1
|
Xie H, Dan M, Cen Y, Ning J, Sun C, Zhu G, Feng S, Wang H, Pu J. AR expression-independent XRCC3 mediates DNA damage-induced p53/Bax signaling pathway activation against prostate cancer. J Cancer Res Clin Oncol 2024; 150:463. [PMID: 39414634 PMCID: PMC11485149 DOI: 10.1007/s00432-024-05989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Androgen deprivation therapy (ADT) resistance is closely associated with altered AR status. Aberrant AR expression is critical for the induction of ADT resistance, necessitating the identification of an anti-PCa target independent of AR expression. METHODS Transcriptomic data and clinical information of PRAD were obtained from TCGA database. Genes with PCa-related and AR expression-independent were screened by bioinformatics, and characterized by PPI and GO functional enrichment analyses. Candidate genes were locked by co-expression correlation and disease-free survival (DFS) analyses. A prognostic gene set was established using LASSO Cox regression algorithm. Cox proportional risk regression was performed to identify a key prognostic gene. Expression of the target protein in PCa tissues was verified by The Human Protein Atlas database. In vitro validation of cellular function and molecular mechanism by knockdown and overexpression of the target gene. RESULTS Two AR expression-independent genes (SLC43A1 and XRCC3) were available for the optimal prognostic model. This gene set effectively predicted PRAD patients' DFS at 1-, 3- and 5-year, where XRCC3 and tumor (T) stage were independent risk factors. XRCC3 was higher expressed in PRAD patients with T3-T4 stages and accompanied by poorer DFS. IHC staining also validated its higher expression in high-risk PCa tissues. In vitro experiments demonstrated that silencing XRCC3 significantly inhibited 22Rv1 and DU145 cell proliferation, migration and invasion, while promoted apoptosis. Further, silencing XRCC3 promoted DNA damage-induced p53/Bax signaling pathway activation, which was absent with overexpression. CONCLUSION Silencing XRCC3 exerts anti-PCa effects by promoting DNA damage-induced p53/Bax signaling pathway activation in an AR expression-independent manner.
Collapse
Affiliation(s)
- Hailong Xie
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Benbu, 233080, China
| | - Mingjiang Dan
- Department of Urology, Huiya Hospital of the First Affiliated Hospital of Sun Yat Sen University, Huizhou, 516081, China
| | - Yi Cen
- Guangzhou Medical University, Guangzhou, 511436, China
| | - Jing Ning
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Benbu, 233080, China
| | - Chong Sun
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Benbu, 233080, China
| | - Guangbin Zhu
- Department of Medical Imaging, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Shourui Feng
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Haiyan Wang
- Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518100, China.
| | - Jinxian Pu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
2
|
Jian J, Wang X, Zhang J, Zhou C, Hou X, Huang Y, Hou J, Lin Y, Wei X. Molecular landscape for risk prediction and personalized therapeutics of castration-resistant prostate cancer: at a glance. Front Endocrinol (Lausanne) 2024; 15:1360430. [PMID: 38887275 PMCID: PMC11180744 DOI: 10.3389/fendo.2024.1360430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Prostate cancer (PCa) is commonly occurred with high incidence in men worldwide, and many patients will be eventually suffered from the dilemma of castration-resistance with the time of disease progression. Castration-resistant PCa (CRPC) is an advanced subtype of PCa with heterogeneous carcinogenesis, resulting in poor prognosis and difficulties in therapy. Currently, disorders in androgen receptor (AR)-related signaling are widely acknowledged as the leading cause of CRPC development, and some non-AR-based strategies are also proposed for CRPC clinical analyses. The initiation of CRPC is a consequence of abnormal interaction and regulation among molecules and pathways at multi-biological levels. In this study, CRPC-associated genes, RNAs, proteins, and metabolites were manually collected and integrated by a comprehensive literature review, and they were functionally classified and compared based on the role during CRPC evolution, i.e., drivers, suppressors, and biomarkers, etc. Finally, translational perspectives for data-driven and artificial intelligence-powered CRPC systems biology analysis were discussed to highlight the significance of novel molecule-based approaches for CRPC precision medicine and holistic healthcare.
Collapse
Affiliation(s)
- Jingang Jian
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin’an Wang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jun Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chenchao Zhou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaorui Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuhua Huang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuxin Lin
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xuedong Wei
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
3
|
Labrecque MP, Brown LG, Coleman IM, Nguyen HM, Dalrymple S, Brennen WN, Isaacs JT, Li D, Lakely B, DeLucia DC, Lee JK, Schweizer MT, Lin DW, Corey E, Nelson PS, Morrissey C. Targeting the fibroblast growth factor pathway in molecular subtypes of castration-resistant prostate cancer. Prostate 2024; 84:100-110. [PMID: 37796107 PMCID: PMC10851871 DOI: 10.1002/pros.24630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Androgen receptor (AR) pathway inhibition remains the cornerstone for prostate cancer therapies. However, castration-resistant prostate cancer (CRPC) tumors can resist AR signaling inhibitors through AR amplification and AR splice variants in AR-positive CRPC (ARPC), and conversion to AR-null phenotypes, such as double-negative prostate cancer (DNPC) and small cell or neuroendocrine prostate cancer (SCNPC). We have shown previously that DNPC can bypass AR-dependence through fibroblast growth factor receptor (FGFR) signaling. However, the role of the FGFR pathway in other CRPC phenotypes has not been elucidated. METHODS RNA-Seq analysis was conducted on patient metastases, LuCaP patient-derived xenograft (PDX) models, and CRPC cell lines. Cell lines (C4-2B, VCaP, and 22Rv1) and ex vivo LuCaP PDX tumor cells were treated with enzalutamide (ENZA) and FGFR inhibitors (FGFRi) alone or in combination and sensitivity was determined using cell viability assays. In vivo efficacy of FGFRi in ARPC, DNPC, and SCNPC were evaluated using PDX models. RESULTS RNA-Seq analysis of FGFR signaling in metastatic specimens, LuCaP PDX models, and CRPC cell lines revealed significant FGF pathway activation in AR-low PC (ARLPC), DNPC, and SCNPC tumors. In vitro/ex vivo analysis of erdafitinib and CH5183284 demonstrated robust and moderate growth suppression of ARPC, respectively. In vivo studies using four ARPC PDX models showed that combination ENZA and CH5183284 significantly suppressed tumor growth. Additional in vivo studies using four ARPC PDX models revealed that erdafitinib monotherapy was as effective as ENZA in suppressing tumor growth, and there was limited combination benefit. Furthermore, two of three DNPC models and two of four SCNPC models responded to CH5183284 monotherapy, suggesting FGFRi responses were model dependent. RNA-Seq and gene set enrichment analysis of end-of-study ARPC tumors treated with FGFRi displayed decreased expression of E2F and MYC target genes and suppressed G2M checkpoint genes, whereas end-of-study SCNPC tumors had heterogeneous transcriptional responses. CONCLUSIONS Although FGFRi treatments suppressed tumor growth across CRPC phenotypes, our analyses did not identify a single pathway or biomarker that would identify tumor response to FGFRi. This is very likely due to the array of FGFR1-4 expression and tumor phenotypes present in CRPC. Nevertheless, our data nominate the FGFR pathway as a clinically actionable target that promotes tumor growth in diverse phenotypes of treatment-refractory metastatic CRPC.
Collapse
Affiliation(s)
- Mark P. Labrecque
- Department of Urology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Lisha G. Brown
- Department of Urology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Ilsa M. Coleman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Holly M. Nguyen
- Department of Urology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Susan Dalrymple
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, United States of America
| | - W. Nathaniel Brennen
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, United States of America
| | - John T. Isaacs
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, United States of America
| | - Dapei Li
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Bryce Lakely
- Department of Urology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Diana C. DeLucia
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - John K. Lee
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Michael T. Schweizer
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Daniel W. Lin
- Department of Urology, University of Washington School of Medicine, Seattle, Washington, United States of America
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Eva Corey
- Department of Urology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Peter S. Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Colm Morrissey
- Department of Urology, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
4
|
Lee C, Chen R, Sun G, Liu X, Lin X, He C, Xing L, Liu L, Jensen LD, Kumar A, Langer HF, Ren X, Zhang J, Huang L, Yin X, Kim J, Zhu J, Huang G, Li J, Lu W, Chen W, Liu J, Hu J, Sun Q, Lu W, Fang L, Wang S, Kuang H, Zhang Y, Tian G, Mi J, Kang BA, Narazaki M, Prodeus A, Schoonjans L, Ornitz DM, Gariepy J, Eelen G, Dewerchin M, Yang Y, Ou JS, Mora A, Yao J, Zhao C, Liu Y, Carmeliet P, Cao Y, Li X. VEGF-B prevents excessive angiogenesis by inhibiting FGF2/FGFR1 pathway. Signal Transduct Target Ther 2023; 8:305. [PMID: 37591843 PMCID: PMC10435562 DOI: 10.1038/s41392-023-01539-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 08/19/2023] Open
Abstract
Although VEGF-B was discovered as a VEGF-A homolog a long time ago, the angiogenic effect of VEGF-B remains poorly understood with limited and diverse findings from different groups. Notwithstanding, drugs that inhibit VEGF-B together with other VEGF family members are being used to treat patients with various neovascular diseases. It is therefore critical to have a better understanding of the angiogenic effect of VEGF-B and the underlying mechanisms. Using comprehensive in vitro and in vivo methods and models, we reveal here for the first time an unexpected and surprising function of VEGF-B as an endogenous inhibitor of angiogenesis by inhibiting the FGF2/FGFR1 pathway when the latter is abundantly expressed. Mechanistically, we unveil that VEGF-B binds to FGFR1, induces FGFR1/VEGFR1 complex formation, and suppresses FGF2-induced Erk activation, and inhibits FGF2-driven angiogenesis and tumor growth. Our work uncovers a previously unrecognized novel function of VEGF-B in tethering the FGF2/FGFR1 pathway. Given the anti-angiogenic nature of VEGF-B under conditions of high FGF2/FGFR1 levels, caution is warranted when modulating VEGF-B activity to treat neovascular diseases.
Collapse
Affiliation(s)
- Chunsik Lee
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Rongyuan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Guangli Sun
- Affiliated Eye Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Xialin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Xianchai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Chang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Liying Xing
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases,Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lixian Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Lasse D Jensen
- Department of Health, Medical and Caring Sciences, Division of Diagnostics and Specialist Medicine, Linköping University, 581 83, Linköping, Sweden
| | - Anil Kumar
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Harald F Langer
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DZHK (German Research Centre for Cardiovascular Research), partner site Mannheim/ Heidelberg, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xiangrong Ren
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Jianing Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Lijuan Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Xiangke Yin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - JongKyong Kim
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Juanhua Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Guanqun Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Jiani Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Weiwei Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Wei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Juanxi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Jiaxin Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Qihang Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Weisi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Lekun Fang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangdong Research Institute of Gastroenterology, Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shasha Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Haiqing Kuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Yihan Zhang
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Key Laboratory of Myopia of State Health Ministry (Fudan University) and Shanghai Key Laboratory of Visual Impairment and Restoration, 200031, Shanghai, China
| | - Geng Tian
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Jia Mi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Bi-Ang Kang
- Division of Cardiac Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Masashi Narazaki
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Aaron Prodeus
- Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Luc Schoonjans
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB, Leuven, B-3000, Belgium
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jean Gariepy
- Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB, Leuven, B-3000, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB, Leuven, B-3000, Belgium
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jing-Song Ou
- Division of Cardiac Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation (Sun Yat-sen University), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Antonio Mora
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health (Chinese Academy of Sciences), Xinzao, Panyu district, Guangzhou, 511436, Guangdong, China
| | - Jin Yao
- Affiliated Eye Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Chen Zhao
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Key Laboratory of Myopia of State Health Ministry (Fudan University) and Shanghai Key Laboratory of Visual Impairment and Restoration, 200031, Shanghai, China.
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB, Leuven, B-3000, Belgium
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77, Stockholm, Sweden.
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, P. R. China.
| |
Collapse
|
5
|
Labanca E, Yang J, Shepherd PDA, Wan X, Starbuck MW, Guerra LD, Anselmino N, Bizzotto JA, Dong J, Chinnaiyan AM, Ravoori MK, Kundra V, Broom BM, Corn PG, Troncoso P, Gueron G, Logothethis CJ, Navone NM. Fibroblast Growth Factor Receptor 1 Drives the Metastatic Progression of Prostate Cancer. Eur Urol Oncol 2021; 5:164-175. [PMID: 34774481 DOI: 10.1016/j.euo.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND No curative therapy is currently available for metastatic prostate cancer (PCa). The diverse mechanisms of progression include fibroblast growth factor (FGF) axis activation. OBJECTIVE To investigate the molecular and clinical implications of fibroblast growth factor receptor 1 (FGFR1) and its isoforms (α/β) in the pathogenesis of PCa bone metastases. DESIGN, SETTING, AND PARTICIPANTS In silico, in vitro, and in vivo preclinical approaches were used. RNA-sequencing and immunohistochemical (IHC) studies in human samples were conducted. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS In mice, bone metastases (chi-square/Fisher's test) and survival (Mantel-Cox) were assessed. In human samples, FGFR1 and ladinin 1 (LAD1) analysis associated with PCa progression were evaluated (IHC studies, Fisher's test). RESULTS AND LIMITATIONS FGFR1 isoform expression varied among PCa subtypes. Intracardiac injection of mice with FGFR1-expressing PC3 cells reduced mouse survival (α, p < 0.0001; β, p = 0.032) and increased the incidence of bone metastases (α, p < 0.0001; β, p = 0.02). Accordingly, IHC studies of human castration-resistant PCa (CRPC) bone metastases revealed significant enrichment of FGFR1 expression compared with treatment-naïve, nonmetastatic primary tumors (p = 0.0007). Expression of anchoring filament protein LAD1 increased in FGFR1-expressing PC3 cells and was enriched in human CRPC bone metastases (p = 0.005). CONCLUSIONS FGFR1 expression induces bone metastases experimentally and is significantly enriched in human CRPC bone metastases, supporting its prometastatic effect in PCa. LAD1 expression, found in the prometastatic PCa cells expressing FGFR1, was also enriched in CRPC bone metastases. Our studies support and provide a roadmap for the development of FGFR blockade for advanced PCa. PATIENT SUMMARY We studied the role of fibroblast growth factor receptor 1 (FGFR1) in prostate cancer (PCa) progression. We found that PCa cells with high FGFR1 expression increase metastases and that FGFR1 expression is increased in human PCa bone metastases, and identified genes that could participate in the metastases induced by FGFR1. These studies will help pinpoint PCa patients who use fibroblast growth factor to progress and will benefit by the inhibition of this pathway.
Collapse
Affiliation(s)
- Estefania Labanca
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jun Yang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter D A Shepherd
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xinhai Wan
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael W Starbuck
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Leah D Guerra
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicolas Anselmino
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Juan A Bizzotto
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jiabin Dong
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Murali K Ravoori
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vikas Kundra
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bradley M Broom
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul G Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Geraldine Gueron
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Christopher J Logothethis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nora M Navone
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
Labrecque MP, Brown LG, Coleman IM, Nguyen HM, Lin DW, Corey E, Nelson PS, Morrissey C. Cabozantinib can block growth of neuroendocrine prostate cancer patient-derived xenografts by disrupting tumor vasculature. PLoS One 2021; 16:e0245602. [PMID: 33471819 PMCID: PMC7817027 DOI: 10.1371/journal.pone.0245602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
With the advent of potent second-line anti-androgen therapy, we and others have observed an increased incidence of androgen receptor (AR)-null small cell or neuroendocrine prostate cancer (SCNPC) in metastatic castration-resistant prostate cancer (mCRPC). Our study was designed to determine the effect of cabozantinib, a multi-targeted tyrosine kinase inhibitor that inhibits VEGFR2, MET and RET on SCNPC. Transcriptome analysis of the University of Washington rapid autopsy and SU2C mCRPC datasets revealed upregulated MET and RET expression in SCNPCs relative to adenocarcinomas. Additionally, increased MET expression correlated with attenuated AR expression and activity. In vitro treatment of SCNPC patient-derived xenograft (PDX) cells with the MET inhibitor AMG-337 had no impact on cell viability in LuCaP 93 (MET+/RET+) and LuCaP 173.1 (MET-/RET-), whereas cabozantinib decreased cell viability of LuCaP 93, but not LuCaP 173.1. Notably, MET+/RET+ LuCaP 93 and MET-/RET- LuCaP 173.1 tumor volumes were significantly decreased with cabozantinib treatment in vivo, and this activity was independent of MET or RET expression in LuCaP 173.1. Tissue analysis indicated that cabozantinib did not inhibit tumor cell proliferation (Ki67), but significantly decreased microvessel density (CD31) and increased hypoxic stress and glycolysis (HK2) in LuCaP 93 and LuCaP 173.1 tumors. RNA-Seq and gene set enrichment analysis revealed that hypoxia and glycolysis pathways were increased in cabozantinib-treated tumors relative to control tumors. Our data suggest that the most likely mechanism of cabozantinib-mediated tumor growth suppression in SCNPC PDX models is through disruption of the tumor vasculature. Thus, cabozantinib may represent a potential therapy for patients with metastatic disease in tumor phenotypes that have a significant dependence on the tumor vasculature for survival and proliferation.
Collapse
Affiliation(s)
- Mark P. Labrecque
- Department of Urology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Lisha G. Brown
- Department of Urology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Ilsa M. Coleman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Holly M. Nguyen
- Department of Urology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Daniel W. Lin
- Department of Urology, University of Washington School of Medicine, Seattle, Washington, United States of America
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Eva Corey
- Department of Urology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Peter S. Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Colm Morrissey
- Department of Urology, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
7
|
Ko J, Meyer AN, Haas M, Donoghue DJ. Characterization of FGFR signaling in prostate cancer stem cells and inhibition via TKI treatment. Oncotarget 2021; 12:22-36. [PMID: 33456711 PMCID: PMC7800776 DOI: 10.18632/oncotarget.27859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022] Open
Abstract
Metastatic castrate-resistant prostate cancer (CRPC) remains uncurable and novel therapies are needed to better treat patients. Aberrant Fibroblast Growth Factor Receptor (FGFR) signaling has been implicated in advanced prostate cancer (PCa), and FGFR1 is suggested to be a promising therapeutic target along with current androgen deprivation therapy. We established a novel in vitro 3D culture system to study endogenous FGFR signaling in a rare subpopulation of prostate cancer stem cells (CSCs) in the cell lines PC3, DU145, LNCaP, and the induced pluripotent iPS87 cell line. 3D-propagation of PCa cells generated spheroids with increased stemness markers ALDH7A1 and OCT4, while inhibition of FGFR signaling by BGJ398 or Dovitinib decreased cell survival and proliferation of 3D spheroids. The 3D spheroids exhibited altered expression of EMT markers associated with metastasis such as E-cadherin, vimentin and Snail, compared to 2D monolayer cells. TKI treatment did not result in significant changes of EMT markers, however, specific inhibition of FGFR signaling by BGJ398 showed more favorable molecular-level changes than treatment with the multi-RTK inhibitor Dovitinib. This study provides evidence for the first time that FGFR1 plays an essential role in the proliferation of PCa CSCs at a molecular and cellular level, and suggests that TKI targeting of FGFR signaling may be a promising strategy for AR-independent CRPC.
Collapse
Affiliation(s)
- Juyeon Ko
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - April N Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Martin Haas
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Daniel J Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.,Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
Crosstalk between androgen and Wnt/β-catenin leads to changes of wool density in FGF5-knockout sheep. Cell Death Dis 2020; 11:407. [PMID: 32472005 PMCID: PMC7260202 DOI: 10.1038/s41419-020-2622-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 12/26/2022]
Abstract
Fibroblast growth factor 5 (FGF5) is a famous dominant inhibitor of anagen phase of hair cycle. Mutations of FGF5 gene result in a longer wool in mice, donkeys, dogs, cats, and even in human eyelashes. Sheep is an important source of wool production. How to improve the production of wool quickly and effectively is an urgent problem to be solved. In this study, we generated five FGF5-knockout Dorper sheep by the CRISPR/Cas9 system. The expression level of FGF5 mRNA in knockout (KO) sheep decreased significantly, and all FGF5 proteins were dysfunctional. The KO sheep displayed a significant increase in fine-wool and active hair-follicle density. The crosstalk between androgen and Wnt/β-catenin signaling downstream of FGF5 gene plays a key role. We established downstream signaling cascades for the first time, including FGF5, FGFR1, androgen, AR, Wnt/β-catenin, Shh/Gli2, c-MYC, and KRTs. These findings further improved the function of FGF5 gene, and provided therapeutic ideas for androgen alopecia.
Collapse
|
9
|
Resistance to MET/VEGFR2 Inhibition by Cabozantinib Is Mediated by YAP/TBX5-Dependent Induction of FGFR1 in Castration-Resistant Prostate Cancer. Cancers (Basel) 2020; 12:cancers12010244. [PMID: 31963871 PMCID: PMC7016532 DOI: 10.3390/cancers12010244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 12/20/2022] Open
Abstract
The overall goal of this study was to elucidate the role of FGFR1 induction in acquired resistance to MET and VEGFR2 inhibition by cabozantinib in prostate cancer (PCa) and leverage this understanding to improve therapy outcomes. The response to cabozantinib was examined in mice bearing patient-derived xenografts in which FGFR1 was overexpressed. Using a variety of cell models that reflect different PCa disease states, the mechanism underpinning FGFR1 signaling activation by cabozantinib was investigated. We performed parallel investigations in specimens from cabozantinib-treated patients to confirm our in vitro and in vivo data. FGFR1 overexpression was sufficient to confer resistance to cabozantinib. Our results demonstrate transcriptional activation of FGF/FGFR1 expression in cabozantinib-resistant models. Further analysis of molecular pathways identified a YAP/TBX5-driven mechanism of FGFR1 and FGF overexpression induced by MET inhibition. Importantly, knockdown of YAP and TBX5 led to decreased FGFR1 protein expression and decreased mRNA levels of FGFR1, FGF1, and FGF2. This association was confirmed in a cohort of hormone-naïve patients with PCa receiving androgen deprivation therapy and cabozantinib, further validating our findings. These findings reveal that the molecular basis of resistance to MET inhibition in PCa is FGFR1 activation through a YAP/TBX5-dependent mechanism. YAP and its downstream target TBX5 represent a crucial mediator in acquired resistance to MET inhibitors. Thus, our studies provide insight into the mechanism of acquired resistance and will guide future development of clinical trials with MET inhibitors.
Collapse
|
10
|
Nickols NG, Nazarian R, Zhao SG, Tan V, Uzunangelov V, Xia Z, Baertsch R, Neeman E, Gao AC, Thomas GV, Howard L, De Hoedt AM, Stuart J, Goldstein T, Chi K, Gleave ME, Graff JN, Beer TM, Drake JM, Evans CP, Aggarwal R, Foye A, Feng FY, Small EJ, Aronson WJ, Freedland SJ, Witte ON, Huang J, Alumkal JJ, Reiter RE, Rettig MB. MEK-ERK signaling is a therapeutic target in metastatic castration resistant prostate cancer. Prostate Cancer Prostatic Dis 2019; 22:531-538. [PMID: 30804427 PMCID: PMC6853839 DOI: 10.1038/s41391-019-0134-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Metastatic castration resistant prostate cancer (mCRPC) is incurable and progression after drugs that target the androgen receptor-signaling axis is inevitable. Thus, there is an urgent need to develop more effective treatments beyond hormonal manipulation. We sought to identify activated kinases in mCRPC as therapeutic targets for existing, approved agents, with the goal of identifying candidate drugs for rapid translation into proof of concept Phase II trials in mCRPC. METHODS To identify evidence of activation of druggable kinases in these patients, we compared mRNA expression from metastatic biopsies of patients with mCRPC (n = 101) to mRNA expression in localized prostate from TCGA and used this analysis to infer differential kinase activity. In addition, we assessed the differential phosphorylation levels for key MAPK pathway kinases between mCRPC and localized prostate cancers. RESULTS Transcriptomic profiling of 101 patients with mCRPC as compared to patients with localized prostate cancer identified evidence of hyperactive ERK1, and whole genome sequencing revealed frequent amplifications of members of the MAPK pathway in 32% of this cohort. Next, we confirmed elevated levels of phosphorylated ERK1/2 in castration resistant prostate cancer as compared to untreated primary prostate cancer. We observed that the presence of detectable phosphorylated ERK1/2 in the primary tumor is associated with biochemical failure after radical prostatectomy independent of clinicopathologic features. ERK1 is the immediate downstream target of MEK1/2, which is druggable with trametinib, an approved therapeutic for melanoma. Trametinib elicited a profound biochemical and clinical response in a patient who had failed multiple prior treatments for mCRPC. CONCLUSIONS We conclude that pharmacologic targeting of the MEK/ERK pathway may be a viable treatment strategy for patients with refractory metastatic prostate cancer. An ongoing Phase II trial tests this hypothesis.
Collapse
Affiliation(s)
- Nicholas G Nickols
- Department of Radiation Oncology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA
- Department of Radiation Oncology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Urology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Ramin Nazarian
- Division of Dermatology/Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Shuang G Zhao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Victor Tan
- Department of Medicine, Division of Medical Oncology, Rutgers Robert Wood Johnson Medical School, Piscatway, NJ, 08854, USA
| | - Vladislav Uzunangelov
- Center for Biomolecular Science and Engineering, Jack Baskin School of Engineering, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Zheng Xia
- Department of Molecular Microbiology & Immunology, Computational Biology Program, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Robert Baertsch
- Center for Biomolecular Science and Engineering, Jack Baskin School of Engineering, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Elad Neeman
- Division of Hematology-Oncology/Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Allen C Gao
- Department of Urology, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - George V Thomas
- Department of Pathology and Laboratory Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Lauren Howard
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Amanda M De Hoedt
- Division of Urology, Durham Veterans Affairs Medical Center, Durham, NC, 27705, USA
| | - Josh Stuart
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Theodore Goldstein
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Kim Chi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Martin E Gleave
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Julie N Graff
- VA Portland Health Care System, Portland and Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Tomasz M Beer
- Department of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Justin M Drake
- Department of Medicine, Division of Medical Oncology, Rutgers Robert Wood Johnson Medical School, Piscatway, NJ, 08854, USA
| | - Christopher P Evans
- Department of Urology, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Rahul Aggarwal
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Adam Foye
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Felix Y Feng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Eric J Small
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - William J Aronson
- Department of Urology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA
- Division of Urology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA
| | - Stephen J Freedland
- Division of Urology, Durham Veterans Affairs Medical Center, Durham, NC, 27705, USA
- Division of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Owen N Witte
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jiaoti Huang
- Department of Pathology, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Joshi J Alumkal
- Department of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Robert E Reiter
- Department of Urology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Matthew B Rettig
- Department of Urology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA.
| |
Collapse
|
11
|
Isali I, Al-Sadawi MAA, Qureshi A, Khalifa AO, Agrawal MK, Shukla S. Growth factors involve in cellular proliferation, differentiation and migration during prostate cancer metastasis. INTERNATIONAL JOURNAL OF CELL BIOLOGY AND PHYSIOLOGY 2019; 2:1-13. [PMID: 32259163 PMCID: PMC7133721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Growth factors play active role in cells proliferation, embryonic development regulation and cellular differentiation. Altered level growth factors promote malignant transformation of normal cells. There has been significant progress made in form of drugs, inhibitors and monoclonal antibodies against altered growth factor to treat the malignant form of cancer. Moreover, these altered growth factors in prostate cancer increases steroidal hormone levels, which promotes progression. Though this review we are highlighting the majorly involved growth factors in prostate carcinogenesis, this will enable to better design the therapeutic strategies to inhibit prostate cancer progression.
Collapse
Affiliation(s)
- Ilaha Isali
- Department of Urology, Case Western Reserve University, Cleveland, OH
| | | | - Arshna Qureshi
- Department of Anesthesiology, Case Western Reserve University, Cleveland, OH
| | - Ahmad O. Khalifa
- Department of Urology, Case Western Reserve University, Cleveland, OH
- Department of Urology, Menofia University, Shebin Al kom, Egypt
| | | | - Sanjeev Shukla
- Department of Urology, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
12
|
Stein-O’Brien G, Kagohara LT, Li S, Thakar M, Ranaweera R, Ozawa H, Cheng H, Considine M, Schmitz S, Favorov AV, Danilova LV, Califano JA, Izumchenko E, Gaykalova DA, Chung CH, Fertig EJ. Integrated time course omics analysis distinguishes immediate therapeutic response from acquired resistance. Genome Med 2018; 10:37. [PMID: 29792227 PMCID: PMC5966898 DOI: 10.1186/s13073-018-0545-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/01/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Targeted therapies specifically act by blocking the activity of proteins that are encoded by genes critical for tumorigenesis. However, most cancers acquire resistance and long-term disease remission is rarely observed. Understanding the time course of molecular changes responsible for the development of acquired resistance could enable optimization of patients' treatment options. Clinically, acquired therapeutic resistance can only be studied at a single time point in resistant tumors. METHODS To determine the dynamics of these molecular changes, we obtained high throughput omics data (RNA-sequencing and DNA methylation) weekly during the development of cetuximab resistance in a head and neck cancer in vitro model. The CoGAPS unsupervised algorithm was used to determine the dynamics of the molecular changes associated with resistance during the time course of resistance development. RESULTS CoGAPS was used to quantify the evolving transcriptional and epigenetic changes. Applying a PatternMarker statistic to the results from CoGAPS enabled novel heatmap-based visualization of the dynamics in these time course omics data. We demonstrate that transcriptional changes result from immediate therapeutic response or resistance, whereas epigenetic alterations only occur with resistance. Integrated analysis demonstrates delayed onset of changes in DNA methylation relative to transcription, suggesting that resistance is stabilized epigenetically. CONCLUSIONS Genes with epigenetic alterations associated with resistance that have concordant expression changes are hypothesized to stabilize the resistant phenotype. These genes include FGFR1, which was associated with EGFR inhibitors resistance previously. Thus, integrated omics analysis distinguishes the timing of molecular drivers of resistance. This understanding of the time course progression of molecular changes in acquired resistance is important for the development of alternative treatment strategies that would introduce appropriate selection of new drugs to treat cancer before the resistant phenotype develops.
Collapse
Affiliation(s)
- Genevieve Stein-O’Brien
- Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD USA
| | - Luciane T. Kagohara
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD USA
| | - Sijia Li
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD USA
| | - Manjusha Thakar
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD USA
| | - Ruchira Ranaweera
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD USA
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL USA
| | - Hiroyuki Ozawa
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Haixia Cheng
- Department of Surgery - Otolaryngology–Head and Neck Surgery, University of Utah, |Salt Lake City, UT USA
| | - Michael Considine
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD USA
| | - Sandra Schmitz
- Head and Neck Surgery Unit, St Luc University Hospital, Brussels, Belgium
| | - Alexander V. Favorov
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD USA
- Laboratory of Systems Biology and Computational Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ludmila V. Danilova
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD USA
- Laboratory of Systems Biology and Computational Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Joseph A. Califano
- Department of Surgery, UC San Diego Moores Cancer Center, La Jolla, CA USA
| | - Evgeny Izumchenko
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD USA
| | - Daria A. Gaykalova
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD USA
| | - Christine H. Chung
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD USA
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL USA
| | - Elana J. Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
13
|
Choi YJ, Kim HS, Park SH, Kim BS, Kim KH, Lee HJ, Song HS, Shin DY, Lee HY, Kim HG, Lee KH, Lee JL, Park KH. Phase II Study of Dovitinib in Patients with Castration-Resistant Prostate Cancer (KCSG-GU11-05). Cancer Res Treat 2018; 50:1252-1259. [PMID: 29334610 PMCID: PMC6192917 DOI: 10.4143/crt.2017.438] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/28/2017] [Indexed: 12/21/2022] Open
Abstract
Purpose Fibroblast growth factor (FGF) signals are important in carcinogenesis and progression of prostate cancer. Dovitinib is an oral, pan-class inhibitor of vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor, and fibroblast growth factor receptor (FGFR). We evaluated the efficacy and toxicity of dovitinib in men with metastatic castration resistant prostate cancer (mCRPC). Materials and Methods This study was a single-arm, phase II, open-label, multicenter trial of dovitinib 500 mg/day (5-days-on/2-days-off schedule). The primary endpoint was 16-week progression-free survival (PFS). Secondary endpoints were overall survival (OS), toxicity and prostate-specific antigen (PSA) response rate. Biomarker analyses for VEGFR2, FGF23, and FGFR2 using multiplex enzyme-linked immunosorbent assay was performed. Results Forty-four men were accrued from 11 hospitals. Eighty percent were post-docetaxel. Median PSA was 100 ng/dL, median age was 69, 82% had bone metastases, and 23% had liver metastases. Median cycles of dovitinib was 2 (range, 0 to 33). Median PFS was 3.67 months (95% confidence interval [CI], 1.36 to 5.98) and median OS was 13.70 months (95% CI, 0 to 27.41). Chemotherapy-naïve patients had longer PFS (17.90 months; 95% CI, 9.23 to 28.57) compared with docetaxel-treated patients (2.07 months; 95% CI, 1.73 to 2.41; p=0.001) and the patients with high serum VEGFR2 level over median level (7,800 pg/mL) showed longer PFS compared with others (6.03 months [95% CI, 4.26 to 7.80] vs. 1.97 months [95% CI, 1.79 to 2.15], p=0.023). Grade 3 related adverse events were seen in 40.9% of patients. Grade 1-2 nausea, diarrhea, fatigue, anorexia, and all grade thrombocytopenia are common. Conclusion Dovitinib showed modest antitumor activity with manageable toxicities in men with mCRPC. Especially, patients who were chemo-naïve benefitted from dovitinib.
Collapse
Affiliation(s)
- Yoon Ji Choi
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University Anam Hospital, Seoul, Korea
| | - Hye Sook Kim
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University Anam Hospital, Seoul, Korea
| | - Se Hoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Bong-Seog Kim
- Division of Hemato-Oncology, Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, Korea
| | - Kyoung Ha Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Soonchunhyang University Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Hyo Jin Lee
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hong Suk Song
- Division of Hematology/Oncology, Department of Internal Medicine, Keimyung University Dongsan Medical Center, Daegu, Korea
| | - Dong-Yeop Shin
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Korea Cancer Center Hospital, Seoul, Korea
| | - Ha Young Lee
- Dongnam Institute of Radiological and Medical Sciences, Busan, Korea
| | - Hoon-Gu Kim
- Department of Internal Medicine, Gyeongsang Institute of Health Sciences, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon, Korea
| | - Kyung Hee Lee
- Department of Hemato-oncology, Yeungnam Medical Center, Daegu, Korea
| | - Jae Lyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyong Hwa Park
- Division of Oncology/Hematology, Department of Internal Medicine, Korea University Anam Hospital, Seoul, Korea
| |
Collapse
|
14
|
Chen Z, Gerke T, Bird V, Prosperi M. Trends in Gene Expression Profiling for Prostate Cancer Risk Assessment: A Systematic Review. Biomed Hub 2017; 2:1-15. [PMID: 31988908 PMCID: PMC6945900 DOI: 10.1159/000472146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/07/2017] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES The aim of the study is to review biotechnology advances in gene expression profiling on prostate cancer (PCa), focusing on experimental platform development and gene discovery, in relation to different study designs and outcomes in order to understand how they can be exploited to improve PCa diagnosis and clinical management. METHODS We conducted a systematic literature review on gene expression profiling studies through PubMed/MEDLINE and Web of Science between 2000 and 2016. Tissue biopsy and clinical gene profiling studies with different outcomes (e.g., recurrence, survival) were included. RESULTS Over 3,000 papers were screened and 137 full-text articles were selected. In terms of technology used, microarray is still the most popular technique, increasing from 50 to 70% between 2010 and 2015, but there has been a rise in the number of studies using RNA sequencing (13% in 2015). Sample sizes have increased, as well as the number of genes that can be screened all at once, but we have also observed more focused targeting in more recent studies. Qualitative analysis on the specific genes found associated with PCa risk or clinical outcomes revealed a large variety of gene candidates, with a few consistent cross-studies. CONCLUSIONS The last 15 years of research in gene expression in PCa have brought a large volume of data and information that has been decoded only in part, but advancements in high-throughput sequencing technology are increasing the amount of data that can be generated. The variety of findings warrants the execution of both validation studies and meta-analyses. Genetic biomarkers have tremendous potential for early diagnosis of PCa and, if coupled with other diagnostics (e.g., imaging), can effectively be used to concretize less-invasive, personalized prediction of PCa risk and progression.
Collapse
Affiliation(s)
- Zhaoyi Chen
- Department of Epidemiology, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | - Victoria Bird
- Department of Urology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mattia Prosperi
- Department of Epidemiology, College of Public Health and Health Professions, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
15
|
Bova GS, Kallio HML, Annala M, Kivinummi K, Högnäs G, Häyrynen S, Rantapero T, Kivinen V, Isaacs WB, Tolonen T, Nykter M, Visakorpi T. Integrated clinical, whole-genome, and transcriptome analysis of multisampled lethal metastatic prostate cancer. Cold Spring Harb Mol Case Stud 2016; 2:a000752. [PMID: 27148588 PMCID: PMC4853517 DOI: 10.1101/mcs.a000752] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We report the first combined analysis of whole-genome sequence, detailed clinical history, and transcriptome sequence of multiple prostate cancer metastases in a single patient (A21). Whole-genome and transcriptome sequence was obtained from nine anatomically separate metastases, and targeted DNA sequencing was performed in cancerous and noncancerous foci within the primary tumor specimen removed 5 yr before death. Transcriptome analysis revealed increased expression of androgen receptor (AR)-regulated genes in liver metastases that harbored an AR p.L702H mutation, suggesting a dominant effect by the mutation despite being present in only one of an estimated 16 copies per cell. The metastases harbored several alterations to the PI3K/AKT pathway, including a clonal truncal mutation in PIK3CG and present in all metastatic sites studied. The list of truncal genomic alterations shared by all metastases included homozygous deletion of TP53, hemizygous deletion of RB1 and CHD1, and amplification of FGFR1. If the patient were treated today, given this knowledge, the use of second-generation androgen-directed therapies, cessation of glucocorticoid administration, and therapeutic inhibition of the PI3K/AKT pathway or FGFR1 receptor could provide personalized benefit. Three previously unreported truncal clonal missense mutations (ABCC4 p.R891L, ALDH9A1 p.W89R, and ASNA1 p.P75R) were expressed at the RNA level and assessed as druggable. The truncal status of mutations may be critical for effective actionability and merit further study. Our findings suggest that a large set of deeply analyzed cases could serve as a powerful guide to more effective prostate cancer basic science and personalized cancer medicine clinical trials.
Collapse
Affiliation(s)
- G Steven Bova
- Prostate Cancer Research Center, Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere and Fimlab Laboratories, Tampere University Hospital, FI-33014 Tampere, Finland
| | - Heini M L Kallio
- Prostate Cancer Research Center, Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere and Fimlab Laboratories, Tampere University Hospital, FI-33014 Tampere, Finland
| | - Matti Annala
- Prostate Cancer Research Center, Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere and Fimlab Laboratories, Tampere University Hospital, FI-33014 Tampere, Finland
| | - Kati Kivinummi
- Prostate Cancer Research Center, Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere and Fimlab Laboratories, Tampere University Hospital, FI-33014 Tampere, Finland
| | - Gunilla Högnäs
- Prostate Cancer Research Center, Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere and Fimlab Laboratories, Tampere University Hospital, FI-33014 Tampere, Finland
| | - Sergei Häyrynen
- Prostate Cancer Research Center, Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere and Fimlab Laboratories, Tampere University Hospital, FI-33014 Tampere, Finland
| | - Tommi Rantapero
- Prostate Cancer Research Center, Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere and Fimlab Laboratories, Tampere University Hospital, FI-33014 Tampere, Finland
| | - Virpi Kivinen
- Prostate Cancer Research Center, Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere and Fimlab Laboratories, Tampere University Hospital, FI-33014 Tampere, Finland
| | - William B Isaacs
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Teemu Tolonen
- Prostate Cancer Research Center, Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere and Fimlab Laboratories, Tampere University Hospital, FI-33014 Tampere, Finland
| | - Matti Nykter
- Prostate Cancer Research Center, Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere and Fimlab Laboratories, Tampere University Hospital, FI-33014 Tampere, Finland
| | - Tapio Visakorpi
- Prostate Cancer Research Center, Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere and Fimlab Laboratories, Tampere University Hospital, FI-33014 Tampere, Finland
| |
Collapse
|
16
|
Hierro C, Rodon J, Tabernero J. Fibroblast Growth Factor (FGF) Receptor/FGF Inhibitors: Novel Targets and Strategies for Optimization of Response of Solid Tumors. Semin Oncol 2015; 42:801-19. [PMID: 26615127 DOI: 10.1053/j.seminoncol.2015.09.027] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The fibroblast growth factor receptor (FGFR) pathway plays a major role in several biological processes, from organogenesis to metabolism homeostasis and angiogenesis. Several aberrations, including gene amplifications, point mutations, and chromosomal translocations have been described across solid tumors. Most of these molecular alterations promote multiple steps of carcinogenesis in FGFR oncogene-addicted cells, increasing cell proliferation, angiogenesis, and drug resistance. Data suggest that upregulation of FGFR signaling is a common event in many cancer types. The FGFR pathway thus arises as a potential promising target for cancer treatment. Several FGFR inhibitors are currently under development. Initial preclinical results have translated into limited successful clinical responses when first-generation, nonspecific FGFR inhibitors were evaluated in patients. The future development of selective and unselective FGFR inhibitors will rely on a better understanding of the tissue-specific role of FGFR signaling and identification of biomarkers to select those patients who will benefit the most from these drugs. Further studies are warranted to establish the predictive significance of the different FGFR-aberrations and to incorporate them into clinical algorithms, now that second-generation, selective FGFR inhibitors exist.
Collapse
Affiliation(s)
- Cinta Hierro
- Molecular Therapeutics Research Unit, Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jordi Rodon
- Molecular Therapeutics Research Unit, Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Josep Tabernero
- Molecular Therapeutics Research Unit, Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
| |
Collapse
|
17
|
Yosaatmadja Y, Patterson AV, Smaill JB, Squire CJ. The 1.65 Å resolution structure of the complex of AZD4547 with the kinase domain of FGFR1 displays exquisite molecular recognition. ACTA ACUST UNITED AC 2015; 71:525-33. [DOI: 10.1107/s1399004714027539] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 12/17/2014] [Indexed: 12/19/2022]
Abstract
The fibroblast growth factor receptor (FGFR) family are expressed widely in normal tissues and play a role in tissue repair, inflammation, angiogenesis and development. However, aberrant signalling through this family can lead to cellular proliferation, evasion of apoptosis and induction of angiogenesis, which is implicated in the development of many cancers and also in drug resistance. The high frequency of FGFR amplification or mutation in multiple cancer types is such that this family has been targeted for the discovery of novel, selective drug compounds, with one of the most recently discovered being AZD4547, a subnanomolar (IC50) FGFR1 inhibitor developed by AstraZeneca and currently in clinical trials. The 1.65 Å resolution crystal structure of AZD4547 bound to the kinase domain of FGFR1 has been determined and reveals extensive drug–protein interactions, an integral network of water molecules and the tight closure of the FGFR1 P-loop to form a long, narrow crevice in which the AZD4547 molecule binds.
Collapse
|
18
|
Wang X, Wen J, Li R, Qiu G, Zhou L, Wen X. Gene expression profiling analysis of castration-resistant prostate cancer. Med Sci Monit 2015; 21:205-12. [PMID: 25592164 PMCID: PMC4306671 DOI: 10.12659/msm.891193] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background Prostate cancer is a global health issue. Usually, men with metastatic disease will progress to castration-resistant prostate cancer (CRPC). We aimed to identify the differentially expressed genes (DEGs) in tumor samples from non-castrated and castrated men from LNCaP Orthotopic xenograft models of prostate cancer and to study the mechanisms of CRPC. Material/Methods In this work, GSE46218 containing 4 samples from non-castrated men and 4 samples from castrated men was downloaded from Gene Expression Omnibus. We identified DEGs using limma Geoquery in R, the Robust Multi-array Average (RMA) method in Bioconductor, and Bias methods, followed by constructing an integrated regulatory network involving DEGs, miRNAs, and TFs using Cytoscape. Then, we analyzed network motifs of the integrated gene regulatory network using FANMOD. We selected regulatory modules corresponding to network motifs from the integrated regulatory network by Perl script. We preformed gene ontology (GO) and pathway enrichment analysis of DEGs in the regulatory modules using DAVID. Results We identified total 443 DEGs. We built an integrated regulatory network, found three motifs (motif 1, motif 2 and motif 3), and got two function modules (module 1 corresponded to motif 1, and module 2 corresponded to motif 2). Several GO terms (such as regulation of cell proliferation, positive regulation of macromolecule metabolic process, phosphorylation, and phosphorus metabolic process) and two pathways (pathway in cancer and Melanoma) were enriched. Furthermore, some significant DEGs (such as CAV1, LYN, FGFR3 and FGFR3) were related to CPRC development. Conclusions These genes might play important roles in the development and progression of CRPC.
Collapse
Affiliation(s)
- Xuelei Wang
- Department of Urology, East Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| | - Jiling Wen
- Department of Urology, East Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| | - Rongbing Li
- Department of Urology, East Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| | - Guangming Qiu
- Department of Urology, East Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| | - Lan Zhou
- Department of Urology, East Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| | - Xiaofei Wen
- Department of Urology, East Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| |
Collapse
|
19
|
|
20
|
Molife LR, Omlin A, Jones RJ, Karavasilis V, Bloomfield D, Lumsden G, Fong PC, Olmos D, O'Sullivan JM, Pedley I, Hickish T, Jenkins P, Thompson E, Oommen N, Wheatley D, Heath C, Temple G, Pelling K, de Bono JS. Randomized Phase II trial of nintedanib, afatinib and sequential combination in castration-resistant prostate cancer. Future Oncol 2014; 10:219-31. [PMID: 24490608 DOI: 10.2217/fon.13.250] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AIMS The aim of this article was to evaluate afatinib (BIBW 2992), an ErbB family blocker, and nintedanib (BIBF 1120), a triple angiokinase inhibitor, in castration-resistant prostate cancer patients. PATIENTS & METHODS Patients were randomized to receive nintedanib (250 mg twice daily), afatinib (40 mg once daily [q.d.]), or alternating sequential 7-day nintedanib (250 mg twice daily) and afatinib (70 mg q.d. [Combi70]), which was reduced to 40 mg q.d. (Combi40) due to adverse events. The primary end point was progression-free rate at 12 weeks. RESULTS Of the 85 patients treated 46, 20, 16 and three received nintedanib, afatinib, Combi40 and Combi70, respectively. At 12 weeks, the progression-free rate was 26% (seven out of 27 patients) for nintedanib, and 0% for afatinib and Combi40 groups. Two patients had a ≥50% decline in PSA (nintedanib and the Combi40 groups). The most common drug-related adverse events were diarrhea, nausea, vomiting and lethargy. CONCLUSION Nintedanib and/or afatinib demonstrated limited anti-tumor activity in unselected advanced castration-resistant prostate cancer patients.
Collapse
Affiliation(s)
- L Rhoda Molife
- Drug Development Unit, Divisions of Cancer Therapeutics & Clinical Sciences, Institute of Cancer Research/Royal Marsden Hospital, Downs Road, Sutton, Surrey, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Neschadim A, Summerlee AJS, Silvertown JD. Targeting the relaxin hormonal pathway in prostate cancer. Int J Cancer 2014; 137:2287-95. [PMID: 25043063 DOI: 10.1002/ijc.29079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 07/07/2014] [Indexed: 11/11/2022]
Abstract
Targeting the androgen signalling pathway has long been the hallmark of anti-hormonal therapy for prostate cancer. However, development of androgen-independent prostate cancer is an inevitable outcome to therapies targeting this pathway, in part, owing to the shift from cancer dependence on androgen signalling for growth in favor of augmentation of other cellular pathways that provide proliferation-, survival- and angiogenesis-promoting signals. This review focuses on the role of the hormone relaxin in the development and progression of prostate cancer, prior to and after the onset of androgen independence, as well as its role in cancers of other reproductive tissues. As the body of literature expands, examining relaxin expression in cancerous tissues and its role in a growing number of in vitro and in vivo cancer models, our understanding of the important involvement of this hormone in cancer biology is becoming clearer. Specifically, the pleiotropic functions of relaxin affecting cell growth, angiogenesis, blood flow, cell migration and extracellular matrix remodeling are examined in the context of cancer progression. The interactions and intercepts of the intracellular signalling pathways of relaxin with the androgen pathway are explored in the context of progression of castration-resistant and androgen-independent prostate cancers. We provide an overview of current anti-hormonal therapeutic treatment options for prostate cancer and delve into therapeutic approaches and development of agents aimed at specifically antagonizing relaxin signalling to curb tumor growth. We also discuss the rationale and challenges utilizing such agents as novel anti-hormonals in the clinic, and their potential to supplement current therapeutic modalities.
Collapse
Affiliation(s)
- Anton Neschadim
- Armour Therapeutics Inc., Toronto, 124 Orchard View Blvd, Toronto, ON, Canada
| | | | - Joshua D Silvertown
- Armour Therapeutics Inc., Toronto, 124 Orchard View Blvd, Toronto, ON, Canada
| |
Collapse
|
22
|
Lee JY, Kim SY, Mo EY, Kim ES, Han JH, Maeng LS, Lee AH, Eun JW, Nam SW, Moon SD. Upregulation of FGFR1 expression is associated with parathyroid carcinogenesis in HPT-JT syndrome due to an HRPT2 splicing mutation. Int J Oncol 2014; 45:641-50. [PMID: 24889687 DOI: 10.3892/ijo.2014.2477] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/26/2014] [Indexed: 11/06/2022] Open
Abstract
Mutations of the HRPT2 gene, which are responsible for hyperparathyroidism-jaw tumor (HPT-JT) syndrome, have been implicated in the development of a high proportion of parathyroid carcinomas. The aim of this study was to investigate differences in expression of the most important genes connected with parathyroid carcinoma between HPT-JT syndrome due to an HRPT2 splicing mutation, normal parathyroid tissue and sporadic parathyroid adenoma. Total RNAs were extracted from parathyroid carcinoma in HPT-JT syndrome harbouring HRPT2 splicing mutation or sporadic parathyroid adenoma and normal parathyroid gland, and subjected to Illumina DASL-based gene expression assay. Unsupervised hierarchical clustering analysis was used to compare gene expression in HPT-JT syndrome, sporadic parathyroid adenoma and normal parathyroid glands. We identified differentially regulated genes in HPT-JT syndrome and sporadic parathyroid adenoma relative to normal parathyroid glands using a combination of Welch's t-test and fold-change analysis. Quantitative PCR, RT-PCR and IHC were used for validation. Sixteen genes differentially regulated in the parathyroid carcinoma were associated with signal pathways, MAPK, regulation of actin cytoskeleton, prostate cancer and apoptosis. FGFR1 expression was confirmed to be significantly upregulated by validation experiments. Our gene expression profiling experiments suggest that upregulated FGFR1 expression appears to be associated with parathyroid carcinoma in HPT-JT syndrome due to an HRPT2 splicing mutation.
Collapse
Affiliation(s)
- Ji-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, Bupyeong-gu, Incheon 403-720, Republic of Korea
| | - Su Yeon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, Bupyeong-gu, Incheon 403-720, Republic of Korea
| | - Eun-Yeong Mo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, Bupyeong-gu, Incheon 403-720, Republic of Korea
| | - Eun-Sook Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, Bupyeong-gu, Incheon 403-720, Republic of Korea
| | - Je-Ho Han
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, Bupyeong-gu, Incheon 403-720, Republic of Korea
| | - Lee-So Maeng
- Department of Hospital Pathology, Incheon St. Mary's Hospital, The Catholic University of Korea, Bupyeong-gu, Incheon 403-720, Republic of Korea
| | - An-Hee Lee
- Department of Hospital Pathology, Incheon St. Mary's Hospital, The Catholic University of Korea, Bupyeong-gu, Incheon 403-720, Republic of Korea
| | - Jung Woo Eun
- Department of Pathology, Microdissection Genomics Research Center, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 137-701, Republic of Korea
| | - Suk Woo Nam
- Department of Pathology, Microdissection Genomics Research Center, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 137-701, Republic of Korea
| | - Sung-Dae Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, Bupyeong-gu, Incheon 403-720, Republic of Korea
| |
Collapse
|
23
|
Abstract
INTRODUCTION Amplification of fibroblast growth factor receptor 1 (FGFR1) has been reported in squamous cell lung carcinoma and may be a molecular target for therapy. Little is known, however, about the clinical and demographic correlates of FGFR1 amplification. METHODS The study is an Institutional Review Board approved retrospective analysis of 226 patients with squamous cell lung cancer seen at the Massachusetts General Hospital from 2005 to 2011. Clinical and demographic characteristics of all patients were obtained, as well as treatment details including surgery, radiation, and chemotherapy, and overall survival. fluorescence in situ hybridization was performed for FGFR1 on formalin-fixed paraffin-embedded tumor tissue. Clinical genotyping results were also reviewed where available. RESULTS Thirty-seven of 226 patients (16%) with squamous cell lung cancer were found positive for amplification using a definition of amplification of a gene to copy number control ratio of 2.2 or higher. FGFR1 amplification status was not associated with age, sex, stage, histologic subtype within squamous cell, smoking history, or pack-years of smoking. We found no significant difference in overall survival by FGFR1 amplification status as a whole; in the advanced stage subset, our findings are inconclusive because of the small sample size. CONCLUSION FGFR1 amplification was found in 16% of a clinical cohort of squamous cell lung cancer patients. The lack of any specific clinicodemographic features that correlates with FGFR1 amplification suggests that all squamous cell patients should be tested for this genomic change.
Collapse
|
24
|
Current World Literature. Curr Opin Urol 2013. [DOI: 10.1097/mou.0b013e3283605159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|