are recognized by complementary RNAs complexed with noncatalytic Cas proteins. Each technique has its own set of strengths and limitations that must be considered when planning an experiment. Here, we discuss the mechanisms, advantages, and weaknesses of in situ hybridization, molecular beacons, MS2 tagging and Cas-derived systems, as well as how RNA tracking can be employed to study various aspects of molecular biology.
Collapse
Affiliation(s)
- Logan George
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.,Confocal Core Facility, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Fred E Indig
- Confocal Core Facility, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
21
|
Hoxhaj G, Hughes-Hallett J, Timson RC, Ilagan E, Yuan M, Asara JM, Ben-Sahra I, Manning BD. The mTORC1 Signaling Network Senses Changes in Cellular Purine Nucleotide Levels. Cell Rep 2018; 21:1331-1346. [PMID: 29091770 DOI: 10.1016/j.celrep.2017.10.029] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/22/2017] [Accepted: 10/06/2017] [Indexed: 12/11/2022] Open
Abstract
Mechanistic (or mammalian) target of rapamycin complex 1 (mTORC1) integrates signals from growth factors and nutrients to control biosynthetic processes, including protein, lipid, and nucleic acid synthesis. We find that the mTORC1 pathway is responsive to changes in purine nucleotides in a manner analogous to its sensing of amino acids. Depletion of cellular purines, but not pyrimidines, inhibits mTORC1, and restoration of intracellular adenine nucleotides via addition of exogenous purine nucleobases or nucleosides acutely reactivates mTORC1. Adenylate sensing by mTORC1 is dependent on the tuberous sclerosis complex (TSC) protein complex and its regulation of Rheb upstream of mTORC1, but independent of energy stress and AMP-activated protein kinase (AMPK). Even though mTORC1 signaling is not acutely sensitive to changes in intracellular guanylates, long-term depletion of guanylates decreases Rheb protein levels. Our findings suggest that nucleotide sensing, like amino acid sensing, enables mTORC1 to tightly coordinate nutrient availability with the synthesis of macromolecules, such as protein and nucleic acids, produced from those nutrients.
Collapse
Affiliation(s)
- Gerta Hoxhaj
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - James Hughes-Hallett
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Rebecca C Timson
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Erika Ilagan
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Min Yuan
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Issam Ben-Sahra
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Brendan D Manning
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
22
|
Li Z, Zhang Y, Peng D, Peng Y, Zhang X, Ma X, Huang L, Yan Y. The inhibition of polyamine biosynthesis weakens the drought tolerance in white clover (Trifolium repens) associated with the alteration of extensive proteins. PROTOPLASMA 2018; 255:803-817. [PMID: 29181726 DOI: 10.1007/s00709-017-1186-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
Changes of endogenous polyamine (PA) levels could be a key adaptive response to drought in plants. White clover pretreated with or without dicyclohexylamine (DCHA), an inhibitor of PA biosynthesis, was subjected to drought stress induced by 18% polyethylene glycol 6000 for 8 days in controlled growth chambers. Results showed that drought stress significantly increased endogenous PA content, whereas DCHA significantly decreased PA accumulation under drought stress. The attenuate PA biosynthesis was unfavorable for plant growth and drought tolerance, as reflected by significantly lower relative water content, relative growth rate, instantaneous water use efficiency, and cell membrane stability in leaves in response to drought. On the basis of proteomic analysis, the inhibition of PA synthesis decreased the accumulation of many key differentially expressed proteins including (1) ribosomal structure and biogenesis: elongation factor, ribosomal protein S10E, and 30S ribosomal protein; (2) amino acid transport and metabolism: cysteine synthase, delta-1-pyrroline-5-carboxylate synthetase, and glutamate decarboxylase; (3) carbohydrate metabolism and energy production: photosystem apoprotein, sucrose-phosphate synthase, phosphogluconate dehydrogenase, sucrose-phosphatase, NADH oxidoreductase, and ATP synthase; (4) antioxidant metabolism: catalase, peroxidase I, ascorbate peroxidase, and glutathione S-transferase; and (5) other biological processes: heat shock protein 70, heat shock protein 90, and calcium-dependent protein kinase associated with the decreased drought tolerance in white clover. These findings indicate that PAs play a critical role in the regulation of growth, ribosome, amino acid and energy metabolism, and antioxidant reactions in white clover under drought stress. Drought-induced increases in endogenous PAs could be one of key adaptive responses against drought stress in white clover.
Collapse
Affiliation(s)
- Zhou Li
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dandan Peng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Peng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Xinquan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiao Ma
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Linkai Huang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yanhong Yan
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
23
|
|
24
|
Ayyub SA, Dobriyal D, Shah RA, Lahry K, Bhattacharyya M, Bhattacharyya S, Chakrabarti S, Varshney U. Coevolution of the translational machinery optimizes initiation with unusual initiator tRNAs and initiation codons in mycoplasmas. RNA Biol 2017; 15:70-80. [PMID: 28901843 DOI: 10.1080/15476286.2017.1377879] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Initiator tRNAs (i-tRNAs) are characterized by the presence of three consecutive GC base pairs (GC/GC/GC) in their anticodon stems in all domains of life. However, many mycoplasmas possess unconventional i-tRNAs wherein the highly conserved sequence of GC/GC/GC is represented by AU/GC/GC, GC/GC/GU or AU/GC/GU. These mycoplasmas also tend to preferentially utilize non-AUG initiation codons. To investigate if initiation with the unconventional i-tRNAs and non-AUG codons in mycoplasmas correlated with the changes in the other components of the translation machinery, we carried out multiple sequence alignments of genes encoding initiation factors (IF), 16S rRNAs, and the ribosomal proteins such as uS9, uS12 and uS13. In addition, the occurrence of Shine-Dalgarno sequences in mRNAs was analyzed. We observed that in the mycoplasmas harboring AU/GC/GU i-tRNAs, a highly conserved position of R131 in IF3, is represented by P, F or Y and, the conserved C-terminal tail (SKR) of uS9 is represented by the TKR sequence. Using the Escherichia coli model, we show that the change of R131 in IF3 optimizes initiation with the AU/GC/GU i-tRNAs. Also, the SKR to TKR change in uS9 was compatible with the R131P variation in IF3 for initiation with the AU/GC/GU i-tRNA variant. Interestingly, the mycoplasmas harboring AU/GC/GU i-tRNAs are also human pathogens. We propose that these mycoplasmas might have evolved a relaxed translational apparatus to adapt to the environment they encounter in the host.
Collapse
Affiliation(s)
- Shreya Ahana Ayyub
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India
| | - Divya Dobriyal
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India
| | - Riyaz Ahmad Shah
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India
| | - Kuldeep Lahry
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India
| | - Madhumita Bhattacharyya
- b Structural Biology and Bioinformatics Division , CSIR-Indian Institute of Chemical Biology , Kolkata , India
| | - Souvik Bhattacharyya
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India
| | - Saikat Chakrabarti
- b Structural Biology and Bioinformatics Division , CSIR-Indian Institute of Chemical Biology , Kolkata , India
| | - Umesh Varshney
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India.,c Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur , Bangalore , India
| |
Collapse
|
25
|
Locati MD, Pagano JFB, Girard G, Ensink WA, van Olst M, van Leeuwen S, Nehrdich U, Spaink HP, Rauwerda H, Jonker MJ, Dekker RJ, Breit TM. Expression of distinct maternal and somatic 5.8S, 18S, and 28S rRNA types during zebrafish development. RNA (NEW YORK, N.Y.) 2017; 23:1188-1199. [PMID: 28500251 PMCID: PMC5513064 DOI: 10.1261/rna.061515.117] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/09/2017] [Indexed: 05/27/2023]
Abstract
There is mounting evidence that the ribosome is not a static translation machinery, but a cell-specific, adaptive system. Ribosomal variations have mostly been studied at the protein level, even though the essential transcriptional functions are primarily performed by rRNAs. At the RNA level, oocyte-specific 5S rRNAs are long known for Xenopus. Recently, we described for zebrafish a similar system in which the sole maternal-type 5S rRNA present in eggs is replaced completely during embryonic development by a somatic-type. Here, we report the discovery of an analogous system for the 45S rDNA elements: 5.8S, 18S, and 28S. The maternal-type 5.8S, 18S, and 28S rRNA sequences differ substantially from those of the somatic-type, plus the maternal-type rRNAs are also replaced by the somatic-type rRNAs during embryogenesis. We discuss the structural and functional implications of the observed sequence differences with respect to the translational functions of the 5.8S, 18S, and 28S rRNA elements. Finally, in silico evidence suggests that expansion segments (ES) in 18S rRNA, previously implicated in ribosome-mRNA interaction, may have a preference for interacting with specific mRNA genes. Taken together, our findings indicate that two distinct types of ribosomes exist in zebrafish during development, each likely conducting the translation machinery in a unique way.
Collapse
MESH Headings
- Animals
- Base Pairing
- Base Sequence
- DNA, Ribosomal/genetics
- Embryo, Nonmammalian/cytology
- Embryo, Nonmammalian/metabolism
- Nucleic Acid Conformation
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- RNA, Ribosomal, 28S/genetics
- RNA, Ribosomal, 28S/metabolism
- RNA, Ribosomal, 5.8S/genetics
- RNA, Ribosomal, 5.8S/metabolism
- Ribosomes/metabolism
- Sequence Alignment
- Zebrafish/genetics
- Zebrafish/growth & development
- Zebrafish/metabolism
Collapse
Affiliation(s)
- Mauro D Locati
- RNA Biology and Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, the Netherlands
| | - Johanna F B Pagano
- RNA Biology and Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, the Netherlands
| | - Geneviève Girard
- RNA Biology and Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, the Netherlands
| | - Wim A Ensink
- RNA Biology and Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, the Netherlands
| | - Marina van Olst
- RNA Biology and Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, the Netherlands
| | - Selina van Leeuwen
- RNA Biology and Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, the Netherlands
| | - Ulrike Nehrdich
- Department of Molecular Cell Biology, Institute of Biology, Leiden University, Gorlaeus Laboratories-Cell Observatorium, Leiden 2333 CE, the Netherlands
| | - Herman P Spaink
- Department of Molecular Cell Biology, Institute of Biology, Leiden University, Gorlaeus Laboratories-Cell Observatorium, Leiden 2333 CE, the Netherlands
| | - Han Rauwerda
- RNA Biology and Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, the Netherlands
| | - Martijs J Jonker
- RNA Biology and Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, the Netherlands
| | - Rob J Dekker
- RNA Biology and Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, the Netherlands
| | - Timo M Breit
- RNA Biology and Applied Bioinformatics Research Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1090 GE, the Netherlands
| |
Collapse
|
26
|
Rutenberg-Schoenberg M, Sexton AN, Simon MD. The Properties of Long Noncoding RNAs That Regulate Chromatin. Annu Rev Genomics Hum Genet 2016; 17:69-94. [PMID: 27147088 DOI: 10.1146/annurev-genom-090314-024939] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Beyond coding for proteins, RNA molecules have well-established functions in the posttranscriptional regulation of gene expression. Less clear are the upstream roles of RNA in regulating transcription and chromatin-based processes in the nucleus. RNA is transcribed in the nucleus, so it is logical that RNA could play diverse and broad roles that would impact human physiology. Indeed, this idea is supported by well-established examples of noncoding RNAs that affect chromatin structure and function. There has been dramatic growth in studies focused on the nuclear roles of long noncoding RNAs (lncRNAs). Although little is known about the biochemical mechanisms of these lncRNAs, there is a developing consensus regarding the challenges of defining lncRNA function and mechanism. In this review, we examine the definition, discovery, functions, and mechanisms of lncRNAs. We emphasize areas where challenges remain and where consensus among laboratories has underscored the exciting ways in which human lncRNAs may affect chromatin biology.
Collapse
Affiliation(s)
- Michael Rutenberg-Schoenberg
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511; , , .,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516
| | - Alec N Sexton
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511; , , .,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516
| | - Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511; , , .,Chemical Biology Institute, Yale University, West Haven, Connecticut 06516
| |
Collapse
|
27
|
Li Z, Zhang Y, Xu Y, Zhang X, Peng Y, Ma X, Huang L, Yan Y. Physiological and iTRAQ-Based Proteomic Analyses Reveal the Function of Spermidine on Improving Drought Tolerance in White Clover. J Proteome Res 2016; 15:1563-79. [PMID: 27030016 DOI: 10.1021/acs.jproteome.6b00027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Endogenous spermidine interacting with phytohormones may be involved in the regulation of differentially expressed proteins (DEPs) associated with drought tolerance in white clover. Plants treated with or without spermidine (50 μM) were subjected to 20% PEG 6000 nutrient solution to induce drought stress (50% leaf-relative water content). The results showed that increased endogenous spermidine induced by exogenous spermidine altered endogenous phytohormones in association with improved drought tolerance, as demonstrated by the delay in water-deficit development, improved photosynthesis and water use efficiency, and lower oxidative damage. As compared to untreated plants, Spd-treated plants maintained a higher abundance of DEPs under drought stress involved in (1) protein biosynthesis (ribosomal and chaperone proteins); (2) amino acids synthesis; (3) the carbon and energy metabolism; (4) antioxidant and stress defense (ascorbate peroxidase, glutathione peroxidase, and dehydrins); and (5) GA and ABA signaling pathways (gibberellin receptor GID1, ABA-responsive protein 17, and ABA stress ripening protein). Thus, the findings of proteome could explain the Spd-induced physiological effects associated with drought tolerance. The analysis of functional protein-protein networks further proved that the alteration of endogenous spermidine and phytohormones induced the interaction among ribosome, photosynthesis, carbon metabolism, and amino acid biosynthesis. These differences could contribute to improved drought tolerance.
Collapse
Affiliation(s)
- Zhou Li
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu 611130, China
| | - Yan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu 611130, China
| | - Yi Xu
- Department of Plant Biology and Pathology, Rutgers University , 59 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Xinquan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu 611130, China
| | - Yan Peng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu 611130, China
| | - Xiao Ma
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu 611130, China
| | - Linkai Huang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu 611130, China
| | - Yanhong Yan
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University , Chengdu 611130, China
| |
Collapse
|
28
|
Abstract
An RNA world has been placed centre stage for explaining the origin of life. Indeed, RNA is the most plausible molecule able to form both a (self)-replicator and to inherit information, necessities for initiating genetics. However, in parallel with self-replication, the proto-organism had to obtain the ability to catalyse supply of its chemical constituents, including the ribonucleotide metabolites required to replicate RNA. Although the possibility of an RNA-catalysed metabolic network has been considered, it is to be questioned whether RNA molecules, at least on their own, possess the required catalytic capacities. An alternative scenario for the origin of metabolism involves chemical reactions that are based on environmental catalysts. Recently, we described a non-enzymatic glycolysis and pentose phosphate pathway-like reactions catalysed by metal ions [mainly Fe(II)] and phosphate, simple inorganic molecules abundantly found in Archaean sediments. While the RNA world can serve to explain the origin of genetics, the origin of the metabolic network might thus date back to constraints of environmental chemistry. Interestingly, considering a metal-catalysed origin of metabolism gives rise to an attractive hypothesis about how the first enzymes could have formed: simple RNA or (poly)peptide molecules could have bound the metal ions, and thus increased their solubility, concentration and accessibility. In a second step, this would have allowed substrate specificity to evolve.
Collapse
|
29
|
Kun Á, Szilágyi A, Könnyű B, Boza G, Zachar I, Szathmáry E. The dynamics of the RNA world: insights and challenges. Ann N Y Acad Sci 2015; 1341:75-95. [PMID: 25735569 DOI: 10.1111/nyas.12700] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The RNA world hypothesis of the origin of life, in which RNA emerged as both enzyme and information carrier, is receiving solid experimental support. The prebiotic synthesis of biomolecules, the catalytic aid offered by mineral surfaces, and the vast enzymatic repertoire of ribozymes are only pieces of the origin of life puzzle; the full picture can only emerge if the pieces fit together by either following from one another or coexisting with each other. Here, we review the theory of the origin, maintenance, and enhancement of the RNA world as an evolving population of dynamical systems. The dynamical view of the origin of life allows us to pinpoint the missing and the not fitting pieces: (1) How can the first self-replicating ribozyme emerge in the absence of template-directed information replication? (2) How can nucleotide replicators avoid competitive exclusion despite utilizing the very same resources (nucleobases)? (3) How can the information catastrophe be avoided? (4) How can enough genes integrate into a cohesive system in order to transition to a cellular stage? (5) How can the way information is stored and metabolic complexity coevolve to pave to road leading out of the RNA world to the present protein-DNA world?
Collapse
Affiliation(s)
- Ádám Kun
- Parmenides Center for the Conceptual Foundations of Science, Munich/Pullach, Germany; MTA-ELTE-MTMT Ecology Research Group, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
30
|
DEAD-box RNA helicase Dbp4 is required for small-subunit processome formation and function. Mol Cell Biol 2014; 35:816-30. [PMID: 25535329 DOI: 10.1128/mcb.01348-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
DEAD-box RNA helicase Dbp4 is required for 18S rRNA synthesis: cellular depletion of Dbp4 impairs the early cleavage reactions of the pre-rRNA and causes U14 small nucleolar RNA (snoRNA) to remain associated with pre-rRNA. Immunoprecipitation experiments (IPs) carried out with whole-cell extracts (WCEs) revealed that hemagglutinin (HA)-tagged Dbp4 is associated with U3 snoRNA but not with U14 snoRNA. IPs with WCEs also showed association with the U3-specific protein Mpp10, which suggests that Dbp4 interacts with the functionally active U3 RNP; this particle, called the small-subunit (SSU) processome, can be observed at the 5' end of nascent pre-rRNA. Electron microscopy analyses indicated that depletion of Dbp4 compromised SSU processome formation and cotranscriptional cleavage of the pre-rRNA. Sucrose density gradient analyses revealed that depletion of U3 snoRNA or the Mpp10 protein inhibited the release of U14 snoRNA from pre-rRNA, just as was seen with Dbp4-depleted cells, indicating that alteration of SSU processome components has significant consequences for U14 snoRNA dynamics. We also found that the C-terminal extension flanking the catalytic core of Dbp4 plays an important role in the release of U14 snoRNA from pre-rRNA.
Collapse
|
31
|
Abstract
A striking finding in the past decade is the production of numerous non-coding RNAs (ncRNAs) from mammalian genomes. While it is entirely possible that many of those ncRNAs are transcription noises or by-products of RNA processing, increasing evidence suggests that a large fraction of them are functional and provide various regulatory activities in the cell. Thus, functional genomics and proteomics are incomplete without understanding functional ribonomics. As has been long suggested by the 'RNA world' hypothesis, many ncRNAs have the capacity to act like proteins in diverse biochemical processes. The enormous amount of information residing in the primary sequences and secondary structures of ncRNAs makes them particularly suited to function as scaffolds for molecular interactions. In addition, their functions appear to be stringently controlled by default via abundant nucleases when not engaged in specific interactions. This review focuses on the functional properties of regulatory ncRNAs in comparison with proteins and emphasizes both the opportunities and challenges in future ncRNA research.
Collapse
Affiliation(s)
- Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| |
Collapse
|
32
|
Asano K. Why is start codon selection so precise in eukaryotes? ACTA ACUST UNITED AC 2014; 2:e28387. [PMID: 26779403 PMCID: PMC4705826 DOI: 10.4161/trla.28387] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/14/2014] [Accepted: 02/27/2014] [Indexed: 12/22/2022]
Abstract
Translation generally initiates with the AUG codon. While initiation at GUG and UUG is permitted in prokaryotes (Archaea and Bacteria), cases of CUG initiation were recently reported in human cells. The varying stringency in translation initiation between eukaryotic and prokaryotic domains largely stems from a fundamental problem for the ribosome in recognizing a codon at the peptidyl-tRNA binding site. Initiation factors specific to each domain of life evolved to confer stringent initiation by the ribosome. The mechanistic basis for high accuracy in eukaryotic initiation is described based on recent findings concerning the role of the multifactor complex (MFC) in this process. Also discussed are whether non-AUG initiation plays any role in translational control and whether start codon accuracy is regulated in eukaryotes.
Collapse
Affiliation(s)
- Katsura Asano
- Molecular Cellular and Developmental Biology Program; Division of Biology; Kansas State University; Manhattan, KS USA
| |
Collapse
|
33
|
Soltanieh S, Lapensée M, Dragon F. Nucleolar proteins Bfr2 and Enp2 interact with DEAD-box RNA helicase Dbp4 in two different complexes. Nucleic Acids Res 2013; 42:3194-206. [PMID: 24357410 PMCID: PMC3950691 DOI: 10.1093/nar/gkt1293] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Different pre-ribosomal complexes are formed during ribosome biogenesis, and the composition of these complexes is highly dynamic. Dbp4, a conserved DEAD-box RNA helicase implicated in ribosome biogenesis, interacts with nucleolar proteins Bfr2 and Enp2. We show that, like Dbp4, Bfr2 and Enp2 are required for the early processing steps leading to the production of 18S ribosomal RNA. We also found that Bfr2 and Enp2 associate with the U3 small nucleolar RNA (snoRNA), the U3-specific protein Mpp10 and various pre-18S ribosomal RNA species. Thus, we propose that Bfr2, Dbp4 and Enp2 are components of the small subunit (SSU) processome, a large complex of ∼80S. Sucrose gradient sedimentation analyses indicated that Dbp4, Bfr2 and Enp2 sediment in a peak of ∼50S and in a peak of ∼80S. Bfr2, Dbp4 and Enp2 associate together in the 50S complex, which does not include the U3 snoRNA; however, they associate with U3 snoRNA in the 80S complex (SSU processome). Immunoprecipitation experiments revealed that U14 snoRNA associates with Dbp4 in the 50S complex, but not with Bfr2 or Enp2. The assembly factor Tsr1 is not part of the '50S' complex, indicating this complex is not a pre-40S ribosome. A combination of experiments leads us to propose that Bfr2, Enp2 and Dbp4 are recruited at late steps during assembly of the SSU processome.
Collapse
Affiliation(s)
- Sahar Soltanieh
- Département des sciences biologiques and Centre de recherche BioMed, Université du Québec à Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
34
|
Czudnochowski N, Ashley GW, Santi DV, Alian A, Finer-Moore J, Stroud RM. The mechanism of pseudouridine synthases from a covalent complex with RNA, and alternate specificity for U2605 versus U2604 between close homologs. Nucleic Acids Res 2013; 42:2037-48. [PMID: 24214967 PMCID: PMC3919597 DOI: 10.1093/nar/gkt1050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RluB catalyses the modification of U2605 to pseudouridine (Ψ) in a stem-loop at the peptidyl transferase center of Escherichia coli 23S rRNA. The homolog RluF is specific to the adjacent nucleotide in the stem, U2604. The 1.3 Å resolution crystal structure of the complex between the catalytic domain of RluB and the isolated substrate stem-loop, in which the target uridine is substituted by 5-fluorouridine (5-FU), reveals a covalent bond between the isomerized target base and tyrosine 140. The structure is compared with the catalytic domain alone determined at 2.5 Å resolution. The RluB-bound stem-loop has essentially the same secondary structure as in the ribosome, with a bulge at A2602, but with 5-FU2605 flipped into the active site. We showed earlier that RluF induced a frame-shift of the RNA, moving A2602 into the stem and translating its target, U2604, into the active site. A hydrogen-bonding network stabilizes the bulge in the RluB–RNA but is not conserved in RluF and so RluF cannot stabilize the bulge. On the basis of the covalent bond between enzyme and isomerized 5-FU we propose a Michael addition mechanism for pseudouridine formation that is consistent with all experimental data.
Collapse
Affiliation(s)
- Nadine Czudnochowski
- Department of Biochemistry and Biophysics, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA, ProLynx, 455 Mission Bay Blvd., Suite 145, San Francisco, CA 94158, USA and Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 320003, Israel
| | | | | | | | | | | |
Collapse
|
35
|
Villarino N, Brown SA, Martín-Jiménez T. The role of the macrolide tulathromycin in veterinary medicine. Vet J 2013; 198:352-7. [DOI: 10.1016/j.tvjl.2013.07.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 10/26/2022]
|
36
|
Nemoto N, Udagawa T, Chowdhury W, Kitabatake M, Shin BS, Hiraishi H, Wang S, Singh CR, Brown SJ, Ohno M, Asano K. Random mutagenesis of yeast 25S rRNA identify bases critical for 60S subunit structural integrity and function. ACTA ACUST UNITED AC 2013; 1:e26402. [PMID: 26824023 PMCID: PMC4718063 DOI: 10.4161/trla.26402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/08/2013] [Accepted: 09/06/2013] [Indexed: 01/28/2023]
Abstract
In yeast Saccharomyces cerevisiae, 25S rRNA makes up the major mass and shape of the 60S ribosomal subunit. During translation initiation, the 60S subunit joins the 40S initiation complex, producing the 80S initiation complex. During elongation, the 60S subunit binds the CCA-ends of aminoacyl- and peptidyl-tRNAs at the A-loop and P-loop, respectively, transferring the peptide onto the α-amino group of the aminoacyl-tRNA. To study the role of 25S rRNA in translation in vivo, we randomly mutated 25S rRNA and isolated and characterized seven point mutations that affected yeast cell growth and polysome profiles. Four of these mutations, G651A, A1435U, A1446G and A1587G, change a base involved in base triples crucial for structural integrity. Three other mutations change bases near the ribosomal surface: C2879U and U2408C alter the A-loop and P-loop, respectively, and G1735A maps near a Eukarya-specific bridge to the 40S subunit. By polysome profiling in mmslΔ mutants defective in nonfunctional 25S rRNA decay, we show that some of these mutations are defective in both the initiation and elongation phases of translation. Of the mutants characterized, C2879U displays the strongest defect in translation initiation. The ribosome transit-time assay directly shows that this mutation is also defective in peptide elongation/termination. Thus, our genetic analysis not only identifies bases critical for structural integrity of the 60S subunit, but also suggests a role for bases near the peptidyl transferase center in translation initiation.
Collapse
Affiliation(s)
- Naoki Nemoto
- Molecular Cellular and Developmental Biology Program; Division of Biology; Kansas State University; Manhattan, KS USA
| | - Tsuyoshi Udagawa
- Molecular Cellular and Developmental Biology Program; Division of Biology; Kansas State University; Manhattan, KS USA
| | - Wasimul Chowdhury
- Molecular Cellular and Developmental Biology Program; Division of Biology; Kansas State University; Manhattan, KS USA
| | | | - Byung-Shik Shin
- Laboratory of Gene Regulation and Development; Eunice Kennedy Shriver NICHD; National Institutes of Health; Bethesda, MD USA
| | - Hiroyuki Hiraishi
- Molecular Cellular and Developmental Biology Program; Division of Biology; Kansas State University; Manhattan, KS USA
| | - Suzhi Wang
- Molecular Cellular and Developmental Biology Program; Division of Biology; Kansas State University; Manhattan, KS USA; Arthropod Genomics Center; Division of Biology; Kansas State University; Manhattan, KS USA
| | - Chingakham Ranjit Singh
- Molecular Cellular and Developmental Biology Program; Division of Biology; Kansas State University; Manhattan, KS USA
| | - Susan J Brown
- Molecular Cellular and Developmental Biology Program; Division of Biology; Kansas State University; Manhattan, KS USA; Arthropod Genomics Center; Division of Biology; Kansas State University; Manhattan, KS USA
| | - Mutsuhito Ohno
- Insititute for Virus Research; Kyoto University; Kyoto, Japan
| | - Katsura Asano
- Molecular Cellular and Developmental Biology Program; Division of Biology; Kansas State University; Manhattan, KS USA
| |
Collapse
|
37
|
Interaction between 25S rRNA A loop and eukaryotic translation initiation factor 5B promotes subunit joining and ensures stringent AUG selection. Mol Cell Biol 2013; 33:3540-8. [PMID: 23836883 DOI: 10.1128/mcb.00771-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In yeast, 25S rRNA makes up the major mass and shape of the 60S ribosomal subunit. During the last step of translation initiation, eukaryotic initiation factor 5B (eIF5B) promotes the 60S subunit joining with the 40S initiation complex (IC). Malfunctional 60S subunits produced by misfolding or mutation may disrupt the 40S IC stalling on the start codon, thereby altering the stringency of initiation. Using several point mutations isolated by random mutagenesis, here we studied the role of 25S rRNA in start codon selection. Three mutations changing bases near the ribosome surface had strong effects, allowing the initiating ribosomes to skip both AUG and non-AUG codons: C2879U and U2408C, altering the A loop and P loop, respectively, of the peptidyl transferase center, and G1735A, mapping near a Eukarya-specific bridge to the 40S subunit. Overexpression of eIF5B specifically suppressed the phenotype caused by C2879U, suggesting functional interaction between eIF5B and the A loop. In vitro reconstitution assays showed that C2879U decreased eIF5B-catalyzed 60S subunit joining with a 40S IC. Thus, eIF5B interaction with the peptidyl transferase center A loop increases the accuracy of initiation by stabilizing the overall conformation of the 80S initiation complex. This study provides an insight into the effect of ribosomal mutations on translation profiles in eukaryotes.
Collapse
|
38
|
Goodfellow SJ, Zomerdijk JCBM. Basic mechanisms in RNA polymerase I transcription of the ribosomal RNA genes. Subcell Biochem 2013; 61:211-36. [PMID: 23150253 PMCID: PMC3855190 DOI: 10.1007/978-94-007-4525-4_10] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
RNA Polymerase (Pol) I produces ribosomal (r)RNA, an essential component of the cellular protein synthetic machinery that drives cell growth, underlying many fundamental cellular processes. Extensive research into the mechanisms governing transcription by Pol I has revealed an intricate set of control mechanisms impinging upon rRNA production. Pol I-specific transcription factors guide Pol I to the rDNA promoter and contribute to multiple rounds of transcription initiation, promoter escape, elongation and termination. In addition, many accessory factors are now known to assist at each stage of this transcription cycle, some of which allow the integration of transcriptional activity with metabolic demands. The organisation and accessibility of rDNA chromatin also impinge upon Pol I output, and complex mechanisms ensure the appropriate maintenance of the epigenetic state of the nucleolar genome and its effective transcription by Pol I. The following review presents our current understanding of the components of the Pol I transcription machinery, their functions and regulation by associated factors, and the mechanisms operating to ensure the proper transcription of rDNA chromatin. The importance of such stringent control is demonstrated by the fact that deregulated Pol I transcription is a feature of cancer and other disorders characterised by abnormal translational capacity.
Collapse
Affiliation(s)
- Sarah J. Goodfellow
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee , Dundee DD1 5EH , UK
| | - Joost C. B. M. Zomerdijk
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee , Dundee DD1 5EH , UK
| |
Collapse
|
39
|
Belinky F, Bahir I, Stelzer G, Zimmerman S, Rosen N, Nativ N, Dalah I, Iny Stein T, Rappaport N, Mituyama T, Safran M, Lancet D. Non-redundant compendium of human ncRNA genes in GeneCards. ACTA ACUST UNITED AC 2012; 29:255-61. [PMID: 23172862 DOI: 10.1093/bioinformatics/bts676] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
MOTIVATION Non-coding RNA (ncRNA) genes are increasingly acknowledged for their importance in the human genome. However, there is no comprehensive non-redundant database for all such human genes. RESULTS We leveraged the effective platform of GeneCards, the human gene compendium, together with the power of fRNAdb and additional primary sources, to judiciously unify all ncRNA gene entries obtainable from 15 different primary sources. Overlapping entries were clustered to unified locations based on an algorithm employing genomic coordinates. This allowed GeneCards' gamut of relevant entries to rise ∼5-fold, resulting in ∼80,000 human non-redundant ncRNAs, belonging to 14 classes. Such 'grand unification' within a regularly updated data structure will assist future ncRNA research. AVAILABILITY AND IMPLEMENTATION All of these non-coding RNAs are included among the ∼122,500 entries in GeneCards V3.09, along with pertinent annotation, automatically mined by its built-in pipeline from 100 data sources. This information is available at www.genecards.org. CONTACT Frida.Belinky@weizmann.ac.il SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Frida Belinky
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bompfünewerer AF, Flamm C, Fried C, Fritzsch G, Hofacker IL, Lehmann J, Missal K, Mosig A, Müller B, Prohaska SJ, Stadler BMR, Stadler PF, Tanzer A, Washietl S, Witwer C. Evolutionary patterns of non-coding RNAs. Theory Biosci 2012; 123:301-69. [PMID: 18202870 DOI: 10.1016/j.thbio.2005.01.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 01/24/2005] [Indexed: 01/04/2023]
Abstract
A plethora of new functions of non-coding RNAs (ncRNAs) have been discovered in past few years. In fact, RNA is emerging as the central player in cellular regulation, taking on active roles in multiple regulatory layers from transcription, RNA maturation, and RNA modification to translational regulation. Nevertheless, very little is known about the evolution of this "Modern RNA World" and its components. In this contribution, we attempt to provide at least a cursory overview of the diversity of ncRNAs and functional RNA motifs in non-translated regions of regular messenger RNAs (mRNAs) with an emphasis on evolutionary questions. This survey is complemented by an in-depth analysis of examples from different classes of RNAs focusing mostly on their evolution in the vertebrate lineage. We present a survey of Y RNA genes in vertebrates and study the molecular evolution of the U7 snRNA, the snoRNAs E1/U17, E2, and E3, the Y RNA family, the let-7 microRNA (miRNA) family, and the mRNA-like evf-1 gene. We furthermore discuss the statistical distribution of miRNAs in metazoans, which suggests an explosive increase in the miRNA repertoire in vertebrates. The analysis of the transcription of ncRNAs suggests that small RNAs in general are genetically mobile in the sense that their association with a hostgene (e.g. when transcribed from introns of a mRNA) can change on evolutionary time scales. The let-7 family demonstrates, that even the mode of transcription (as intron or as exon) can change among paralogous ncRNA.
Collapse
|
41
|
Shukla SK, Kumar V. Hepatitis B virus X protein and c-Myc cooperate in the upregulation of ribosome biogenesis and in cellular transformation. FEBS J 2012; 279:3859-71. [PMID: 22889122 DOI: 10.1111/j.1742-4658.2012.08745.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 07/24/2012] [Accepted: 08/09/2012] [Indexed: 12/19/2022]
Abstract
Viral and cellular oncogenes are well known to enhance rRNA synthesis, leading to increased ribosome biogenesis and cell proliferation. Our study on the molecular underpinnings of the interaction between viral HBx and c-Myc, which is implicated in the development of hepatocellular carcinoma, showed a marked increase in the biosynthesis of rRNA, ribosomes and protein in hepatoma cells. A profound alteration in the nucleolar morphology and biochemical content of these cells was also observed. Increased biosynthetic activity was associated with increased cell proliferation and transformation of immortalized human hepatocytes. Furthermore, inhibition of RNA polymerase III activity impaired the proliferative advantage of hepatoma cells and transformation of immortalized hepatocytes as effectively as cisplatin treatment. These findings were corroborated in a transgenic HBx-myc microenvironment, in which an elevated hepatic level of rRNA was associated with conspicuous morphological and biochemical changes in the hepatocytic nucleoli. Thus, HBx and c-Myc seem to work cooperatively to support ribosome biogenesis and cellular transformation.
Collapse
|
42
|
Lebo KJ, Zappulla DC. Stiffened yeast telomerase RNA supports RNP function in vitro and in vivo. RNA (NEW YORK, N.Y.) 2012; 18:1666-78. [PMID: 22850424 PMCID: PMC3425781 DOI: 10.1261/rna.033555.112] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 06/05/2012] [Indexed: 06/01/2023]
Abstract
The 1157-nt Saccharomyces cerevisiae telomerase RNA, TLC1, in addition to providing a 16-nt template region for reverse transcription, has been proposed to act as a scaffold for protein subunits. Although accessory subunits of the telomerase ribonucleoprotein (RNP) complex function even when their binding sites are relocated on the yeast telomerase RNA, the physical nature of the RNA scaffold has not been directly analyzed. Here we explore the structure-function organization of the yeast telomerase RNP by extensively stiffening the three long arms of TLC1, which connect essential and important accessory protein subunits Ku, Est1, and Sm(7), to its central catalytic hub. This 956-nt triple-stiff-arm TLC1 (TSA-T) reconstitutes active telomerase with TERT (Est2) in vitro. Furthermore, TSA-T functions in vivo, even maintaining longer telomeres than TLC1 on a per RNA basis. We also tested functional contributions of each stiffened arm within TSA-T and found that the stiffened Est1 and Ku arms contribute to telomere lengthening, while stiffening the terminal arm reduces telomere length and telomerase RNA abundance. The fact that yeast telomerase tolerates significant stiffening of its RNA subunit in vivo advances our understanding of the architectural and functional organization of this RNP and, more broadly, our conception of the world of lncRNPs.
Collapse
Affiliation(s)
- Kevin J. Lebo
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - David C. Zappulla
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
43
|
Feagin JE, Harrell MI, Lee JC, Coe KJ, Sands BH, Cannone JJ, Tami G, Schnare MN, Gutell RR. The fragmented mitochondrial ribosomal RNAs of Plasmodium falciparum. PLoS One 2012; 7:e38320. [PMID: 22761677 PMCID: PMC3382252 DOI: 10.1371/journal.pone.0038320] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/03/2012] [Indexed: 11/18/2022] Open
Abstract
Background The mitochondrial genome in the human malaria parasite Plasmodium falciparum is most unusual. Over half the genome is composed of the genes for three classic mitochondrial proteins: cytochrome oxidase subunits I and III and apocytochrome b. The remainder encodes numerous small RNAs, ranging in size from 23 to 190 nt. Previous analysis revealed that some of these transcripts have significant sequence identity with highly conserved regions of large and small subunit rRNAs, and can form the expected secondary structures. However, these rRNA fragments are not encoded in linear order; instead, they are intermixed with one another and the protein coding genes, and are coded on both strands of the genome. This unorthodox arrangement hindered the identification of transcripts corresponding to other regions of rRNA that are highly conserved and/or are known to participate directly in protein synthesis. Principal Findings The identification of 14 additional small mitochondrial transcripts from P. falcipaurm and the assignment of 27 small RNAs (12 SSU RNAs totaling 804 nt, 15 LSU RNAs totaling 1233 nt) to specific regions of rRNA are supported by multiple lines of evidence. The regions now represented are highly similar to those of the small but contiguous mitochondrial rRNAs of Caenorhabditis elegans. The P. falciparum rRNA fragments cluster on the interfaces of the two ribosomal subunits in the three-dimensional structure of the ribosome. Significance All of the rRNA fragments are now presumed to have been identified with experimental methods, and nearly all of these have been mapped onto the SSU and LSU rRNAs. Conversely, all regions of the rRNAs that are known to be directly associated with protein synthesis have been identified in the P. falciparum mitochondrial genome and RNA transcripts. The fragmentation of the rRNA in the P. falciparum mitochondrion is the most extreme example of any rRNA fragmentation discovered.
Collapse
Affiliation(s)
- Jean E Feagin
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lukeš J, Archibald JM, Keeling PJ, Doolittle WF, Gray MW. How a neutral evolutionary ratchet can build cellular complexity. IUBMB Life 2012; 63:528-37. [PMID: 21698757 DOI: 10.1002/iub.489] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Complex cellular machines and processes are commonly believed to be products of selection, and it is typically understood to be the job of evolutionary biologists to show how selective advantage can account for each step in their origin and subsequent growth in complexity. Here, we describe how complex machines might instead evolve in the absence of positive selection through a process of "presuppression," first termed constructive neutral evolution (CNE) more than a decade ago. If an autonomously functioning cellular component acquires mutations that make it dependent for function on another, pre-existing component or process, and if there are multiple ways in which such dependence may arise, then dependence inevitably will arise and reversal to independence is unlikely. Thus, CNE is a unidirectional evolutionary ratchet leading to complexity, if complexity is equated with the number of components or steps necessary to carry out a cellular process. CNE can explain "functions" that seem to make little sense in terms of cellular economy, like RNA editing or splicing, but it may also contribute to the complexity of machines with clear benefit to the cell, like the ribosome, and to organismal complexity overall. We suggest that CNE-based evolutionary scenarios are in these and other cases less forced than the selectionist or adaptationist narratives that are generally told.
Collapse
Affiliation(s)
- Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, České Budĕjovice (Budweis), Czech Republic
| | | | | | | | | |
Collapse
|
45
|
Tu WY, Huang YC, Liu LF, Chang LH, Tam MF. Rpl12p affects the transcription of the PHO pathway high-affinity inorganic phosphate transporters and repressible phosphatases. Yeast 2011; 28:481-93. [DOI: 10.1002/yea.1852] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 02/22/2011] [Indexed: 11/08/2022] Open
|
46
|
Belin S, Hacot S, Daudignon L, Therizols G, Pourpe S, Mertani HC, Rosa-Calatrava M, Diaz JJ. Purification of ribosomes from human cell lines. ACTA ACUST UNITED AC 2011; Chapter 3:Unit 3.40. [PMID: 21154551 DOI: 10.1002/0471143030.cb0340s49] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Highly conserved during evolution, the ribosome is the central effector of protein synthesis. In mammalian cells, the ribosome is a macromolecular complex composed of four different ribosomal RNAs (rRNA) and about 80 ribosomal proteins. Requiring more than 200 factors, ribosome biogenesis is a highly complex process that takes place mainly within the nucleoli of eukaryotic cells. Crystallographic data suggest that the ribosome is a ribozyme, in which the rRNA catalyses the peptide bond formation and ensures quality control of the translation. Ribosomal proteins are involved in this molecular mechanism; nonetheless, their role is still not fully characterized. Recent studies suggest that ribosomes themselves and/or the mechanisms underlying their synthesis, processing, and assembly play a key role in the establishment and progression of several human pathologies. The protocol described here is simple, efficient, and robust, and allows one to purify high-quality ribosomes from human cultured cell lines. Ribosomes purified with this protocol are adequate for most of the subsequent analyses of their RNA and protein content.
Collapse
|
47
|
Zappulla DC, Goodrich KJ, Arthur JR, Gurski LA, Denham EM, Stellwagen AE, Cech TR. Ku can contribute to telomere lengthening in yeast at multiple positions in the telomerase RNP. RNA (NEW YORK, N.Y.) 2011; 17:298-311. [PMID: 21177376 PMCID: PMC3022279 DOI: 10.1261/rna.2483611] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 11/15/2010] [Indexed: 05/21/2023]
Abstract
Unlike ribonucleoprotein complexes that have a highly ordered overall architecture, such as the ribosome, yeast telomerase appears to be much more loosely constrained. Here, we investigate the importance of positioning of the Ku subunit within the 1157-nt yeast telomerase RNA (TLC1). Deletion of the 48-nt Ku-binding hairpin in TLC1 RNA (tlc1Δ48) reduces telomere length, survival of cells with gross chromosomal rearrangements, and de novo telomere addition at a broken chromosome end. To test the function of Ku at novel positions in the telomerase RNP, we reintroduced its binding site into tlc1Δ48 RNA at position 446 or 1029. We found that Ku bound to these repositioned sites in vivo and telomere length increased slightly, but statistically significantly. The ability of telomerase to promote survival of cells with gross chromosomal rearrangements by healing damaged chromosome arms was also partially restored, whereas the kinetics of DNA addition to a specific chromosome break was delayed. Having two Ku sites in TLC1 caused progressive hyperelongation of a variable subset of telomeres, consistent with Ku's role in telomerase recruitment to chromosome ends. The number of Ku-binding sites in TLC1 contributed to telomerase RNA abundance in vivo but was only partially responsible for telomere length phenotypes. Thus, telomerase RNA levels and telomere length regulation can be modulated by the number of Ku sites in telomerase RNA. Furthermore, there is substantial flexibility in the relative positioning of Ku in the telomerase RNP for native telomere length maintenance, although not as much flexibility as for the essential Est1p subunit.
Collapse
Affiliation(s)
- David C Zappulla
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Shen Y, Kim H, Tong M, Li Q. Influence of solution chemistry on the deposition and detachment kinetics of RNA on silica surfaces. Colloids Surf B Biointerfaces 2010; 82:443-9. [PMID: 21030219 DOI: 10.1016/j.colsurfb.2010.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 09/21/2010] [Accepted: 09/23/2010] [Indexed: 11/17/2022]
Abstract
The deposition kinetics of RNA extracted from both virus and bacteria on silica surfaces were examined in both monovalent (NaCl) and divalent (CaCl(2)) solutions under a wide range of environmentally relevant ionic strength and pH conditions by utilizing a quartz crystal microbalance with dissipation (QCM-D). To better understand the RNA deposition mechanisms, QCM-D data were complemented by diffusion coefficients and zeta potentials of RNA as a function of examined solution chemistry conditions. Favorable deposition of RNA on poly-l-lysine-coated (positively charged) silica surfaces was governed by the convective-diffusive transport of RNA to the surfaces. The deposition kinetics of RNA on bare silica surfaces were controlled by classic Derjaguin-Landau-Verwey-Overbeek (DLVO) interactions. The presence of divalent cations (Ca(2+)) in solutions greatly enhanced the deposition kinetics of RNA on silica surfaces. Solution pH also affected the deposition behavior of RNA on silica surfaces. Release experiments showed that detachment of RNA from silica surfaces was significant in NaCl solutions, whereas, the deposited RNA on silica surfaces in CaCl(2) solutions was more likely to be irreversible.
Collapse
Affiliation(s)
- Yun Shen
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Yi He Yuan Road #5, Haidian District, Beijing 100871, PR China
| | | | | | | |
Collapse
|
49
|
Meyer A, Todt C, Mikkelsen NT, Lieb B. Fast evolving 18S rRNA sequences from Solenogastres (Mollusca) resist standard PCR amplification and give new insights into mollusk substitution rate heterogeneity. BMC Evol Biol 2010; 10:70. [PMID: 20214780 PMCID: PMC2841657 DOI: 10.1186/1471-2148-10-70] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 03/09/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The 18S rRNA gene is one of the most important molecular markers, used in diverse applications such as molecular phylogenetic analyses and biodiversity screening. The Mollusca is the second largest phylum within the animal kingdom and mollusks show an outstanding high diversity in body plans and ecological adaptations. Although an enormous amount of 18S data is available for higher mollusks, data on some early branching lineages are still limited. Despite of some partial success in obtaining these data from Solenogastres, by some regarded to be the most "basal" mollusks, this taxon still remained problematic due to contamination with food organisms and general amplification difficulties. RESULTS We report here the first authentic 18S genes of three Solenogastres species (Mollusca), each possessing a unique sequence composition with regions conspicuously rich in guanine and cytosine. For these GC-rich regions we calculated strong secondary structures. The observed high intra-molecular forces hamper standard amplification and appear to increase formation of chimerical sequences caused by contaminating foreign DNAs from potential prey organisms. In our analyses, contamination was avoided by using RNA as a template. Indication for contamination of previously published Solenogastres sequences is presented. Detailed phylogenetic analyses were conducted using RNA specific models that account for compensatory substitutions in stem regions. CONCLUSIONS The extreme morphological diversity of mollusks is mirrored in the molecular 18S data and shows elevated substitution rates mainly in three higher taxa: true limpets (Patellogastropoda), Cephalopoda and Solenogastres. Our phylogenetic tree based on 123 species, including representatives of all mollusk classes, shows limited resolution at the class level but illustrates the pitfalls of artificial groupings formed due to shared biased sequence composition.
Collapse
Affiliation(s)
- Achim Meyer
- Institute of Zoology, Johannes Gutenberg University, Müllerweg 6, 55099 Mainz, Germany
| | - Christiane Todt
- Department of Biology, University of Bergen, Thormøhlens gate 53a, 5008 Bergen, Norway
| | - Nina T Mikkelsen
- The Natural History Collections, Bergen Museum, University of Bergen, Muséplass 3, 5007 Bergen, Norway
| | - Bernhard Lieb
- Institute of Zoology, Johannes Gutenberg University, Müllerweg 6, 55099 Mainz, Germany
| |
Collapse
|
50
|
Abstract
As RNAs fold to functional structures, they traverse complex energy landscapes that include many partially folded and misfolded intermediates. For structured RNAs that possess catalytic activity, this activity can provide a powerful means of monitoring folding that is complementary to biophysical approaches. RNA catalysis can be used to track accumulation of the native RNA specifically and quantitatively, readily distinguishing the native structure from intermediates that resemble it and may not be differentiated by other approaches. Here, we outline how to design and interpret experiments using catalytic activity to monitor RNA folding, and we summarize adaptations of the method that have been used to probe aspects of folding well beyond determination of the folding rates.
Collapse
Affiliation(s)
- Yaqi Wan
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texasat Austin, Austin, Texas, USA
| | | | | |
Collapse
|