1
|
Nie S, Zhang S, Wu R, Zhao Y, Wang Y, Wang X, Zhu M, Huang P. Scutellarin: pharmacological effects and therapeutic mechanisms in chronic diseases. Front Pharmacol 2024; 15:1470879. [PMID: 39575387 PMCID: PMC11578714 DOI: 10.3389/fphar.2024.1470879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/17/2024] [Indexed: 11/24/2024] Open
Abstract
Scutellarin (SCU), a flavonoid glucuronide derived from Scutellaria barbata and Erigeron breviscapus, exhibits broad pharmacological effects with promising therapeutic potential in treating various chronic diseases. It has demonstrated efficacy in modulating multiple biological pathways, including antioxidant, anti-inflammatory, anti-apoptotic, and vasodilatory mechanisms. These protective roles make SCU a valuable compound in treating chronic diseases such as cerebrovascular diseases, cardiovascular diseases, neurodegenerative disorders, and metabolic diseases. Despite its multi-targeted effects, SCU faces challenges such as low bioavailability and limited clinical data, which hinder its widespread therapeutic application. Current research supports its potential to prevent oxidative stress, reduce inflammatory responses, and enhance cell survival in cells and rats. However, more comprehensive studies are required to clarify its molecular mechanisms and to develop strategies that enhance its bioavailability for clinical use. SCU could emerge as a potent therapeutic agent for the treatment of chronic diseases with complex pathophysiological mechanisms. This review examines the current literature on Scutellarin to provide a comprehensive understanding of its pharmacological activity, mechanisms of action, and therapeutic potential in treating chronic diseases.
Collapse
Affiliation(s)
- Shanshan Nie
- Department of Cardiovascular Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Shan Zhang
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ruipeng Wu
- Department of Cardiovascular Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yuhang Zhao
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yongxia Wang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xinlu Wang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Mingjun Zhu
- Department of Cardiovascular Disease, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Peng Huang
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
2
|
Guan Z. Alterations in Neuronal Nicotinic Acetylcholine Receptors in the Pathogenesis of Various Cognitive Impairments. CNS Neurosci Ther 2024; 30:e70069. [PMID: 39370620 PMCID: PMC11456617 DOI: 10.1111/cns.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 09/02/2024] [Accepted: 09/15/2024] [Indexed: 10/08/2024] Open
Abstract
Cognitive impairment is a typical symptom of both neurodegenerative and certain other diseases. In connection with these different pathologies, the etiology and neurological and metabolic changes associated with cognitive impairment must differ. Until these characteristics and differences are understood in greater detail, pharmacological treatment of the different forms of cognitive impairment remains suboptimal. Neurotransmitter receptors, including neuronal nicotinic acetylcholine receptors (nAChRs), dopamine receptors, and glutamine receptors, play key roles in the functions and metabolisms of the brain. Among these, the role of nAChRs in the development of cognitive impairment has attracted more and more attention. The present review summarizes what is presently known concerning the structure, distribution, metabolism, and function of nAChRs, as well as their involvement in major cognitive disorders such as Alzheimer's disease, Parkinson's disease, vascular dementia, schizophrenia, and diabetes mellitus. As will be discussed, the relevant scientific literature reveals clearly that the α4β2 and α7 nAChR subtypes and/or subunits of the receptors play major roles in maintaining cognitive function and in neuroprotection of the brain. Accordingly, focusing on these as targets of drug therapy can be expected to lead to breakthroughs in the treatment of cognitive disorders such as AD and schizophrenia.
Collapse
Affiliation(s)
- Zhi‐Zhong Guan
- Department of PathologyThe Affiliated Hospital of Guizhou Medical UniversityGuiyangP.R. China
- Key Laboratory of Endemic and Ethnic DiseasesGuizhou Medical University, Ministry of Education and Provincial Key Laboratory of Medical Molecular BiologyGuiyangP.R. China
| |
Collapse
|
3
|
Dong X, Qu S. Erigeron breviscapus (Vant.) Hand-Mazz.: A Promising Natural Neuroprotective Agent for Alzheimer's Disease. Front Pharmacol 2022; 13:877872. [PMID: 35559239 PMCID: PMC9086453 DOI: 10.3389/fphar.2022.877872] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/11/2022] [Indexed: 11/21/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease and is characterized by progressive cognitive dysfunction and memory loss in the elderly, which seriously affects the quality of their lives. Currently, the pathogenesis of AD remains unclear. Molecular biologists have proposed a variety of hypotheses, including the amyloid-β hypothesis, tau hyperphosphorylation hypothesis, cholinergic neuron injury, inflammation caused by an abnormal immune response, and gene mutation. Drugs based on these pathological studies, including cholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists, have achieved a certain level of efficacy but are far from meeting clinical needs. In the recent years, some important advances have been made in the traditional Chinese medicine treatment of AD. Erigeron breviscapus (Vant.) Hand-Mazz. (EBHM) is an important medicinal plant distributed in Yunnan Province, China. Studies have shown that EBHM and its active ingredients have a variety of pharmacological effects with good therapeutic effects and wide application prospects for cognitive disability-related diseases. However, to our best knowledge, only few review articles have been published on the anti-AD effects of EBHM. Through a literature review, we identified the possible pathogenesis of AD, discussed the cultivation and phytochemistry of EBHM, and summarized the pharmacological mechanism of EBHM and its active ingredients in the treatment of AD to provide suggestions regarding anti-AD therapy as well as a broader insight into the therapeutic potential of EBHM.
Collapse
Affiliation(s)
- Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shengtao Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Tawfeek SE, Shalaby AM, Alabiad MA, Albackoosh AAAA, Albakoush KMM, Omira MMA. Metanil yellow promotes oxidative stress, astrogliosis, and apoptosis in the cerebellar cortex of adult male rat with possible protective effect of scutellarin: A histological and immunohistochemical study. Tissue Cell 2021; 73:101624. [PMID: 34419739 DOI: 10.1016/j.tice.2021.101624] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/03/2021] [Accepted: 08/14/2021] [Indexed: 12/19/2022]
Abstract
Metanil yellow is a food dye that has harmful impacts on different body systems. Scutellarin has antioxidant, antiapoptotic, and anti-inflammatory activities. The aim of the current research was to study the effect of chronic administration of metanil yellow on the cerebellar cortex of rats and to evaluate the protective effect of scutellarin. Forty adult male rats were allocated into four groups: group I acted as control, group II was administrated scutellarin (100 mg/kg/day), group III was administrated metanil yellow (200 mg/kg/day), and group IV was administrated scutellarin and metanil yellow as in group II and group III. The agents were administered via oral gavage for 8 weeks. Metanil yellow induced a significant rise in the malondialdehyde coupled with a significant reduction in the superoxide dismutase and glutathione peroxidase. The Purkinje cells were irregular and shrunken with condensed nuclei. A significant elevation in glial fibrillary acidic protein (GFAP) and cleaved caspase-3 as well as a significant reduction of synaptophysin expression were revealed in comparison with the control group. Interestingly, few changes were noticed in rats given metanil yellow concomitant with scutellarin. In conclusion, scutellarin could protect against metanil yellow-induced alterations in the cerebellar cortex by reducing oxidative stress and minimizing gliosis.
Collapse
Affiliation(s)
- Shereen Elsayed Tawfeek
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Egypt; Anatomy Department, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Amany Mohamed Shalaby
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| | - Mohamed Ali Alabiad
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | | | | | | |
Collapse
|
5
|
Scutellarin ameliorates neonatal hypoxic-ischemic encephalopathy associated with GAP43-dependent signaling pathway. Chin Med 2021; 16:105. [PMID: 34663387 PMCID: PMC8524967 DOI: 10.1186/s13020-021-00517-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/07/2021] [Indexed: 02/08/2023] Open
Abstract
Background Neonatal hypoxic-ischemic encephalopathy (HIE) refers to the perinatal asphyxia caused by the cerebral hypoxic-ischemic injury. The current study was aimed at investigating the therapeutic efficacy of Scutellarin (Scu) administration on neurological impairments induced by hypoxic-ischemic injury and exploring the underlying mechanisms. Methods Primary cortical neurons were cultured and subjected to oxygen–glucose deprivation (OGD), and then treated with Scu administration. The growth status of neurons was observed by immunofluorescence staining of TUJ1 and TUNEL. Besides, the mRNA level of growth-associated protein 43 (GAP43) in OGD neurons with Scu treatment was detected by quantitative real-time polymerase chain reaction (qRT-PCR). To further verify the role of GAP43 in Scu treatment, GAP43 siRNA and knockout were applied in vitro and in vivo. Moreover, behavioral evaluations were performed to elucidate the function of GAP43 in the Scu-ameliorated long-term neurological impairments caused by HI insult. The underlying biological mechanism of Scu treatment was further elucidated via network pharmacological analysis. Finally, the interactive genes with GAP43 were identified by Gene MANIA and further validated by qRT-PCR. Results Our data demonstrated that Scu treatment increased the number of neurons and axon growth, and suppressed cell apoptosis in vitro. And the expression of GAP43 was downregulated after OGD, but reversed by Scu administration. Besides, GAP43 silencing aggravated the Scu-ameliorated neuronal death and axonal damage. Meanwhile, GAP43 knockout enlarged brain infarct area and deteriorated the cognitive and motor dysfunctions of HI rats. Further, network pharmacological analysis revealed the drug targets of Scu participated in such biological processes as neuronal death and regulation of neuronal death, and apoptosis-related pathways. GAP43 exhibited close relationship with PTN, JAK2 and STAT3, and GAP43 silencing upregulated the levels of PTN, JAK2 and STAT3. Conclusions Collectively, our findings revealed Scu treatment attenuated long-term neurological impairments after HI by suppressing neuronal death and enhancing neurite elongation through GAP43-dependent pathway. The crucial role of Scutellarin in neuroprotection provided a novel possible therapeutic agent for the treatment of neonatal HIE. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00517-z.
Collapse
|
6
|
Uddin MS, Mamun AA, Rahman MM, Jeandet P, Alexiou A, Behl T, Sarwar MS, Sobarzo-Sánchez E, Ashraf GM, Sayed AA, Albadrani GM, Peluso I, Abdel-Daim MM. Natural Products for Neurodegeneration: Regulating Neurotrophic Signals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8820406. [PMID: 34239696 PMCID: PMC8241508 DOI: 10.1155/2021/8820406] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/20/2021] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders (NDs) are heterogeneous groups of ailments typically characterized by progressive damage of the nervous system. Several drugs are used to treat NDs but they have only symptomatic benefits with various side effects. Numerous researches have been performed to prove the advantages of phytochemicals for the treatment of NDs. Furthermore, phytochemicals such as polyphenols might play a pivotal role in rescue from neurodegeneration due to their various effects as anti-inflammatory, antioxidative, and antiamyloidogenic agents by controlling apoptotic factors, neurotrophic factors (NTFs), free radical scavenging system, and mitochondrial stress. On the other hand, neurotrophins (NTs) including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), NT4/5, and NT3 might have a crucial neuroprotective role, and their diminution triggers the development of the NDs. Polyphenols can interfere directly with intracellular signaling molecules to alter brain activity. Several natural products also improve the biosynthesis of endogenous genes encoding antiapoptotic Bcl-2 as well as NTFs such as glial cell and brain-derived NTFs. Various epidemiological studies have demonstrated that the initiation of these genes could play an essential role in the neuroprotective function of dietary compounds. Hence, targeting NTs might represent a promising approach for the management of NDs. In this review, we focus on the natural product-mediated neurotrophic signal-modulating cascades, which are involved in the neuroprotective effects.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong
| | - Md Motiar Rahman
- Laboratory of Clinical Biochemistry and Nutritional Sciences (LCBNS), Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, USC INRAe 1488, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, P.O. Box 1039, CEDEX 2, 51687 Reims, France
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, 2770 Hebersham, Australia
- AFNP Med Austria, 1010 Wien, Austria
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, 8330507 Santiago, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), 00142 Rome, Italy
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
7
|
Fan H, Lin P, Kang Q, Zhao ZL, Wang J, Cheng JY. Metabolism and Pharmacological Mechanisms of Active Ingredients in Erigeron breviscapus. Curr Drug Metab 2021; 22:24-39. [PMID: 33334284 DOI: 10.2174/1389200221666201217093255] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/14/2020] [Accepted: 10/26/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Erigeron breviscapus (Vant.) Hand-Mazz. is a plant species in the Compositae family. More than ten types of compounds-such as flavonoids, caffeinate esters, and volatile oils-have been identified in Erigeron breviscapus; however, it remains unknown as to which compounds are associated with clinical efficacy. In recent years, flavonoids and phenolic acids have been considered as the main effective components of Erigeron breviscapus. The metabolism and mechanisms of these compounds in vivo have been extensively studied to improve our understanding of the drug. METHODS In the present review, we summarize the relationships among these compounds, their metabolites, and their pharmacodynamics. Many methods have been implemented to improve the separation and bioavailability of these compounds from Erigeron breviscapus. RESULTS In China, Erigeron breviscapus has been used for many years. In recent years, through the study of its metabolism and the mechanisms of its effective components, the effects of Erigeron breviscapus in the treatment of various diseases have been extensively studied. Findings have indicated that Erigeron breviscapus improves cardiovascular and cerebrovascular function and that one of its ingredients, scutellarin, has potential value in the treatment of Alzheimer's disease, cancer, diabetic vascular complications, and other conditions. In addition, phenolic acid compounds and their metabolites also play an important role in anti-oxidation, anti-inflammation, and improving blood lipids. CONCLUSION Erigeron breviscapus plays an important role in the prevention and treatment of cardiovascular/ cerebrovascular diseases, neuroprotection, and cancer through many different mechanisms of action. Further investigation of its efficacious components and metabolites may provide more possibilities for the clinical application of traditional Chinese medicine and the development of novel drugs.
Collapse
Affiliation(s)
- Hua Fan
- Liaoning Inspection, Examination & Certification Centre, Shenyang110036, China
| | - Peng Lin
- Liaoning Inspection, Examination & Certification Centre, Shenyang110036, China
| | - Qiang Kang
- Liaoning Inspection, Examination & Certification Centre, Shenyang110036, China
| | - Zhi-Long Zhao
- Liaoning Inspection, Examination & Certification Centre, Shenyang110036, China
| | - Ji Wang
- Liaoning Inspection, Examination & Certification Centre, Shenyang110036, China
| | - Jia-Yi Cheng
- Liaoning University of Traditional Chinese Medicine, Shenyang110847, China
| |
Collapse
|
8
|
Xiong LL, Tan YX, Du RL, Peng Y, Xue LL, Liu J, Al-Hawwas M, Bobrovskaya L, Liu DH, Chen L, Wang TH, Zhou XF. Effect of Sutellarin on Neurogenesis in Neonatal Hypoxia–Ischemia Rat Model: Potential Mechanisms of Action. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:677-703. [PMID: 33704029 DOI: 10.1142/s0192415x21500312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To investigate the therapeutic efficacy of Scutellarin (SCU) on neurite growth and neurological functional recovery in neonatal hypoxic-ischemic (HI) rats. Primary cortical neurons were cultured to detect the effect of SCU on cell viability of neurons under oxygen-glucose deprivation (OGD). Double immunofluorescence staining of Tuj1 and TUNEL then observed the neurite growth and cell apoptosis in vitro,and double immunofluorescence staining of NEUN and TUNEL was performed to examine the neuronal apoptosis and cell apoptosis in brain tissues after HI in vivo. Pharmacological efficacy of SCU was also evaluated in HI rats by neurobehavioral tests, triphenyl tetrazolium chloride staining, Hematoxylin and eosin staining and Nissl staining. Astrocytes and microglia expression in damaged brain tissues were detected by immunostaining of GFAP and Iba1. A quantitative real-time polymerase chain reaction and western blot were applied to investigate the genetic expression changes and the protein levels of autophagy-related proteins in the injured cortex and hippocampus after HI. We found that SCU administration preserved cell viability, promoted neurite outgrowth and suppressed apoptosis of neurons subjected to OGD both in vitroand in vivo. Meanwhile, 20 mg/kg SCU treatment improved neurological functions and decreased the expression of astrocytes and microglia in the cortex and hippocampus of HI rats. Additionally, SCU treatment depressed the elevated levels of autophagy-related proteins and the p75 neurotrophin receptor (p75NTR) in both cortex and hippocampus. This study demonstrated the potential therapeutic efficacy of SCU by enhancing neurogenesis and restoring long-term neurological dysfunctions, which might be associated with p75NTR depletion in HI rats.
Collapse
Affiliation(s)
- Liu-Lin Xiong
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, South Australia, Australia
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi 550000, P. R. China
| | - Ya-Xin Tan
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming 650031, P. R. China
| | - Ruo-Lan Du
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming 650031, P. R. China
| | - Yuan Peng
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming 650031, P. R. China
| | - Lu-Lu Xue
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming 650031, P. R. China
| | - Jia Liu
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming 650031, P. R. China
| | - Mohammed Al-Hawwas
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, South Australia, Australia
| | - Larisa Bobrovskaya
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, South Australia, Australia
| | - Dong-Hui Liu
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, South Australia, Australia
| | - Li Chen
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Ting-Hua Wang
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming 650031, P. R. China
| | - Xin-Fu Zhou
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, South Australia, Australia
| |
Collapse
|
9
|
Bian HT, Wang GH, Huang JJ, Liang L, Xiao L, Wang HL. Scutellarin protects against lipopolysaccharide-induced behavioral deficits by inhibiting neuroinflammation and microglia activation in rats. Int Immunopharmacol 2020; 88:106943. [PMID: 33182053 DOI: 10.1016/j.intimp.2020.106943] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/28/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022]
Abstract
Depression is a complex and heterogeneous mental disorder. Yet, the mechanisms behind depression remain elusive. Increasing evidence suggests that inflammatory reaction and microglia activation are involved in the pathogenesis of depression. Scutellarin has been found to have anti-inflammatory and antioxidant effects in various diseases. The aim of the present study was to investigate the anti-depressant effects and potential mechanism of scutellarin in the lipopolysaccharide (LPS)-induced depression animal model. The behavioral tests showed that scutellarin administration ameliorated LPS-induced depressive-like behaviors. Additionally, the scutellarin treatment inhibited reactive oxygen species (ROS) generation. Western blot analysis results showed that scutellarin pretreatment suppressed LPS-induced the protein levels of NLRP3, caspase-1, and IL-1β. Furthermore, immunostaining results showed that scutellarin pretreatment inhibited LPS-induced microglia activation in the hippocampus of rats. These findings suggest that scutellarin effectively improves LPS-induced inflammation-related depressive-like behaviors by inhibiting LPS-induced neuroinflammation and microglia activation, possibly via regulation of the ROS/NLRP3 signaling pathway and microglia activation. Thus, scutellarin may serve as a potential therapeutic strategy for depression.
Collapse
Affiliation(s)
- He-Tao Bian
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Gao-Hua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China.
| | - Jun-Jie Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Liang Liang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| | - Hui-Ling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan 430060, Hubei, PR China
| |
Collapse
|
10
|
Yao YY, Ling EA, Lu D. Microglia mediated neuroinflammation - signaling regulation and therapeutic considerations with special reference to some natural compounds. Histol Histopathol 2020; 35:1229-1250. [PMID: 32662061 DOI: 10.14670/hh-18-239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neuroinflammation plays a central role in multiple neurodegenerative diseases and neurological disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), cerebral ischemic injury etc. In this connection, microglia, the key players in the central nervous system, mediate the inflammatory response process. In brain injuries, activated microglia can clear the cellular debris and invading pathogens and release neurotrophic factors; however, prolonged microglia activation may cause neuronal death through excessive release of inflammatory mediators. Therefore, it is of paramount importance to understand the underlying molecular mechanisms of microglia activation to design an effective therapeutic strategy to alleviate neuronal injury. Recent studies have shown that some natural compounds and herbal extracts possess anti-inflammatory properties that may suppress microglial activation and ameliorate neuroinflammation and hence are neuroprotective. In this review, we will update some of the common signaling pathways that regulate microglia activation. Among the various signaling pathways, the Notch-1, mitogen-activated protein kinases (MAPKs), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) have been reported to exacerbate microglia mediated neuroinflammation that is implicated in different neuropathological diseases. The search for natural compounds or agents, specifically those derived from natural herbal extracts such as Gastrodin, scutellarin, RG1 etc. has been the focus of many of our recent studies because they have been found to regulate microglia activation. The pharmacological effects of these agents and their potential mechanisms for regulating microglia activation are systematically reviewed here for a fuller understanding of their biochemical action and therapeutic potential for treatment of microglia mediated neuropathological diseases.
Collapse
Affiliation(s)
- Yue-Yi Yao
- Technology Transfer Center, Kunming Medical University, Kunming, China
| | - Eng-Ang Ling
- Department of Anatomy, Young Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Di Lu
- Technology Transfer Center, Kunming Medical University, Kunming, China.
| |
Collapse
|
11
|
Li T, Wu D, Yang Y, Xiao T, Han Y, Li J, Liu T, Li L, Dai Z, Li Y, Fu X. Synthesis, pharmacological evaluation and mechanistic study of scutellarin methyl ester -4'-dipeptide conjugates for the treatment of hypoxic-ischemic encephalopathy (HIE) in rat pups. Bioorg Chem 2020; 101:103980. [PMID: 32540782 DOI: 10.1016/j.bioorg.2020.103980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/13/2020] [Accepted: 05/29/2020] [Indexed: 12/24/2022]
Abstract
A series of novel scutellarin methyl ester-4'-dipeptide conjugates exhibiting active transport characteristics and protection against pathological damage caused by hypoxic-ischemic encephalopathy (HIE) were successfully designed and synthesized. The physiochemical properties of the obtained compounds, as well as the Caco-2 cell-based permeability and uptake into hPepT1-MDCK cells were evaluated using various analytical methods. Scutellarin methyl ester-4'-Val-homo-Leu dipeptide (5k) was determined as the optimal candidate with a high apparent permeability coefficient (Papp A to B) of 1.95 ± 0.24 × 10-6 cm/s, low ER (Papp BL to AP/Papp AP to BL) of 0.52 in Caco-2 cells, and high uptake of 25.47 μmol/mg/min in hPepT1-MDCK cells. Comprehensive mechanistic studies demonstrated that pre-treatment of PC12 cells with 5k resulted in more potent anti-oxidative activity, which was manifested by a significant decrease in the malondialdehyde (MDA) and reactive oxygen species (ROS) levels, attenuation of the H2O2-induced apoptotic cell accumulation in the sub-G1 peak, and improvement in the expression of the relevant apoptotic proteins (Bcl-2, Bax, and cleave-caspase-3). Moreover, evaluation of in vivo neuroprotective characteristics in hypoxic-ischemic rat pups revealed that 5k significantly reduced infarction and alleviated the related pathomorphological damage. The compound was also shown to ameliorate the neurological deficit at 48 h as well as to decrease the brain tissue loss at 4 weeks. Conjugate 5k was demonstrated to reduce the amyloid precursor protein (APP) and β-site APP-converting enzyme-1 (BACE-1) expression. Pharmacokinetic characterization of 5k indicated favorable druggability and pharmacokinetic properties. The conducted docking studies revealed optimal binding of 5k to PepT1. Hydrogen bonding as well as cation-π interactions with the corresponding amino acid residues in the target active site were clearly observed. The obtained results suggest 5k as a potential candidate for anti-HIE therapy, which merits further investigation.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China
| | - Dirong Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China
| | - Yang Yang
- The Second People's Hospital of Jiangyou City, Jiangyou City 621701, Sichuan Province, China
| | - Tao Xiao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China
| | - Yilin Han
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China
| | - Jing Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Li Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Zeqin Dai
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Yongjun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China
| | - Xiaozhong Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines & Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang 550004, Guizhou, China.
| |
Collapse
|
12
|
Scutellarin inhibits the uninduced and metal-induced aggregation of α-Synuclein and disaggregates preformed fibrils: implications for Parkinson's disease. Biochem J 2020; 477:645-670. [DOI: 10.1042/bcj20190705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 01/07/2023]
Abstract
The aggregation of the protein alpha synuclein (α-Syn), a known contributor in Parkinson's disease (PD) pathogenesis is triggered by transition metal ions through occupational exposure and disrupted metal ion homeostasis. Naturally occurring small molecules such as polyphenols have emerged as promising inhibitors of α-Syn fibrillation and toxicity and could be potential therapeutic agents against PD. Here, using an array of biophysical tools combined with cellular assays, we demonstrate that the novel polyphenolic compound scutellarin efficiently inhibits the uninduced and metal-induced fibrillation of α-Syn by acting at the nucleation stage and stabilizes a partially folded intermediate of α-Syn to form SDS-resistant, higher-order oligomers (∼680 kDa) and also disaggregates preformed fibrils of α-Syn into similar type of higher-order oligomers. ANS binding assay, fluorescence lifetime measurements and cell-toxicity experiments reveal scutellarin-generated oligomers as compact, low hydrophobicity structures with modulated surface properties and significantly reduced cytotoxicity than the fibrillation intermediates of α-Syn control. Fluorescence spectroscopy and isothermal titration calorimetry establish the binding between scutellarin and α-Syn to be non-covalent in nature and of moderate affinity (Ka ∼ 105 M−1). Molecular docking approaches suggest binding of scutellarin to the residues present in the NAC region and C-terminus of monomeric α-Syn and the C-terminal residues of fibrillar α-Syn, demonstrating inhibition of fibrillation upon binding to these residues and possible stabilization of the autoinhibitory conformation of α-Syn. These findings reveal interesting insights into the mechanism of scutellarin action and establish it as an efficient modulator of uninduced as well as metal-induced α-Syn fibrillation and toxicity.
Collapse
|
13
|
Li HJ, Sun ZL, Pan YB, Xu MH, Feng DF. Effect of α7nAChR on learning and memory dysfunction in a rat model of diffuse axonal injury. Exp Cell Res 2019; 383:111546. [PMID: 31398352 DOI: 10.1016/j.yexcr.2019.111546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 11/30/2022]
Abstract
Diffuse axonal injury (DAI) is the predominant effect of severe traumatic brain injury and significantly contributes to cognitive deficits. The mechanisms that underlie these cognitive deficits are often associated with complex molecular alterations. α7nAChR, one of the abundant and widespread nicotinic acetylcholine receptors (nAChRs) in the brain, plays important physiological functions in the central nervous system. However, the relationship between temporospatial alterations in the α7nAChR and DAI-related learning and memory dysfunction are not completely understood. Our study detected temporospatial alterations of α7nAChR in vulnerable areas (hippocampus, internal capsule, corpus callosum and brain stem) of DAI rats and evaluated the development and progression of learning and memory dysfunction via the Morris water maze (MWM). We determined that α7nAChR expression in vulnerable areas was mainly reduced at the recovery of DAI in rats. Moreover, the escape latency of the injured group increased significantly and the percentages of the distance travelled and time spent in the target quadrant were significantly decreased after DAI. Furthermore, α7nAChR expression in the vulnerable area was significantly positively correlated with MWM performance after DAI according to regression analysis. In addition, we determined that a selective α7nAChR agonist significantly improved learning and memory dysfunction. Rats in the α7nAChR agonist group showed better learning and memory performance than those in the antagonist group. These results demonstrate that microstructural injury-induced alterations of α7nAChR in the vulnerable area are significantly correlated with learning and memory dysfunctions after DAI and that augmentation of the α7nAChR level by its agonist contributes to the improvement of learning and memory function.
Collapse
Affiliation(s)
- Hong-Jiang Li
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China; Institute of Traumatic Medicine, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Zhao-Liang Sun
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China; Institute of Traumatic Medicine, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Yuan-Bo Pan
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Mang-Hua Xu
- Institute of Traumatic Medicine, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Dong-Fu Feng
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China; Institute of Traumatic Medicine, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China.
| |
Collapse
|
14
|
Zhou H, Tai J, Xu H, Lu X, Meng D. Xanthoceraside Could Ameliorate Alzheimer's Disease Symptoms of Rats by Affecting the Gut Microbiota Composition and Modulating the Endogenous Metabolite Levels. Front Pharmacol 2019; 10:1035. [PMID: 31572201 PMCID: PMC6753234 DOI: 10.3389/fphar.2019.01035] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 08/14/2019] [Indexed: 01/29/2023] Open
Abstract
Xanthoceraside (XAN) is a natural-derived compound with anti-Alzheimer activity from the husks of Xanthoceras sorbifolia. Although its therapeutic effect had been confirmed in previous studies, the mechanism was still unclear due to its poor solubility and low permeability. In this study, the pharmacological effect of XAN on Alzheimer's disease (AD) was confirmed by behavior experiments and H&E staining observation. Fecal microbiota transplantation (FMT) experiment also replicated the therapeutic effects, which indicates the potential targets of XAN on gut microbiota. The sequencing of 16S rRNA genes in fecal samples demonstrated that XAN reversed gut microbiota dysbiosis in AD animals. XAN could change the relative abundances of several phyla and genus of bacterial, particularly the ratio of Firmicutes/Bacteroidetes. Among them, Clostridium IV, Desulfovibrio, Corynebacterium, and Enterorhabdus had been reported to be involved in the pathologic developments of AD and other central nervous system disease. In metabolomics study, a series of host endogenous metabolites were detected, including amino acids, lysophosphatidylcholine, dihydrosphingosine, phytosphingosine, inosine, and hypoxanthine, which were all closely associated with the development of AD. Combined with the Spearman's correlation analysis, it was confirmed that the increases of five bacterial strains and decreases of six bacterial strains were closely correlated with the increases of nine host metabolites and the decreases of another five host metabolites. Therefore, XAN can modulate the structure of gut microbiota in AD rats; the changes of gut microbiota were significantly correlated with endogenous metabolites, and symptom of AD was ultimately alleviated. Our findings suggest that XAN may be a potential therapeutic drug for AD, and the gut microbiota may be potential targeting territory of XAN via microbiome-gut-brain pathway.
Collapse
Affiliation(s)
- Hongxu Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jingjie Tai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Haiyan Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiumei Lu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Dali Meng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
15
|
Xu M, Zhang X, Ren F, Yan T, Wu B, Bi K, Bi W, Jia Y. Essential oil of Schisandra chinensis ameliorates cognitive decline in mice by alleviating inflammation. Food Funct 2019; 10:5827-5842. [PMID: 31463498 DOI: 10.1039/c9fo00058e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, we aim to assess possible impacts of essential oil (SEO) from Schisandra chinensis (Turcz.) Baill. (S. chinensis) on mice with cognition impairment. Our data showed that SEO improved the cognitive ability of mice with Aβ1-42 or lipopolysaccharides (LPS)-induced Alzheimer's disease (AD) and suppressed the production of tumor necrosis factor-a (TNF-a), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in the hippocampus. Furthermore, SEO inhibited p38 activation, but had little effect on other signaling proteins in the MAPK family, such as extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase 1/2 (JNK). The SEO and BV-2 microglia co-culture was performed to further confirm the anti-inflammatory activity of SEO. The data showed that SEO decreased nitric oxide (NO) levels in LPS-stimulated BV-2 microglia and significantly blocked LPS-induced MAPKs activation. Taken together, these findings suggested that SEO produces anti-AD effects on AD mice partly by modulating neuroinflammation through the NF-κB/MAPK signaling pathway.
Collapse
Affiliation(s)
- Mengjie Xu
- Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Traditional Chinese MateriaMedica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Xiaoying Zhang
- Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Traditional Chinese MateriaMedica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Fangyi Ren
- Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Traditional Chinese MateriaMedica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Tingxu Yan
- Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| | - Bo Wu
- Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| | - Kaishun Bi
- The Engineering Laboratory of National and Local Union of Quality Control for Traditional Chinese Medicine, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Wenchuan Bi
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Ying Jia
- Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| |
Collapse
|
16
|
Wang L, Ma Q. Clinical benefits and pharmacology of scutellarin: A comprehensive review. Pharmacol Ther 2018; 190:105-127. [PMID: 29742480 DOI: 10.1016/j.pharmthera.2018.05.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
17
|
Zeng YQ, Cui YB, Gu JH, Liang C, Zhou XF. Scutellarin Mitigates Aβ-Induced Neurotoxicity and Improves Behavior Impairments in AD Mice. Molecules 2018; 23:molecules23040869. [PMID: 29642616 PMCID: PMC6017345 DOI: 10.3390/molecules23040869] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/02/2018] [Accepted: 04/06/2018] [Indexed: 01/29/2023] Open
Abstract
Alzheimer’s disease (AD) is pathologically characterized by excessive accumulation of amyloid-beta (Aβ) within extracellular spaces of the brain. Aggregation of Aβ has been shown to trigger oxidative stress, inflammation, and neurotoxicity resulting in cognitive dysfunction. In this study, we use models of cerebral Aβ amyloidosis to investigate anti-amyloidogenic effects of scutellarin in vitro and in vivo. Our results show that scutellarin, through binding to Aβ42, efficiently inhibits oligomerization as well as fibril formation and reduces Aβ oligomer-induced neuronal toxicity in cell line SH-SY5Y. After nine months of treatment in APP/PS1 double-transgenic mice, scutellarin significantly improves behavior, reduces soluble and insoluble Aβ levels in the brain and plasma, decreases Aβ plaque associated gliosis and levels of proinflammatory cytokines TNF-α and IL-6, attenuates neuroinflammation, displays anti-amyloidogenic effects, and highlights the beneficial effects of intervention on development or progression of AD-like neuropathology.
Collapse
Affiliation(s)
- Yue-Qin Zeng
- Key Laboratory of Stem Cells and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China.
| | - Yin-Bo Cui
- Department of Biochemistry, College of Basic Medicine, Kunming Medical University, Kunming 650500, China.
| | - Juan-Hua Gu
- Key Laboratory of Stem Cells and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China.
| | - Chen Liang
- Key Laboratory of Stem Cells and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China.
| | - Xin-Fu Zhou
- Key Laboratory of Stem Cells and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China.
- School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide 5001, SA, Australia.
| |
Collapse
|
18
|
Chledzik S, Strawa J, Matuszek K, Nazaruk J. Pharmacological Effects of Scutellarin, An Active Component of Genus Scutellaria and Erigeron: A Systematic Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:319-337. [PMID: 29433387 DOI: 10.1142/s0192415x18500167] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Flavonoid compound scutellarin (Scu) is quite frequently met in the plant kingdom, particularly in the genus Scutellaria (Lamiaceae) and Erigeron (Asteraceae). The extract of the herb of Erigeron breviscapus, containing this component in high amount, has been used for many years in traditional Chinese medicine. In recent years, studies have made great progress on the usefulness of Scu for treating various diseases by testing its mechanism of action. They support the traditional use of Scu rich plant in heart and cerebral ischemia. Scu can potentially be applied in Alzheimer's disease, Helicobacter pylori infection, vascular complications of diabetes and as an inhibitor of certain carcinomas. Various methods were designed to improve its isolation from plant material, solubility, absorption and bioavailability. On the basis of recent studies, it is suggested that Scu could be a promising candidate for new natural drug and deserves particular attention in further research and development.
Collapse
Affiliation(s)
- Sebastian Chledzik
- 1 Department of Pharmacognosy, Medical University of Bialystok, Bialystok, Poland
| | - Jakub Strawa
- 1 Department of Pharmacognosy, Medical University of Bialystok, Bialystok, Poland
| | - Katarzyna Matuszek
- 1 Department of Pharmacognosy, Medical University of Bialystok, Bialystok, Poland
| | - Jolanta Nazaruk
- 1 Department of Pharmacognosy, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
19
|
Shin JW, Kweon KJ, Kim DK, Kim P, Jeon TD, Maeng S, Sohn NW. Scutellarin Ameliorates Learning and Memory Deficit via Suppressing β-Amyloid Formation and Microglial Activation in Rats with Chronic Cerebral Hypoperfusion. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1203-1223. [PMID: 30149759 DOI: 10.1142/s0192415x18500635] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Chronic cerebral hypoperfusion is considered as a pivotal factor of cognitive impairment that occurs in cerebrovascular diseases. This study investigated the ameliorating effect of scutellarin (SCT) on spatial cognitive impairment and β-amyloid (Aβ) formation in rats with chronic cerebral hypoperfusion induced by permanent bilateral common carotid artery occlusion (pBCAO). SCT is a flavonoid in medicinal herb of Erigeron breviscapus (vant.) Hand. Mazz. known to have neuroprotective, antioxidative and anti-inflammatory effects. However, the beneficial effect and pivotal mechanism of SCT on cognitive impairment are still unclear. SCT was treated orally with two doses (10 or 30 mg/kg) for 4 weeks. Results of Morris water maze test performed on the ninth week after pBCAO revealed that SCT (30 mg/kg)-treated rats had significantly shortened escape latencies in acquisition training trials, significantly prolonged swimming time at the platform and its surrounding zone, significant increase in memory score, significant reduction in the number of target heading, and significant reduction in the time required for the first target heading during the retention trial compared to rats in the sham-control group. SCT significantly inhibited the production of Aβ(1-40) and Aβ(1–42) in brain tissues. However, SCT significantly upregulated the expression levels of amyloid precursor protein and β-site APP-converting enzyme-1 in the hippocampus. In addition, SCT significantly inhibited the activation of Iba1-expressing microglia in brain tissues. The results suggest that SCT can exert ameliorating effect on spatial cognitive impairment caused by chronic cerebral hypoperfusion through suppressing Aβ formation and microglial activation in brain tissues. Therefore, SCT can be used as a beneficial drug for vascular dementia and Alzheimer's disease.
Collapse
Affiliation(s)
- Jung-Won Shin
- 1 Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17404, Republic of Korea
| | - Ki-Jung Kweon
- 1 Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17404, Republic of Korea
| | - Dong-Kyu Kim
- 1 Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17404, Republic of Korea
| | - Pyungsoo Kim
- 1 Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17404, Republic of Korea
| | - Tae-Dong Jeon
- 1 Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17404, Republic of Korea
| | - Sungho Maeng
- 1 Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17404, Republic of Korea
| | - Nak-Won Sohn
- 1 Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17404, Republic of Korea
| |
Collapse
|
20
|
Baluchnejadmojarad T, Zeinali H, Roghani M. Scutellarin alleviates lipopolysaccharide-induced cognitive deficits in the rat: Insights into underlying mechanisms. Int Immunopharmacol 2018; 54:311-319. [DOI: 10.1016/j.intimp.2017.11.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/17/2017] [Accepted: 11/23/2017] [Indexed: 12/11/2022]
|
21
|
Neurotrophic function of phytochemicals for neuroprotection in aging and neurodegenerative disorders: modulation of intracellular signaling and gene expression. J Neural Transm (Vienna) 2017; 124:1515-1527. [PMID: 29030688 DOI: 10.1007/s00702-017-1797-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/05/2017] [Indexed: 02/07/2023]
Abstract
Bioactive compounds in food and beverages have been reported to promote health and prevent age-associated decline in cognitive, motor and sensory activities, and emotional function. Phytochemicals, a ubiquitous class of plant secondary metabolites, protect neuronal cells by interaction with cellular activities, in addition to the antioxidant and anti-inflammatory function. In aging and age-associated neurodegenerative disorders, phytochemicals protect neuronal cells by neurotrophic factor-mimic activity, in addition to suppression of apoptosis signaling in mitochondria. This review presents the cellular mechanisms underlying anti-apoptotic function and neurotrophic function of phytochemicals in the brain. Phytochemicals bind to receptors of neurotrophic factors, and also receptors for γ-aminobutyric acid, acetylcholine, serotonin, and glutamate and estrogen, and activate downstream signal pathways. Phytochemicals also directly intervene intracellular signaling molecules to modify the brain function. Finally, phytochemicals enhance the endogenous biosynthesis of genes coding anti-apoptotic Bcl-2 and neurotrophic factors, such as brain-derived and glial cell line-derived neurotrophic factor. The gene induction may play a major role in the neuroprotective function of dietary compounds shown by epidemiological studies. Quantitative measurement of neurotrophic factors induced by phytochemicals in the serum, cerebrospinal fluid, and other clinical samples is proposed as a surrogate assay method to evaluate the neuroprotective potency. Development of novel neuroprotective compounds is expected among compounds chemically synthesized from the brain-permeable basic structure of phytochemicals.
Collapse
|
22
|
Scutellarin as a Potential Therapeutic Agent for Microglia-Mediated Neuroinflammation in Cerebral Ischemia. Neuromolecular Med 2016; 18:264-73. [PMID: 27103430 DOI: 10.1007/s12017-016-8394-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/04/2016] [Indexed: 12/26/2022]
Abstract
The cerebral ischemia is one of the most common diseases in the central nervous system that causes progressive disability or even death. In this connection, the inflammatory response mediated by the activated microglia is believed to play a central role in this pathogenesis. In the event of brain injury, activated microglia can clear the cellular debris and invading pathogens, release neurotrophic factors, etc., but in chronic activation microglia may cause neuronal death through the release of excessive inflammatory mediators. Therefore, suppression of microglial over-reaction and microglia-mediated neuroinflammation is deemed to be a therapeutic strategy of choice for cerebral ischemic damage. In the search for potential herbal extracts that are endowed with the property in suppressing the microglial activation and amelioration of neuroinflammation, attention has recently been drawn to scutellarin, a Chinese herbal extract. Here, we review the roles of activated microglia and the effects of scutellarin on activated microglia in pathological conditions especially in ischemic stroke. We have further extended the investigation with special reference to the effects of scutellarin on Notch signaling, one of the several signaling pathways known to be involved in microglial activation. Furthermore, in light of our recent experimental evidence that activated microglia can regulate astrogliosis, an interglial "cross-talk" that was amplified by scutellarin, it is suggested that in designing of a more effective therapeutic strategy for clinical management of cerebral ischemia both glial types should be considered collectively.
Collapse
|
23
|
Fang M, Yuan Y, Lu J, Li HE, Zhao M, Ling EA, Wu CY. Scutellarin promotes microglia-mediated astrogliosis coupled with improved behavioral function in cerebral ischemia. Neurochem Int 2016; 97:154-71. [PMID: 27105682 DOI: 10.1016/j.neuint.2016.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 04/14/2016] [Accepted: 04/16/2016] [Indexed: 11/28/2022]
Abstract
Scutellarin, an anti-inflammatory agent, has been reported to suppress microglia activation. It promotes astrocytic reaction but through activated microglia. Here we sought to determine more specifically the outcomes of scutellarin treatment in reactive astrocytes in rats subjected to middle cerebral artery occlusion (MCAO). GFAP, MAP-2 and PSD-95 expression was assessed in reactive astrocytes in scutellarin injected MCAO rats. Expression of BDNF, NT-3 and IGF-1, and cell cycle markers cyclin-D1/B1 was also evaluated. In vitro, the above-mentioned proteins were also investigated in TNC 1 and primary astrocytes, treated respectively with conditioned medium from BV-2 microglia with or without pretreatment of scutellarin and lipopolysaccharide. Behavioral study was conducted to ascertain if scutellarin would improve the neurological functions of MCAO rats. In MCAO, reactive astrocytes in the penumbral areas were hypertrophic bearing long extending processes; expression of all the above-mentioned markers was markedly augmented. When compared to the controls, TNC1/primary astrocytes responded vigorously to conditioned medium derived from BV-2 microglia treated with scutellarin + lipopolysaccharide as shown by enhanced expression of all the above markers by Western and immunofluorescence analysis. By electron microscopy, hypertrophic TNC1 astrocytes in this group showed abundant microfilaments admixed with microtubules. In MCAO rats given scutellarin treatment, neurological scores were significantly improved coupled with a marked decrease in infarct size when compared with the matching controls. It is concluded that scutellarin is neuroprotective and that it can amplify astrogliosis but through activated microglia. Scutellarin facilitates tissue remodeling in MCAO that maybe linked to improvement of neurological functions.
Collapse
Affiliation(s)
- Ming Fang
- Department of Emergency and Critical Care, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China; Department of Anatomy, Yong Loo Lin School of Medicine, 4 Medical Drive, MD10, National University of Singapore, 117594, Singapore.
| | - Yun Yuan
- Department of Anatomy and Histology/Embryology, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China.
| | - Jia Lu
- Department of Anatomy, Yong Loo Lin School of Medicine, 4 Medical Drive, MD10, National University of Singapore, 117594, Singapore; Defence Medical and Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, 117510, Singapore.
| | - Hong E Li
- Department of Anatomy and Histology/Embryology, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China.
| | - Min Zhao
- Department of Anatomy and Histology/Embryology, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China.
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, 4 Medical Drive, MD10, National University of Singapore, 117594, Singapore.
| | - Chun-Yun Wu
- Department of Anatomy and Histology/Embryology, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China.
| |
Collapse
|
24
|
Sadigh-Eteghad S, Talebi M, Mahmoudi J, Babri S, Shanehbandi D. Selective activation of α7 nicotinic acetylcholine receptor by PHA-543613 improves Aβ25–35-mediated cognitive deficits in mice. Neuroscience 2015; 298:81-93. [DOI: 10.1016/j.neuroscience.2015.04.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 12/22/2022]
|
25
|
In vitro inhibitory effects of scutellarin on six human/rat cytochrome P450 enzymes and P-glycoprotein. Molecules 2014; 19:5748-60. [PMID: 24802986 PMCID: PMC6271944 DOI: 10.3390/molecules19055748] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 04/25/2014] [Accepted: 04/25/2014] [Indexed: 02/08/2023] Open
Abstract
Inhibition of cytochrome P450 (CYP) and P-glycoprotein (P-gp) are regarded as the most frequent and clinically important pharmacokinetic causes among the various possible factors for drug-drug interactions. Scutellarin is a flavonoid which is widely used for the treatment of cardiovascular diseases. In this study, the in vitro inhibitory effects of scutellarin on six major human CYPs (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) and six rat CYPs (CYP1A2, CYP2C7, CYP2C11, CYP2C79, CYP2D4, and CYP3A2) activities were examined by using liquid chromatography-tandem mass spectrometry. Meanwhile, the inhibitory effects of scutellarin on P-gp activity were examined on a human metastatic malignant melanoma cell line WM-266-4 by calcein-AM fluorometry screening assay. Results demonstrated that scutellarin showed negligible inhibitory effects on the six major CYP isoenzymes in human/rat liver microsomes with almost all of the IC50 values exceeding 100 μM, whereas it showed values of 63.8 μM for CYP2C19 in human liver microsomes, and 63.1 and 85.6 μM for CYP2C7 and CYP2C79 in rat liver microsomes, respectively. Scutellarin also showed weak inhibitory effect on P-gp. In conclusion, this study demonstrates that scutellarin is unlikely to cause any clinically significant herb-drug interactions in humans when co-administered with substrates of the six CYPs (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) and P-gp.
Collapse
|
26
|
The neurotoxicity of β-amyloid peptide toward rat brain is associated with enhanced oxidative stress, inflammation and apoptosis, all of which can be attenuated by scutellarin. ACTA ACUST UNITED AC 2013; 65:579-84. [DOI: 10.1016/j.etp.2012.05.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 04/29/2012] [Accepted: 05/31/2012] [Indexed: 12/11/2022]
|
27
|
Functional Recovery after Scutellarin Treatment in Transient Cerebral Ischemic Rats: A Pilot Study with (18) F-Fluorodeoxyglucose MicroPET. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:507091. [PMID: 23737833 PMCID: PMC3659649 DOI: 10.1155/2013/507091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/12/2013] [Indexed: 11/17/2022]
Abstract
Objective. To investigate neuroprotective effects of scutellarin (Scu) in a rat model of cerebral ischemia with use of 18F-fluorodeoxyglucose (18F-FDG) micro positron emission tomography (microPET). Method. Middle cerebral artery occlusion was used to establish cerebral ischemia. Rats were divided into 5 groups: sham operation, cerebral ischemia-reperfusion untreated (CIRU) group, Scu-25 group (Scu 25 mg/kg/d), Scu-50 group (Scu 50 mg/kg/d), and nimodipine (10 mg/Kg/d). The treatment groups were given for 2 weeks. The therapeutic effects in terms of cerebral infarct volume, neurological deficit scores, and cerebral glucose metabolism were evaluated. Levels of vascular density factor (vWF), glial marker (GFAP), and mature neuronal marker (NeuN) were assessed by immunohistochemistry. Results. The neurological deficit scores were significantly decreased in the Scu-50 group compared to the CIRU group (P < 0.001). 18F-FDG accumulation in the ipsilateral cerebral infarction increased steadily over time in Scu-50 group compared with CIRU group (P < 0.01) and Scu-25 group (P < 0.01). Immunohistochemical analysis demonstrated Scu-50 enhanced neuronal maturation. Conclusion. 18F-FDG microPET imaging demonstrated metabolic recovery after Scu-50 treatment in the rat model of cerebral ischemia. The neuroprotective effects of Scu on cerebral ischemic injury might be associated with increased regional glucose activity and neuronal maturation.
Collapse
|
28
|
Yang C, Cai C, Yang X, Yang Y, Zhou Z, Liu J, Ye H, Wan H. Wendan decoction improves learning and memory deficits in a rat model of schizophrenia. Neural Regen Res 2012; 7:1132-7. [PMID: 25722705 PMCID: PMC4340029 DOI: 10.3969/j.issn.1673-5374.2012.15.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 03/24/2012] [Indexed: 11/18/2022] Open
Abstract
An experimental model of schizophrenia was established using dizocilpine (MK-801). Rats were intragastrically administered with Wendan decoction or clozapine for 21 days prior to establishing the model. The results revealed that the latency of schizophrenia model rats to escape from the hidden platform in the Morris water maze was significantly shortened after administration of Wendan decoction or clozapine. In addition, the treated rats crossed the platform significantly more times than the untreated model rats. Moreover, the rate of successful long-term potentiation induction in the Wendan decoction group and clozapine group were also obviously increased compared with the model group, and the population spike peak latency was significantly shortened. These experimental findings suggest that Wendan decoction can improve the learning and memory ability of schizophrenic rats to the same extent as clozapine treatment.
Collapse
Affiliation(s)
- Cuiping Yang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Changchun Cai
- Affiliated Hospital of Jiujiang University of Jiangxi Province, Jiujiang 332000, Jiangxi Province, China
| | - Xiaojin Yang
- Grade 2010 Postgraduate, Medical School of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yanping Yang
- Grade 2010 Postgraduate, Xuzhou Medical College, Xuzhou 221004, Jiangsu Province, China
| | - Zhigang Zhou
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Jianhua Liu
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Heping Ye
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Hongjiao Wan
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China,
Corresponding author: Hongjiao Wan, Professor, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China (N20110409001/WLM)
| |
Collapse
|