1
|
Gower M, Li X, Aguilar-Navarro AG, Lin B, Fernandez M, Edun G, Nader M, Rondeau V, Arruda A, Tierens A, Eames Seffernick A, Pölönen P, Durocher J, Wagenblast E, Yang L, Lee HS, Mullighan CG, Teachey D, Rashkovan M, Tremblay CS, Herranz D, Itkin T, Loghavi S, Dick JE, Schwartz G, Perusini MA, Sibai H, Hitzler J, Gruber TA, Minden M, Jones CL, Dolgalev I, Jahangiri S, Tikhonova AN. An inflammatory state defines a high-risk T-lineage acute lymphoblastic leukemia subgroup. Sci Transl Med 2025; 17:eadr2012. [PMID: 39742502 DOI: 10.1126/scitranslmed.adr2012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/04/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025]
Abstract
T-lineage acute lymphoblastic leukemia (ALL) is an aggressive cancer comprising diverse subtypes that are challenging to stratify using conventional immunophenotyping. To gain insights into subset-specific therapeutic vulnerabilities, we performed an integrative multiomics analysis of bone marrow samples from newly diagnosed T cell ALL, early T cell precursor ALL, and T/myeloid mixed phenotype acute leukemia. Leveraging cellular indexing of transcriptomes and epitopes in conjunction with T cell receptor sequencing, we identified a subset of patient samples characterized by activation of inflammatory and stem gene programs. These inflammatory T-lineage samples exhibited distinct biological features compared with other T-lineage ALL samples, including the production of proinflammatory cytokines, prevalence of mutations affecting cytokine signaling and chromatin remodeling, an altered immune microenvironment, and poor treatment responses. Moreover, we found that, although inflammatory T-lineage ALL samples were less sensitive to dexamethasone, they exhibited unique sensitivity to a BCL-2 inhibitor, venetoclax. To facilitate classification of patients with T-lineage ALL, we developed a computational inflammatory gene signature scoring system, which stratified patients and was associated with disease prognosis in three additional patient cohorts. By identifying a high-risk T-lineage ALL subtype on the basis of an inflammatory score, our study provides a framework for targeted therapeutic approaches for these challenging-to-treat cancers.
Collapse
Affiliation(s)
- Mark Gower
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Ximing Li
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | | | - Brian Lin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Minerva Fernandez
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Gibran Edun
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Mursal Nader
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Vincent Rondeau
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Andrea Arruda
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Laboratory Medicine Program, University Health Network and University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Anne Tierens
- Laboratory Medicine Program, University Health Network and University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Anna Eames Seffernick
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Petri Pölönen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Juliette Durocher
- CHU Sainte-Justine Research Center, Montréal, QC H3T 1C5, Canada
- Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Elvin Wagenblast
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029-5674, USA
| | - Lin Yang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Ho Seok Lee
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - David Teachey
- Division of Oncology, Department of Pediatrics, Center for Childhood Cancer Research, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marissa Rashkovan
- CHU Sainte-Justine Research Center, Montréal, QC H3T 1C5, Canada
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Cedric S Tremblay
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Daniel Herranz
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
- Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Tomer Itkin
- Sagol Center for Regenerative Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Neufeld Cardiovascular Research Institute, Department of Pathology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 5262179, Israel
- Tamman Cardiovascular Research Institute, Lev Leviev Cardiothoracic and Vascular Center, Sheba Medical Center, Ramat Gan 5262100, Israel
| | - Sanam Loghavi
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gregory Schwartz
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada
- Canada Vector Institute, Toronto, ON M5G 1M1, Canada
| | - Maria Agustina Perusini
- Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON M5B 1W8, Canada
| | - Hassan Sibai
- Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON M5B 1W8, Canada
| | - Johann Hitzler
- Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Pediatrics, University of Toronto, ON M5G 1X8, Canada
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Tanja A Gruber
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mark Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON M5B 1W8, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Courtney L Jones
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Igor Dolgalev
- Cellular Analytics Laboratory, NYU Grossman School of Medicine, New York, NY 10016, USA
- Division of Precision Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Soheil Jahangiri
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Anastasia N Tikhonova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
2
|
Xiu Z, Sun L, Liu K, Cao H, Qu HQ, Glessner JT, Ding Z, Zheng G, Wang N, Xia Q, Li J, Li MJ, Hakonarson H, Liu W, Li J. Shared molecular mechanisms and transdiagnostic potential of neurodevelopmental disorders and immune disorders. Brain Behav Immun 2024; 119:767-780. [PMID: 38677625 DOI: 10.1016/j.bbi.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/27/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024] Open
Abstract
The co-occurrence and familial clustering of neurodevelopmental disorders and immune disorders suggest shared genetic risk factors. Based on genome-wide association summary statistics from five neurodevelopmental disorders and four immune disorders, we conducted genome-wide, local genetic correlation and polygenic overlap analysis. We further performed a cross-trait GWAS meta-analysis. Pleotropic loci shared between the two categories of diseases were mapped to candidate genes using multiple algorithms and approaches. Significant genetic correlations were observed between neurodevelopmental disorders and immune disorders, including both positive and negative correlations. Neurodevelopmental disorders exhibited higher polygenicity compared to immune disorders. Around 50%-90% of genetic variants of the immune disorders were shared with neurodevelopmental disorders. The cross-trait meta-analysis revealed 154 genome-wide significant loci, including 8 novel pleiotropic loci. Significant associations were observed for 30 loci with both types of diseases. Pathway analysis on the candidate genes at these loci revealed common pathways shared by the two types of diseases, including neural signaling, inflammatory response, and PI3K-Akt signaling pathway. In addition, 26 of the 30 lead SNPs were associated with blood cell traits. Neurodevelopmental disorders exhibit complex polygenic architecture, with a subset of individuals being at a heightened genetic risk for both neurodevelopmental and immune disorders. The identification of pleiotropic loci has important implications for exploring opportunities for drug repurposing, enabling more accurate patient stratification, and advancing genomics-informed precision in the medical field of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Zhanjie Xiu
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China; Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ling Sun
- Department of Child and Adolescent Psychology, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Kunlun Liu
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Haiyan Cao
- Department of Child and Adolescent Psychology, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin, China
| | - Hui-Qi Qu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Joseph T Glessner
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Zhiyong Ding
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd., Jinan, China
| | - Gang Zheng
- National Supercomputer Center in Tianjin (NSCC-TJ), Tianjin, China
| | - Nan Wang
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd., Jinan, China
| | - Qianghua Xia
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China; Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Li
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Tianjin Medical University, Tianjin, China
| | - Mulin Jun Li
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Wei Liu
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China; Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China.
| | - Jin Li
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China; Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
3
|
Ling RE, Cross JW, Roy A. Aberrant stem cell and developmental programs in pediatric leukemia. Front Cell Dev Biol 2024; 12:1372899. [PMID: 38601080 PMCID: PMC11004259 DOI: 10.3389/fcell.2024.1372899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Hematopoiesis is a finely orchestrated process, whereby hematopoietic stem cells give rise to all mature blood cells. Crucially, they maintain the ability to self-renew and/or differentiate to replenish downstream progeny. This process starts at an embryonic stage and continues throughout the human lifespan. Blood cancers such as leukemia occur when normal hematopoiesis is disrupted, leading to uncontrolled proliferation and a block in differentiation of progenitors of a particular lineage (myeloid or lymphoid). Although normal stem cell programs are crucial for tissue homeostasis, these can be co-opted in many cancers, including leukemia. Myeloid or lymphoid leukemias often display stem cell-like properties that not only allow proliferation and survival of leukemic blasts but also enable them to escape treatments currently employed to treat patients. In addition, some leukemias, especially in children, have a fetal stem cell profile, which may reflect the developmental origins of the disease. Aberrant fetal stem cell programs necessary for leukemia maintenance are particularly attractive therapeutic targets. Understanding how hijacked stem cell programs lead to aberrant gene expression in place and time, and drive the biology of leukemia, will help us develop the best treatment strategies for patients.
Collapse
Affiliation(s)
- Rebecca E. Ling
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Joe W. Cross
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Anindita Roy
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| |
Collapse
|
4
|
Ueda K, Ikeda K. Cellular carcinogenesis in preleukemic conditions:drivers and defenses. Fukushima J Med Sci 2024; 70:11-24. [PMID: 37952978 PMCID: PMC10867434 DOI: 10.5387/fms.2023-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/26/2023] [Indexed: 11/14/2023] Open
Abstract
Acute myeloid leukemia (AML) arises from preleukemic conditions. We have investigated the pathogenesis of typical preleukemia, myeloproliferative neoplasms, and clonal hematopoiesis. Hematopoietic stem cells in both preleukemic conditions harbor recurrent driver mutations; additional mutation provokes further malignant transformation, leading to AML onset. Although genetic alterations are defined as the main cause of malignant transformation, non-genetic factors are also involved in disease progression. In this review, we focus on a non-histone chromatin protein, high mobility group AT-hook2 (HMGA2), and a physiological p53 inhibitor, murine double minute X (MDMX). HMGA2 is mainly overexpressed by dysregulation of microRNAs or mutations in polycomb components, and provokes expansion of preleukemic clones through stem cell signature disruption. MDMX is overexpressed by altered splicing balance in myeloid malignancies. MDMX induces leukemic transformation from preleukemia via suppression of p53 and p53-independent activation of WNT/β-catenin signaling. We also discuss how these non-genetic factors can be targeted for leukemia prevention therapy.
Collapse
Affiliation(s)
- Koki Ueda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University
| | - Kazuhiko Ikeda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University
| |
Collapse
|
5
|
Ng A, Lovat F, Shih AJ, Ma Y, Pekarsky Y, DiCaro F, Crichton L, Sharma E, Yan XJ, Sun D, Song T, Zou YR, Will B, Croce CM, Chiorazzi N. Complete miRNA-15/16 loss in mice promotes hematopoietic progenitor expansion and a myeloid-biased hyperproliferative state. Proc Natl Acad Sci U S A 2023; 120:e2308658120. [PMID: 37844234 PMCID: PMC10614620 DOI: 10.1073/pnas.2308658120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/13/2023] [Indexed: 10/18/2023] Open
Abstract
Dysregulated apoptosis and proliferation are fundamental properties of cancer, and microRNAs (miRNA) are critical regulators of these processes. Loss of miR-15a/16-1 at chromosome 13q14 is the most common genomic aberration in chronic lymphocytic leukemia (CLL). Correspondingly, the deletion of either murine miR-15a/16-1 or miR-15b/16-2 locus in mice is linked to B cell lymphoproliferative malignancies. However, unexpectedly, when both miR-15/16 clusters are eliminated, most double knockout (DKO) mice develop acute myeloid leukemia (AML). Moreover, in patients with CLL, significantly reduced expression of miR-15a, miR-15b, and miR-16 associates with progression of myelodysplastic syndrome to AML, as well as blast crisis in chronic myeloid leukemia. Thus, the miR-15/16 clusters have a biological relevance for myeloid neoplasms. Here, we demonstrate that the myeloproliferative phenotype in DKO mice correlates with an increase of hematopoietic stem and progenitor cells (HSPC) early in life. Using single-cell transcriptomic analyses, we presented the molecular underpinning of increased myeloid output in the HSPC of DKO mice with gene signatures suggestive of dysregulated hematopoiesis, metabolic activities, and cell cycle stages. Functionally, we found that multipotent progenitors (MPP) of DKO mice have increased self-renewing capacities and give rise to significantly more progeny in the granulocytic compartment. Moreover, a unique transcriptomic signature of DKO MPP correlates with poor outcome in patients with AML. Together, these data point to a unique regulatory role for miR-15/16 during the early stages of hematopoiesis and to a potentially useful biomarker for the pathogenesis of myeloid neoplasms.
Collapse
Affiliation(s)
- Anita Ng
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
| | - Francesca Lovat
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH43210
| | - Andrew J. Shih
- Boas Center for Human Genetics and Genomics, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
| | - Yuhong Ma
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY10461
| | - Yuri Pekarsky
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH43210
| | - Frank DiCaro
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
| | - Lita Crichton
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
| | - Esha Sharma
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
| | - Xiao Jie Yan
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
| | - Daqian Sun
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY10461
| | - Tengfei Song
- The Center for Autoimmune, Musculoskeletal, and Hematopoietic Diseases, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
| | - Yong-Rui Zou
- The Center for Autoimmune, Musculoskeletal, and Hematopoietic Diseases, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
- Departments of Medicine and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY11549
| | - Britta Will
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY10461
| | - Carlo M. Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH43210
| | - Nicholas Chiorazzi
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research Northwell Health, Manhasset, NY11030
- Departments of Medicine and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY11549
| |
Collapse
|
6
|
Moison C, Spinella JF, Chagraoui J, Lavallée VP, Lehnertz B, Thiollier C, Boivin I, Mayotte N, MacRae T, Marinier A, Hébert J, Sauvageau G. HMGA2 expression defines a subset of human AML with immature transcriptional signature and vulnerability to G2/M inhibition. Blood Adv 2022; 6:4793-4806. [PMID: 35797243 PMCID: PMC9631656 DOI: 10.1182/bloodadvances.2021005828] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 06/26/2022] [Indexed: 12/01/2022] Open
Abstract
High-mobility group AT-hook 2 (HMGA2) is a nonhistone chromatin-binding protein that is normally expressed in stem cells of various tissues and aberrantly detected in several tumor types. We recently observed that one-fourth of human acute myeloid leukemia (AML) specimens express HMGA2, which associates with a very poor prognosis. We present results indicating that HMGA2+ AMLs share a distinct transcriptional signature representing an immature phenotype. Using single-cell analyses, we showed that HMGA2 is expressed in CD34+ subsets of stem cells and early progenitors, whether normal or derived from AML specimens. Of interest, we found that one of the strongest gene expression signatures associated with HMGA2 in AML is the upregulation of G2/M checkpoint genes. Whole-genome CRISPR/Cas9 screening in HMGA2 overexpressing cells further revealed a synthetic lethal interaction with several G2/M checkpoint genes. Accordingly, small molecules that target G2/M proteins were preferentially active in vitro and in vivo on HMGA2+ AML specimens. Together, our findings suggest that HMGA2 is a key functional determinant in AML and is associated with stem cell features, G2/M status, and related drug sensitivity.
Collapse
Affiliation(s)
- Céline Moison
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Jean-François Spinella
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Jalila Chagraoui
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Vincent-Philippe Lavallée
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Division of Pediatric Hematology-Oncology, Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC, Canada
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Pediatrics, Faculty of Medicine, and
| | - Bernhard Lehnertz
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Clarisse Thiollier
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Isabel Boivin
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Nadine Mayotte
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Tara MacRae
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Anne Marinier
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Josée Hébert
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Institut universitaire d’hémato-oncologie et de thérapie cellulaire, Maisonneuve-Rosemont Hospital, Montréal, QC, Canada
- Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada; and
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Guy Sauvageau
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Institut universitaire d’hémato-oncologie et de thérapie cellulaire, Maisonneuve-Rosemont Hospital, Montréal, QC, Canada
- Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada; and
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
7
|
Song L, Ouyang Z, Cohen D, Cao Y, Altreuter J, Bai G, Hu X, Livak KJ, Li H, Tang M, Li B, Shirley Liu X. Comprehensive Characterizations of Immune Receptor Repertoire in Tumors and Cancer Immunotherapy Studies. Cancer Immunol Res 2022; 10:788-799. [PMID: 35605261 PMCID: PMC9299271 DOI: 10.1158/2326-6066.cir-21-0965] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/17/2022] [Accepted: 05/20/2022] [Indexed: 01/03/2023]
Abstract
We applied our computational algorithm TRUST4 to assemble immune receptor (T-cell receptor/B-cell receptor) repertoires from approximately 12,000 RNA sequencing samples from The Cancer Genome Atlas and seven immunotherapy studies. From over 35 million assembled complete complementary-determining region 3 sequences, we observed that the expression of CCL5 and MZB1 is the most positively correlated genes with T-cell clonal expansion and B-cell clonal expansion, respectively. We analyzed amino acid evolution during B-cell receptor somatic hypermutation and identified tyrosine as the preferred residue. We found that IgG1+IgG3 antibodies together with FcRn were associated with complement-dependent cytotoxicity and antibody-dependent cellular cytotoxicity or phagocytosis. In addition to B-cell infiltration, we discovered that B-cell clonal expansion and IgG1+IgG3 antibodies are also correlated with better patient outcomes. Finally, we created a website, VisualizIRR, for users to interactively explore and visualize the immune repertoires in this study. See related Spotlight by Liu and Han, p. 786.
Collapse
Affiliation(s)
- Li Song
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zhangyi Ouyang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, China
| | - David Cohen
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yang Cao
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jennifer Altreuter
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gali Bai
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xihao Hu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Current affiliation: GV20 Therapeutics, Cambridge, MA, USA
| | - Kenneth J. Livak
- Department of Medical, Dana-Farber Cancer Institute, Boston, MA, USA
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Heng Li
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Ming Tang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Bo Li
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - X. Shirley Liu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
- Current affiliation: GV20 Therapeutics, Cambridge, MA, USA
| |
Collapse
|
8
|
De Martino M, Esposito F, Fusco A. Critical role of the high mobility group A proteins in hematological malignancies. Hematol Oncol 2021; 40:2-10. [PMID: 34637548 PMCID: PMC9293314 DOI: 10.1002/hon.2934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022]
Abstract
The high mobility group A (HMGA) protein family is composed of three non‐histone chromatin remodeling proteins that act as architectural transcriptional factors. Indeed, although HMGA proteins lack transcriptional activity per se, they bind the minor groove of DNA at AT‐rich sequences, and, interacting with the transcription machinery, are able to modify chromatin modeling, thus regulating the expression of several genes. HMGA proteins have been deeply involved in embryogenesis process, and a large volume of studies has pointed out their key role in human cancer. Here, we review the studies on the role of the HMGA proteins in human hematological malignancies: they are overexpressed in most of the cases and their expression correlates with a reduced survival. In some cases, such as in acute lymphoblastic leukemia and acute myelogenous leukemia, HMGA2 gene rearrangements have been also described. Finally, recent studies evidence a synergism between HMGA and EZH2 in diffuse B‐cell lymphomas, suggesting an innovative therapy for this disease based on the inhibition of the function of both these proteins.
Collapse
Affiliation(s)
- Marco De Martino
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), National Research Council (CNR), Institute for Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", University of Naples "Federico II", Naples, Italy.,Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Francesco Esposito
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), National Research Council (CNR), Institute for Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", University of Naples "Federico II", Naples, Italy
| | - Alfredo Fusco
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), National Research Council (CNR), Institute for Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", University of Naples "Federico II", Naples, Italy
| |
Collapse
|
9
|
Bonner MA, Morales-Hernández A, Zhou S, Ma Z, Condori J, Wang YD, Fatima S, Palmer LE, Janke LJ, Fowler S, Sorrentino BP, McKinney-Freeman S. 3' UTR-truncated HMGA2 overexpression induces non-malignant in vivo expansion of hematopoietic stem cells in non-human primates. Mol Ther Methods Clin Dev 2021; 21:693-701. [PMID: 34141824 PMCID: PMC8181581 DOI: 10.1016/j.omtm.2021.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022]
Abstract
Vector-mediated mutagenesis remains a major safety concern for many gene therapy clinical protocols. Indeed, lentiviral-based gene therapy treatments of hematologic disease can result in oligoclonal blood reconstitution in the transduced cell graft. Specifically, clonal expansion of hematopoietic stem cells (HSCs) highly expressing HMGA2, a chromatin architectural factor found in many human cancers, is reported in patients undergoing gene therapy for hematologic diseases, raising concerns about the safety of these integrations. Here, we show for the first time in vivo multilineage and multiclonal expansion of non-human primate HSCs expressing a 3' UTR-truncated version of HMGA2 without evidence of any hematologic malignancy >7 years post-transplantation, which is significantly longer than most non-human gene therapy pre-clinical studies. This expansion is accompanied by an increase in HSC survival, cell cycle activation of downstream progenitors, and changes in gene expression led by the upregulation of IGF2BP2, a mRNA binding regulator of survival and proliferation. Thus, we conclude that prolonged ectopic expression of HMGA2 in hematopoietic progenitors is not sufficient to drive hematologic malignancy and is not an acute safety concern in lentiviral-based gene therapy clinical protocols.
Collapse
Affiliation(s)
- Melissa A. Bonner
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | | | - Sheng Zhou
- Experimental Cell Therapeutics Lab, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Zhijun Ma
- Department of Bone Marrow Transplant and Cell Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jose Condori
- Experimental Cell Therapeutics Lab, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Soghra Fatima
- Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Lance E. Palmer
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Laura J. Janke
- Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Stephanie Fowler
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Brian P. Sorrentino
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
10
|
Lin C, Chen D, Xiao T, Lin D, Lin D, Lin L, Zhu H, Xu J, Huang W, Yang T. DNA methylation-mediated silencing of microRNA-204 enhances T cell acute lymphoblastic leukemia by up-regulating MMP-2 and MMP-9 via NF-κB. J Cell Mol Med 2021; 25:2365-2376. [PMID: 33566449 PMCID: PMC7933971 DOI: 10.1111/jcmm.15896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 01/24/2023] Open
Abstract
T cell acute lymphoblastic leukaemia (T‐ALL) is a highly aggressive haematological cancer of the bone marrow. The abnormal expression of microRNAs (miRNAs) is reportedly involved in T‐ALL development and progression. Thus, we aimed to decipher the involvement of miR‐204 silencing mediated by DNA methylation in the occurrence of T cell acute lymphoblastic leukaemia (T‐ALL). miR‐204 expression was determined in bone marrow and peripheral blood samples from T‐ALL patients by real‐time quantitative PCR (RT‐qPCR) with its effect on cell proliferation evaluated by functional assays. In addition, bisulphite sequencing PCR was employed to detect the DNA methylation level of the miR‐204 promoter region, and the binding site between miR‐204 and IRAK1 was detected by luciferase assay. We found that miR‐204 was down‐regulated in T cells of T‐ALL patients, which was caused by the increased DNA methylation in the promoter region of miR‐204. Moreover, overexpression of miR‐204 inhibited T‐ALL cell proliferation while enhancing their apoptosis through interleukin receptor‐associated kinase 1 (IRAK1), which enhanced the expression of matrix metalloproteinase‐2 (MMP‐2) and MMP‐9 through activation of p‐p65. Thus, miR‐204 modulated MMP‐2 and MMP‐9 through IRAK1/NF‐κB signalling pathway, which was confirmed by in vivo assay. Taken together, DNA methylation‐mediated miR‐204 silencing increased the transcription of IRAK1, thus activating the NF‐κB signalling pathway and up‐regulating the downstream targets MMP‐2/MMP‐9.
Collapse
Affiliation(s)
- Congmeng Lin
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Dabing Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Tingting Xiao
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Dandan Lin
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China.,Minxi Vocational & Technical College, Longyan, China
| | - Dayi Lin
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Luhui Lin
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Haojie Zhu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jingjing Xu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wenwen Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Ting Yang
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
11
|
Minervini A, Coccaro N, Anelli L, Zagaria A, Specchia G, Albano F. HMGA Proteins in Hematological Malignancies. Cancers (Basel) 2020; 12:E1456. [PMID: 32503270 PMCID: PMC7353061 DOI: 10.3390/cancers12061456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
The high mobility group AT-Hook (HMGA) proteins are a family of nonhistone chromatin remodeling proteins known as "architectural transcriptional factors". By binding the minor groove of AT-rich DNA sequences, they interact with the transcription apparatus, altering the chromatin modeling and regulating gene expression by either enhancing or suppressing the binding of the more usual transcriptional activators and repressors, although they do not themselves have any transcriptional activity. Their involvement in both benign and malignant neoplasias is well-known and supported by a large volume of studies. In this review, we focus on the role of the HMGA proteins in hematological malignancies, exploring the mechanisms through which they enhance neoplastic transformation and how this knowledge could be exploited to devise tailored therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy; (A.M.); (N.C.); (L.A.); (A.Z.); (G.S.)
| |
Collapse
|
12
|
Zhang S, Mo Q, Wang X. Oncological role of HMGA2 (Review). Int J Oncol 2019; 55:775-788. [PMID: 31432151 DOI: 10.3892/ijo.2019.4856] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/17/2019] [Indexed: 11/06/2022] Open
Abstract
The high mobility group A2 (HMGA2) protein is a non‑histone architectural transcription factor that modulates the transcription of several genes by binding to AT‑rich sequences in the minor groove of B‑form DNA and alters the chromatin structure. As a result, HMGA2 influences a variety of biological processes, including the cell cycle process, DNA damage repair process, apoptosis, senescence, epithelial‑mesenchymal transition and telomere restoration. In addition, the overexpression of HMGA2 is a feature of malignancy, and its elevated expression in human cancer predicts the efficacy of certain chemotherapeutic agents. Accumulating evidence has suggested that the detection of HMGA2 can be used as a routine procedure in clinical tumour analysis.
Collapse
Affiliation(s)
- Shizhen Zhang
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Qiuping Mo
- Department of Surgical Oncology and Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiaochen Wang
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
13
|
West RC, Russ JE, Bouma GJ, Winger QA. BRCA1 regulates HMGA2 levels in the Swan71 trophoblast cell line. Mol Reprod Dev 2019; 86:1663-1670. [PMID: 31410930 DOI: 10.1002/mrd.23255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/20/2019] [Indexed: 11/09/2022]
Abstract
During early placental development, tumor suppressors and oncogenes work synergistically to regulate cell proliferation and differentiation in a restrained manner compared with the uncontrollable growth in cancer. One example of this partnership is the regulation of the oncofetal protein HMGA2 by BRCA1. BRCA1 forms a repressor complex with ZNF350 and CtIP to bind to the promoter of HMGA2, preventing transcription. Chromatin immunoprecipitation determined BRCA1 forms this repressor complex in human trophoblast cells, suggesting a role in the placenta. Furthermore, miR-182 has been shown to target BRCA1 mRNA in ovarian cancer cells, blocking the formation of the BRCA1 repressor complex and allowing increased transcription of HMGA2. miR-182 was one of the first miRNAs described as elevated in the serum and placentas of preeclamptic women. Therefore, we hypothesized that BRCA1 is essential for normal trophoblast cell development. We used CRISPR-Cas9 genome editing and miR-182 overexpression to decrease BRCA1 protein in the Swan71 cell line. HMGA2 was significantly increased in the BRCA1 KO and miR-182 overexpressing cells compared to controls. We also determined that BRCA1 repressor complex binding to HMGA2 was significantly reduced in BRCA1 KO and miR-182 overexpressing cells compared with controls, leading us to conclude that increased HMGA2 was because of decreased binding of the BRCA1 repressor complex. Finally, we found that the caspase activity was significantly higher in BRCA1 KO and miR-182 overexpressing cells suggesting an increased amount of apoptosis. These data suggest that BRCA1 is an important regulator of the oncofetal protein HMGA2 and promotes cell survival in human placental cells.
Collapse
Affiliation(s)
- Rachel C West
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado
| | - Jennifer E Russ
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado
| | - Gerrit J Bouma
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado
| | - Quinton A Winger
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
14
|
Yang K, Guo W, Ren T, Huang Y, Han Y, Zhang H, Zhang J. Knockdown of HMGA2 regulates the level of autophagy via interactions between MSI2 and Beclin1 to inhibit NF1-associated malignant peripheral nerve sheath tumour growth. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:185. [PMID: 31053152 PMCID: PMC6500071 DOI: 10.1186/s13046-019-1183-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023]
Abstract
Background Malignant peripheral nerve sheath tumours (MPNSTs) are sarcomas of Schwann cell lineage origin that occur sporadically or in association with the inherited syndrome, neurofibromatosis type 1 (NF1). This study aimed to examine the function of High mobility group protein A2 (HMGA2) in NF1 MPNST progression and the underlying molecular mechanism. Methods Immunohistochemistry (IHC) was used to detect HMGA2 expression in MPNST and neurofibroma patient samples. Cell Cycle Kit-8 (CCK-8) and 5-ethynyl-20-deoxyuridine (EdU) assays, terminal deoxynucleotidyl transferase-mediated nick end labelling, and transmission electron microscopy were performed to reveal HMGA2 functions in NF1 MPNST cells in vitro and in vivo. Chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq) were used to detect HMGA2-modulated genes regulating autophagy and growth in NF1 MPNSTs in vitro and in vivo. Results NF1 MPNST samples exhibit higher HMGA2 positivity rates (13/16) than sporadic MPNST (16/41) and neurofibroma (0/7) patient samples. High HMGA2 expression is correlated with poor prognosis. Neurofibromin 1 (NF1)-deficient MPNST cells display elevated HMGA2 expression. Functional experiments revealed that HMGA2 knockdown inhibits NF1 MPNST cell growth in vitro and in vivo. In addition to promoting cell cycle arrest and apoptosis, HMGA2 knockdown inhibits autophagy, favouring cell death. RNA-Seq and ChIP-Seq revealed that HMGA2 directly activates the Musashi-2 (MSI2) promoter region, and MSI2 overexpression reverses autophagy and growth in shHMGA2-transfected cells. MSI2 interacts with Beclin1, and Beclin1 blockade inhibits autophagy, thereby inhibiting cell proliferation. Conclusions HMGA2 knockdown regulates autophagy via MSI2-Beclin1 interactions to inhibit NF1 MPNST growth, revealing potential therapeutic targets for these untreatable tumours. Electronic supplementary material The online version of this article (10.1186/s13046-019-1183-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kang Yang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China. .,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China.
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Yi Huang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Yu Han
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Hongliang Zhang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Jie Zhang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
15
|
Garabedian A, Bolufer A, Leng F, Fernandez-Lima F. Peptide Sequence Influence on the Conformational Dynamics and DNA binding of the Intrinsically Disordered AT-Hook 3 Peptide. Sci Rep 2018; 8:10783. [PMID: 30018295 PMCID: PMC6050235 DOI: 10.1038/s41598-018-28956-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/28/2018] [Indexed: 11/09/2022] Open
Abstract
The intrinsically disordered ATHP3 was studied at native conditions and in complex with DNA using single amino acid substitutions and high-resolution ion mobility spectrometry coupled to mass spectrometry (trapped IMS-MS). Results showed that ATHP3 can exist in multiple conformations at native conditions (at least 10 conformers were separated), with a variety of proline cis/trans orientations, side chain orientations and protonation sites. When in complex with AT rich DNA hairpins, the -RGRP- core is essential for stabilizing the ATHP3: DNA complex. In particular, the arginine in the sixth position plays an important role during binding to AT-rich regions of hairpin DNA, in good agreement with previous NMR and X-ray data. Mobility based correlation matrices are proposed as a way to reveal differences in structural motifs across the peptide mutants based on the conformational space and relative conformer abundance.
Collapse
Affiliation(s)
- Alyssa Garabedian
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, United States
| | - Alexander Bolufer
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, United States
| | - Fenfei Leng
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, United States.,Biomolecular Sciences Institute, Florida International University, Miami, Florida, 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, 33199, United States. .,Biomolecular Sciences Institute, Florida International University, Miami, Florida, 33199, United States.
| |
Collapse
|
16
|
Silencing of HMGA2 reverses retardance of cell differentiation in human myeloid leukaemia. Br J Cancer 2018; 118:405-415. [PMID: 29384529 PMCID: PMC5808023 DOI: 10.1038/bjc.2017.403] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 10/07/2017] [Accepted: 10/12/2018] [Indexed: 01/06/2023] Open
Abstract
Background: High-mobility group AT-hook 2 (HMGA2) may serve as an architectural transcription factor, and it can regulate a range of normal biological processes including proliferation and differentiation. Upregulation of HMGA2 expression is correlated to the undifferentiated phenotype of immature leukaemic cells. However, the underlying mechanism of HMGA2-dependent myeloid differentiation blockage in leukaemia is unknown. Methods: To reveal the role and mechanism of HMGA2 in differentiation arrest of myeloid leukaemia cells, the quantitative expression of HMGA2 and homeobox A9 (HOXA9) was analysed by real-time PCR (qRT-PCR). The regulatory function of HMGA2 in blockage of differentiation in human myeloid leukaemia was investigated through in vitro assays (XTT assay, May–Grünwald–Giemsa, flow cytometry analysis and western blot). Results: We found that the expression of HMGA2 and HOXA9 was reduced during the process of granulo-monocytic maturation of acute myeloid leukaemia (AML) cells, knockdown of HMGA2 promotes terminal (granulocytic and monocytic) differentiation of myeloid leukaemia primary blasts and cell lines, and HOXA9 was significantly downregulated in leukaemic cells with knockdown of HMGA2. Downregulation of HOXA9 in myeloid leukaemia cells led to increased differentiation capacity in vitro. Conclusions: Our data suggest that increased expression of HMGA2 represents a possible new mechanism of myeloid differentiation blockage of leukaemia. Aberrant expression of HMGA2 may enhance HOXA9-dependent leukaemogenesis and myeloid leukaemia phenotype. Disturbance of the HMGA2–HOXA9 pathway is probably a therapeutic strategy in myeloid leukaemia.
Collapse
|
17
|
Frost L, Baez MAM, Harrilal C, Garabedian A, Fernandez-Lima F, Leng F. The Dimerization State of the Mammalian High Mobility Group Protein AT-Hook 2 (HMGA2). PLoS One 2015; 10:e0130478. [PMID: 26114780 PMCID: PMC4482583 DOI: 10.1371/journal.pone.0130478] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/20/2015] [Indexed: 01/06/2023] Open
Abstract
The mammalian high mobility group protein AT-hook 2 (HMGA2) is a chromosomal architectural transcription factor involved in cell transformation and oncogenesis. It consists of three positively charged “AT-hooks” and a negatively charged C-terminus. Sequence analyses, circular dichroism experiments, and gel-filtration studies showed that HMGA2, in the native state, does not have a defined secondary or tertiary structure. Surprisingly, using combined approaches of 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) chemical cross-linking, analytical ultracentrifugation, fluorescence resonance energy transfer (FRET), and mass spectrometry, we discovered that HMGA2 is capable of self-associating into homodimers in aqueous buffer solution. Our results showed that electrostatic interactions between the positively charged “AT-hooks” and the negatively charged C-terminus greatly contribute to the homodimer formation.
Collapse
Affiliation(s)
- Lorraine Frost
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Maria A. M. Baez
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Christopher Harrilal
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Alyssa Garabedian
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Francisco Fernandez-Lima
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Fenfei Leng
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, United States of America
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
18
|
Kaur H, Hütt-Cabezas M, Weingart MF, Xu J, Kuwahara Y, Erdreich-Epstein A, Weissman BE, Eberhart CG, Raabe EH. The chromatin-modifying protein HMGA2 promotes atypical teratoid/rhabdoid cell tumorigenicity. J Neuropathol Exp Neurol 2015; 74:177-85. [PMID: 25575139 PMCID: PMC4695975 DOI: 10.1097/nen.0000000000000161] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Atypical teratoid/rhabdoid tumor (AT/RT) is an aggressive pediatric central nervous system tumor. The poor prognosis of AT/RT warrants identification of novel therapeutic targets and strategies. High-mobility Group AT-hook 2 (HMGA2) is a developmentally important chromatin-modifying protein that positively regulates tumor growth, self-renewal, and invasion in other cancer types. High-mobility group A2 was recently identified as being upregulated in AT/RT tissue, but the role of HMGA2 in brain tumors remains unknown. We used lentiviral short-hairpin RNA to suppress HMGA2 in AT/RT cell lines and found that loss of HMGA2 led to decreased cell growth, proliferation, and colony formation and increased apoptosis. We also found that suppression of HMGA2 negatively affected in vivo orthotopic xenograft tumor growth, more than doubling median survival of mice from 58 days to 153 days. Our results indicate a role for HMGA2 in AT/RT in vitro and in vivo and demonstrate that HMGA2 is a potential therapeutic target in these lethal pediatric tumors.
Collapse
Affiliation(s)
- Harpreet Kaur
- From the Division of Neuropathology and Sidney Kimmel Comprehensive Cancer Center (HK, MH-C, MFW, CGE, EHR), Division of Pediatric Oncology (EHR), Johns Hopkins University School of Medicine, Bloomberg Children's Hospital, Baltimore, Maryland; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (YK, BEW); and Division of Hematology, Oncology, and Blood and Bone Marrow Transplant, Children's Hospital Los Angeles (JX, AE-E); and the University of Southern California (AE-E), Los Angeles, California
| | | | | | | | | | | | | | | | | |
Collapse
|