1
|
Lin Z, Li Y, Wu Z, Liu Q, Li X, Luo W. Eriodictyol-cisplatin coated nanomedicine synergistically promote osteosarcoma cells ferroptosis and chemosensitivity. J Nanobiotechnology 2025; 23:109. [PMID: 39953537 PMCID: PMC11829430 DOI: 10.1186/s12951-025-03206-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/06/2025] [Indexed: 02/17/2025] Open
Abstract
The ever-increasing chemoresistance of osteosarcoma (OS) has been observed in the recent decades, impeding OS therapeutic improvement and posing an urgency to exploit to the alternative and/or supplementary therapies for the optimization of OS chemotherapeutic regimen. Ferroptosis, a regulated cell death, has been identified as a natural anticancer mechanism as well as a synergist for chemotherapeutics in various cancers. Herein, we affirmed the tumor-suppressing properties of eriodictyol and illustrated that its antitumor effects might ascribe to the ferroptosis-inducing activity, in which eriodictyol could bind with BACH1 to repress the transcription and translation of GPX4 and eventually result in the GPX4-related ferroptosis. Further investigation found that eriodictyol could exhibit a synergistic effect with cisplatin, facilitating the antitumor effects of cisplatin. Lastly, through utilizing hollow mesoporous prussian blue nanocubes loaded with eriodictyol and cisplatin, we formed the ferroptosis-synergistic nanocomplexes to facilitate OS cells ferroptosis and cisplatin sensitivity. Through direct catalytic oxidation of unsaturated lipids, exogenous iron delivery, GSH exhaustion, and GPX4 transcriptional inhibition, this ferroptosis-synergistic nanocomplex could excellently enhance OS cells ferroptosis in both vitro and vivo, with no obvious organ injury observed. Therefore, our ferroptosis-synergistic nanocomplex may represent a promising alternative therapeutic strategy for OS patients.
Collapse
Affiliation(s)
- Zili Lin
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, People's Republic of China
| | - Yusheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, People's Republic of China
| | - Ziyi Wu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Qing Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, People's Republic of China
| | - Xiangyao Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Wei Luo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
2
|
Zhang X, Yang G, Gu L, Liu C, Chen Q. Identification of Fungus GZ in Buckwheat Rhizosphere and Its Promoting Effect in Buckwheat Seed Germination. PLANTS (BASEL, SWITZERLAND) 2024; 13:3360. [PMID: 39683152 DOI: 10.3390/plants13233360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/17/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
To obtain fungal strains that enhance plant growth in the rhizosphere soil of buckwheat, we utilized morphological and molecular biological methods to identify 10 fungal strains from the rhizosphere soil and subsequently evaluated their effects on seed germination. The results demonstrated that all 10 fungal strains were classified as Isaria cateniannulata. The spores of these strains significantly enhanced the germination of buckwheat seeds, with germination rates improving by 3.46% to 700.75% compared to the control group. This study fills the gap in understanding I. cateniannulata as soil rhizosphere fungi, providing a foundation and materials for the seed coating technology of buckwheat seeds.
Collapse
Affiliation(s)
- Xiaona Zhang
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550025, China
| | - Guimin Yang
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550025, China
| | - Lingdi Gu
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550025, China
| | - Can Liu
- School of International Education, Guizhou Normal University, Guiyang 550025, China
| | - Qingfu Chen
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
3
|
Huong NT, Son NT. Icaritin: A phytomolecule with enormous pharmacological values. PHYTOCHEMISTRY 2023:113772. [PMID: 37356700 DOI: 10.1016/j.phytochem.2023.113772] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/24/2023] [Accepted: 06/10/2023] [Indexed: 06/27/2023]
Abstract
Pharmacological studies on flavonoids have always drawn much interest for many years. Icaritin (ICT), a representative flavone containing an 8-prenyl group, is a principal compound detected in medicinal plants of the genus Epimedum, the family Berberidaceae. Experimental results in the phytochemistry and pharmacology of this molecule are abundant now, but a deep overview has not been carried out. The goal of this review is to provide an insight into the natural observation, biosynthesis, biotransformation, synthesis, pharmacology, and pharmacokinetics of prenyl flavone ICT. The relevant data on ICT was collected from bibliographic sources, like Google Scholar, Web of Science, Sci-Finder, and various published journals. "Icaritin" alone or in combination is the main keyword to seek for references, and references have been updated till now. ICT is among the characteristic phytomolecules of Epimedum plants. Bacteria monitored its biosynthesis and biotransformation, while this agent was rapidly synthesized from phloroglucinol by microwave-assistance Claisen rearrangement. ICT is a potential agent in numerous in vitro and in vivo pharmacological records, which demonstrated its role in cancer treatments via apoptotic-related mechanisms. It also brings in various health benefits since it reduced harmful effects on the liver, lung, heart, bone, blood, and skin, and improved immune responses. Pharmacokinetic outcomes indicated that its metabolic pathway involved hydration, hydroxylation, dehydrogenation, glycosylation, and glucuronidation. Molecule mechanisms of action at a cellular level are predominant, but clinical studies are expected to get more. Structure-activity relationship records seem insufficient, and the studies on nano-combined approaches to improve its soluble property in living bodied medium are needed.
Collapse
Affiliation(s)
- Nguyen Thi Huong
- Faculty of Chemical Technology, Hanoi University of Industry, Hanoi, Viet Nam
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam.
| |
Collapse
|
4
|
Oprita EI, Iosageanu A, Craciunescu O. Progress in Composite Hydrogels and Scaffolds Enriched with Icariin for Osteochondral Defect Healing. Gels 2022; 8:648. [PMID: 36286148 PMCID: PMC9602414 DOI: 10.3390/gels8100648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Osteochondral structure reconstruction by tissue engineering, a challenge in regenerative medicine, requires a scaffold that ensures both articular cartilage and subchondral bone remodeling. Functional hydrogels and scaffolds present a strategy for the controlled delivery of signaling molecules (growth factors and therapeutic drugs) and are considered a promising therapeutic approach. Icariin is a pharmacologically-active small molecule of prenylated flavonol glycoside and the main bioactive flavonoid isolated from Epimedium spp. The in vitro and in vivo testing of icariin showed chondrogenic and ostseoinductive effects, comparable to bone morphogenetic proteins, and suggested its use as an alternative to growth factors, representing a low-cost, promising approach for osteochondral regeneration. This paper reviews the complex structure of the osteochondral tissue, underlining the main aspects of osteochondral defects and those specifically occurring in osteoarthritis. The significance of icariin's structure and the extraction methods were emphasized. Studies revealing the valuable chondrogenic and osteogenic effects of icariin for osteochondral restoration were also reviewed. The review highlighted th recent state-of-the-art related to hydrogels and scaffolds enriched with icariin developed as biocompatible materials for osteochondral regeneration strategies.
Collapse
Affiliation(s)
| | | | - Oana Craciunescu
- National Institute of R&D for Biological Sciences, 296, Splaiul Independentei, 060031 Bucharest, Romania
| |
Collapse
|
5
|
Zhang C, Wang X, Zhang C. Icaritin inhibits CDK2 expression and activity to interfere with tumor progression. iScience 2022; 25:104991. [PMID: 36093042 PMCID: PMC9460166 DOI: 10.1016/j.isci.2022.104991] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/27/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
Icaritin has shown antitumor activity in a variety of human solid tumors and myeloid leukemia cells. However, the direct target of icaritin and the underlying mechanisms remain unclear. In our study, CDK2 was found to be a direct target of icaritin in tumor cells. On one hand, icaritin interacted with CDK2 and interfered with CDK2/CyclinE complex formation, resulting in downregulation of CDK2 activity as illustrated with attenuated phosphorylation of FOXO1, Rb, and P27, and E2F/Rb dissociation. On the other hand, icaritin reduced the stability and translation efficiency of CDK2-mRNA by modulating microRNA-597 expression. To be of functional importance, icaritin inhibited proliferation and promoted apoptosis of tumor cells in vitro and in vivo, which was consistent with CDK2 inhibitors-k03861. Our data revealed CDK2 as the direct target of icaritin for its antitumor effects, which may suggest new therapeutics of icaritin or combinational therapeutics involving both icaritin and CDK2 inhibitors for cancers.
Collapse
Affiliation(s)
- Chao Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P. R. China
| | - Xin Wang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Chuanbao Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, P. R. China
| |
Collapse
|
6
|
Dentin Biomodification with Flavonoids and Calcium Phosphate Ion Clusters to Improve Dentin Bonding Stability. MATERIALS 2022; 15:ma15041494. [PMID: 35208035 PMCID: PMC8879567 DOI: 10.3390/ma15041494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to evaluate the effects of flavonoids and calcium phosphate ion clusters (CPIC) on dentin bonding stability. Seven experimental solutions were synthesized using icaritin (ICT), fisetin (FIS), silibinin (SIB), CPIC, and combinations of one of three flavonoids and CPIC (ICT + C, FIS + C, SIB + C). The experimental solutions were applied to demineralized dentin prior to the application of a universal adhesive. A group without any experimental solution served as a control. Dentin specimens pretreated with the experimental solutions were assayed using Fourier transform infrared (FTIR) spectroscopy. The microtensile bond strength (µTBS) and nanoleakage were evaluated at 24 h and after 10,000 thermocycles. FIS and ICT + C showed significantly higher µTBS than the control group at 24 h. CPIC, ICT + C, FIS + C, and SIB + C showed significantly higher µTBS than the control group after thermocycling. After thermocycling, silver infiltration into the hybrid layer and interfacial gaps was more noticeable in the control group than in the other groups. The FTIR spectra revealed the formation of apatitic minerals in the demineralized dentin in the flavonoid and CPIC combination groups. The pretreatment of demineralized dentin with flavonoids and CPIC improved dentin bonding stability. The flavonoid and CPIC combinations preserved dentin bond strength.
Collapse
|
7
|
Li H, Li Y, Ao H, Fu J, Guo Y, Han M, Yan X, Chen X, Wang X. A comparative study on the in vitro and in vivo antitumor efficacy of icaritin and hydrous icaritin nanorods. Drug Deliv 2021; 27:1176-1187. [PMID: 32762483 PMCID: PMC7470086 DOI: 10.1080/10717544.2020.1801892] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Icaritin (ICT) and hydrous icaritin (HICT) are two similar flavonoids compounds isolated from Epimedium Genus. This is the first comparative study on their in vitro and in vivo antitumor effects. Nanorods (NRs) were prepared for ICT and HICT by anti-solvent precipitation method using D-alpha tocopherol acid polyethylene glycol succinate (TPGS) as a stabilizer. The prepared ICT-NRs and HICT-NRs had similar diameter (155.5 nm and 201.7 nm), high drug loading content (43.30 ± 0.22% and 41.08 ± 0.19%), excellent stability and a similar sustaining drug release manner. Nanorods improved the in vitro toxicity against 4 different cancer cells in contrast to free ICT or free HICT; however, no significant difference was observed in this regard between ICT-NRs and HICT NRs. In the in vivo study on the anticancer efficacy on MCF-7 and PLC/PRE/5 tumor-bearing mice model, HICR-NRs displayed certain advantage over ICT NRs with higher tumor inhibition rate.
Collapse
Affiliation(s)
- Haowen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Yijing Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Hui Ao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Jingxin Fu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Xueying Yan
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, PR China
| | - Xi Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| |
Collapse
|
8
|
Xu B, Zhou W, Cheng L, Zhou Y, Fang A, Jin C, Zeng J, Song X, Guo X. Novel Polymeric Hybrid Nanocarrier for Curcumin and Survivin shRNA Co-delivery Augments Tumor Penetration and Promotes Synergistic Tumor Suppression. Front Chem 2020; 8:762. [PMID: 33134256 PMCID: PMC7550741 DOI: 10.3389/fchem.2020.00762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/22/2020] [Indexed: 02/05/2023] Open
Abstract
A major barrier for co-delivery of gene medicine with small molecular chemotherapeutic drugs in solid tumors is the inadequate tumor penetration and transfection. In this study, a novel polymeric nanocarrier with integrated properties of tumor penetration, nuclear targeting, and pH-responsive features was designed, and further used to achieve the synergistic anti-tumor effect of curcumin (CUR) and survivin shRNA (pSUR). The polymeric hybrid nanocarrier was constructed from the FDA-approved polymer PLGA and a novel conjugated triblock polymer W5R4K-PEG2K-PHIS (WPH). CUR and pSUR were simultaneously encapsulated in the dual-drug-loaded nanoparticles (CUR/pSUR-NPs) by a modified double-emulsion solvent evaporation (W/O/W) method. The obtained nanoparticles exhibited better pharmaceutical properties with a uniform spherical morphology and sustained release manners of CUR and pSUR. Excellent features including preferable cellular uptake, efficient endosomal escape, enhanced tumor penetration, and elevated transfection efficiency were further proven. Additionally, a markedly enhanced anti-tumor efficacy for CUR/shRNA-NPs was achieved on SKOV-3 and Hela cells. The synergistic anti-tumor effect involved the inhibition of tumor cell proliferation, induction of cell apoptosis, and the activation of caspase-3 pathways. This work sets up an innovative co-delivery nanosystem to suppress tumor growth, contributing to the development of a comprehensive nanoparticulate strategy for future clinical applications.
Collapse
Affiliation(s)
- Bei Xu
- Department of Pediatric Hematology/Oncology, Key Laboratory of Birth Defect and Related Disorders of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Otolaryngology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, China
| | - Wen Zhou
- Department of Otolaryngology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lizhi Cheng
- Department of Pediatric Hematology/Oncology, Key Laboratory of Birth Defect and Related Disorders of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Aiping Fang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chaohui Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Zeng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangrong Song
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xia Guo
- Department of Pediatric Hematology/Oncology, Key Laboratory of Birth Defect and Related Disorders of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Yang J, Li K, He D, Gu J, Xu J, Xie J, Zhang M, Liu Y, Tan Q, Zhang J. Toward a better understanding of metabolic and pharmacokinetic characteristics of low-solubility, low-permeability natural medicines. Drug Metab Rev 2020; 52:19-43. [PMID: 31984816 DOI: 10.1080/03602532.2020.1714646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Today, it is very challenging to develop new active pharmaceutical ingredients. Developing good preparations of well-recognized natural medicines is certainly a practical and economic strategy. Low-solubility, low-permeability natural medicines (LLNMs) possess valuable advantages such as effectiveness, relative low cost and low toxicity, which is shown by the presence of popular products on the market. Understanding the in vivo metabolic and pharmacokinetic characteristics of LLNMs contributes to overcoming their associated problems, such as low absorption and low bioavailability. In this review, the structure-based metabolic reactions of LLNMs and related enzymatic systems, cellular and bodily pharmacological effects and metabolic influences, drug-drug interactions involved in metabolism and microenvironmental changes, and pharmacokinetics and dose-dependent/linear pharmacokinetic models are comprehensively evaluated. This review suggests that better pharmacological activity and pharmacokinetic behaviors may be achieved by modifying the metabolism through using nanotechnology and nanosystem in combination with the suitable administration route and dosage. It is noteworthy that novel nanosystems, such as triggered-release liposomes, nucleic acid polymer nanosystems and PEGylated dendrimers, in addition to prodrug and intestinal penetration enhancer, demonstrate encouraging performance. Insights into the metabolic and pharmacokinetic characteristics of LLNMs may help pharmacists to identify new LLNM formulations with high bioavailability and amazing efficacy and help physicians carry out LLNM-based precision medicine and individualized therapies.
Collapse
Affiliation(s)
- Jie Yang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Kailing Li
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Dan He
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Jing Gu
- Department of Thoracic Surgery, Daping Hospital of Army Medical University, PLA, Chongqing, China
| | - Jingyu Xu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jiaxi Xie
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Min Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Yuying Liu
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Qunyou Tan
- Department of Thoracic Surgery, Daping Hospital of Army Medical University, PLA, Chongqing, China
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Yang L, Xiao B, Hou L, Zhou G, Mo B, Yao D. Bioactive molecule Icariin inhibited proliferation while enhanced apoptosis and autophagy of rat airway smooth muscle cells in vitro. Cytotechnology 2019; 71:1109-1120. [PMID: 31583509 DOI: 10.1007/s10616-019-00348-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 02/20/2019] [Indexed: 02/06/2023] Open
Abstract
Icariin is the main active compound extracted from epimedium Flavonoids (EFs) and involved in regulation of cell behaviors (proliferation, apoptosis, and autophagy etc.) for many cell types, but the effect of Icariin on airway smooth muscle cells (ASMCs) is still unknown. The aim of the present study is to examine the role of Icariin on rat ASMCs proliferation, apoptosis and autophagy. CKK8 assay showed that Icariin inhibited rat ASMCs growth in dose-time-dependent manner, and the flow cytometry assay showed that the Icariin interfered with ASMCs cell cycle, when treated with Icariin, S phase shortened while G2 phase extended, cyclin E1 and cyclinA1 gene and protein expression decreased. Next apoptosis was detected, Flow cytometry and TdTmediated dUTP Nick-End Labeling (TUNEL) assay showed that Icariin promoted ASMCs apoptosis, and enhanced apoptosis protein cleaved-caspase-3 expression. Finally, it was found Icariin induced rat ASMCs autophagy, with enhancement expression of autophagy marker LC3 II. In conclusion, Icariin inhibited ASMCs proliferation while promoted apoptosis and autophagy, revealing its potential role in treatment of airway remodeling in asthma.
Collapse
Affiliation(s)
- Lihong Yang
- Department of Respiratory & Critical Care Medicine, The Affiliated Hospital of Guilin Medical University, Guilin, 541000, Guangxi, China
| | - Bo Xiao
- Department of Respiratory & Critical Care Medicine, The Affiliated Hospital of Guilin Medical University, Guilin, 541000, Guangxi, China
| | - Lixia Hou
- Department of Respiratory & Critical Care Medicine, The Affiliated Hospital of Guilin Medical University, Guilin, 541000, Guangxi, China
| | - Guiming Zhou
- Department of Respiratory & Critical Care Medicine, The Affiliated Hospital of Guilin Medical University, Guilin, 541000, Guangxi, China
| | - Biwen Mo
- Department of Respiratory & Critical Care Medicine, The Affiliated Hospital of Guilin Medical University, Guilin, 541000, Guangxi, China
| | - Dong Yao
- Department of Respiratory & Critical Care Medicine, The Affiliated Hospital of Guilin Medical University, Guilin, 541000, Guangxi, China.
- Key Laboratory of Respiratory Diseases of Colleges and Universities Affiliated Education Department of Guangxi Zhuang Autonomous Region, Guilin, 541000, Guangxi, China.
- Laboratory of Respiratory Disease, The Affiliated Hospital of Guilin Medical University, Guilin, 541000, Guangxi, China.
| |
Collapse
|
11
|
Tang H, Tang Z, Jiang Y, Wei W, Lu J. Pathological and therapeutic aspects of matrix metalloproteinases: Implications in osteosarcoma. Asia Pac J Clin Oncol 2019; 15:218-224. [PMID: 31111666 DOI: 10.1111/ajco.13165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 04/25/2019] [Indexed: 12/13/2022]
Abstract
Osteosarcoma (OS) is one of the most common malignant bone tumors in children and adolescents, and the eighth leading form of childhood cancer. Matrix metalloproteinases (MMPs) are proteolytic enzymes implicated in certain cancers including OS. In this review, we discuss the mechanism of actions of MMPs in progression of OS, and the therapeutic use of MMPs inhibitors in the treatment of OS with subsequent clinical studies and future management. The expression of MMPs is upregulated in cancer cells by a variety of cytokines and growth factors, and upregulation of MMPs induces degradation of the extracellular matrix that contributes to cell proliferation by releasing growth factors. MMPs promote the detachment and migration of endothelial cells, cross the basement membrane as well as invade the surrounding lymphatic vessels and causes cancer metastasis. The use of selective MMP inhibitors with limited side effects might be promising therapeutic strategy in the treatment of OS. More clinical trials are necessary to evaluate the role of selective MMPs inhibitors in the prevention and treatment of OS along with their assessment of toxicity.
Collapse
Affiliation(s)
- Huayan Tang
- Department of Oncology, The Central Hospital of Yongzhou, Yongzhou, China
| | - Zhaohui Tang
- Department of Oncology, The Central Hospital of Yongzhou, Yongzhou, China
| | - Yongjun Jiang
- Department of Oncology, The Central Hospital of Yongzhou, Yongzhou, China
| | - Weisheng Wei
- Department of Orthopaedics, The Central Hospital of Yongzhou, Yongzhou, China
| | - Jian Lu
- Department of Orthopaedics, The Central Hospital of Yongzhou, Yongzhou, China
| |
Collapse
|
12
|
Sun K, Mei W, Mo S, Xin L, Lei X, Huang M, Chen Q, Han L, Zhu X. Lead exposure inhibits osteoblastic differentiation and inactivates the canonical Wnt signal and recovery by icaritin in MC3T3-E1 subclone 14 cells. Chem Biol Interact 2019; 303:7-13. [DOI: 10.1016/j.cbi.2019.01.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/20/2019] [Accepted: 01/31/2019] [Indexed: 10/27/2022]
|
13
|
Effects of Icaritin on the physiological activities of esophageal cancer stem cells. Biochem Biophys Res Commun 2018; 504:792-796. [DOI: 10.1016/j.bbrc.2018.08.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 01/06/2023]
|
14
|
Lim R, Li L, Chew N, Yong EL. The prenylflavonoid Icaritin enhances osteoblast proliferation and function by signal transducer and activator of transcription factor 3 (STAT-3) regulation of C-X-C chemokine receptor type 4 (CXCR4) expression. Bone 2017; 105:122-133. [PMID: 28863947 DOI: 10.1016/j.bone.2017.08.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 12/12/2022]
Abstract
In this study, we examined the effects of a natural prenylflavonoid Icaritin (ICT), on human osteoblast proliferation and osteogenic function. We observed that ICT dose-dependently enhanced osteoblast proliferation by ~15% over a 7day period. This increase in cell proliferation was associated with corresponding increases in osteoblast functions as measured by ALP secretion, intracellular calcium ions influx and calcium deposition. These anabolic effects were associated with a 4-fold increase in CXCR4 mRNA and protein expression. Silencing of CXCR4 protein expression using small interfering RNA reversed ICT-induced increase in cell proliferation, ALP activity and calcium deposition. Interestingly, we observed that ICT dose-dependently increased STAT-3 phosphorylation; and this resulted in increased binding of phosphorylated STAT-3 to the promoter region of the CXCR4 gene, to increase CXCR4 protein expression. Furthermore, we found that inhibition of STAT-3 phosphorylation resulted in a decrease in CXCR4 protein expression; whilst increasing phosphorylation of STAT-3 using a constitutive active STAT-3 vector significantly increased CXCR4 levels. Moreover, the chemical inhibition of STAT-3 phosphorylation annulled our previously observed ICT-induced increases of osteoblast proliferation and function. Finally, in a rat model of estrogen-deficient osteoporosis, ICT restored both osteoblasts numbers and CXCR4 expression. Taken together, both cellular and animal models support the novel findings that ICT; through the phosphorylation of STAT-3, up-regulated CXCR4, to increase osteoblast proliferation and function.
Collapse
Affiliation(s)
- Rzl Lim
- Department of Obstetrics & Gynaecology, National University of Singapore, Singapore.
| | - L Li
- Department of Medicine, National University of, Singapore, Singapore
| | - N Chew
- Department of Medicine, National University of, Singapore, Singapore; Division of Infectious Diseases, National University Hospital Singapore, Singapore.
| | - E L Yong
- Department of Obstetrics & Gynaecology, National University of Singapore, Singapore.
| |
Collapse
|
15
|
Wu Z, Ou L, Wang C, Yang L, Wang P, Liu H, Xiong Y, Sun K, Zhang R, Zhu X. Icaritin induces MC3T3-E1 subclone14 cell differentiation through estrogen receptor-mediated ERK1/2 and p38 signaling activation. Biomed Pharmacother 2017; 94:1-9. [PMID: 28742995 DOI: 10.1016/j.biopha.2017.07.071] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/27/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022] Open
Abstract
Icaritin (ICT), a hydrolytic product of icariin from the genus Epimedium, has many indicated pharmacological and biological activities. Several studies have shown that ICT has potential osteoprotective effects, including stimulation of osteoblast differentiation and inhibition of osteoclast differentiation. However, the molecular mechanism for this anabolic action of ICT remains largely unknown. Here, we found that ICT could enhance MC3T3-E1 subclone 14 preosteoblastic cell differentiation associated with increased mRNA levels and protein expression of the differentiation markers alkaline phosphatase (ALP), type 1 collagen (COL1), osteocalcin (OC), osteoponin (OPN) and runt-related transcription factor 2 (RUNX2), and improved mineralization, confirmed by bone nodule formation and collagen synthesis. To characterize the underlying mechanisms, we examined the effect of ICT on estrogen receptor (ER) and mitogen-activated protein kinase (MAPK) signaling. ICT treatment induced p38 kinase and extracellular signal-regulated kinase 1/2 (ERK1/2) activation, but it demonstrated at the same time point no effect on activation of c-Jun N-terminal kinase (JNK). ER antagonist ICI182780, p38 antagonist SB203580 and ERK1/2 antagonist PD98059 markedly inhibited the ICT-induced the mRNA expression of ALP, COL1, OC and OPN. ICI182780 attenuated the ICT-induced phosphorylation of p38 and ERK1/2. These observations indicate a potential mechanism of osteogenic effects of ICT involving the ERK1/2 and p38 pathway activation through the ER.
Collapse
Affiliation(s)
- Zhidi Wu
- Department of Chinese Medicine, College of Pharmacy of Jinan University, Guangzhou, Guangdong, 510630, PR China
| | - Ling Ou
- Department of Chinese Medicine, College of Pharmacy of Jinan University, Guangzhou, Guangdong, 510630, PR China
| | - Chaopeng Wang
- Department of Chinese Medicine, College of Pharmacy of Jinan University, Guangzhou, Guangdong, 510630, PR China
| | - Li Yang
- Department of Chinese Medicine, College of Pharmacy of Jinan University, Guangzhou, Guangdong, 510630, PR China
| | - Panpan Wang
- Department of Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, PR China
| | - Hengrui Liu
- Department of Chinese Medicine, College of Pharmacy of Jinan University, Guangzhou, Guangdong, 510630, PR China
| | - Yingquan Xiong
- Department of Chinese Medicine, College of Pharmacy of Jinan University, Guangzhou, Guangdong, 510630, PR China
| | - Kehuan Sun
- Department of Chinese Medicine, College of Pharmacy of Jinan University, Guangzhou, Guangdong, 510630, PR China
| | - Ronghua Zhang
- Department of Chinese Medicine, College of Pharmacy of Jinan University, Guangzhou, Guangdong, 510630, PR China
| | - Xiaofeng Zhu
- Department of Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, PR China.
| |
Collapse
|
16
|
Jin L, Miao J, Liu Y, Li X, Jie Y, Niu Q, Han X. Icaritin induces mitochondrial apoptosis by up-regulating miR-124 in human oral squamous cell carcinoma cells. Biomed Pharmacother 2017; 85:287-295. [PMID: 27889233 DOI: 10.1016/j.biopha.2016.11.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022] Open
Abstract
AIM OF THE STUDY The present study is aimed to investigate the apoptosis-inducing effect of icaritin in human oral squamous cell carcinoma (OSCC) cells and the associated mechanisms. MATERIALS AND METHODS KB and SCC9 cell lines were used as model cell lines. Effect of icaritin on apoptosis was analyzed by flow cytometry. The effect of icaritin on mitochondrial apoptotic pathway was demonstrated by loss of mitochondrial membrane potential and release of cytocrome C from mitochondria. MiR-124 mimic and miR-124 inhibitor were used to manipulate the expression of miR-124 in OSCC cells. SiRNA targeting Sp1 and DNMT1 as well as Sp1 and DNMT1 overexpressing vector were utilized to confirm their roles in the apoptosis-inducing effect of icaritin in OSCC cells. Activation of relevant signaling pathway by icaritin and effect of icaritin on expression of targeting molecules were determined by western blots or qRT-PCR. RESULTS Our results showed that icaritin inhibited tumor cell viability in a dose- and time-dependent manner, and induced cell apoptosis via intrinsic mitochondrial pathway by upregulating miR-124. Moreover, our results showed that the icaritin exerted regulatory effect on miR-124 through suppressing Sp1/DNMT1 signaling. CONCLUSION Our data provide the first experimental evidence that icaritin induces mitochondrial apoptosis in OSCC cells by upregulating miR-124 and suggest a new mechanism to explain its anti-tumor effects.
Collapse
Affiliation(s)
- Limin Jin
- Department of Oral & Maxillofacial Surgery, The First Affiliated Hospital, Zhengzhou University, China
| | - Jinhong Miao
- Department of Nursing Management,The First Affiliated Hospital, Zhengzhou University, China
| | - Yanjin Liu
- Department of Nursing Management,The First Affiliated Hospital, Zhengzhou University, China
| | - Xingdan Li
- Department of Oral & Maxillofacial Surgery, The First Affiliated Hospital, Zhengzhou University, China
| | - Yaqiong Jie
- Department of Oral & Maxillofacial Surgery, The First Affiliated Hospital, Zhengzhou University, China
| | - Qianyun Niu
- Department of Oral & Maxillofacial Surgery, Stomatological Hospital of Nanyang, China
| | - Xinguang Han
- Department of Oral & Maxillofacial Surgery, The First Affiliated Hospital, Zhengzhou University, China.
| |
Collapse
|
17
|
Zhang C, Li H, Jiang W, Zhang X, Li G. Icaritin inhibits the expression of alpha-fetoprotein in hepatitis B virus-infected hepatoma cell lines through post-transcriptional regulation. Oncotarget 2016; 7:83755-83766. [PMID: 27835879 PMCID: PMC5347802 DOI: 10.18632/oncotarget.13194] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 10/21/2016] [Indexed: 12/30/2022] Open
Abstract
Although it has showed that icaritin can apparently suppress growth of HCC by reducing the level of AFP, the intrinsic mechanism remains unclear. In this study, we explored the possible mechanism of miRNAs on post-transcriptional regulation of AFP gene, as well as the effects of HBV infection and icaritin in hepatoma cells. The results showed that miR-620, miR-1236 and miR-1270 could bind target sites in the range of 9-18 nt and 131-151 nt downstream of the stop codon in the AFP mRNA 3'-UTR to suppress the expression of AFP. Mutation of these target sites could reverse the effects of these miRNAs. Icaritin (10 μM) might reduce the stability and translational activity of AFP mRNA by increasing the expression levels of these mentioned miRNAs. HBV infection resulted in apparent decreases of these miRNAs and, consequently, increased AFP expression. The results indicated that miR-620, miR-1236 and miR-1270 are critical factors in the post-transcriptional regulation of AFP. Icaritin can counteract the effect of HBV. These findings will contribute to full understanding of the regulatory mechanism of AFP expression in hepatoma cells. And also it revealed a synergistic mechanism of HBV infection and elevation of AFP in the pathogenesis of HCC, as well as the potential clinical significance of icaritin on the therapy of HCC induced by HBV.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Cell Biology and Municipal Laboratory of Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wei Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaowei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Gang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
18
|
Li Z, Meng X, Jin L. Icaritin induces apoptotic and autophagic cell death in human glioblastoma cells. Am J Transl Res 2016; 8:4628-4643. [PMID: 27904667 PMCID: PMC5126309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/07/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND GBM represents the most aggressive type of glioma which is featured by extremely aggressive invasion and destructive malignancy with a high proliferation rate. The aim of this study was to investigate the in vitro anti-tumor effect of icaritin in human GBM cell line U87. METHODS The effect of icaritin on In vitro cell viability was determined by MTT assay and colony formation assay. The inducing effect of icaritin on cell cycle arrest, mitochondrial membrane potential loss, apoptosis, autophagy and intracellular ROS generation was assessed by flow cytometry. The apoptotic cell death was also confirmed by TUNEL assay. The expression levels of target or marker molecules were examined by western blot. The activity of caspase-3, -8 and -9 was detected with ELISA kit. RESULTS Our results showed that icaritin significantly induced both caspase-dependent apoptosis and autophagy in human GBM cell line U87. Additionally, our findings revealed that icaritin exerted anti-tumor effect by modulating Stat3 through generating ROS and subsequent activation of AMPK and inhibition of mTOR. Further investigation also showed that icaritin-induced autophagy served as a pro-death function and possibly contributed to icaritin-induced apoptosis. CONCLUSION Icaritin potently inhibit the cell growth of human GBM cell line U87 through inducing both caspase-dependent apoptosis and autophagy. Base on our findings, icaritin can be considered as a promising candidate therapeutic agent for treatment of GBM, though further studies are needed.
Collapse
Affiliation(s)
- Zhaopei Li
- Shandong Provincial Hospital Affiliated to Shandong University Jinan 250021, Shandong, China
| | - Xiangwen Meng
- Shandong Provincial Hospital Affiliated to Shandong University Jinan 250021, Shandong, China
| | - Lin Jin
- Shandong Provincial Hospital Affiliated to Shandong University Jinan 250021, Shandong, China
| |
Collapse
|
19
|
Metabolism profiles of icariin in rats using ultra-high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry and in vitro enzymatic study. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1033-1034:353-360. [DOI: 10.1016/j.jchromb.2016.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/20/2016] [Accepted: 09/06/2016] [Indexed: 12/14/2022]
|
20
|
Li C, Peng W, Song X, Wang Q, Wang W. Anticancer effect of icaritin inhibits cell growth of colon cancer through reactive oxygen species, Bcl-2 and cyclin D1/E signaling. Oncol Lett 2016; 12:3537-3542. [PMID: 27900033 DOI: 10.3892/ol.2016.5089] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 08/09/2016] [Indexed: 01/04/2023] Open
Abstract
Icaritin has an advantage in enhancing immunity. Besides, with its anticancer effect, it may be of great help in cancer treatment and recovery of cancer patients. As a result, icaritin is likely to become a novel anticancer drug. However, the anticancer effect of icaritin against colon cancer has not been elucidated thus far. The present study investigated the latent anticancer effect of icaritin on the inhibition of colon cancer cell growth by regulating reactive oxygen species (ROS), B-cell lymphoma (Bcl)-2 and cyclin D1/E signaling. The COLO-205 colon cancer cell line was used as a colon cancer cell model in the present study. First, cell growth and apoptosis were measured to analyze the anticancer effect of icaritin against colon cancer. Next, the possible mechanism of icaritin against colon cancer, including ROS, Bcl-2, cyclin D1, cyclin E and caspase-3/9, was explored. The results revealed that icaritin could inhibit cell growth and induce the apoptosis of COLO-205 cells. In addition, icaritin significantly induced ROS generation, suppressed Bcl-2, cyclin D1 and cyclin E protein expression, and activated caspase-3/9 activity in COLO-205 cells. The present findings demonstrated that icaritin exerted antiproliferative and anticancer effects against colon cancer through the activation of ROS generation and the suppression of Bcl-2, cyclin D1 and cyclin E signaling.
Collapse
Affiliation(s)
- Chaofeng Li
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Weichao Peng
- Department of Breast and Thyroid Surgery, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Xin Song
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Qian Wang
- Department of Cardiology, Beijing Anzhen Hospital, Beijing 100029, P.R. China
| | - Wenyue Wang
- Department of Gastrointestinal Surgery, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| |
Collapse
|
21
|
Li J, Yang Z, Li Y, Xia J, Li D, Li H, Ren M, Liao Y, Yu S, Chen Y, Yang Y, Zhang Y. Cell apoptosis, autophagy and necroptosis in osteosarcoma treatment. Oncotarget 2016; 7:44763-44778. [PMID: 27007056 PMCID: PMC5190133 DOI: 10.18632/oncotarget.8206] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 03/07/2016] [Indexed: 12/23/2022] Open
Abstract
Osteosarcoma is the most common primary bone tumor in children and adolescents. Although combined therapy including surgery and multi-agent chemotherapy have resulted in great improvements in the overall survival of patients, chemoresistance remains an obstacle for the treatment of osteosarcoma. Molecular targets or effective agents that are actively involved in cell death including apoptosis, autophagy and necroptosis have been studied. We summarized how these agents (novel compounds, miRNAs, or proteins) regulate apoptotic, autophagic and necroptotic pathways; and discussed the current knowledge on the role of these new agents in chemotherapy resistance in osteosarcoma.
Collapse
Affiliation(s)
- Jing Li
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Yi Li
- Department of Oncology, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan, China
| | - Junfeng Xia
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Dongqi Li
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Huiling Li
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Mingyan Ren
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Yedan Liao
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Shunling Yu
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Yanjin Chen
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Yihao Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Ya Zhang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China
| |
Collapse
|
22
|
Tan HL, Chan KG, Pusparajah P, Saokaew S, Duangjai A, Lee LH, Goh BH. Anti-Cancer Properties of the Naturally Occurring Aphrodisiacs: Icariin and Its Derivatives. Front Pharmacol 2016; 7:191. [PMID: 27445824 PMCID: PMC4925704 DOI: 10.3389/fphar.2016.00191] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/16/2016] [Indexed: 12/12/2022] Open
Abstract
Epimedium (family Berberidaceae), commonly known as Horny Goat Weed or Yin Yang Huo, is commonly used as a tonic, aphrodisiac, anti-rheumatic and anti-cancer agent in traditional herbal formulations in Asian countries such as China, Japan, and Korea. The major bioactive compounds present within this plant include icariin, icaritin and icariside II. Although it is best known for its aphrodisiac properties, scientific and pharmacological studies suggest it possesses broad therapeutic capabilities, especially for enhancing reproductive function and osteoprotective, neuroprotective, cardioprotective, anti-inflammatory and immunoprotective effects. In recent years, there has been great interest in scientific investigation of the purported anti-cancer properties of icariin and its derivatives. Data from in vitro and in vivo studies suggests these compounds demonstrate anti-cancer activity against a wide range of cancer cells which occurs through various mechanisms such as apoptosis, cell cycle modulation, anti-angiogenesis, anti-metastasis and immunomodulation. Of note, they are efficient at targeting cancer stem cells and drug-resistant cancer cells. These are highly desirable properties to be emulated in the development of novel anti-cancer drugs in combatting the emergence of drug resistance and overcoming the limited efficacy of current standard treatment. This review aims to summarize the anti-cancer mechanisms of icariin and its derivatives with reference to the published literature. The currently utilized applications of icariin and its derivatives in cancer treatment are explored with reference to existing patents. Based on the data compiled, icariin and its derivatives are shown to be compounds with tremendous potential for the development of new anti-cancer drugs.
Collapse
Affiliation(s)
- Hui-Li Tan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Kok-Gan Chan
- Division of Genetic and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Priyia Pusparajah
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| | - Surasak Saokaew
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand; Pharmaceutical Outcomes Research Center, Faculty of Pharmaceutical Sciences, Naresuan UniversityPhitsanulok, Thailand
| | - Acharaporn Duangjai
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand; Division of Physiology, School of Medical Sciences, University of PhayaoPhayao, Thailand
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| |
Collapse
|
23
|
Zhang ZK, Li J, Yan DX, Leung WN, Zhang BT. Icaritin Inhibits Collagen Degradation-Related Factors and Facilitates Collagen Accumulation in Atherosclerotic Lesions: A Potential Action for Plaque Stabilization. Int J Mol Sci 2016; 17:E169. [PMID: 26828485 PMCID: PMC4783903 DOI: 10.3390/ijms17020169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/18/2016] [Accepted: 01/21/2016] [Indexed: 01/29/2023] Open
Abstract
Most acute coronary syndromes result from rupture of vulnerable atherosclerotic plaques. The collagen content of plaques may critically affect plaque stability. This study tested whether Icaritin (ICT), an intestinal metabolite of Epimedium-derived flavonoids, could alter the collagen synthesis/degradation balance in atherosclerotic lesions. Rabbits were fed with an atherogenic diet for four months. Oral administration of ICT (10 mg·kg(-1)·day(-1)) was started after two months of an atherogenic diet and lasted for two months. The collagen degradation-related parameters, including macrophages accumulation, content and activity of interstitial collagenase-1 (MMP-1), and the collagen synthesis-related parameters, including amount and distribution of smooth muscle cells (SMC) and collagen mRNA/protein levels, were evaluated in the aorta. ICT reduced plasma lipid levels, inhibited macrophage accumulation, lowered MMP-1 mRNA and protein expression, and suppressed proteolytic activity of pro-MMP-1 and MMP-1 in the aorta. ICT changed the distribution of the SMCs towards the fibrous cap of lesions without increasing the amount of SMCs. Higher collagen protein content in lesions and aorta homogenates was observed with ICT treatment compared with the atherogenic diet only, without altered collagen mRNA level. These results suggest that ICT could inhibit the collagen degradation-related factors and facilitate collagen accumulation in atherosclerotic lesions, indicating a new potential of ICT in atherosclerotic plaques.
Collapse
Affiliation(s)
- Zong-Kang Zhang
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China.
| | - Jie Li
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China.
| | - De-Xin Yan
- Shanghai Clinical Center of Cardiovascular and Cerebrovascular Diseases in Traditional Chinese Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China.
| | - Wing-Nang Leung
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China.
| | - Bao-Ting Zhang
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
24
|
Jiang J, Zhao BJ, Song J, Jia XB. Pharmacology and Clinical Application of Plants in Epimedium L. CHINESE HERBAL MEDICINES 2016. [DOI: 10.1016/s1674-6384(16)60003-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
25
|
Cheng CH, Cheng YP, Chang IL, Chen HY, Wu CC, Hsieh CP. Dodecyl gallate induces apoptosis by upregulating the caspase-dependent apoptotic pathway and inhibiting the expression of anti-apoptotic Bcl-2 family proteins in human osteosarcoma cells. Mol Med Rep 2015; 13:1495-500. [PMID: 26707422 PMCID: PMC4732860 DOI: 10.3892/mmr.2015.4717] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 10/28/2015] [Indexed: 12/25/2022] Open
Abstract
Dodecyl gallate (DG) is a gallic acid ester that has been shown to inhibit tumor growth. The aim of this study was to investigate the mechanism by which DG induces antiproliferative and apoptotic effects in MG-63 human osteosarcoma cells. Dose- and time-dependent cytotoxic effects of DG were determined using an MTT assay. The results showed that the half-maximal inhibitory concentration (IC50) of DG in MG-63 cells was 31.15 µM at 24 h, 10.66 µM at 48 h, and 9.06 µM at 72 h. Flow cytometric analysis demonstrated that exposure to 20 and 40 µM DG resulted in an increase in the sub-G1 phase population and in S-phase cell cycle arrest. Furthermore, western blot analysis of apoptosis-related protein expression revealed an increase in the activation of caspases 8 and 3, cleavage of poly (ADPribose) polymerase (PARP), and disruption of mitochondrial membrane permeability was measured by flow cytometry. An increase in the Bax/Bcl-2 ratio and a decrease in the expression of inhibitor of apoptosis protein (IAP) family members, namely X-linked inhibitor of apoptosis protein and survivin, were also observed following DG treatment. These data provide insight into the molecular mechanisms governing the ability of DG to induce apoptosis in human osteosarcoma cells in vitro.
Collapse
Affiliation(s)
- Chun-Hsiang Cheng
- Orthopedics & Sports Medicine Laboratory, Changhua Christian Hospital, Changhua 500‑06, Taiwan, R.O.C
| | - Yen-Po Cheng
- Division of Neurosurgery, Department of Surgery, Changhua Christian Hospital, Changhua 500‑06, Taiwan, R.O.C
| | - Ing-Lin Chang
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua 500‑06, Taiwan, R.O.C
| | - Hsin-Yao Chen
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua 500‑06, Taiwan, R.O.C
| | - Chia-Chieh Wu
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua 500‑06, Taiwan, R.O.C
| | - Chen-Pu Hsieh
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua 500‑06, Taiwan, R.O.C
| |
Collapse
|
26
|
Chen XJ, Tang ZH, Li XW, Xie CX, Lu JJ, Wang YT. Chemical Constituents, Quality Control, and Bioactivity of Epimedii Folium (Yinyanghuo). THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:783-834. [DOI: 10.1142/s0192415x15500494] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epimedii Folium (Yinyanghuo in Chinese) is one of the most commonly used traditional Chinese medicines. Its main active components are flavonoids, which exhibit multiple biological activities, such as promotion of bone formation and sexual function, protection of the nervous system, and prevention of cardiovascular diseases. Flavonoids also show anti-inflammatory and anticancer effects. Various effective methods, including genetic and chemical approaches, have been developed for the quality control of Yinyanghuo. In this review, the studies conducted in the last decade about the chemical constituents, quality control, and bioactivity of Yinyanghuo are summarized and discussed.
Collapse
Affiliation(s)
- Xiao-Jia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zheng-Hai Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xi-Wen Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Cai-Xiang Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
27
|
Zhang C, Li G. Role of alpha-fetoprotein in hepatitis B virus-induced hepatocellular carcinoma: Prospect in clinical application. Shijie Huaren Xiaohua Zazhi 2015; 23:3171-3181. [DOI: 10.11569/wcjd.v23.i20.3171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mammalian alpha-fetoprotein (AFP) as a fetal specific alpha-globulin that has been used as a serum fetal defect/tumor marker for diagnosis and prediction of liver disease. Over the past decade, research indicates that AFP as an intracellular signal molecule is not only a biomarker but also interacts with hepatitis B virus (HBV) and hepatitis B virus protein x and plays multifarious roles in the development of hepatocellular carcinoma, especially in HBV-induced liver cancer.
Collapse
|
28
|
Metformin inhibits the proliferation, metastasis, and cancer stem-like sphere formation in osteosarcoma MG63 cells in vitro. Tumour Biol 2015; 36:9873-83. [PMID: 26164004 DOI: 10.1007/s13277-015-3751-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 07/02/2015] [Indexed: 01/08/2023] Open
Abstract
Metformin is an oral drug that has been widely used to treat type 2 diabetes mellitus. Interestingly, accumulated evidence indicate that metformin may reduce the risk of cancer in patients with type 2 diabetes and inhibit tumor cell growth and survival in numerous malignancies, including osteosarcoma (OS) cells. In the present study, we aimed to investigate the effects of metformin on the proliferation, migration, invasion, and sphere formation in OS MG63 cells in vitro. Metformin suppressed OS MG63 cell proliferation in a dose- and time-dependent manner and markedly blocked anti-metastatic potentials, migration, and invasion, by downregulating matrix metalloproteinase 2 (MMP2) and MMP9. Besides, we established OS cancer stem-like cell (CSC) model with sarcosphere formation assay and demonstrated that metformin posed damage on CSCs in OS by inhibiting sphere formation and by inducing their stemness loss. The stemness of CSCs in OS such as self-renewal and differentiation potentials was both impaired with a significant decrease of Oct-4 and Nanog activation. Consistent with this, the positive rates of CD90, CD133, and stage-specific embryonic antigen-4 (SSEA-4) were all observed with reductions in response to metformin exposure. In addition, Western blot showed that metformin activated AMPKα at Tyr172, followed by a downregulated phosphorylation of mammalian target of rapamycin (mTOR)/S6 and feedback activation of p-AKT Ser(473) in both OS MG63 cells and CSCs. This indicates that AMPK/mTOR/S6 signaling pathway might be involved in the growth inhibition of both OS MG63 cells and CSCs. These results suggest that metformin, a potential anti-neoplastic agent, might make it a novel therapeutic choice for the treatment of OS in the future.
Collapse
|
29
|
Ma LM, Xu F, Li FC, Wang JZ, Shang MY, Liu GX, Cai SQ. The profiling and identification of the metabolites of 8-prenylkaempferol and a study on their distribution in rats by high-performance liquid chromatography with diode array detection combined with electrospray ionization ion trap time-of-flight multistage mass spectrometry. Biomed Chromatogr 2015; 30:175-90. [PMID: 26058713 DOI: 10.1002/bmc.3534] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 04/25/2015] [Accepted: 06/03/2015] [Indexed: 11/10/2022]
Abstract
8-Prenylkaempferol is a prenylflavonoid that has various bioactivities and benefits for human health. A high-performance liquid chromatography with a diode array detector combined with electrospray ionization ion trap time-of-flight multistage mass spectrometry (HPLC-DAD-ESI-IT-TOF-MS(n) ) method was established to profile and identify the metabolites of 8-prenylkaempferol in rat in vivo and in vitro, and to study the distribution of these metabolites in rats for the first time. A total of 38 metabolites were detected and tentatively identified, 30 of which were identified as new compounds. The new in vivo metabolic reactions in rats of prenylflavonoids of isomerization, polymerization, sulfation, amino acid conjugation, vitamin C conjugation and other known metabolic reactions were found in the metabolism of 8-prenylkaempferol. The numbers of detected metabolites in feces, urine, plasma, small intestine, stomach, kidneys, liver, heart, lungs, spleen and hepatic S9 fraction were 31, 19, 1, 20, 13, 8, 7, 3, 3, 1 and 11, respectively. This indicated that small intestine and stomach were the major organs in which the 8-prenylkaempferol metabolites were distributed. Furthermore, 16 metabolites were determined to have bioactivities based on the literature and 'PharmMapper' analysis. These findings are useful for better comprehension of the effective forms, target organs and pharmacological actions of 8-prenylkaempferol. Moreover, they provide a reference for the study of the metabolism and distribution of prenylflavonoid aglycone compounds.
Collapse
Affiliation(s)
- Li-Man Ma
- Division of Pharmacognosy, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing, 100191, China
| | - Feng Xu
- Division of Pharmacognosy, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing, 100191, China
| | - Feng-Chun Li
- Division of Pharmacognosy, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing, 100191, China
| | - Jing-Zhe Wang
- Division of Pharmacognosy, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing, 100191, China
| | - Ming-Ying Shang
- Division of Pharmacognosy, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing, 100191, China
| | - Guang-Xue Liu
- Division of Pharmacognosy, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing, 100191, China
| | - Shao-Qing Cai
- Division of Pharmacognosy, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing, 100191, China
| |
Collapse
|
30
|
Luo G, Gu F, Zhang Y, Liu T, Guo P, Huang Y. Icariside II promotes osteogenic differentiation of bone marrow stromal cells in beagle canine. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:4367-77. [PMID: 26191128 PMCID: PMC4503000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/24/2015] [Indexed: 06/04/2023]
Abstract
Icariside II (ICS II) is a prenylated active flavonol from the roots of epimedium koreanum Nakai, and has many biological activities, including anti-osteoporosis, anti-hypoxia and anti-cancer activities. In this study, we aimed to study the effect of ICS II on osteogenic differentiation of bone marrow derived stromal cells (BMSCs). Cell surface markers of cultured BMSCs were analyzed by flow cytometry and identified by multi-lineage differentiation assays. BMSCs proliferation was determined by the cell counting kit-8 (CCK-8) assay for 2, 4, 6 and 8 days in a range of ICS II concentrations. The osteogenic response of BMSCs to ICS II in vitro was examined by alkaline phosphatase (ALP) activity assay and Alizarin red staining on calcium nodule formation. Results showed ICS II significantly improved ALP activity, and calcium deposition. The optimal concentration of ICS II for enhancing osteogenic differentiation of BMSCs was 10(-5). Therefore, we concluded ICS II can enhance the osteogenic differentiation of BMSCs which may be useful in clinic.
Collapse
Affiliation(s)
- Guangming Luo
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji UniversityShanghai, P. R. China
| | - Feifei Gu
- Department of Stomatology, Shanghai East Hospital Affiliated with Tongji UniversityShanghai, P. R. China
| | - Yingdi Zhang
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji UniversityShanghai, P. R. China
| | - Tianlin Liu
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji UniversityShanghai, P. R. China
- Department of Stomatology, Shanghai East Hospital Affiliated with Tongji UniversityShanghai, P. R. China
| | - Pengnv Guo
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji UniversityShanghai, P. R. China
| | - Yuanliang Huang
- Department of Stomatology, Shanghai East Hospital Affiliated with Tongji UniversityShanghai, P. R. China
| |
Collapse
|