1
|
Qu X, Wang Y, Xu Y, Xu L, Ye X, Cai H, Bu L, Zeng Z, Zhou H. Aromatic nitroolefin with inhibition efficacy in triple-negative breast cancer cells by dual targeting RXRα and tubulins. Eur J Med Chem 2025; 289:117486. [PMID: 40090298 DOI: 10.1016/j.ejmech.2025.117486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/18/2025]
Abstract
We previously identified that 1-(2-Nitrovinyl)naphthalene (Z-10) is a ligand of retinoid x receptor α (RXRα) with a potent anti-breast cancer efficacy and revealed that nitro group is an essential pharmacophore in Z-10. In this study, we defined that the double bond of the nitrovinyl group is also vital for Z-10 to bind and activate RXRα. Mechanistically, the double bond has a chemical ability to mediate Z-10's covalent binding of RXRα via the Michael addition reaction with Cys432. By retaining the nitrovinyl group, a series of Z-10 analogues with different aromatic groups and different aromatic ring-positions of nitrovinyl group and alkoxy groups were designed and synthesized. We found that some analogues including compound 30 show stronger ability than Z-10 in inhibiting TNFα survival signal in MDA-MB-231 breast cancer cells. Interestingly, these RXRα ligands also bind to tubulins likely through the similar covalent interaction and induce the degradation of tubulins and cell cycle arrest in MDA-MB-231 cells, of which 30 displays the strongest efficacy. Importantly, these analogues and TNFα exhibit synergistic effects in inducing breast cancer cell apoptosis, of which 30 shows greater efficacy than Z-10. Together, our study provides a theoretical basis for the RXRα and tubulin dual-targeting drug design for breast cancer treatment.
Collapse
Affiliation(s)
- Xiaofang Qu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yanxia Wang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yunqing Xu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lin Xu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiaohong Ye
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, 361102, China; High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian, 361102, China
| | - Hongchen Cai
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, 361102, China
| | - Liang Bu
- Department of Thoracic Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, Fujian, China.
| | - Zhiping Zeng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, 361102, China; High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Hu Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, 361102, China; High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
2
|
Huang S, Jin Y, Zhang L, Zhou Y, Chen N, Wang W. PPAR gamma and PGC-1alpha activators protect against diabetic nephropathy by suppressing the inflammation and NF-kappaB activation. Nephrology (Carlton) 2024; 29:858-872. [PMID: 39229715 PMCID: PMC11579552 DOI: 10.1111/nep.14381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/13/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024]
Abstract
AIM Inflammation plays a critical role in the progression of diabetic nephropathy. Peroxisome proliferator-activated receptor gamma (PPARγ) and its coactivator PPARγ coactivator-1 alpha (PGC-1α) enhance mitochondrial biogenesis and cellular energy metabolism but inhibit inflammation. However, the molecular mechanism through which these two proteins cooperate in the kidney remains unclear. The aim of the present study was to investigate this mechanism. METHODS HK-2 human proximal tubular cells were stimulated by inflammatory factors, the expression of PPARγ and PGC-1α were determined via reverse transcription-quantitative polymerase chain reaction (PCR) and western blotting (WB), and DNA binding capacity was measured by an EMSA. Furthermore, db/db mice were used to establish a diabetic nephropathy model and were administered PPARγ and PGC-1α activators. Kidney injury was evaluated microscopically, and the inflammatory response was assessed via WB, immunohistochemistry and immunofluorescence staining. Besides, HK-2 cells were stimulated by high glucose and inflammatory factors with and without ZLN005 treatment, the expression of PPARγ, PGC-1α, p-p65 and p65 were determined via qPCR and WB. RESULTS Our results revealed that both TNF-α and IL-1β significantly decreased PPARγ and PGC-1 expression in vitro. Cytokines obviously decreased PPARγ DNA binding capacity. Moreover, we detected rapid activation of the NF-κB pathway in the presence of TNF-α or IL-1β. PPARγ and PGC-1α activators effectively protected against diabetic nephropathy and suppressed NF-κB expression both in db/db mice and HK-2 cells. CONCLUSION PPARγ and its coactivator PGC-1α actively participate in protecting against renal inflammation by regulating the NF-κB pathway, which highlights their potential as therapeutic targets for renal diseases.
Collapse
Affiliation(s)
- Siyi Huang
- Department of NephrologyRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of NephrologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuanmeng Jin
- Department of NephrologyRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of NephrologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Liwen Zhang
- Department of NephrologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Ying Zhou
- Department of NephrologyShidong Hospital Affiliated to University of Shanghai for Science and TechnologyShanghaiChina
| | - Nan Chen
- Department of NephrologyRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of NephrologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Weiming Wang
- Department of NephrologyRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of NephrologyShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
3
|
Soto TB, Tenconi PE, Buzzi ED, Dionisio L, Mateos MV, Rotstein NP, Spitzmaul G, Politi LE, German OL. Activation of retinoid X receptors protects retinal neurons and pigment epithelial cells from BMAA-induced death. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119816. [PMID: 39159686 DOI: 10.1016/j.bbamcr.2024.119816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Exposure to the non-protein amino acid cyanotoxin β-N-methylamino-L-alanine (BMAA), released by cyanobacteria found in many water reservoirs has been associated with neurodegenerative diseases. We previously demonstrated that BMAA induced cell death in both retina photoreceptors (PHRs) and amacrine neurons by triggering different molecular pathways, as activation of NMDA receptors and formation of carbamate-adducts was only observed in amacrine cell death. We established that activation of Retinoid X Receptors (RXR) protects retinal cells, including retina pigment epithelial (RPE) cells from oxidative stress-induced apoptosis. We now investigated the mechanisms underlying BMAA toxicity in these cells and those involved in RXR protection. BMAA addition to rat retinal neurons during early development in vitro increased reactive oxygen species (ROS) generation and polyADP ribose polymers (PAR) formation, while pre-treatment with serine (Ser) before BMAA addition decreased PHR death. Notably, RXR activation with the HX630 agonist prevented BMAA-induced death in both neuronal types, reducing ROS generation, preserving mitochondrial potential, and decreasing TUNEL-positive cells and PAR formation. This suggests that BMAA promoted PHR death by substituting Ser in polypeptide chains and by inducing polyADP ribose polymerase activation. BMAA induced cell death in ARPE-19 cells, a human epithelial cell line; RXR activation prevented this death, decreasing ROS generation and caspase 3/7 activity. These findings suggest that RXR activation prevents BMAA harmful effects on retinal neurons and RPE cells, supporting this activation as a broad-spectrum strategy for treating retina degenerations.
Collapse
Affiliation(s)
- Tamara B Soto
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Paula E Tenconi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Edgardo D Buzzi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Leonardo Dionisio
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Melina V Mateos
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Nora P Rotstein
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Guillermo Spitzmaul
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Luis E Politi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Olga L German
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.
| |
Collapse
|
4
|
Ben Patel R, Barnwal SK, Saleh M A AM, Francis D. Leveraging nuclear receptor mediated transcriptional signaling for drug discovery: Historical insights and current advances. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 143:191-269. [PMID: 39843136 DOI: 10.1016/bs.apcsb.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that regulate gene expression in response to physiological signals, such as hormones and other chemical messengers. These receptors either activate or repress the transcription of target genes, which in turn promotes or suppresses physiological processes governing growth, differentiation, and homeostasis. NRs bind to specific DNA sequences and, in response to ligand binding, either promote or hinder the assembly of the transcriptional machinery, thereby influencing gene expression at the transcriptional level. These receptors are involved in a wide range of pathological conditions, including cancer, metabolic disorders, chronic inflammatory diseases, and immune system-related disorders. Modulation of NR function through targeted drugs has shown therapeutic benefits in treating such conditions. NR-targeted drugs, which either completely or selectively activate or block receptor function, represent a significant class of clinically valuable therapeutics. However, the pathways of NR-mediated gene expression and the resulting physiological effects are complex, involving crosstalk between various biomolecular components. As a result, NR-targeted drug discovery is challenging. With improved understanding of how NRs regulate physiological functions and deeper insights into their molecular structure, the process of NR-targeted drug discovery has evolved. While many traditional NR-targeting drugs are associated with side effects of varying severity, new drug candidates are being designed to minimize these adverse effects. Given that NR activity varies according to the tissue in which they are expressed and the specific isoform that is activated or repressed, achieving selectivity in targeting specific tissues and isoform classes may help reduce systemic side effects. In a recent breakthrough, the isoform-selective, hepato-targeted thyroid hormone-β agonist, Resmetirom (marketed as Rezdiffra), was approved for the treatment of non-alcoholic steatohepatitis. This chapter explores the structural and mechanistic principles guiding NR-targeted drug discovery and provides insights into recent developments in this field.
Collapse
Affiliation(s)
- Riya Ben Patel
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Surbhi Kumari Barnwal
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Arabi Mohammed Saleh M A
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Dileep Francis
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India.
| |
Collapse
|
5
|
Sun W, Wang M, Zhao J, Zhao S, Zhu W, Wu X, Li F, Liu W, Wang Z, Gao M, Zhang Y, Xu J, Zhang M, Wang Q, Wen Z, Shen J, Zhang W, Huang Z. Sulindac selectively induces autophagic apoptosis of GABAergic neurons and alters motor behaviour in zebrafish. Nat Commun 2023; 14:5351. [PMID: 37660128 PMCID: PMC10475106 DOI: 10.1038/s41467-023-41114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 08/22/2023] [Indexed: 09/04/2023] Open
Abstract
Nonsteroidal anti-inflammatory drugs compose one of the most widely used classes of medications, but the risks for early development remain controversial, especially in the nervous system. Here, we utilized zebrafish larvae to assess the potentially toxic effects of nonsteroidal anti-inflammatory drugs and found that sulindac can selectively induce apoptosis of GABAergic neurons in the brains of zebrafish larvae brains. Zebrafish larvae exhibit hyperactive behaviour after sulindac exposure. We also found that akt1 is selectively expressed in GABAergic neurons and that SC97 (an Akt1 activator) and exogenous akt1 mRNA can reverse the apoptosis caused by sulindac. Further studies showed that sulindac binds to retinoid X receptor alpha (RXRα) and induces autophagy in GABAergic neurons, leading to activation of the mitochondrial apoptotic pathway. Finally, we verified that sulindac can lead to hyperactivity and selectively induce GABAergic neuron apoptosis in mice. These findings suggest that excessive use of sulindac may lead to early neurodevelopmental toxicity and increase the risk of hyperactivity, which could be associated with damage to GABAergic neurons.
Collapse
Affiliation(s)
- Wenwei Sun
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Meimei Wang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jun Zhao
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Shuang Zhao
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Wenchao Zhu
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Xiaoting Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Feifei Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Wei Liu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Zhuo Wang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Meng Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Yiyue Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jin Xu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Meijia Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Qiang Wang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Zilong Wen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People's Republic of China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518055, China
| | - Juan Shen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| | - Zhibin Huang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Zhang HF, Liu HM, Xiang JY, Zhou XC, Wang D, Chen RY, Tan WL, Liang LQ, Liu LL, Shi MJ, Zhang F, Xiao Y, Zhou YX, Zhang T, Tang L, Guo B, Wang YY. Alpha lipoamide inhibits diabetic kidney fibrosis via improving mitochondrial function and regulating RXRα expression and activation. Acta Pharmacol Sin 2023; 44:1051-1065. [PMID: 36347997 PMCID: PMC10104876 DOI: 10.1038/s41401-022-00997-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/10/2022]
Abstract
Previous studies have shown mitochondrial dysfunction in various acute kidney injuries and chronic kidney diseases. Lipoic acid exerts potent effects on oxidant stress and modulation of mitochondrial function in damaged organ. In this study we investigated whether alpha lipoamide (ALM), a derivative of lipoic acid, exerted a renal protective effect in a type 2 diabetes mellitus mouse model. 9-week-old db/db mice were treated with ALM (50 mg·kg-1·d-1, i.g) for 8 weeks. We showed that ALM administration did not affect blood glucose levels in db/db mice, but restored renal function and significantly improved fibrosis of kidneys. We demonstrated that ALM administration significantly ameliorated mitochondrial dysfunction and tubulointerstitial fibrotic lesions, along with increased expression of CDX2 and CFTR and decreased expression of β-catenin and Snail in kidneys of db/db mice. Similar protective effects were observed in rat renal tubular epithelial cell line NRK-52E cultured in high-glucose medium following treatment with ALM (200 μM). The protective mechanisms of ALM in diabetic kidney disease (DKD) were further explored: Autodock Vina software predicted that ALM could activate RXRα protein by forming stable hydrogen bonds. PROMO Database predicted that RXRα could bind the promoter sequences of CDX2 gene. Knockdown of RXRα expression in NRK-52E cells under normal glucose condition suppressed CDX2 expression and promoted phenotypic changes in renal tubular epithelial cells. However, RXRα overexpression increased CDX2 expression which in turn inhibited high glucose-mediated renal tubular epithelial cell injury. Therefore, we reveal the protective effect of ALM on DKD and its possible potential targets: ALM ameliorates mitochondrial dysfunction and regulates the CDX2/CFTR/β-catenin signaling axis through upregulation and activation of RXRα. Schematic figure illustrating that ALM alleviates diabetic kidney disease by improving mitochondrial function and upregulation and activation of RXRα, which in turn upregulated CDX2 to exert an inhibitory effect on β-catenin activation and nuclear translocation. RTEC renal tubular epithelial cell. ROS Reactive oxygen species. RXRα Retinoid X receptor-α. Mfn1 Mitofusin 1. Drp1 dynamic-related protein 1. MDA malondialdehyde. 4-HNE 4-hydroxynonenal. T-SOD Total-superoxide dismutase. CDX2 Caudal-type homeobox transcription factor 2. CFTR Cystic fibrosis transmembrane conductance regulator. EMT epithelial mesenchymal transition. α-SMA Alpha-smooth muscle actin. ECM extracellular matrix. DKD diabetic kidney disease. Schematic figure was drawn by Figdraw ( www.figdraw.com ).
Collapse
Affiliation(s)
- Hui-Fang Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
| | - Hui-Ming Liu
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jia-Yi Xiang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
| | - Xing-Cheng Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
| | - Dan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
| | - Rong-Yu Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
| | - Wan-Lin Tan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - Lu-Qun Liang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
| | - Ling-Ling Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
| | - Ming-Jun Shi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
| | - Fan Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
| | - Ying Xiao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
| | - Yu-Xia Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
| | - Tian Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
| | - Lei Tang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China.
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550025, China.
| | - Bing Guo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China.
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, 550025, China.
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China.
| | - Yuan-Yuan Wang
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, 550025, China.
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China.
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
7
|
Synergistic Effects of Ginsenoside Rb3 and Ferruginol in Ischemia-Induced Myocardial Infarction. Int J Mol Sci 2022; 23:ijms232415935. [PMID: 36555577 PMCID: PMC9785845 DOI: 10.3390/ijms232415935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Previous research shows that ginsenoside Rb3 (G-Rb3) exhibit significant protective effects on cardiomyocytes and is considered a promising treatment for myocardial infraction (MI). However, how to improve its oral bioavailability and reduce its dosage remains to be studied. Previous studies suggest that Ferruginol (FGL) may have synergistic effects with G-Rb3. However, the underlying mechanisms remain to be explored. In this study, left anterior descending branch (LAD) coronary artery ligation or oxygen-glucose deprivation-reperfusion (OGD/R) were used to establish MI models in vivo and in vitro. Subsequently, the pharmacological effects and mechanisms of G-Rb3-FGL were explored by in vitro studies. The results showed that the G-Rb3-FGL co-treatment improved heart functions better than the G-Rb3 treatment alone in MI mice models. Meanwhile, the G-Rb3-FGL co-treatment can upregulate fatty acids oxidation (FAO) and suppress oxidative stress in the heart tissues of MI mice. In vitro studies demonstrated that the synergistic effect of G-Rb3-FGL on FAO, oxidation and inflammation was abolished by RXRα inhibitor HX531 in the H9C2 cell model. In summary, we revealed that G-Rb3 and FGL have a synergistic effect against MI. They protected cardiomyocytes by promoting FAO, inhibiting oxidative stress, and suppressing inflammation through the RXRα-Nrf2 signaling pathway.
Collapse
|
8
|
Chavira-Suárez E, Reyes-Castro LA, López-Tenorio II, Vargas-Hernández L, Rodríguez-González GL, Chavira R, Zárate-Segura P, Domínguez-López A, Vadillo-Ortega F, Zambrano E. Sex-differential RXRα gene methylation effects on mRNA and protein expression in umbilical cord of the offspring rat exposed to maternal obesity. Front Cell Dev Biol 2022; 10:892315. [PMID: 36072345 PMCID: PMC9442673 DOI: 10.3389/fcell.2022.892315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Maternal obesity (MO) induces negative consequences in the offspring development. Adiposity phenotype is associated with maternal diet at early pregnancy and DNA methylation marks in the RXRα promotor at birth. Glucocorticoids play an important role in the regulation of metabolism through the activation of nuclear hormone receptors such as the RXRα protein. The aim of the study was to analyze steroid hormone changes at the end of pregnancy in the obese mother and RXRα gene methylation in the umbilical cord. For this purpose, in a well-established MO model, female Wistar rats were fed either standard chow (controls: C) or high-fat obesogenic diet (MO) before and during pregnancy to evaluate at 19 days of gestation (19 dG): 1) maternal concentration of circulating steroid hormones in MO and C groups, 2) maternal and fetal weights, 3) analysis of correlation between hormones concentration and maternal and fetal weights, 4) DNA methylation status of a single locus of RXRα gene near the early growth response (EGR-1) protein DNA binding site, and 5) RXRα mRNA and protein expressions in umbilical cords. Our results demonstrate that at 19 dG, MO body weight before and during pregnancy was higher than C; MO progesterone and corticosterone serum concentrations were higher and estradiol lower than C. There were not differences in fetal weight between male and female per group, therefore averaged data was used; MO fetal weight was lower than C. Positive correlations were found between progesterone and corticosterone with maternal weight, and estradiol with fetal weight, while negative correlation was observed between corticosterone and fetal weight. Additionally, male umbilical cords from MO were hypermethylated in RXRα gene compared to male C group, without differences in the female groups; mRNA and protein expression of RXRα were decreased in F1 male but not in female MO compared to C. In conclusion, MO results in dysregulation of circulating steroid hormones of the obese mothers and low fetal weight in the F1, modifying DNA methylation of RXRα gene as well as RXRα mRNA and protein expression in the umbilical cord in a sex-dependent manner.
Collapse
Affiliation(s)
- Erika Chavira-Suárez
- Unidad de Vinculación Científica de la Facultad de Medicina, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, México
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, México
| | - Luis Antonio Reyes-Castro
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - Itzel Ivonn López-Tenorio
- Unidad de Vinculación Científica de la Facultad de Medicina, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, México
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, México
| | - Lilia Vargas-Hernández
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, México
- Instituto Mexicano del Seguro Social, Hospital de Ginecología y Obstetricia No. 4 Luis Castelazo Ayala, Mexico City, México
| | - Guadalupe L. Rodríguez-González
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - Roberto Chavira
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - Paola Zárate-Segura
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, México
| | | | - Felipe Vadillo-Ortega
- Unidad de Vinculación Científica de la Facultad de Medicina, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, México
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, México
| | - Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
- *Correspondence: Elena Zambrano,
| |
Collapse
|
9
|
Design, synthesis and biological evaluation of acyl hydrazones-based derivatives as RXRα-targeted anti-mitotic agents. Bioorg Chem 2022; 128:106069. [DOI: 10.1016/j.bioorg.2022.106069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 11/20/2022]
|
10
|
Taylor E, Heyland A. Evolution of non-genomic nuclear receptor function. Mol Cell Endocrinol 2022; 539:111468. [PMID: 34610359 DOI: 10.1016/j.mce.2021.111468] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/01/2021] [Accepted: 09/29/2021] [Indexed: 12/18/2022]
Abstract
Nuclear receptors (NRs) are responsible for the regulation of diverse developmental and physiological systems in metazoans. NR actions can be the result of genomic and non-genomic mechanisms depending on whether they act inside or outside of the nucleus respectively. While the actions of both mechanisms have been shown to be crucial to NR functions, non-genomic actions are considered less frequently than genomic actions. Furthermore, hypotheses on the origin and evolution of non-genomic NR signaling pathways are rarely discussed in the literature. Here we summarize non-genomic NR signaling mechanisms in the context of NR protein family evolution and animal phyla. We find that NRs across groups and phyla act via calcium flux as well as protein phosphorylation cascades (MAPK/PI3K/PKC). We hypothesize and discuss a possible synapomorphy of NRs in the NR1 and NR3 families, including the thyroid hormone receptor, vitamin D receptor, ecdysone receptor, retinoic acid receptor, steroid receptors, and others. In conclusion, we propose that the advent of non-genomic NR signaling may have been a driving force behind the expansion of NR diversity in Cnidarians, Placozoans, and Bilaterians.
Collapse
Affiliation(s)
- Elias Taylor
- University of Guelph, College of Biological Sciences, Integrative Biology, Guelph, ON N1G-2W1, Canada.
| | - Andreas Heyland
- University of Guelph, College of Biological Sciences, Integrative Biology, Guelph, ON N1G-2W1, Canada.
| |
Collapse
|
11
|
Li H, Li X, Yang B, Su J, Cai S, Huang J, Hu T, Chen L, Xu Y, Li Y. The retinoid X receptor α modulator K-80003 suppresses inflammatory and catabolic responses in a rat model of osteoarthritis. Sci Rep 2021; 11:16956. [PMID: 34417523 PMCID: PMC8379249 DOI: 10.1038/s41598-021-96517-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/11/2021] [Indexed: 11/09/2022] Open
Abstract
Osteoarthritis (OA), a most common and highly prevalent joint disease, is closely associated with dysregulated expression and modification of RXRα. However, the role of RXRα in the pathophysiology of OA remains unknown. The present study aimed to investigate whether RXRα modulator, such as K-80003 can treat OA. Experimental OA was induced by intra-articular injection of monosodium iodoacetate (MIA) in the knee joint of rats. Articular cartilage degeneration was assessed using Safranin-O and fast green staining. Synovial inflammation was measured using hematoxylin and eosin (H&E) staining and enzyme-linked immunosorbent assay (ELISA). Expressions of MMP-13, ADAMTS-4 and ERα in joints were analyzed by immunofluorescence staining. Western blot, RT-PCR and co-Immunoprecipitation (co-IP) were used to assess the effects of K-80003 on RXRα-ERα interaction. Retinoid X receptor α (RXRα) modulator K-80003 prevented the degeneration of articular cartilage, reduced synovial inflammation, and alleviated osteoarthritic pain in rats. Furthermore, K-80003 markedly inhibited IL-1β-induced p65 nuclear translocation and IκBα degradation, and down-regulate the expression of HIF-2α, proteinases (MMP9, MMP13, ADAMTS-4) and pro-inflammatory factors (IL-6 and TNFα) in primary chondrocytes. Additionally, knockdown of ERα with siRNA blocked these effects of K-80003 in chondrocytes. In conclusion, RXRα modulators K-80003 suppresses inflammatory and catabolic responses in OA, suggesting that targeting RXRα-ERα interaction by RXRα modulators might be a novel therapeutic approach for OA treatment.
Collapse
Affiliation(s)
- Hua Li
- The Department of Science and Education, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Xiaofan Li
- Hematopoietic Stem Cell Transplantation Center, Fujian Institute of Hematology, Fujian Provincial Key Laboratory On Hematology, Department of Hematology, Fujian Medical University Union Hospital, No. 29 Xinquan Street, Gulou District, Fuzhou, 350001, China
| | - Boyu Yang
- The Department of Orthopedics, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Junnan Su
- The Department of Hematology and Rheumatology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Shaofang Cai
- The Department of Science and Education, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Jinmei Huang
- The Department of Hematology and Rheumatology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Tianfu Hu
- Department of Traditional Chinese Medicine, Community Health Service Center of Qiaoying Street, Xiamen, China
| | - Lijuan Chen
- Department of Traditional Chinese Medicine, Community Health Service Center of Qiaoying Street, Xiamen, China
| | - Yaping Xu
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, China
| | - Yuhang Li
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, China.
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research On the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.
- Xiamen Institute of Rare-Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Fujian, 361005, China.
| |
Collapse
|
12
|
Cytoplasmic Localization of RXRα Determines Outcome in Breast Cancer. Cancers (Basel) 2021; 13:cancers13153756. [PMID: 34359656 PMCID: PMC8345077 DOI: 10.3390/cancers13153756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Considering the immense development of today’s therapeutic approaches in oncology towards customized therapy, this study aimed to assess the prognostic value of nuclear versus cytoplasmic retinoid X receptor α (RXRα) expression in breast cancer. Our results demonstrate that RXRα expression may have different roles in tumorigenesis according to its subcellular localization. This study strengthens the need for further research on the behavior of RXRα, depending on its intracellular localization. Abstract The aim of this retrospective study was to assess the prognostic value of cytoplasmic versus nuclear RXRα expression in breast cancer (BC) tissue samples and to correlate the results with clinicopathological parameters. In 319 BC patients, the expression of RXRα was evaluated via immunohistochemistry. Prognosis-determining aspects were calculated through uni- and multivariate analyses. Correlation analysis revealed a trend association with nuclear RXRα expression regarding an improved overall survival (OS) (p = 0.078), whereas cytoplasmic RXRα expression was significantly correlated with a poor outcomes in terms of both OS (p = 0.038) and disease-free survival (DFS) (p = 0.037). Strengthening these results, cytoplasmic RXRα was found to be an independent marker for DFS (p = 0.023), when adjusted to clinicopathological parameters, whereas nuclear RXRα expression was positively associated with lower TNM-staging, i.e., pT (p = 0.01), pN (p = 0.029) and pM (p = 0.001). Additionally, cytoplasmic RXRα expression was positively associated with a higher histopathological tumor grading (p = 0.02). Cytoplasmic RXRα was also found to be a negative prognosticator for Her-2neu-negative and triple-negative patients. Altogether, these findings support the hypothesis that the subcellular localization of RXRα plays an important role in carcinogenesis and the prognosis of BC. The expression of cytoplasmic RXRα is correlated with a more aggressive course of the disease, whereas nuclear RXRα expression appears to be a protective factor. These data may help to identify high-risk BC subgroups in order to find possible specific options in targeted tumor therapy.
Collapse
|
13
|
Upreti C, Woodruff CM, Zhang XL, Yim MJ, Zhou ZY, Pagano AM, Rehanian DS, Yin D, Kandel ER, Stanton PK, Nicholls RE. Loss of retinoid X receptor gamma subunit impairs group 1 mGluR mediated electrophysiological responses and group 1 mGluR dependent behaviors. Sci Rep 2021; 11:5552. [PMID: 33692389 PMCID: PMC7946894 DOI: 10.1038/s41598-021-84943-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/17/2021] [Indexed: 11/09/2022] Open
Abstract
Retinoid X receptors are members of the nuclear receptor family that regulate gene expression in response to retinoic acid and related ligands. Group 1 metabotropic glutamate receptors are G-protein coupled transmembrane receptors that activate intracellular signaling cascades in response to the neurotransmitter, glutamate. These two classes of molecules have been studied independently and found to play important roles in regulating neuronal physiology with potential clinical implications for disorders such as depression, schizophrenia, Parkinson's and Alzheimer's disease. Here we show that mice lacking the retinoid X receptor subunit, RXRγ, exhibit impairments in group 1 mGluR-mediated electrophysiological responses at hippocampal Schaffer collateral-CA1 pyramidal cell synapses, including impaired group 1 mGluR-dependent long-term synaptic depression (LTD), reduced group 1 mGluR-induced calcium release, and loss of group 1 mGluR-activated voltage-sensitive currents. These animals also exhibit impairments in a subset of group 1 mGluR-dependent behaviors, including motor performance, spatial object recognition, and prepulse inhibition. Together, these observations demonstrate convergence between the RXRγ and group 1 mGluR signaling pathways that may function to coordinate their regulation of neuronal activity. They also identify RXRγ as a potential target for the treatment of disorders in which group 1 mGluR signaling has been implicated.
Collapse
Affiliation(s)
- Chirag Upreti
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Caitlin M Woodruff
- Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY, 10027, USA
| | - Xiao-Lei Zhang
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Michael J Yim
- Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY, 10027, USA
| | - Zhen-Yu Zhou
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA.,Department of Neurology, New York Medical College, Valhalla, NY, 10595, USA
| | - Andrew M Pagano
- Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY, 10027, USA
| | - Dina S Rehanian
- Department of Pathology and Cell Biology, Columbia University, 630 West 168thStreet, New York, NY, 10032, USA.,Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University, 630 West 168thStreet, New York, NY, 10032, USA
| | - Deqi Yin
- Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY, 10027, USA.,Howard Hughes Medical Institute, Columbia University, 3227 Broadway, New York, NY, 10027, USA
| | - Eric R Kandel
- Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY, 10027, USA.,Howard Hughes Medical Institute, Columbia University, 3227 Broadway, New York, NY, 10027, USA.,Kavli Institute for Brain Science, Columbia University, 3227 Broadway, New York, NY, 10027, USA.,Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, 3227 Broadway, New York, NY, 10027, USA
| | - Patric K Stanton
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA.,Department of Neurology, New York Medical College, Valhalla, NY, 10595, USA
| | - Russell E Nicholls
- Department of Pathology and Cell Biology, Columbia University, 630 West 168thStreet, New York, NY, 10032, USA. .,Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University, 630 West 168thStreet, New York, NY, 10032, USA.
| |
Collapse
|
14
|
Senol SP, Temiz-Resitoglu M, Guden DS, Sari AN, Sahan-Firat S, Tunctan B. Suppression of TLR4/MyD88/TAK1/NF-κB/COX-2 Signaling Pathway in the Central Nervous System by Bexarotene, a Selective RXR Agonist, Prevents Hyperalgesia in the Lipopolysaccharide-Induced Pain Mouse Model. Neurochem Res 2021; 46:624-637. [PMID: 33389386 DOI: 10.1007/s11064-020-03197-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/26/2022]
Abstract
A selective RXR agonist, bexarotene, has been shown to have anti-inflammatory, anti-nociceptive, and neuroprotective effects in several models of numerous neurological diseases characterized by systemic inflammation. The mechanisms underlying these effects remains unknown. To elucidate these mechanisms, we investigated whether the TLR4/MyD88/TAK1/NF-κB/COX-2 signaling pathway in the CNS mediates the effect of bexarotene to prevent hyperalgesia in the LPS-induced inflammatory pain mouse model. The reaction time to thermal stimuli within 30 s was evaluated by the hot plate test in male mice treated with saline, LPS (10 mg/kg), DMSO, and/or bexarotene (0.1, 1, 3, or 10 mg/kg) after 6 h. The latency to the thermal stimulus (18.11 ± 1.36 s) in the LPS-treated mice was significantly decreased by 30% compared with saline-treated mice (25.84 ± 1.99 s). Treatment with bexarotene only at a dose of 10 mg/kg showed a significant increase in the latency by 22.49 ± 1.00 s compared with LPS-treated mice. Bexarotene also prevented the reduction in RXRα protein expression associated with a rise in the expression of TLR4, MyD88, phosphorylated TAK1, NF-κB p65, phosphorylated NF-κB p65, COX-2, and IL-1β proteins, in addition to COX-2 activity and levels of PGE2 and IL-1β in the brains and spinal cords of the LPS-treated animals. Likely, decreased activity of TLR4/MyD88/TAK1/NF-κB/COX-2 signaling pathway in addition to increased pro-inflammatory cytokine formation in the CNS of mice participates in the protective effect of bexarotene against hyperalgesia induced by LPS.
Collapse
Affiliation(s)
- Sefika Pinar Senol
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | | | - Demet Sinem Guden
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Ayse Nihal Sari
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Seyhan Sahan-Firat
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Bahar Tunctan
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey.
| |
Collapse
|
15
|
Feng M, Wang K, Wei H, Zhang S, Chen Y. Serum 25OHD3 of Obese Mice Is Affected by Liver Injury and Correlates with Testosterone Levels and Sperm Motility. Obes Facts 2021; 14:559-567. [PMID: 34515192 PMCID: PMC8546444 DOI: 10.1159/000518199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 06/30/2021] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION The concentration of 25-hydroxycholecalciferol (25OHD3) in the serum of obese people is low and often accompanied by symptoms of low fertility. Therefore, vitamin D is recommended as a potential treatment option. However, after clinical trials, it was found that vitamin D cannot effectively increase the concentration of 25OHD3 in the serum of obese people. How obesity causes low 25OHD3 concentration and low fertility is unclear. METHODS We analyzed the physiological and pathological changes in obese mice induced by a high-fat diet (HFD) and the changes in mice after supplementing with 25OHD3. RESULTS The concentration of 25OHD3 in the serum of obese mice induced by HFD was significantly reduced, and these mice showed liver hypertrophy accompanied by abnormal liver injury, testicular hypertrophy, low testosterone levels, high leptin levels, and low sperm motility. The mRNA and protein expression of CYP2R1 of hydroxylated vitamin D3 was significantly reduced; CYP11A1 and CYP11A2, which synthesize testosterone, were significantly reduced. After supplementing with 25OHD3, there was an increase in serum 25OHD3 concentration, testosterone level, and sperm motility, but it cannot improve the degree of obesity, CYP2R1 expression, and liver damage. CONCLUSION Our research shows that there is a metabolic interference mediated by 25OHD3 and testosterone between obesity and low sperm motility. The results of this study can provide a scientific basis for studying the mechanism of 25OHD3 and hormone regulation and treating obese people with low sperm motility.
Collapse
Affiliation(s)
- Meiying Feng
- College of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hengxi Wei
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shouquan Zhang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yun Chen
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, China
- *Yun Chen,
| |
Collapse
|
16
|
Xie G, Zhou Y, Tu X, Ye X, Xu L, Xiao Z, Wang Q, Wang X, Du M, Chen Z, Chi X, Zhang X, Xia J, Zhang X, Zhou Y, Li Z, Xie C, Sheng L, Zeng Z, Zhou H, Yin Z, Su Y, Xu Y, Zhang XK. Centrosomal Localization of RXRα Promotes PLK1 Activation and Mitotic Progression and Constitutes a Tumor Vulnerability. Dev Cell 2020; 55:707-722.e9. [PMID: 33321102 DOI: 10.1016/j.devcel.2020.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/15/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Retinoid X receptor alpha (RXRα), a nuclear receptor of transcription factor, controls various physiological and pathological pathways including cellular growth, proliferation, differentiation, and apoptosis. Here, we report that RXRα is phosphorylated at its N-terminal A/B domain by cyclin-dependent kinase 1 (Cdk1) at the onset of mitosis, triggering its translocation to the centrosome, where phosphorylated-RXRα (p-RXRα) interacts with polo-like kinase 1 (PLK1) through its N-terminal A/B domain by a unique mechanism. The interaction promotes PLK1 activation, centrosome maturation, and mitotic progression. Levels of p-RXRα are abnormally elevated in cancer cell lines, during carcinogenesis in animals, and in clinical tumor tissues. An RXRα ligand XS060, which specifically inhibits p-RXRα/PLK1 interaction but not RXRα heterodimerization, promotes mitotic arrest and catastrophe in a tumor-specific manner. These findings unravel a transcription-independent action of RXRα at the centrosome during mitosis and identify p-RXRα as a tumor-specific vulnerability for developing mitotic drugs with improved therapeutic index.
Collapse
Affiliation(s)
- Guobin Xie
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Yuqi Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China; NucMito Pharmaceuticals Co. Ltd., Xiamen 361101, Fujian, China
| | - Xuhuang Tu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiaohong Ye
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Lin Xu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Zhijian Xiao
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Qiqiang Wang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Mingxuan Du
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Ziwen Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China; NucMito Pharmaceuticals Co. Ltd., Xiamen 361101, Fujian, China
| | - Xiaoqin Chi
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital Xiamen University, Xiamen 361004, Fujian, China
| | - Xiaoli Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Ji Xia
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiaowei Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Yunxia Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Zongxi Li
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Chengrong Xie
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital Xiamen University, Xiamen 361004, Fujian, China
| | - Luoyan Sheng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Zhiping Zeng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Hu Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Zhenyu Yin
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital Xiamen University, Xiamen 361004, Fujian, China
| | - Ying Su
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China; NucMito Pharmaceuticals Co. Ltd., Xiamen 361101, Fujian, China
| | - Yang Xu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
17
|
Huang F, Li Y, Chen J, Zhang XK, Zhou H. Rosiglitazone binds to RXRα to induce RXRα tetramerization and NB4 cell differentiation. Biochem Biophys Res Commun 2020; 530:160-166. [PMID: 32828280 DOI: 10.1016/j.bbrc.2020.06.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 06/25/2020] [Indexed: 11/15/2022]
Abstract
Rosiglitazone is a ligand of peroxisome proliferation-activated receptor gamma (PPARγ). However, it exerts biological activities and therapeutic effects through both PPARγ-dependent and independent mechanisms. In this study, we defined that rosiglitazone was also a ligand of retinoid X receptor alpha (RXRα) and displayed RXRα-dependent activities. We found that rosiglitazone directly bound to the ligand binding domain (LBD) of RXRα and induced RXRα/LBD tetramerization. Rosiglitazone inhibited the agonist-induced transcriptional activity of RXRα homodimers and heterodimers likely through inhibiting RXRα homo- and hetero-dimerization. In acute promyelocytic leukemia (APL) NB4 cells, rosiglitazone inhibited cell proliferation and induced cell differentiation, resulting from inhibiting RXRα/PML-RARα complex formation and down-regulating PML-RARα. Together, our study identified RXRα as a novel target of rosiglitazone and RXRα mediating the anti-APL activity of rosiglitazone.
Collapse
Affiliation(s)
- Fengyu Huang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yihuan Li
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, 361102, China
| | - Junjie Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, 361102, China; High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, 361102, China; High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian, 361102, China
| | - Hu Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, 361102, China; High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
18
|
Spp24 is associated with endocytic signalling, lipid metabolism, and discrimination of tissue integrity for 'leaky-gut' in inflammatory bowel disease. Sci Rep 2020; 10:12932. [PMID: 32737354 PMCID: PMC7395150 DOI: 10.1038/s41598-020-69746-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/06/2020] [Indexed: 11/14/2022] Open
Abstract
Epithelial barrier injury allows contaminants to cross-over into the blood stream and trigger an inflammatory response, contributing to inflammatory bowel disease (IBD). Currently there is no single test that can reliably diagnose intestinal mucosal barrier function or measure impaired epithelial cell integrity associated with increasing permeability. Here, we assess the association between serum proteins and small intestinal permeability as detected by confocal laser endomicroscopy (CLE); in particular the known IBD marker—secreted phosphoprotein 24 (SPP24) and its binding partners; and use developed monoclonal antibodies to assess the role of SPP24 in mucosal healing. Sera were obtained from 28 IBD patients and non-IBD controls undergoing CLE with scores ranging from low to high permeability, as well as active ulcerative colitis from 53 patients undergoing fecal microbiota transplant therapy (FMT). Higher permeability associated with altered lipid metabolism, heightened innate immune response and junctional protein signalling in UC patients. A correlation between increasing leak and SPP24 peptide was observed. There is a strong indication of the novel role of SPP24 in gut barrier dysfunction particularly in ulcerative colitis. Its correlation to the established CLE for monitoring permeability has the potential to provide a blood based parallel to monitor and guide therapy more readily across a broad spectrum of illnesses for which ‘leak’ dominates the pathology.
Collapse
|
19
|
Retinoid X receptor agonists attenuates cardiomyopathy in streptozotocin-induced type 1 diabetes through LKB1-dependent anti-fibrosis effects. Clin Sci (Lond) 2020; 134:609-628. [PMID: 32175563 DOI: 10.1042/cs20190985] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/27/2020] [Accepted: 03/16/2020] [Indexed: 12/15/2022]
Abstract
Diabetic cardiac fibrosis increases ventricular stiffness and facilitates the occurrence of diastolic dysfunction. Retinoid X receptor (RXR) plays an important role in cardiac development and has been implicated in cardiovascular diseases. In the present study, we investigated the effects of RXR agonist treatment on streptozotocin (STZ)-induced diabetic cardiomyopathy (DCM) and the underlying mechanism. Sprague-Dawley (SD) rats induced by STZ injection were treated with either RXR agonist bexarotene (Bex) or vehicle alone. Echocardiography was performed to determine cardiac structure and function. Cardiac fibroblasts (CFs) were treated with high glucose (HG) with or without the indicated concentration of Bex or the RXR ligand 9-cis-retinoic acid (9-cis-RA). The protein abundance levels were measured along with collagen, body weight (BW), blood biochemical indexes and transforming growth factor-β (TGF-β) levels. The effects of RXRα down-regulation by RXRα small interfering RNA (siRNA) were examined. The results showed that bexarotene treatment resulted in amelioration of left ventricular dysfunction by inhibiting cardiomyocyte apoptosis and myocardial fibrosis. Immunoblot with heart tissue homogenates from diabetic rats revealed that bexarotene activated liver kinase B1 (LKB1) signaling and inhibited p70 ribosomal protein S6 kinase (p70S6K). The increased collagen levels in the heart tissues of DCM rats were reduced by bexarotene treatment. Treatment of CFs with HG resulted in significantly reduced LKB1 activity and increased p70S6K activity. RXRα mediated the antagonism of 9-cis-RA on HG-induced LKB1/p70S6K activation changes in vitro. Our findings suggest that RXR agonist ameliorates STZ-induced DCM by inhibiting myocardial fibrosis via modulation of the LKB1/p70S6K signaling pathway. RXR agonists may serve as novel therapeutic agents for the treatment of DCM.
Collapse
|
20
|
Skowron KJ, Booker K, Cheng C, Creed S, David BP, Lazzara PR, Lian A, Siddiqui Z, Speltz TE, Moore TW. Steroid receptor/coactivator binding inhibitors: An update. Mol Cell Endocrinol 2019; 493:110471. [PMID: 31163202 PMCID: PMC6645384 DOI: 10.1016/j.mce.2019.110471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022]
Abstract
The purpose of this review is to highlight recent developments in small molecules and peptides that block the binding of coactivators to steroid receptors. These coactivator binding inhibitors bind at the coregulator binding groove, also known as Activation Function-2, rather than at the ligand-binding site of steroid receptors. Steroid receptors that have been targeted with coactivator binding inhibitors include the androgen receptor, estrogen receptor and progesterone receptor. Coactivator binding inhibitors may be useful in some cases of resistance to currently prescribed therapeutics. The scope of the review includes small-molecule and peptide coactivator binding inhibitors for steroid receptors, with a particular focus on recent compounds that have been assayed in cell-based models.
Collapse
Affiliation(s)
- Kornelia J Skowron
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Kenneth Booker
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Changfeng Cheng
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Simone Creed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Brian P David
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Phillip R Lazzara
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Amy Lian
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Zamia Siddiqui
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Thomas E Speltz
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA; Department of Chemistry, University of Chicago, 929 E. 57th Street, E547, Chicago, IL, 60637, USA
| | - Terry W Moore
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA; University of Illinois Cancer Center, University of Illinois at Chicago, 1801 W. Taylor Street, Chicago, IL, 60612, USA.
| |
Collapse
|
21
|
Shen L, Sun Z, Nie P, Yuan R, Cai Z, Wu C, Hu L, Jin S, Zhou H, Zhang X, He B. Sulindac-derived retinoid X receptor-α modulator attenuates atherosclerotic plaque progression and destabilization in ApoE -/- mice. Br J Pharmacol 2019; 176:2559-2572. [PMID: 30943581 PMCID: PMC6592870 DOI: 10.1111/bph.14682] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Atherosclerosis is a chronic inflammatory disease, and retinoid X receptor-α (RXRα) is an intriguing anti-atherosclerosis target. This study investigated whether and how an RXRα modulator, K-80003, derived from a non-steroidal anti-inflammatory drug attenuates atherosclerotic plaque progression and destabilization. EXPERIMENTAL APPROACH Our previously established ApoE-/- mouse model of carotid vulnerable plaque progression was treated with K-80003 or vehicle for 4 or 8 weeks. Samples of carotid arteries and serum were collected to determine atherosclerotic lesion size, histological features, expression of related proteins, and lipid profiles. In vitro studies were carried out in 7-ketocholesterol (7-KC)-stimulated macrophages treated with or without K-80003. KEY RESULTS K-80003 significantly reduced lesion size, plaque rupture, macrophage infiltration, and inflammatory cytokine levels. Plaque macrophages positive for nuclear p65 (RelA) NF-κB subunit were markedly reduced after K-80003 treatment. Also, K-80003 treatment inhibited 7-KC-induced p65 nuclear translocation, IκBα degradation, and transcription of NF-κB target genes. In addition, K-80003 inhibited NF-κB pathway mainly through the reduction of p62/sequestosome 1 (SQSTM1), probably due to promotion of autophagic flux by K-80003. Mechanistically, cytoplasmic localization of RXRα was associated with decreased autophagic flux. Increasing cytoplasmic RXRα expression by overexpression of RXRα/385 mutant decreased autophagic flux in RAW264.7 cells. Finally, K-80003 strongly inhibited 7-KC-induced RXRα cytoplasmic translocation. CONCLUSIONS AND IMPLICATIONS K-80003 suppressed atherosclerotic plaque progression and destabilization by promoting macrophage autophagic flux and consequently inhibited the p62/SQSTM1-mediated NF-κB proinflammatory pathway. Thus, targeting RXRα-mediated autophagy-inflammation axis by its noncanonical modulator may represent a promising strategy to treat atherosclerosis.
Collapse
Affiliation(s)
- Linghong Shen
- Department of CardiologyShanghai Chest Hospital, Shanghai Jiaotong UniversityShanghaiChina
| | - Zhe Sun
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Peng Nie
- Department of CardiologyRenji Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Ruosen Yuan
- Department of CardiologyRenji Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Zhaohua Cai
- Department of CardiologyRenji Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Caizhe Wu
- Department of CardiologyRenji Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Liuhua Hu
- Department of CardiologyRenji Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Shuxuan Jin
- Department of CardiologyRenji Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Hu Zhou
- School of Pharmaceutical SciencesXiamen UniversityXiamenChina
| | - Xiaokun Zhang
- School of Pharmaceutical SciencesXiamen UniversityXiamenChina
- Cancer CenterSandford Burnham Prebys Medical Discovery InstituteLa JollaCA
| | - Ben He
- Department of CardiologyShanghai Chest Hospital, Shanghai Jiaotong UniversityShanghaiChina
| |
Collapse
|
22
|
de Almeida NR, Conda-Sheridan M. A review of the molecular design and biological activities of RXR agonists. Med Res Rev 2019; 39:1372-1397. [PMID: 30941786 DOI: 10.1002/med.21578] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/09/2019] [Accepted: 03/16/2019] [Indexed: 12/13/2022]
Abstract
An attractive approach to combat disease is to target theregulation of cell function. At the heart of this task are nuclear receptors (NRs); which control functions such as gene transcription. Arguably, the key player in this regulatory machinery is the retinoid X receptor (RXR). This NR associates with a third of the NRs found in humans. Scientists have hypothesized that controlling the activity of RXR is an attractive approach to control cellular functions that modulate diseases such as cancer, diabetes, Alzheimer's disease and Parkinson's disease. In this review, we will describe the key features of the RXR, present a historic perspective of the first RXR agonists, and discuss various templates that have been reported to activate RXR with a focus on their molecular structure, biological activity, and limitations. Finally, we will present an outlook of the field and future directions and considerations to synthesize or modulate RXR agonists to make these compounds a clinical reality.
Collapse
Affiliation(s)
| | - Martin Conda-Sheridan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
23
|
Oncogenic potential of truncated RXRα during colitis-associated colorectal tumorigenesis by promoting IL-6-STAT3 signaling. Nat Commun 2019; 10:1463. [PMID: 30931933 PMCID: PMC6443775 DOI: 10.1038/s41467-019-09375-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/18/2019] [Indexed: 12/22/2022] Open
Abstract
Retinoid X receptor-alpha (RXRα) is a potent regulator of inflammatory responses; however, its therapeutic potential for inflammatory cancer remains to be explored. We previously discovered that RXRα is abnormally cleaved in tumor cells and tissues, producing a truncated RXRα (tRXRα). Here, we show that transgenic expression of tRXRα in mice accelerates the development of colitis-associated colon cancer (CAC). The tumorigenic effect of tRXRα is primarily dependent on its expression in myeloid cells, which results in interleukin-6 (IL-6) induction and STAT3 activation. Mechanistic studies reveal an extensive interaction between tRXRα and TRAF6 in the cytoplasm of macrophages, leading to TRAF6 ubiquitination and subsequent activation of the NF-κB inflammatory pathway. K-80003, a tRXRα modulator derived from nonsteroidal anti-inflammatory drug (NSAID) sulindac, suppresses the growth of tRXRα-mediated colorectal tumor by inhibiting the NF-κB-IL-6-STAT3 signaling cascade. These results provide new insight into tRXRα action and identify a promising tRXRα ligand for treating CAC.
Collapse
|
24
|
Yan Z, Chong S, Lin H, Yang Q, Wang X, Zhang W, Zhang X, Zeng Z, Su Y. Design, synthesis and biological evaluation of tetrazole-containing RXRα ligands as anticancer agents. Eur J Med Chem 2019; 164:562-575. [DOI: 10.1016/j.ejmech.2018.12.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 12/18/2022]
|
25
|
Ren G, Bao W, Zeng Z, Zhang W, Shang C, Wang M, Su Y, Zhang XK, Zhou H. Retinoid X Receptor Alpha Nitro-ligand Z-10 and Its Optimized Derivative Z-36 Reduce β-Amyloid Plaques in Alzheimer's Disease Mouse Model. Mol Pharm 2018; 16:480-488. [PMID: 29995422 DOI: 10.1021/acs.molpharmaceut.8b00096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bexarotene, an agonist of retinoid X receptor alpha (RXRα), has been shown to increase the expression of apoE, ABCA1, and ABCG1 by activating RXR/LXR and RXR/PPAR heterodimers, resulting in amyloid β (Aβ)-protein clearance in the brain of an Alzheimer's disease (AD) mouse model and reversal of mouse cognitive deficits. Nitrostyrene derivative Z-10 is the first identified nitro-ligand of RXRα. We hypothesized that Z-10 and its derivatives have the similar effect as bexarotene. A series of Z-10 derivatives were synthesized by introducing methoxyl, hydroxyl, and methoxy groups in 2- or 4-position of naphthalene ring, respectively. Our reporter gene assays showed that the derivatives with substituted groups of methyl and methoxyl in position 2 were more potent to activate Gal4-DBD/RXRα-LBD and RXRα homodimer as well as RXRα heterodimers than the corresponding 4-substituted derivatives. The derivatives with hydroxyl substitution in either 2- or 4-position failed to activate RXRα. Consistently, the derivatives with stronger potency of RXRα activation had higher RXRα binding affinity. Z-10 and its 2-ethyoxyl substituted derivative Z-36 reduced Aβ plaques in both hippocampus and cortex of AD mouse model significantly, of which Z-36 had stronger efficacy. This may due to the stronger ability of Z-36 than Z-10 in activating RXR/LXR and RXR/PPAR heterodimers and inducing ABCA1 and ABCG1 expressions. Thus, the 2- rather than 4-position was the better site for Z-10 modification as to RXRα transactivation, and Z-36 is an optimized derivative of Z-10 as to reducing Aβ plaques in AD mouse model.
Collapse
Affiliation(s)
- Gaoang Ren
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research , Xiamen University , Xiamen , Fujian 361102 , China
| | - Wei Bao
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research , Xiamen University , Xiamen , Fujian 361102 , China
| | - Zhiping Zeng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research , Xiamen University , Xiamen , Fujian 361102 , China
| | - Weidong Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research , Xiamen University , Xiamen , Fujian 361102 , China
| | - Ce Shang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research , Xiamen University , Xiamen , Fujian 361102 , China
| | - Maosi Wang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research , Xiamen University , Xiamen , Fujian 361102 , China
| | - Ying Su
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research , Xiamen University , Xiamen , Fujian 361102 , China.,Cancer Center , Sanford Burnham Prebys Medical Discovery Institute , La Jolla , California 92037 , United States
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research , Xiamen University , Xiamen , Fujian 361102 , China.,Cancer Center , Sanford Burnham Prebys Medical Discovery Institute , La Jolla , California 92037 , United States
| | - Hu Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research , Xiamen University , Xiamen , Fujian 361102 , China
| |
Collapse
|
26
|
Tunctan B, Kucukkavruk SP, Temiz-Resitoglu M, Guden DS, Sari AN, Sahan-Firat S. Bexarotene, a Selective RXRα Agonist, Reverses Hypotension Associated with Inflammation and Tissue Injury in a Rat Model of Septic Shock. Inflammation 2018; 41:337-355. [PMID: 29188497 DOI: 10.1007/s10753-017-0691-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that can activate or inhibit the expression of many target genes by forming a heterodimer complex with the retinoid X receptor (RXR). The aim of this study was to investigate effects of bexarotene, a selective RXRα agonist, on the changes in renal, cardiac, hepatic, and pulmonary expression/activity of inducible nitric oxide synthase (iNOS) and cytochrome P450 (CYP) 4F6 in relation to PPARα/β/γ-RXRα heterodimer formation in a rat model of septic shock. Rats were injected with dimethyl sulfoxide or bexarotene 1 h after administration of saline or lipopolysaccharide (LPS). Mean arterial pressure (MAP) and heart rate (HR) were recorded from rats, which had received either saline or LPS before and after 1, 2, 3, and 4 h. Serum iNOS, LTB4, myeloperoxidase (MPO), and lactate dehydrogenase (LDH) levels as well as tissue iNOS and CYP4F6 mRNA expression in addition to PPARα/β/γ and RXRα proteins were measured. LPS-induced decrease in MAP and increase in HR were associated with a decrease in PPARα/β/γ-RXRα heterodimer formation and CYP4F6 mRNA expression. LPS also caused an increase in systemic iNOS, LTB4, MPO, and LDH levels as well as iNOS mRNA expression. Bexarotene at 0.1 mg/kg (i.p.) prevented the LPS-induced changes, except tachycardia. The results suggest that increased formation of PPARα/β/γ-RXRα heterodimers and CYP4F6 expression/activity in addition to decreased iNOS expression contributes to the beneficial effect of bexarotene to prevent the hypotension associated with inflammation and tissue injury during rat endotoxemia.
Collapse
Affiliation(s)
- Bahar Tunctan
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey.
| | - Sefika P Kucukkavruk
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| | - Meryem Temiz-Resitoglu
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| | - Demet S Guden
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| | - Ayse N Sari
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| | - Seyhan Sahan-Firat
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Yenisehir Campus, 33169, Mersin, Turkey
| |
Collapse
|
27
|
Watanabe M, Kakuta H. Retinoid X Receptor Antagonists. Int J Mol Sci 2018; 19:ijms19082354. [PMID: 30103423 PMCID: PMC6121510 DOI: 10.3390/ijms19082354] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 12/18/2022] Open
Abstract
Retinoid X receptor (RXR) antagonists are not only useful as chemical tools for biological research, but are also candidate drugs for the treatment of various diseases, including diabetes and allergies, although no RXR antagonist has yet been approved for clinical use. In this review, we present a brief overview of RXR structure, function, and target genes, and describe currently available RXR antagonists, their structural classification, and their evaluation, focusing on the latest research.
Collapse
Affiliation(s)
- Masaki Watanabe
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
28
|
Chen L, Wu L, Zhu L, Zhao Y. Overview of the structure-based non-genomic effects of the nuclear receptor RXRα. Cell Mol Biol Lett 2018; 23:36. [PMID: 30093910 PMCID: PMC6080560 DOI: 10.1186/s11658-018-0103-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/27/2018] [Indexed: 12/12/2022] Open
Abstract
The nuclear receptor RXRα (retinoid X receptor-α) is a transcription factor that regulates the expression of multiple genes. Its non-genomic function is largely related to its structure, polymeric forms and modification. Previous research revealed that some non-genomic activity of RXRα occurs via formation of heterodimers with Nur77. RXRα-Nur77 heterodimers translocate from the nucleus to the mitochondria in response to certain apoptotic stimuli and this activity correlates with cell apoptosis. More recent studies revealed a significant role for truncated RXRα (tRXRα), which interacts with the p85α subunit of the PI3K/AKT signaling pathway, leading to enhanced activation of AKT and promoting cell growth in vitro and in animals. We recently reported on a series of NSAID sulindac analogs that can bind to tRXRα through a unique binding mechanism. We also identified one analog, K-80003, which can inhibit cancer cell growth by inducing tRXRα to form a tetramer, thus disrupting p85α-tRXRα interaction. This review analyzes the non-genomic effects of RXRα in normal and tumor cells, and discusses the functional differences based on RXRα protein structure (structure source: the RCSB Protein Data Bank).
Collapse
Affiliation(s)
- Liqun Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China
| | - Lingjuan Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China
| | - Linyan Zhu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China
| | - Yiyi Zhao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108 China
| |
Collapse
|
29
|
Expression and clinical significance of retinoid X receptor α in esophageal carcinoma. Ann Diagn Pathol 2018; 34:110-115. [PMID: 29661715 DOI: 10.1016/j.anndiagpath.2018.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 01/09/2023]
Abstract
PURPOSE Esophageal carcinoma (EC) is one of the most aggressive type cancers and dysregulation of retinoid X receptor α (RXRα) involves various tumors. However, the relationship of RXRα with the clinicopathological factors of EC, particularly prognostic characteristics, remains unclear. This present study was to evaluate the effect of RXRα expression in the development of EC. METHODS The mRNA and protein expression level of RXRα in EC and normal esophageal tissues using reverse transcription-polymerase chain reaction (RT-PCR) and Western blot, respectively. The subcellular localization was detected by immunohistochemistry (IHC) analysis. The clinicopathological parameters were included age, sex, tumor size, differentiation, TNM stages and lymph node metastasis. Kaplan-Meier method and Cox's regression analyses were performed to evaluate the prognosis of 60 patients with EC. RESULTS RXRα was elevated in EC tissues comparing with normal esophageal tissues at both mRNA and protein levels. The overexpression level of RXRα was closely associated to the tumor differentiation, TNM stage and lymph node metastasis of patients with EC. In addition, EC patients with RXRα high expression had significantly lower disease-free survival (DFS) and overall survival (OS). Multivariate analysis showed RXRα expression as an independent predictor for the DFS and OS rate of patients with EC. CONCLUSIONS Our results showed that overexpression of RXRα was correlated with unfavorable prognosis, suggesting that RXRα may serve as a potential targeted therapeutic marker in the treatment of EC.
Collapse
|
30
|
Berberine binds RXRα to suppress β-catenin signaling in colon cancer cells. Oncogene 2017; 36:6906-6918. [PMID: 28846104 PMCID: PMC5735301 DOI: 10.1038/onc.2017.296] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/22/2017] [Accepted: 07/17/2017] [Indexed: 02/07/2023]
Abstract
Berberine, an isoquinoline alkaloid, is a traditional oriental medicine used to treat diarrhea and gastroenteritis. Recently, we reported that it could inhibit the growth of intestinal polyp in animals and in patients with the familial adenomatous polyposis by downregulating β-catenin signaling. However, the intracellular target mediating the effects of berberine remains elusive. Here, we provide evidence that berberine inhibits β-catenin function via directly binding to a unique region comprising residues Gln275, Arg316 and Arg371 in nuclear receptor retinoid X receptor alpha (RXRα), where berberine concomitantly binding to and synergistically activating RXRα with 9-cis-retinoic acid (9-cis-RA), a natural ligand binding to the classical ligand-binding pocket of RXRα. Berberine binding promotes RXRα interaction with nuclear β-catenin, leading to c-Cbl mediated degradation of β-catenin, and consequently inhibits the proliferation of colon cancer cells. Furthermore, berberine suppresses the growth of human colon carcinoma xenograft in nude mice in an RXRα-dependent manner. Together, our study not only identifies RXRα as a direct protein target for berberine but also dissects their binding mode and validates that berberine indeed suppresses β-catenin signaling and cell growth in colon cancer via binding RXRα, which provide new strategies for the design of new RXRα-based antitumor agents and drug combinations.
Collapse
|
31
|
Abstract
A growing epidemic of nonalcoholic fatty liver disease (NAFLD) is paralleling the increase in the incidence of obesity and diabetes mellitus in countries that consume a Western diet. As NAFLD can lead to life-threatening conditions such as cirrhosis and hepatocellular carcinoma, an understanding of the factors that trigger its development and pathological progression is needed. Although by definition this disease is not associated with alcohol consumption, exposure to environmental agents that have been linked to other diseases might have a role in the development of NAFLD. Here, we focus on one class of these agents, endocrine-disrupting chemicals (EDCs), and their potential to influence the initiation and progression of a cascade of pathological conditions associated with hepatic steatosis (fatty liver). Experimental studies have revealed several potential mechanisms by which EDC exposure might contribute to disease pathogenesis, including the modulation of nuclear hormone receptor function and the alteration of the epigenome. However, many questions remain to be addressed about the causal link between acute and chronic EDC exposure and the development of NAFLD in humans. Future studies that address these questions hold promise not only for understanding the linkage between EDC exposure and liver disease but also for elucidating the molecular mechanisms that underpin NAFLD, which in turn could facilitate the development of new prevention and treatment opportunities.
Collapse
Affiliation(s)
- Charles E Foulds
- Department of Molecular and Cellular Biology, Baylor College of Medicine
- Center for Precision Environmental Health, Baylor College of Medicine
| | - Lindsey S Treviño
- Department of Molecular and Cellular Biology, Baylor College of Medicine
- Center for Precision Environmental Health, Baylor College of Medicine
| | - Brian York
- Department of Molecular and Cellular Biology, Baylor College of Medicine
- Dan L. Duncan Cancer Center, Baylor College of Medicine
| | - Cheryl L Walker
- Department of Molecular and Cellular Biology, Baylor College of Medicine
- Center for Precision Environmental Health, Baylor College of Medicine
- Dan L. Duncan Cancer Center, Baylor College of Medicine
- Department of Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, Texas 77030, USA
| |
Collapse
|
32
|
Chen L, Aleshin AE, Alitongbieke G, Zhou Y, Zhang X, Ye X, Hu M, Ren G, Chen Z, Ma Y, Zhang D, Liu S, Gao W, Cai L, Wu L, Zeng Z, Jiang F, Liu J, Zhou H, Cadwell G, Liddington RC, Su Y, Zhang XK. Modulation of nongenomic activation of PI3K signalling by tetramerization of N-terminally-cleaved RXRα. Nat Commun 2017; 8:16066. [PMID: 28714476 PMCID: PMC5520057 DOI: 10.1038/ncomms16066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 05/24/2017] [Indexed: 12/14/2022] Open
Abstract
Retinoid X receptor-alpha (RXRα) binds to DNA either as homodimers or heterodimers, but it also forms homotetramers whose function is poorly defined. We previously discovered that an N-terminally-cleaved form of RXRα (tRXRα), produced in tumour cells, activates phosphoinositide 3-kinase (PI3K) signalling by binding to the p85α subunit of PI3K and that K-80003, an anti-cancer agent, inhibits this process. Here, we report through crystallographic and biochemical studies that K-80003 binds to and stabilizes tRXRα tetramers via a ‘three-pronged’ combination of canonical and non-canonical mechanisms. K-80003 binding has no effect on tetramerization of RXRα, owing to the head–tail interaction that is absent in tRXRα. We also identify an LxxLL motif in p85α, which binds to the coactivator-binding groove on tRXRα and dissociates from tRXRα upon tRXRα tetramerization. These results identify conformational selection as the mechanism for inhibiting the nongenomic action of tRXRα and provide molecular insights into the development of RXRα cancer therapeutics. The transcription factor retinoid X receptor-alpha (RXRα) can also form homotetramers. Here the authors show that the anti-cancer agent K-80003 selectively inhibits the nongenomic action of N-terminally-cleaved RXRα in tumour cells by stabilizing its tetramerization but not that of full-length RXRα.
Collapse
Affiliation(s)
- Liqun Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China.,College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China.,Sanford Burnham Prebys Medical Discovery Institute, 10901, North Torrey Pines Road, La Jolla, California 92037, USA
| | - Alexander E Aleshin
- Sanford Burnham Prebys Medical Discovery Institute, 10901, North Torrey Pines Road, La Jolla, California 92037, USA
| | - Gulimiran Alitongbieke
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Yuqi Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Xindao Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Xiaohong Ye
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Mengjie Hu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Gaoang Ren
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Ziwen Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Yue Ma
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Duo Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Shuai Liu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Weiwei Gao
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Lijun Cai
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Lingjuan Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zhiping Zeng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Fuquan Jiang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Jie Liu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Hu Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Gregory Cadwell
- Sanford Burnham Prebys Medical Discovery Institute, 10901, North Torrey Pines Road, La Jolla, California 92037, USA
| | - Robert C Liddington
- Sanford Burnham Prebys Medical Discovery Institute, 10901, North Torrey Pines Road, La Jolla, California 92037, USA
| | - Ying Su
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China.,Sanford Burnham Prebys Medical Discovery Institute, 10901, North Torrey Pines Road, La Jolla, California 92037, USA
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China.,Sanford Burnham Prebys Medical Discovery Institute, 10901, North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
33
|
Liu Y, Tang J, Gao X, Wang M, Shen J, You X. Effect of retinoid X receptor-α nuclear export inhibition on apoptosis of neurons in vivo and in vitro. Mol Med Rep 2017. [DOI: 10.3892/mmr.2017.6766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
34
|
Luo Q, Wang Z, Chen H, Fang MH, Xie S, Qian X, Lin X. Identification of Anticancer Drug Candidate Targeting Nuclear Receptor Retinoid X receptor-α from Natural Products using Receptor-Ligand Recognition. ChemistrySelect 2016. [DOI: 10.1002/slct.201600907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qiang Luo
- Animal Husbandry and Fisheries Research Center; Guangdong Haid Group Co., Ltd.; Guangzhou China
- Institute of Hydrobiology; Chinese Academy of Science; Wuhan China
| | - Zhaokai Wang
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography; State Oceanic Administration; Xiamen China
| | - Huibin Chen
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography; State Oceanic Administration; Xiamen China
| | - Ms. Hui Fang
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography; State Oceanic Administration; Xiamen China
| | - Shouqi Xie
- Institute of Hydrobiology; Chinese Academy of Science; Wuhan China
| | - Xueqiao Qian
- Animal Husbandry and Fisheries Research Center; Guangdong Haid Group Co., Ltd.; Guangzhou China
| | - Xiangzhi Lin
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography; State Oceanic Administration; Xiamen China
| |
Collapse
|
35
|
Xu D, Guo S, Chen Z, Bao Y, Huang F, Xu D, Zhang X, Zeng Z, Zhou H, Zhang X, Su Y. Binding characterization, synthesis and biological evaluation of RXRα antagonists targeting the coactivator binding site. Bioorg Med Chem Lett 2016; 26:3846-9. [DOI: 10.1016/j.bmcl.2016.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/10/2016] [Accepted: 07/11/2016] [Indexed: 11/16/2022]
|
36
|
Datta K, Suman S, Kumar S, Fornace AJ. Colorectal Carcinogenesis, Radiation Quality, and the Ubiquitin-Proteasome Pathway. J Cancer 2016; 7:174-83. [PMID: 26819641 PMCID: PMC4716850 DOI: 10.7150/jca.13387] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/01/2015] [Indexed: 12/12/2022] Open
Abstract
Adult colorectal epithelium undergoes continuous renewal and maintains homeostatic balance through regulated cellular proliferation, differentiation, and migration. The canonical Wnt signaling pathway involving the transcriptional co-activator β-catenin is important for colorectal development and normal epithelial maintenance, and deregulated Wnt/β-catenin signaling has been implicated in colorectal carcinogenesis. Colorectal carcinogenesis has been linked to radiation exposure, and radiation has been demonstrated to alter Wnt/β-catenin signaling, as well as the proteasomal pathway involved in the degradation of the signaling components and thus regulation of β-catenin. The current review discusses recent progresses in our understanding of colorectal carcinogenesis in relation to different types of radiation and roles that radiation quality plays in deregulating β-catenin and ubiquitin-proteasome pathway (UPP) for colorectal cancer initiation and progression.
Collapse
Affiliation(s)
- Kamal Datta
- 1. Department of Biochemistry and Molecular & Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC USA
| | - Shubhankar Suman
- 1. Department of Biochemistry and Molecular & Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC USA
| | - Santosh Kumar
- 1. Department of Biochemistry and Molecular & Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC USA
| | - Albert J Fornace
- 1. Department of Biochemistry and Molecular & Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC USA.; 2. Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
37
|
|