1
|
Ruysscher DD, Wauters E, Jendrossek V, Filippi AR, Revel MP, Faivre-Finn C, Naidoo J, Ramella S, Guckenberger M, Ricardi U, Khalil A, Schor M, Bartolomeo V, Putora PM. Diagnosis and treatment of radiation induced pneumonitis in patients with lung cancer: An ESTRO clinical practice guideline. Radiother Oncol 2025; 207:110837. [PMID: 40185160 DOI: 10.1016/j.radonc.2025.110837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 04/07/2025]
Abstract
The incidence of radiation pneumonitis (RP) has decreased significantly compared to historical series, mainly due to improved radiotherapy techniques and patient selection. Nevertheless, some patients still develop RP. This guideline provides user-friendly flowcharts to address common clinical practice questions regarding RP. We summarize the current state of the art regarding the mechanisms, risk factors, diagnosis and treatment of RP. Dosimetric constraints to minimize the incidence of RP, as well as risk factors for developing RP, such as idiopathic pulmonary fibrosis (IPF) were identified. The combination of radiotherapy and medication as a risk factor for the development of RP was reviewed. RP remains a diagnosis of exclusion, but an algorithm for reaching the diagnosis has been proposed. Finally, practical approaches to the treatment of RP are outlined.
Collapse
Affiliation(s)
- Dirk De Ruysscher
- Department of Radiation Oncology (Maastro), Maastricht University Medical Centre(+), GROW School for Oncology and Reproduction, Maastricht, the Netherlands; Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| | - Els Wauters
- Department of Respiratory Diseases, Respiratory Oncology Unit, University Hospital KU Leuven, Leuven, Belgium
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital Essen, West German Cancer Center Essen, Essen, Germany
| | - Andrea Riccardo Filippi
- Department of Oncology, University of Milan, Milan, Italy; Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marie-Pierre Revel
- Université Paris Cité, Paris 75006, France; Department of Radiology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris 75014, France
| | - Corinne Faivre-Finn
- Radiotherapy Related Research, University of Manchester and The Christie NHS Foundation, Manchester, UK
| | - Jarushka Naidoo
- Beaumont Hospital and RCSI University of Health Sciences, Dublin, Ireland; Sidney Kimmel Comprehensive Cancer Centre at Johns Hopkins University, Baltimore, USA
| | - Sara Ramella
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | | | - Umberto Ricardi
- Department of Oncology, Radiation Oncology, University of Turin, Turin, Italy
| | - Azza Khalil
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marieke Schor
- UB Education, Content & Support, Maastricht University, Maastricht 6211 LK, the Netherlands
| | - Valentina Bartolomeo
- Department of Radiation Oncology (Maastro), Maastricht University Medical Centre(+), GROW School for Oncology and Reproduction, Maastricht, the Netherlands; Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Radiation Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; Department of Clinical Surgical, Diagnostic and Pediatric Sciences, Pavia University, 27100 Pavia, Italy
| | - Paul Martin Putora
- Department of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland; Department of Radiation Oncology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
2
|
Potiron V, Delpon G, Ollivier L, Vaugier L, Doré M, Guimas V, Rio E, Thillays F, Llagostera C, Moignier A, Josset S, Chiavassa S, Perennec T, Supiot S. [Clinical research in radiation oncology: how to move from the laboratory to the patient?]. Cancer Radiother 2022; 26:808-813. [PMID: 35999162 DOI: 10.1016/j.canrad.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022]
Abstract
Translational research in radiation oncology is undergoing intense development. An increasingly rapid transfer is taking place from the laboratory to the patients, both in the selection of patients who can benefit from radiotherapy and in the development of innovative irradiation strategies or the development of combinations with drugs. Accelerating the passage of discoveries from the laboratory to the clinic represents the ideal of any translational research program but requires taking into account the multiple obstacles that can slow this progress. The ambition of the RadioTransNet network, a project to structure preclinical research in radiation oncology in France, is precisely to promote scientific and clinical interactions at the interface of radiotherapy and radiobiology, in its preclinical positioning, in order to identify priorities for strategic research dedicated to innovation in radiotherapy. The multidisciplinary radiotherapy teams with experts in biology, medicine, medical physics, mathematics and engineering sciences are able to meet these new challenges which will allow these advances to be made available to patients as quickly as possible.
Collapse
Affiliation(s)
- V Potiron
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France; Unité en sciences biologiques et biotechnologies, UMR CNRS 6286, 2, rue de la Houssinière, 44322 Nantes, France
| | - G Delpon
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France; IMT Atlantique, UMR CNRS 6457/IN2P3, Subatech, laboratoire de physique subatomique et des technologies associées, Nantes, France
| | - L Ollivier
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France
| | - L Vaugier
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France
| | - M Doré
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France
| | - V Guimas
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France
| | - E Rio
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France
| | - F Thillays
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France
| | - C Llagostera
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France
| | - A Moignier
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France
| | - S Josset
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France
| | - S Chiavassa
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France; IMT Atlantique, UMR CNRS 6457/IN2P3, Subatech, laboratoire de physique subatomique et des technologies associées, Nantes, France
| | - T Perennec
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France
| | - S Supiot
- Institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44800 Saint-Herblain, France; Unité en sciences biologiques et biotechnologies, UMR CNRS 6286, 2, rue de la Houssinière, 44322 Nantes, France.
| |
Collapse
|
3
|
Erkisa M, Sariman M, Geyik OG, Geyik CG, Stanojkovic T, Ulukay E. Natural Products as a Promising Therapeutic Strategy to Target Cancer Stem Cells. Curr Med Chem 2021; 29:741-783. [PMID: 34182899 DOI: 10.2174/0929867328666210628131409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 11/22/2022]
Abstract
Cancer is still a deadly disease, and its treatment desperately needs to be managed in a very sophisticated way through fast-developing novel strategies. Most of the cancer cases eventually develop into recurrencies, for which cancer stem cells (CSCs) are thought to be responsible. They are considered as a subpopulation of all cancer cells of tumor tissue with aberrant regulation of self-renewal, unbalanced proliferation, and cell death properties. Moreover, CSCs show a serious degree of resistance to chemotherapy or radiotherapy and immune surveillance as well. Therefore, new classes of drugs are rushing into the market each year, which makes the cost of therapy increase dramatically. Natural products are also becoming a new research area as a diverse chemical library to suppress CSCs. Some of the products even show promise in this regard. So, the near future could witness the introduction of natural products as a source of new chemotherapy modalities, which may result in the development of novel anticancer drugs. They could also be a reasonably-priced alternative to highly expensive current treatments. Nowadays, considering the effects of natural compounds on targeting surface markers, signaling pathways, apoptosis, and escape from immunosurveillance have been a highly intriguing area in preclinical and clinical research. In this review, we present scientific advances regarding their potential use in the inhibition of CSCs and the mechanisms by which they kill the CSCs.
Collapse
Affiliation(s)
- Merve Erkisa
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Melda Sariman
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Oyku Gonul Geyik
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Caner Geyik Geyik
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| | - Tatjana Stanojkovic
- Experimental Oncology Deparment, Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Pasterova 14. Serbia
| | - Engin Ulukay
- Molecular Cancer Research Center (ISUMKAM), Istinye University, Istanbul, Turkey
| |
Collapse
|
4
|
Chargari C, Levy A, Paoletti X, Soria JC, Massard C, Weichselbaum RR, Deutsch E. Methodological Development of Combination Drug and Radiotherapy in Basic and Clinical Research. Clin Cancer Res 2020; 26:4723-4736. [PMID: 32409306 DOI: 10.1158/1078-0432.ccr-19-4155] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/14/2020] [Accepted: 05/12/2020] [Indexed: 01/03/2023]
Abstract
Newer technical improvements in radiation oncology have been rapidly implemented in recent decades, allowing an improved therapeutic ratio. The development of strategies using local and systemic treatments concurrently, mainly targeted therapies, has however plateaued. Targeted molecular compounds and immunotherapy are increasingly being incorporated as the new standard of care for a wide array of cancers. A better understanding of possible prior methodology issues is therefore required and should be integrated into upcoming early clinical trials including individualized radiotherapy-drug combinations. The outcome of clinical trials is influenced by the validity of the preclinical proofs of concept, the impact on normal tissue, the robustness of biomarkers and the quality of the delivery of radiation. Herein, key methodological aspects are discussed with the aim of optimizing the design and implementation of future precision drug-radiotherapy trials.
Collapse
Affiliation(s)
- Cyrus Chargari
- Department of Radiation Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Université Paris-Sud, Orsay, France
- INSERM U1030, Molecular Radiotherapy, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France
| | - Antonin Levy
- Department of Radiation Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France.
- Université Paris-Sud, Orsay, France
- INSERM U1030, Molecular Radiotherapy, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Xavier Paoletti
- University of Versailles St. Quentin, France
- Institut Curie INSERM U900, Biostatistics for Personalized Medicine Team, St. Cloud, France
| | | | - Christophe Massard
- Université Paris-Sud, Orsay, France
- Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France.
- Université Paris-Sud, Orsay, France
- INSERM U1030, Molecular Radiotherapy, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
5
|
Lan Y, Li X, Liu Y, He Y, Hao C, Wang H, Jin L, Zhang G, Zhang S, Zhou A, Zhang L. Pingyangmycin inhibits glycosaminoglycan sulphation in both cancer cells and tumour tissues. J Cell Mol Med 2020; 24:3419-3430. [PMID: 32068946 PMCID: PMC7131950 DOI: 10.1111/jcmm.15017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/05/2020] [Accepted: 01/10/2020] [Indexed: 12/18/2022] Open
Abstract
Pingyangmycin is a clinically used anticancer drug and induces lung fibrosis in certain cancer patients. We previously reported that the negatively charged cell surface glycosaminoglycans are involved in the cellular uptake of the positively charged pingyangmycin. However, it is unknown if pingyangmycin affects glycosaminoglycan structures. Seven cell lines and a Lewis lung carcinoma‐injected C57BL/6 mouse model were used to understand the cytotoxicity of pingyangmycin and its effect on glycosaminoglycan biosynthesis. Stable isotope labelling coupled with LC/MS method was used to quantify glycosaminoglycan disaccharide compositions from pingyangmycin‐treated and untreated cell and tumour samples. Pingyangmycin reduced both chondroitin sulphate and heparan sulphate sulphation in cancer cells and in tumours. The effect was persistent at different pingyangmycin concentrations and at different exposure times. Moreover, the cytotoxicity of pingyangmycin was decreased in the presence of soluble glycosaminoglycans, in the glycosaminoglycan‐deficient cell line CHO745, and in the presence of chlorate. A flow cytometry‐based cell surface FGF/FGFR/glycosaminoglycan binding assay also showed that pingyangmycin changed cell surface glycosaminoglycan structures. Changes in the structures of glycosaminoglycans may be related to fibrosis induced by pingyangmycin in certain cancer patients.
Collapse
Affiliation(s)
- Ying Lan
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.,College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiulian Li
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yong Liu
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanli He
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cui Hao
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hua Wang
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liying Jin
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guoqing Zhang
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shufeng Zhang
- College of Chemistry, Tianjin Normal University, Tianjin, China
| | - Aimin Zhou
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, OH, USA
| | - Lijuan Zhang
- Systems Biology & Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Marconato L, Weyland M, Tresch N, Rossi F, Leone V, Rohrer Bley C. Toxicity and outcome in cats with oral squamous cell carcinoma after accelerated hypofractionated radiotherapy and concurrent systemic treatment. Vet Comp Oncol 2019; 18:362-369. [PMID: 31756259 DOI: 10.1111/vco.12557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 02/03/2023]
Abstract
Recently, a multimodal approach to oral squamous cell carcinoma (SCC) in cats, combining medical treatment and accelerated radiation therapy, showed a substantial outcome improvement in a small pilot study. Herein we retrospectively review 51 cats with unresectable, histologically confirmed oral SCC and a complete initial staging work-up: cats in group A (n = 24) received medical anti-angiogenic treatment consisting of bleomycin, piroxicam and thalidomide, cats in group B (n = 27) received the anti-angiogenic treatment and concurrent accelerated hypofractionated radiation therapy with 48Gy delivered in 10 fractions. Overall median progression-free interval (PFI) was poor with 70 days (95% CI: 48;93). In the irradiated cats (group B), however, PFI was significantly longer with 179 days (95% CI: 58;301) days, vs 30 days (95% CI: 23;38) in medically only treated cats (P < .001). Overall median overall survival (OS) was 89 days (95% CI: 55;124), again significantly longer in the irradiated cats (group B) with 136 (95% CI: 40;233) vs 38 days (95% CI: 23;54) (P < .001). In 8 of the 27 (29.6%) cats in group B, however, severe toxicity (grade 3) occurred. Neither onset nor severity of toxicity could be associated with any of the tested variables, including anatomic site, tumour size, clinical stage and duration of neoadjuvant medical treatment. Given the potential severe acute effects and the impact on quality of life after chemo-radiotherapy, owners must be clearly informed about the risks of treatment. With the overall poor outcome and high occurrence of acute toxicity, we cannot recommend the use of this accelerated radiation protocol combined with anti-angiogenic therapy for oral SCC in cats.
Collapse
Affiliation(s)
- Laura Marconato
- Centro Oncologico Veterinario, Bologna, Italy.,Department of Veterinary Medical Sciences, University of Bologna, Ozzano nell'Emilia (Bologna), Italy
| | - Mathias Weyland
- ZHAW School of Engineering, Zurich University of Applied Sciences, Winterthur, Switzerland.,Division of Radiation Oncology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nina Tresch
- Division of Radiation Oncology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | - Vito Leone
- Centro Oncologico Veterinario, Bologna, Italy
| | - Carla Rohrer Bley
- Centro Oncologico Veterinario, Bologna, Italy.,Division of Radiation Oncology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Gunjur A, Chong G, Lim A, Lau E, Mitchell P, John T, Arulananda S. Occult Gastrointestinal Perforation in a Patient With EGFR-Mutant Non-Small-Cell Lung Cancer Receiving Combination Chemotherapy With Atezolizumab and Bevacizumab: Brief Report. Clin Lung Cancer 2019; 21:e57-e60. [PMID: 31864906 DOI: 10.1016/j.cllc.2019.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 02/08/2023]
Affiliation(s)
- Ashray Gunjur
- Department of Medical Oncology, Austin Health, Melbourne, Australia
| | - Geoff Chong
- Department of Medical Oncology, Austin Health, Melbourne, Australia; Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
| | - Adeline Lim
- Department of Radiation Oncology, Austin Health, Melbourne, Australia
| | - Eddie Lau
- Department of Radiology, Austin Health, Melbourne, Australia
| | - Paul Mitchell
- Department of Medical Oncology, Austin Health, Melbourne, Australia; Cancer Immuno-Biology Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
| | - Thomas John
- Department of Medical Oncology, Austin Health, Melbourne, Australia; Cancer Immuno-Biology Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Australia; School of Cancer Medicine, La Trobe University, Heidelberg, Australia
| | - Surein Arulananda
- Department of Medical Oncology, Austin Health, Melbourne, Australia; Cancer Immuno-Biology Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Australia; School of Cancer Medicine, La Trobe University, Heidelberg, Australia.
| |
Collapse
|
8
|
de Leve S, Wirsdörfer F, Jendrossek V. The CD73/Ado System-A New Player in RT Induced Adverse Late Effects. Cancers (Basel) 2019; 11:cancers11101578. [PMID: 31623231 PMCID: PMC6827091 DOI: 10.3390/cancers11101578] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy (RT) is a central component of standard treatment for many cancer patients. RT alone or in multimodal treatment strategies has a documented contribution to enhanced local control and overall survival of cancer patients, and cancer cure. Clinical RT aims at maximizing tumor control, while minimizing the risk for RT-induced adverse late effects. However, acute and late toxicities of IR in normal tissues are still important biological barriers to successful RT: While curative RT may not be tolerable, sub-optimal tolerable RT doses will lead to fatal outcomes by local recurrence or metastatic disease, even when accepting adverse normal tissue effects that decrease the quality of life of irradiated cancer patients. Technical improvements in treatment planning and the increasing use of particle therapy have allowed for a more accurate delivery of IR to the tumor volume and have thereby helped to improve the safety profile of RT for many solid tumors. With these technical and physical strategies reaching their natural limits, current research for improving the therapeutic gain of RT focuses on innovative biological concepts that either selectively limit the adverse effects of RT in normal tissues without protecting the tumor or specifically increase the radiosensitivity of the tumor tissue without enhancing the risk of normal tissue complications. The biology-based optimization of RT requires the identification of biological factors that are linked to differential radiosensitivity of normal or tumor tissues, and are amenable to therapeutic targeting. Extracellular adenosine is an endogenous mediator critical to the maintenance of homeostasis in various tissues. Adenosine is either released from stressed or injured cells or generated from extracellular adenine nucleotides by the concerted action of the ectoenzymes ectoapyrase (CD39) and 5′ ectonucleotidase (NT5E, CD73) that catabolize ATP to adenosine. Recent work revealed a role of the immunoregulatory CD73/adenosine system in radiation-induced fibrotic disease in normal tissues suggesting a potential use as novel therapeutic target for normal tissue protection. The present review summarizes relevant findings on the pathologic roles of CD73 and adenosine in radiation-induced fibrosis in different organs (lung, skin, gut, and kidney) that have been obtained in preclinical models and proposes a refined model of radiation-induced normal tissue toxicity including the disease-promoting effects of radiation-induced activation of CD73/adenosine signaling in the irradiated tissue environment. However, expression and activity of the CD73/adenosine system in the tumor environment has also been linked to increased tumor growth and tumor immune escape, at least in preclinical models. Therefore, we will discuss the use of pharmacologic inhibition of CD73/adenosine-signaling as a promising strategy for improving the therapeutic gain of RT by targeting both, malignant tumor growth and adverse late effects of RT with a focus on fibrotic disease. The consideration of the therapeutic window is particularly important in view of the increasing use of RT in combination with various molecularly targeted agents and immunotherapy to enhance the tumor radiation response, as such combinations may result in increased or novel toxicities, as well as the increasing number of cancer survivors.
Collapse
Affiliation(s)
- Simone de Leve
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45122 Essen, Germany.
| | - Florian Wirsdörfer
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45122 Essen, Germany.
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45122 Essen, Germany.
| |
Collapse
|
9
|
Spiegelberg L, van Hoof SJ, Biemans R, Lieuwes NG, Marcus D, Niemans R, Theys J, Yaromina A, Lambin P, Verhaegen F, Dubois LJ. Evofosfamide sensitizes esophageal carcinomas to radiation without increasing normal tissue toxicity. Radiother Oncol 2019; 141:247-255. [PMID: 31431383 PMCID: PMC6913516 DOI: 10.1016/j.radonc.2019.06.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Esophageal cancer incidence is increasing and is rarely curable. Hypoxic tumor areas cause resistance to conventional therapies, making them susceptible for treatment with hypoxia-activated prodrugs (HAPs). We investigated in vivo whether the HAP evofosfamide (TH-302) could increase the therapeutic ratio by sensitizing esophageal carcinomas to radiotherapy without increasing normal tissue toxicity. MATERIALS AND METHODS To assess therapeutic efficacy, growth of xenografted esophageal squamous cell (OE21) or adeno (OE19) carcinomas was monitored after treatment with TH-302 (50 mg/kg, QD5) and irradiation (sham or 10 Gy). Short- and long-term toxicity was assessed in a gut mucosa and lung fibrosis irradiation model, sensitive to acute and late radiation injury respectively. Mice were injected with TH-302 (50 mg/kg, QD5) and the abdominal area (sham, 8 or 10 Gy) or the upper part of the right lung (sham, 20 Gy) was irradiated. Damage to normal tissues was assessed 84 hours later by histology and blood plasma citrulline levels (gut) and for up to 1 year by non-invasive micro CT imaging (lung). RESULTS The combination treatment of TH-302 with radiotherapy resulted in significant tumor growth delay in OE19 (P = 0.02) and OE21 (P = 0.03) carcinomas, compared to radiotherapy only. Irradiation resulted in a dose-dependent decrease of crypt survival (P < 0.001), mucosal surface area (P < 0.01) and citrulline levels (P < 0.001) in both tumor and non-tumor bearing animals. On the long-term, irradiation increased CT density in the lung, indicating fibrosis, over time. TH-302 did not influence the radiation-induced short-term and long-term toxicity, confirmed by histological evaluation. CONCLUSION The combination of TH-302 and radiotherapy might be a promising approach to improve the therapeutic index for esophageal cancer patients.
Collapse
Affiliation(s)
- Linda Spiegelberg
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Stefan J van Hoof
- Department of Radiation Oncology (Maastro), GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Rianne Biemans
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Natasja G Lieuwes
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Damiënne Marcus
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Raymon Niemans
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Jan Theys
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Ala Yaromina
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Philippe Lambin
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands
| | - Frank Verhaegen
- Department of Radiation Oncology (Maastro), GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Ludwig J Dubois
- Department of Precision Medicine, The M-Lab, GROW - School for Oncology and Developmental Biology, Maastricht Comprehensive Cancer Centre, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
10
|
Melegh Z, Oltean S. Targeting Angiogenesis in Prostate Cancer. Int J Mol Sci 2019; 20:E2676. [PMID: 31151317 PMCID: PMC6600172 DOI: 10.3390/ijms20112676] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer is the most commonly diagnosed cancer among men in the Western world. Although localized disease can be effectively treated with established surgical and radiopharmaceutical treatments options, the prognosis of castration-resistant advanced prostate cancer is still disappointing. The objective of this study was to review the role of angiogenesis in prostate cancer and to investigate the effectiveness of anti-angiogenic therapies. A literature search of clinical trials testing the efficacy of anti-angiogenic therapy in prostate cancer was performed using Pubmed. Surrogate markers of angiogenic activity (microvessel density and vascular endothelial growth factor A (VEGF-A) expression) were found to be associated with tumor grade, metastasis, and prognosis. Six randomizedstudies were included in this review: two phase II trials on localized and hormone-sensitive disease (n = 60 and 99 patients) and four phase III trials on castration-resistant refractory disease (n = 873 to 1224 patients). Although the phase II trials showed improved relapse-free survival and stabilisation of the disease, the phase III trials found increased toxicity and no significant improvement in overall survival. Although angiogenesis appears to have an important role in prostate cancer, the results of anti-angiogenic therapy in castration-resistant refractory disease have hitherto been disappointing. There are various possible explanations for this lack of efficacy in castration-resistant refractory disease: redundancy of angiogenic pathways, molecular heterogeneity of the disease, loss of tumor suppressor protein phosphatase and tensin homolog (PTEN) expression as well as various VEGF-A splicing isoforms with pro- and anti-angiogenic activity. A better understanding of the molecular mechanisms of angiogenesis may help to develop effective anti-angiogenic therapy in prostate cancer.
Collapse
Affiliation(s)
- Zsombor Melegh
- Department of Cellular Pathology, Southmead Hospital, Bristol BS10 5NB, UK.
| | - Sebastian Oltean
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Exeter EX12LU, UK.
| |
Collapse
|
11
|
de Leve S, Wirsdörfer F, Jendrossek V. Targeting the Immunomodulatory CD73/Adenosine System to Improve the Therapeutic Gain of Radiotherapy. Front Immunol 2019; 10:698. [PMID: 31024543 PMCID: PMC6460721 DOI: 10.3389/fimmu.2019.00698] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/14/2019] [Indexed: 12/23/2022] Open
Abstract
Extracellular adenosine is a potent endogenous immunosuppressive mediator critical to the maintenance of homeostasis in various normal tissues including the lung. Adenosine is either released from stressed or injured cells or generated from extracellular adenine nucleotides by the concerted action of the ectoenzymes ectoapyrase (CD39) and 5′ ectonucleotidase (CD73) that catabolize ATP to adenosine. An acute CD73-dependent increase of adenosine in normal tissues mostly exerts tissue protective functions whereas chronically increased adenosine-levels in tissues exposed to DNA damaging chemotherapy or radiotherapy promote pathologic remodeling processes and fibrosis for example in the skin and the lung. Importantly, cancer cells also express CD73 and high CD73 expression in the tumor tissue has been linked to poor overall survival and recurrence free survival in patients suffering from breast and ovarian cancer. CD73 and adenosine support growth-promoting neovascularization, metastasis, and survival in cancer cells. In addition, adenosine can promote tumor intrinsic or therapy-induced immune escape by various mechanisms that dampen the immune system. Consequently, modulating CD73 or cancer-derived adenosine in the tumor microenvironment emerges as an attractive novel therapeutic strategy to limit tumor progression, improve antitumor immune responses, avoid therapy-induced immune deviation, and potentially limit normal tissue toxicity. However, the role of CD73/adenosine signaling in the tumor and normal tissue responses to radiotherapy and its use as therapeutic target to improve the outcome of radiotherapy approaches is less understood. The present review will highlight the dual role of CD73 and adenosine in tumor and tissue responses to radiotherapy with a special focus to the lung. It will also discuss the potential benefits and risks of pharmacologic modulation of the CD73/adenosine system to increase the therapeutic gain of radiotherapy or combined radioimmunotherapy in cancer treatment.
Collapse
Affiliation(s)
- Simone de Leve
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Florian Wirsdörfer
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
12
|
Stansborough RL, Bateman EH, Al-Dasooqi N, Bowen JM, Wignall A, Keefe DM, Yeoh AS, Logan RM, Yeoh EEK, Stringer AM, Gibson RJ. Vascular endothelial growth factor (VEGF), transforming growth factor beta (TGFβ), angiostatin, and endostatin are increased in radiotherapy-induced gastrointestinal toxicity. Int J Radiat Biol 2019; 94:645-655. [PMID: 29855218 DOI: 10.1080/09553002.2018.1483588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE Radiotherapy-induced gut toxicity (RIGT) is a debilitating effect of radiotherapy for cancer, often resulting in significant diarrhea and pain. Previous studies have highlighted roles of the intestinal microvasculature and matrix metalloproteinases (MMPs) in the development of RIGT. We hypothesized vascular mediators would be significantly altered in a dark agouti (DA) rat model of RIGT. Additionally, we aimed to assess the effect of MMP-2 and -9 inhibition on the response of tumor-associated microvascular endothelial cells (TAMECs) to radiation. METHODS DA rats were administered 2.5 Gy abdominal irradiation (3 times/week over 6 weeks). Vascular endothelial growth factor (VEGF), transforming growth factor beta (TGFβ), von Willebrand factor (VWF), angiostatin, and endostatin expression was assessed at 3, 6, and 15 weeks. Additionally, DA rat mammary adenocarcinoma tumor-associated microvascular endothelial cells (TAMECs) were used to assess the effects of radiation (12 Gy) and the MMP inhibitor SB-3CT on MMP, VEGF, and TGFβ expression, and cell viability. RESULTS VEGF mRNA expression was significantly increased in the colon at week 15 (p = .0012), and TGFβ mRNA expression was significantly increased in both the jejunum and colon at week 3 (p = .0280 and p = .0310, respectively). Endostatin immunostaining was significantly increased at week 3 (p = .0046), and angiostatin at 3 and 6 weeks (p = .0022 and p = .0135, respectively). MMP-2 and -9 mRNA and total protein levels were significantly increased following irradiation of TAMECs. Although this increase was significantly attenuated by SB-3CT, it did not significantly alter endothelial cell viability or VEGF and TGFβ mRNA expression. CONCLUSIONS Findings of this study support the involvement of VEGF, TGFβ, angiostatin, endostatin, and MMP-2 in the pathobiology of RIGT. However, the relationship between these mediators is complex and needs further investigation to improve understanding of their therapeutic potential in RIGT.
Collapse
Affiliation(s)
| | - Emma H Bateman
- a Adelaide Medical School , University of Adelaide , Adelaide , Australia
| | - Noor Al-Dasooqi
- a Adelaide Medical School , University of Adelaide , Adelaide , Australia
| | - Joanne M Bowen
- a Adelaide Medical School , University of Adelaide , Adelaide , Australia
| | - Anthony Wignall
- a Adelaide Medical School , University of Adelaide , Adelaide , Australia
| | - Dorothy M Keefe
- a Adelaide Medical School , University of Adelaide , Adelaide , Australia
| | - Ann S Yeoh
- a Adelaide Medical School , University of Adelaide , Adelaide , Australia
| | - Richard M Logan
- b Adelaide Dental School , University of Adelaide , Adelaide , Australia
| | - Eric E K Yeoh
- a Adelaide Medical School , University of Adelaide , Adelaide , Australia
| | - Andrea M Stringer
- c Division of Health Sciences , University of South Australia , Adelaide , Australia
| | - Rachel J Gibson
- a Adelaide Medical School , University of Adelaide , Adelaide , Australia.,c Division of Health Sciences , University of South Australia , Adelaide , Australia
| |
Collapse
|
13
|
Mangoni M, Sottili M, Gerini C, Desideri I, Bastida C, Pallotta S, Castiglione F, Bonomo P, Meattini I, Greto D, Cappelli S, Di Brina L, Loi M, Biti G, Livi L. A PPAR-gamma agonist protects from radiation-induced intestinal toxicity. United European Gastroenterol J 2017; 5:218-226. [PMID: 28344789 PMCID: PMC5349355 DOI: 10.1177/2050640616640443] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/24/2016] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Because of its anti-inflammatory, anti-fibrotic, anti-apoptotic and anti-neoplastic properties, the PPAR-γ agonist rosiglitazone is an interesting drug for investigating for use in the prevention and treatment of radiation-induced intestinal damage. We aimed to evaluate the radioprotective effect of rosiglitazone in a murine model of acute intestinal damage, assessing whether radioprotection is selective for normal tissues or also occurs in tumour cells. METHODS Mice were total-body irradiated (12 Gy), with or without rosiglitazone (5 mg/kg/day). After 24 and 72 hours, mice were sacrificed and the jejunum was collected. HT-29 human colon cancer cells were irradiated with a single dose of 2 (1000 cells), 4 (1500 cells) or 6 (2000 cells) Gy, with or without adding rosiglitazone (20 µM) 1 hour before irradiation. HT-29-xenografted CD1 mice were irradiated (16 Gy) with or without rosiglitazone; tumour volumes were measured for 33 days. RESULTS Rosiglitazone markedly reduced histological signs of altered bowel structures, that is, villi shortening, submucosal thickening, necrotic changes in crypts, oedema, apoptosis, and inflammatory infiltrate induced by irradiation. Rosiglitazone significantly decreased p-NF-kB p65 phosphorylation and TGFβ protein expression at 24 and 72 hours post-irradiation and significantly decreased gene expression of Collagen1, Mmp13, Tnfα and Bax at 24 hours and p53 at 72 hours post-irradiation. Rosiglitazone reduced HT-29 clonogenic survival, but only produced a slight reduction of xenograft tumour growth. CONCLUSION Rosiglitazone exerts a protective effect on normal tissues and reduces alterations in bowel structures and inflammation in a radiation-induced bowel toxicity model, without interfering with the radiation effect on HT-29 cancer cells. PPAR-γ agonists should be further investigated for their application in abdominal and pelvic irradiation.
Collapse
Affiliation(s)
- Monica Mangoni
- Radiotherapy Unit, Department of
Experimental and Clinical Biomedical Sciences, University of Florence, Firenze,
Italy
| | - Mariangela Sottili
- Radiotherapy Unit, Department of
Experimental and Clinical Biomedical Sciences, University of Florence, Firenze,
Italy
| | - Chiara Gerini
- Radiotherapy Unit, Department of
Experimental and Clinical Biomedical Sciences, University of Florence, Firenze,
Italy
| | - Isacco Desideri
- Radiotherapy Unit, Department of
Experimental and Clinical Biomedical Sciences, University of Florence, Firenze,
Italy
| | - Cinzia Bastida
- Radiotherapy Unit, Department of
Experimental and Clinical Biomedical Sciences, University of Florence, Firenze,
Italy
| | - Stefania Pallotta
- Medical Physic Unit, Department of
Experimental and Clinical Biomedical Sciences, University of Florence, Firenze,
Italy
| | - Francesca Castiglione
- Department of Clinical and Experimental
Medicine, University of Florence, Firenze, Italy
| | - Pierluigi Bonomo
- Radiotherapy Unit, Department of
Experimental and Clinical Biomedical Sciences, University of Florence, Firenze,
Italy
| | - Icro Meattini
- Radiotherapy Unit, Department of
Experimental and Clinical Biomedical Sciences, University of Florence, Firenze,
Italy
| | - Daniela Greto
- Radiotherapy Unit, Department of
Experimental and Clinical Biomedical Sciences, University of Florence, Firenze,
Italy
| | - Sabrina Cappelli
- Radiotherapy Unit, Department of
Experimental and Clinical Biomedical Sciences, University of Florence, Firenze,
Italy
| | - Lucia Di Brina
- Radiotherapy Unit, Department of
Experimental and Clinical Biomedical Sciences, University of Florence, Firenze,
Italy
| | - Mauro Loi
- Radiotherapy Unit, Department of
Experimental and Clinical Biomedical Sciences, University of Florence, Firenze,
Italy
| | - Giampaolo Biti
- Radiotherapy Unit, Department of
Experimental and Clinical Biomedical Sciences, University of Florence, Firenze,
Italy
| | - Lorenzo Livi
- Radiotherapy Unit, Department of
Experimental and Clinical Biomedical Sciences, University of Florence, Firenze,
Italy
| |
Collapse
|
14
|
Wirsdörfer F, Jendrossek V. The Role of Lymphocytes in Radiotherapy-Induced Adverse Late Effects in the Lung. Front Immunol 2016; 7:591. [PMID: 28018357 PMCID: PMC5155013 DOI: 10.3389/fimmu.2016.00591] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/29/2016] [Indexed: 12/31/2022] Open
Abstract
Radiation-induced pneumonitis and fibrosis are dose-limiting side effects of thoracic irradiation. Thoracic irradiation triggers acute and chronic environmental lung changes that are shaped by the damage response of resident cells, by the resulting reaction of the immune system, and by repair processes. Although considerable progress has been made during the last decade in defining involved effector cells and soluble mediators, the network of pathophysiological events and the cellular cross talk linking acute tissue damage to chronic inflammation and fibrosis still require further definition. Infiltration of cells from the innate and adaptive immune systems is a common response of normal tissues to ionizing radiation. Herein, lymphocytes represent a versatile and wide-ranged group of cells of the immune system that can react under specific conditions in various ways and participate in modulating the lung environment by adopting pro-inflammatory, anti-inflammatory, or even pro- or anti-fibrotic phenotypes. The present review provides an overview on published data about the role of lymphocytes in radiation-induced lung disease and related damage-associated pulmonary diseases with a focus on T lymphocytes and B lymphocytes. We also discuss the suspected dual role of specific lymphocyte subsets during the pneumonitic phase and fibrotic phase that is shaped by the environmental conditions as well as the interaction and the intercellular cross talk between cells from the innate and adaptive immune systems and (damaged) resident epithelial cells and stromal cells (e.g., endothelial cells, mesenchymal stem cells, and fibroblasts). Finally, we highlight potential therapeutic targets suited to counteract pathological lymphocyte responses to prevent or treat radiation-induced lung disease.
Collapse
Affiliation(s)
- Florian Wirsdörfer
- Institute of Cell Biology (Cancer Research), University Hospital Essen , Essen , Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen , Essen , Germany
| |
Collapse
|
15
|
Mangoni M, Sottili M, Gerini C, Desideri I, Bastida C, Pallotta S, Castiglione F, Bonomo P, Meattini I, Greto D, Olmetto E, Terziani F, Becherini C, Delli Paoli C, Trombetta L, Loi M, Biti G, Livi L. A PPAR gamma agonist protects against oral mucositis induced by irradiation in a murine model. Oral Oncol 2016; 64:52-58. [PMID: 28024724 DOI: 10.1016/j.oraloncology.2016.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/17/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Due to its anti-inflammatory, antifibrotic and antineoplastic properties, the PPAR gamma agonist rosiglitazone is of interest in prevention and therapy of radiation-induced toxicities. We aimed to evaluate the radioprotective effect of rosiglitazone in a mouse model of radiation-induced oral mucositis. MATERIAL AND METHODS Oral mucositis was obtained by irradiation of the oral region of C57BL/6J mice, pretreated or not with rosiglitazone. Mucositis was assessed by macroscopic scoring, histology and molecular analysis. Tumor xenograft was obtained by s.c. injection of Hep-2 cells in CD1 mice. Tumor volume was measured twice a week to evaluate effect of rosiglitazone alone and combined with radiotherapy. RESULTS Irradiated mice showed typical features of oral mucositis, such as oedema and reddening, reaching the peak of damage after 12-15days. Rosiglitazone markedly reduced visible signs of mucositis and significantly reduced the peak. Histological analysis showed the presence of an inflammatory cell infiltrate after irradiation; the association with rosiglitazone noticeably reduced infiltration. Rosiglitazone significantly inhibited radiation-induced tnfα, Il-6 and Il-1β gene expression. Rosiglitazone controlled the increase of TGF-β and NF-kB p65 subunit proteins induced by irradiation, and enhanced the expression of catalase. Irradiation and rosiglitazone significantly reduced tumor volume as compared to control. Rosiglitazone did not protect tumor from the therapeutic effect of radiation. CONCLUSION Rosiglitazone exerted a protective action on normal tissues in radiation-induced mucositis. Moreover, it showed antineoplastic properties on head-neck carcinoma xenograft model and selective protection of normal tissues. Thus, PPAR gamma agonists should be further investigated as radioprotective agents in head and neck cancer.
Collapse
Affiliation(s)
- Monica Mangoni
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| | - Mariangela Sottili
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy.
| | - Chiara Gerini
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| | - Isacco Desideri
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| | - Cinzia Bastida
- Medical Physic Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| | - Stefania Pallotta
- Medical Physic Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| | - Francesca Castiglione
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| | - Pierluigi Bonomo
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| | - Icro Meattini
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| | - Daniela Greto
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| | - Emanuela Olmetto
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| | - Francesca Terziani
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| | - Carlotta Becherini
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| | - Camilla Delli Paoli
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| | - Laura Trombetta
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| | - Mauro Loi
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| | - Giampaolo Biti
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| | - Lorenzo Livi
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy
| |
Collapse
|
16
|
Falcon BL, Chintharlapalli S, Uhlik MT, Pytowski B. Antagonist antibodies to vascular endothelial growth factor receptor 2 (VEGFR-2) as anti-angiogenic agents. Pharmacol Ther 2016; 164:204-25. [PMID: 27288725 DOI: 10.1016/j.pharmthera.2016.06.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interaction of numerous signaling pathways in endothelial and mesangial cells results in exquisite control of the process of physiological angiogenesis, with a central role played by vascular endothelial growth factor receptor 2 (VEGFR-2) and its cognate ligands. However, deregulated angiogenesis participates in numerous pathological processes. Excessive activation of VEGFR-2 has been found to mediate tissue-damaging vascular changes as well as the induction of blood vessel expansion to support the growth of solid tumors. Consequently, therapeutic intervention aimed at inhibiting the VEGFR-2 pathway has become a mainstay of treatment in cancer and retinal diseases. In this review, we introduce the concepts of physiological and pathological angiogenesis, the crucial role played by the VEGFR-2 pathway in these processes, and the various inhibitors of its activity that have entered the clinical practice. We primarily focus on the development of ramucirumab, the antagonist monoclonal antibody (mAb) that inhibits VEGFR-2 and has recently been approved for use in patients with gastric, colorectal, and lung cancers. We examine in-depth the pre-clinical studies using DC101, the mAb to mouse VEGFR-2, which provided a conceptual foundation for the role of VEGFR-2 in physiological and pathological angiogenesis. Finally, we discuss further clinical development of ramucirumab and the future of targeting the VEGF pathway for the treatment of cancer.
Collapse
|
17
|
Safety assessment of molecular targeted therapies in association with radiotherapy in metastatic renal cell carcinoma. Anticancer Drugs 2016; 27:427-32. [DOI: 10.1097/cad.0000000000000349] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Chargari C, Magne N, Guy JB, Rancoule C, Levy A, Goodman KA, Deutsch E. Optimize and refine therapeutic index in radiation therapy: Overview of a century. Cancer Treat Rev 2016; 45:58-67. [DOI: 10.1016/j.ctrv.2016.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 12/20/2022]
|
19
|
Tsukada Y, Nakamura F, Iwamoto M, Terahara A, Higashi T. Patterns of prescribing radiotherapy and bevacizumab in nationwide practice - analysis of 101 designated cancer care hospitals in Japan. JOURNAL OF RADIATION RESEARCH 2016; 57:157-163. [PMID: 26661853 PMCID: PMC4795949 DOI: 10.1093/jrr/rrv080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/30/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
Radiotherapy and bevacizumab are each effective in treating patients with advanced cancer, but their concurrent use may cause serious adverse events (SAEs). Whereas sequential administration can theoretically reduce the risk of SAEs while maintaining the anticancer effects, this hypothesis remains unconfirmed, leading to variations in practice. To elucidate current practices, the patterns of care received by patients in Japan with regard to these two therapies were assessed in a large database of a hospital-based cancer registry linked with insurance claims. This database contained information on 106 057 patients diagnosed with seven major cancers in 2011 and the care they received up to the end of 2012. In total, 335 patients from 101 hospitals in the database were treated with both radiotherapy and bevacizumab. Of these patients, 50.8% had lung cancer, and 51.3% had Stage IV cancer. Of the 335 patients, 75 (22.4%) received these therapies concurrently. In patients treated sequentially, the time from the last dose of bevacizumab to the start of radiotherapy was most frequently 4-5 weeks (12.4%), whereas the time from the end of radiotherapy to the start of bevacizumab was most frequently 1-2 weeks (10.6%). The cumulative proportions of patients in these two groups receiving sequential therapies within 3 weeks were 19.0% and 26.1%, respectively. Many practices appeared to avoid the concurrent use of bevacizumab and radiation, but some provided concurrent therapy. Additional data are required to determine whether the avoidance of concurrent use should become a standard of care.
Collapse
Affiliation(s)
- Yoichiro Tsukada
- Division of Health Services Research, Center for Cancer Control and Information Services, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - Fumiaki Nakamura
- Department of Public Health/Health Policy, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Momoko Iwamoto
- Division of Health Services Research, Center for Cancer Control and Information Services, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Atsuro Terahara
- Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - Takahiro Higashi
- Division of Health Services Research, Center for Cancer Control and Information Services, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
20
|
Radiobiology as a basic and clinical medical science: what the physicists have forgotten. TUMORI JOURNAL 2016; 102:e8. [PMID: 26350181 DOI: 10.5301/tj.5000380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2015] [Indexed: 12/12/2022]
|
21
|
Mangoni M, Sottili M, Gerini C, Bonomo P, Bottoncetti A, Castiglione F, Franzese C, Cassani S, Greto D, Masoni T, Meattini I, Pallotta S, Passeri A, Pupi A, Vanzi E, Biti G, Livi L. A PPAR-gamma agonist attenuates pulmonary injury induced by irradiation in a murine model. Lung Cancer 2015; 90:405-9. [PMID: 26791799 DOI: 10.1016/j.lungcan.2015.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 10/29/2015] [Accepted: 11/04/2015] [Indexed: 11/17/2022]
Abstract
PURPOSE/OBJECTIVE(S) Due to its anti-inflammatory, antifibrotic and antineoplastic properties, the PPAR-γ agonist rosiglitazone is of interest in the prevention and therapy of radiation-induced pulmonary injury. We evaluated the radioprotective effects of rosiglitazone in a murine model of pulmonary damage to determine whether radioprotection was selective for normal and tumor tissues. METHODS Lungs in C57BL/6J mice were irradiated (19 Gy) with or without rosiglitazone (RGZ, 5mg/kg/day for 16 weeks, oral gavage). Computed tomography (CT) was performed and Hounsfield Units (HU) were determined during the observation period. Histological analysis and evaluation of fibrosis/inflammatory markers by western blot were performed at 16 weeks. A549 tumor-bearing CD1 mice were irradiated (16 Gy) with or without RGZ, and tumor volumes were measured at 35 days. RESULTS Rosiglitazone reduced radiologic and histologic signs of fibrosis, inflammatory infiltrate, alterations to alveolar structures, and HU lung density that was increased due to irradiation. RGZ treatment also significantly decreased Col1, NF-kB and TGF-β expression and increased Bcl-2 protein expression compared to the irradiation group and reduced A549 clonogenic survival and xenograft tumor growth. CONCLUSIONS Rosiglitazone exerted a protective effect on normal tissues in radiation-induced pulmonary injury, while irradiated lung cancer cells were not protected in vivo and in vitro. Thus, rosiglitazone could be proposed as a radioprotective agent in the treatment of lung cancer.
Collapse
Affiliation(s)
- Monica Mangoni
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| | - Mariangela Sottili
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Chiara Gerini
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Pierluigi Bonomo
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Anna Bottoncetti
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Francesca Castiglione
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Ciro Franzese
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Sara Cassani
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Daniela Greto
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Tatiana Masoni
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Icro Meattini
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Stefania Pallotta
- Medical Physic Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Alessandro Passeri
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Alberto Pupi
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Eleonora Vanzi
- Medical Physic Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Giampaolo Biti
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Lorenzo Livi
- Radiotherapy Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| |
Collapse
|
22
|
Pollom EL, Deng L, Pai RK, Brown JM, Giaccia A, Loo BW, Shultz DB, Le QT, Koong AC, Chang DT. Gastrointestinal Toxicities With Combined Antiangiogenic and Stereotactic Body Radiation Therapy. Int J Radiat Oncol Biol Phys 2015; 92:568-76. [PMID: 26068491 DOI: 10.1016/j.ijrobp.2015.02.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/03/2015] [Accepted: 02/09/2015] [Indexed: 12/14/2022]
Abstract
Combining the latest targeted biologic agents with the most advanced radiation technologies has been an exciting development in the treatment of cancer patients. Stereotactic body radiation therapy (SBRT) is an ablative radiation approach that has become established for the treatment of a variety of malignancies, and it has been increasingly used in combination with biologic agents, including those targeting angiogenesis-specific pathways. Multiple reports have emerged describing unanticipated toxicities arising from the combination of SBRT and angiogenesis-targeting agents, particularly of late luminal gastrointestinal toxicities. In this review, we summarize the literature describing these toxicities, explore the biological mechanism of action of toxicity with the combined use of antiangiogenic therapies, and discuss areas of future research, so that this combination of treatment modalities can continue to be used in broader clinical contexts.
Collapse
Affiliation(s)
- Erqi L Pollom
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Lei Deng
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Reetesh K Pai
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - J Martin Brown
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Amato Giaccia
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - David B Shultz
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Quynh Thu Le
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Albert C Koong
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Daniel T Chang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
23
|
de Brot S, Ntekim A, Cardenas R, James V, Allegrucci C, Heery DM, Bates DO, Ødum N, Persson JL, Mongan NP. Regulation of vascular endothelial growth factor in prostate cancer. Endocr Relat Cancer 2015; 22:R107-23. [PMID: 25870249 DOI: 10.1530/erc-15-0123] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/01/2015] [Indexed: 12/14/2022]
Abstract
Prostate cancer (PCa) is the most common malignancy affecting men in the western world. Although radical prostatectomy and radiation therapy can successfully treat PCa in the majority of patients, up to ~30% will experience local recurrence or metastatic disease. Prostate carcinogenesis and progression is typically an androgen-dependent process. For this reason, therapies for recurrent PCa target androgen biosynthesis and androgen receptor function. Such androgen deprivation therapies (ADT) are effective initially, but the duration of response is typically ≤24 months. Although ADT and taxane-based chemotherapy have delivered survival benefits, metastatic PCa remains incurable. Therefore, it is essential to establish the cellular and molecular mechanisms that enable localized PCas to invade and disseminate. It has long been accepted that metastases require angiogenesis. In the present review, we examine the essential role for angiogenesis in PCa metastases, and we focus in particular on the current understanding of the regulation of vascular endothelial growth factor (VEGF) in localized and metastatic PCa. We highlight recent advances in understanding the role of VEGF in regulating the interaction of cancer cells with tumor-associated immune cells during the metastatic process of PCa. We summarize the established mechanisms of transcriptional and post-transcriptional regulation of VEGF in PCa cells and outline the molecular insights obtained from preclinical animal models of PCa. Finally, we summarize the current state of anti-angiogenesis therapies for PCa and consider how existing therapies impact VEGF signaling.
Collapse
Affiliation(s)
- Simone de Brot
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - Atara Ntekim
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - Ryan Cardenas
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - Victoria James
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - Cinzia Allegrucci
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - David M Heery
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - David O Bates
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - Niels Ødum
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - Jenny L Persson
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| | - Nigel P Mongan
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Nottingham LE12 5RD, UKDepartment of PharmacologySchool of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UKCancer BiologyDivision of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UKDepartment of International HealthImmunology and Microbiology, University of Copenhagen, Copenhagen, DenmarkClinical Research CenterLund University, Malmö, SwedenDepartment of PharmacologyWeill Cornell Medical College, New York, New York 10065, USA
| |
Collapse
|
24
|
Ree AH, Redalen KR. Personalized radiotherapy: concepts, biomarkers and trial design. Br J Radiol 2015; 88:20150009. [PMID: 25989697 DOI: 10.1259/bjr.20150009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the past decade, and pointing onwards to the immediate future, clinical radiotherapy has undergone considerable developments, essentially including technological advances to sculpt radiation delivery, the demonstration of the benefit of adding concomitant cytotoxic agents to radiotherapy for a range of tumour types and, intriguingly, the increasing integration of targeted therapeutics for biological optimization of radiation effects. Recent molecular and imaging insights into radiobiology will provide a unique opportunity for rational patient treatment, enabling the parallel design of next-generation trials that formally examine the therapeutic outcome of adding targeted drugs to radiation, together with the critically important assessment of radiation volume and dose-limiting treatment toxicities. In considering the use of systemic agents with presumed radiosensitizing activity, this may also include the identification of molecular, metabolic and imaging markers of treatment response and tolerability, and will need particular attention on patient eligibility. In addition to providing an overview of clinical biomarker studies relevant for personalized radiotherapy, this communication will highlight principles in addressing clinical evaluation of combined-modality-targeted therapeutics and radiation. The increasing number of translational studies that bridge large-scale omics sciences with quality-assured phenomics end points-given the imperative development of open-source data repositories to allow investigators the access to the complex data sets-will enable radiation oncology to continue to position itself with the highest level of evidence within existing clinical practice.
Collapse
Affiliation(s)
- A H Ree
- 1 Department of Oncology, Akershus University Hospital, Lørenskog, Norway.,2 Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - K R Redalen
- 1 Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
25
|
Safety of spinal radiotherapy in metastatic cancer patients receiving bevacizumab therapy: a bi-institutional case series. Anticancer Drugs 2015; 26:443-7. [PMID: 25569704 DOI: 10.1097/cad.0000000000000204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We retrospectively assessed the outcome of patients receiving emergency spinal radiation therapy (RT) concurrently with bevacizumab. Clinical records of 18 consecutive patients receiving emergency spinal RT for symptomatic vertebral metastases during the course of bevacizumab-based therapy were examined. Patients were receiving biweekly bevacizumab combined with paclitaxel (n=17) or with docetaxel/carboplatin (n=1) or as a single agent (n=1) for advanced metastatic carcinoma. RT was delivered at doses of 30 Gy in 10 fractions (n=8), 20 Gy in five fractions (n=9) or 18 Gy in nine fractions (n=1). In 10 patients (56%), irradiation field encompassed the thoracic vertebrae. The median time interval between the bevacizumab infusion and the RT course was 1.5 days (0-8 days). The median follow-up was 8.3 months (2 days-42 months). A clinical benefit of RT was reported in 13 patients (72%), including four patients with complete pain relief. Two of the three patients with neurological impairment at the time of RT experienced a partial improvement in their symptoms. No pain recrudescence was reported within the irradiated field after RT completion. All toxicities were mild to moderate, with no acute toxicity reported in 13 patients (72%). No RT disruption was necessary because of acute toxicity. No delayed toxicity was reported within RT fields among 11 patients with at least 6 months of follow-up. Spinal RT during the course of bevacizumab-based therapy was not associated with the occurrence of unexpected adverse effects. This suggests that emergency RT should not be contraindicated in these patients, provided that doses and treatment volumes are defined carefully.
Collapse
|
26
|
Nyflot MJ, Kruser TJ, Traynor AM, Khuntia D, Yang DT, Hartig GK, McCulloch TM, Wiederholt PA, Gentry LR, Hoang T, Jeraj R, Harari PM. Phase 1 trial of bevacizumab with concurrent chemoradiation therapy for squamous cell carcinoma of the head and neck with exploratory functional imaging of tumor hypoxia, proliferation, and perfusion. Int J Radiat Oncol Biol Phys 2015; 91:942-51. [PMID: 25659884 DOI: 10.1016/j.ijrobp.2014.11.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 11/12/2014] [Accepted: 11/18/2014] [Indexed: 12/19/2022]
Abstract
PURPOSE A phase 1 trial was completed to examine the safety and feasibility of combining bevacizumab with radiation and cisplatin in patients with locoregionally advanced squamous cell carcinoma of the head and neck (HNSCC) treated with curative intent. Additionally, we assessed the capacity of bevacizumab to induce an early tumor response as measured by a series of biological imaging studies. METHODS AND MATERIALS All patients received a single induction dose of bevacizumab (15 mg/kg) delivered 3 weeks (±3 days) before the initiation of chemoradiation therapy. After the initial dose of bevacizumab, comprehensive head and neck chemoradiation therapy was delivered with curative intent to 70 Gy in 33 fractions with concurrent weekly cisplatin at 30 mg/m(2) and bevacizumab every 3 weeks (weeks 1, 4, 7) with dose escalation from 5 to 10 to 15 mg/kg. All patients underwent experimental imaging with [(18)F]fluorothymidine positron emission tomography (FLT-PET) (proliferation), [(61)Cu]Cu-diacetyl-bis(N4-methylthiosemicarbazone) PET (Cu-ATSM-PET) (hypoxia), and dynamic contrast-enhanced computed tomography (DCE-CT) (perfusion) at 3 time points: before bevacizumab monotherapy, after bevacizumab monotherapy, and during the combined therapy course. RESULTS Ten patients were enrolled. All had stage IV HNSCC, all achieved a complete response to treatment, and 9 of 10 remain alive, with a mean survival time of 61.3 months. All patients experienced grade 3 toxicity, but no dose-limiting toxicities or significant bleeding episodes were observed. Significant reductions were noted in tumor proliferation (FLT-PET), tumor hypoxia (Cu-ATSM-PET), and DCE-CT contrast enhancement after bevacizumab monotherapy, with further decreases in FLT-PET and Cu-ATSM-PET during the combined therapy course. CONCLUSIONS The incorporation of bevacizumab into comprehensive chemoradiation therapy regimens for patients with HNSCC appears safe and feasible. Experimental imaging demonstrates measureable changes in tumor proliferation, hypoxia, and perfusion after bevacizumab monotherapy and during chemoradiation therapy. These findings suggest opportunities to preview the clinical outcomes for individual patients and thereby design personalized therapy approaches in future trials.
Collapse
Affiliation(s)
- Matthew J Nyflot
- Department of Radiation Oncology, University of Washington, Seattle, Washington.
| | - Tim J Kruser
- Department of Radiation Oncology, Cadence Cancer Center at Delnor Hospital, Geneva, Illinois
| | - Anne M Traynor
- Department of Medicine, University of Wisconsin Carbone Cancer Center and School of Medicine and Public Health, Madison, Wisconsin
| | | | - David T Yang
- Departments of Pathology and Laboratory Medicine, University of Wisconsin Carbone Cancer Center and School of Medicine and Public Health, Madison, Wisconsin
| | - Gregory K Hartig
- Department of Surgery-Otolaryngology, H&N Surgery Division, University of Wisconsin Carbone Cancer Center and School of Medicine and Public Health, Madison, Wisconsin
| | - Timothy M McCulloch
- Department of Surgery-Otolaryngology, H&N Surgery Division, University of Wisconsin Carbone Cancer Center and School of Medicine and Public Health, Madison, Wisconsin
| | - Peggy A Wiederholt
- Department of Human Oncology, University of Wisconsin Carbone Cancer Center and School of Medicine and Public Health, Madison, Wisconsin
| | - Lindell R Gentry
- Department of Radiology, University of Wisconsin Carbone Cancer Center and School of Medicine and Public Health, Madison, Wisconsin
| | - Tien Hoang
- Department of Medicine, University of Wisconsin Carbone Cancer Center and School of Medicine and Public Health, Madison, Wisconsin
| | - Robert Jeraj
- Department of Human Oncology, University of Wisconsin Carbone Cancer Center and School of Medicine and Public Health, Madison, Wisconsin; Department of Radiology, University of Wisconsin Carbone Cancer Center and School of Medicine and Public Health, Madison, Wisconsin; Department of Medical Physics, University of Wisconsin Carbone Cancer Center and School of Medicine and Public Health, Madison, Wisconsin
| | - Paul M Harari
- Department of Human Oncology, University of Wisconsin Carbone Cancer Center and School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
27
|
Focal or combined modality for the management of brain metastasis: did high tech radiotherapy superseded drug-radiotherapy combination? Ann Oncol 2014; 25:2293-2294. [DOI: 10.1093/annonc/mdu477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
28
|
Miki Y, Maeda K, Hosono M, Nagahara H, Hirakawa K, Shimatani Y, Tsutsumi S, Miki Y. Neoadjuvant capecitabine, bevacizumab and radiotherapy for locally advanced rectal cancer: results of a single-institute Phase I study. JOURNAL OF RADIATION RESEARCH 2014; 55:1171-1177. [PMID: 25129557 PMCID: PMC4229928 DOI: 10.1093/jrr/rru063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 06/11/2014] [Accepted: 06/17/2014] [Indexed: 06/03/2023]
Abstract
The aim of this Phase I clinical trial was to assess the feasibility and safety of capecitabine-based preoperative chemoradiotherapy (CRT) combined with bevacizumab and to determine the optimal capecitabine dose for Japanese patients with locally advanced rectal cancer. Patients with cT3/T4 rectal cancer were eligible. Bevacizumab was administered at 5 mg/kg intravenously on Days 1, 15 and 29. Capecitabine was administered on weekdays concurrently with pelvic radiotherapy at a daily dose of 1.8 Gy, totally to 50.4 Gy. Capecitabine was initiated at 825 mg/m(2) twice daily at Dose Level 1, with a planned escalation to 900 mg/m(2) twice daily at Dose Level 2. Within 6.1-10.3 (median, 9.4) weeks after the completion of the CRT, surgery was performed. Three patients were enrolled at each dose level. Regarding the CRT-related acute toxicities, all of the adverse events were limited to Grade 1. There was no Grade 2 or greater toxicity. No patient needed attenuation or interruption of bevacizumab, capecitabine or radiation. All of the patients received the scheduled dose of CRT. All of the patients underwent R0 resection. Two (33.3%) of the six patients had a pathological complete response, and five (83.3%) patients experienced downstaging. In total, three patients (50%) developed postoperative complications. One patient developed an intrapelvic abscess and healed with incisional drainage. The other two patients healed following conservative treatment. This regimen was safely performed as preoperative CRT for Japanese patients with locally advanced rectal cancer. The recommended capecitabine dose is 900 mg/m(2) twice daily.
Collapse
Affiliation(s)
- Yoshitaka Miki
- Department of Radiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Kiyoshi Maeda
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Masako Hosono
- Department of Radiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Hisashi Nagahara
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Kosei Hirakawa
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Yasuhiko Shimatani
- Department of Radiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Shinichi Tsutsumi
- Department of Radiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Yukio Miki
- Department of Radiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| |
Collapse
|
29
|
Vascular endothelial growth factor blockade: A potential new therapy in the management of cerebral arteriovenous malformations. JOURNAL OF MEDICAL HYPOTHESES AND IDEAS 2014. [DOI: 10.1016/j.jmhi.2013.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Nieder C, Andratschke NH, Grosu AL. Normal tissue studies in radiation oncology: A systematic review of highly cited articles and citation patterns. Oncol Lett 2014; 8:972-976. [PMID: 25120644 PMCID: PMC4114634 DOI: 10.3892/ol.2014.2252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 05/15/2014] [Indexed: 11/25/2022] Open
Abstract
Radiation therapy is one of the cornerstones of modern multidisciplinary cancer treatment. Normal tissue tolerance is critical as radiation-induced side effects may compromise organ function and quality of life. The importance of normal tissue research is reflected by the large number of scientific articles, which have been published between 2006 and 2010. The present study identified important areas of research as well as seminal publications. The article citation rate is among the potential indicators of scientific impact. Highly cited articles, arbitrarily defined as those with ≥15 citations, were identified via a systematic search of the citation database, Scopus. Up to 608 articles per year were published between 2006 and 2010, however, <10% of publications in each year accumulated ≥15 citations. This figure is notably low, when compared with other oncology studies. A large variety of preclinical and clinical topics, including toxicity prediction, the dose-volume relationship and radioprotectors, accumulated ≥15 citations. However, clinical prevention or mitigation studies were underrepresented. The following conclusion may be drawn from the present study; despite the improved technology that has resulted in superior dose distribution, clinical prevention or mitigation studies are critical and must receive higher priority, funding and attention.
Collapse
Affiliation(s)
- Carsten Nieder
- Department of Oncology and Palliative Medicine, Nordland Hospital, Bodø 8092, Norway ; Institute of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø 9038, Norway
| | | | - Anca L Grosu
- Department of Radiation Oncology, University Hospital Freiburg, Freiburg D-79106, Germany
| |
Collapse
|
31
|
Zhuang H, Zhao X, Zhao L, Chang JY, Wang P. Progress of clinical research on targeted therapy combined with thoracic radiotherapy for non-small-cell lung cancer. Drug Des Devel Ther 2014; 8:667-75. [PMID: 24936128 PMCID: PMC4047835 DOI: 10.2147/dddt.s61977] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The combination of radiotherapy and targeted therapy is an important approach in the application of targeted therapy in clinical practice, and represents an important opportunity for the development of radiotherapy itself. Numerous agents, including epidermal growth factor receptor, monoclonal antibodies, tyrosine kinase inhibitors, and antiangiogenic therapies, have been used for targeted therapy. A number of studies of radiotherapy combined with targeted therapy in non-small-cell lung carcinoma have been completed or are ongoing. This paper briefly summarizes the drugs involved and the important related clinical research, and indicates that considerable progress has been made with the joint efforts of the two disciplines. Many issues, including drug selection, identification of populations most likely to benefit, timing of administration of medication, and side effects of treatment require further investigation. However, further fundamental research and accumulation of clinical data will provide a more comprehensive understanding of these therapies. Targeted therapy in combination with radiotherapy has a bright future.
Collapse
Affiliation(s)
- Hongqing Zhuang
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, and Tianjin Lung Cancer Center, Tianjin, People’s Republic of China
| | - Xianzhi Zhao
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, and Tianjin Lung Cancer Center, Tianjin, People’s Republic of China
| | - Lujun Zhao
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, and Tianjin Lung Cancer Center, Tianjin, People’s Republic of China
| | - Joe Y Chang
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ping Wang
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, and Tianjin Lung Cancer Center, Tianjin, People’s Republic of China
| |
Collapse
|
32
|
Cyran CC, Paprottka PM, Eisenblätter M, Clevert DA, Rist C, Nikolaou K, Lauber K, Wenz F, Hausmann D, Reiser MF, Belka C, Niyazi M. Visualization, imaging and new preclinical diagnostics in radiation oncology. Radiat Oncol 2014; 9:3. [PMID: 24387195 PMCID: PMC3903445 DOI: 10.1186/1748-717x-9-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 12/20/2013] [Indexed: 12/21/2022] Open
Abstract
Innovative strategies in cancer radiotherapy are stimulated by the growing knowledge on cellular and molecular tumor biology, tumor pathophysiology, and tumor microenvironment. In terms of tumor diagnostics and therapy monitoring, the reliable delineation of tumor boundaries and the assessment of tumor heterogeneity are increasingly complemented by the non-invasive characterization of functional and molecular processes, moving preclinical and clinical imaging from solely assessing tumor morphology towards the visualization of physiological and pathophysiological processes. Functional and molecular imaging techniques allow for the non-invasive characterization of tissues in vivo, using different modalities, including computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, positron emission tomography (PET) and optical imaging (OI). With novel therapeutic concepts combining optimized radiotherapy with molecularly targeted agents focusing on tumor cell proliferation, angiogenesis, and cell death, the non-invasive assessment of tumor microcirculation and tissue water diffusion, together with strategies for imaging the mechanisms of cellular injury and repair is of particular interest. Characterizing the tumor microenvironment prior to and in response to irradiation will help to optimize the outcome of radiotherapy. These novel concepts of personalized multi-modal cancer therapy require careful pre-treatment stratification as well as a timely and efficient therapy monitoring to maximize patient benefit on an individual basis. Functional and molecular imaging techniques are key in this regard to open novel opportunities for exploring and understanding the underlying mechanisms with the perspective to optimize therapeutic concepts and translate them into a personalized form of radiotherapy in the near future.
Collapse
Affiliation(s)
- Clemens C Cyran
- Department of Clinical Radiology, Laboratory of Experimental Radiology, University of Munich Hospitals, Campus Großhadern, Marchioninistraße 15, 81377 Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|