1
|
Kimura N, Muroya K, Yonamine M, Takekoshi K, Sato T, Hirose R, Sasaki T, Tamai K, Mabe H, Kawashima J, Kijima H, Naruke Y, Katabami T. Clinicopathological and genomic analysis of pediatric pheochromocytoma and sympathetic paraganglioma. Endocr J 2025; 72:399-412. [PMID: 39894509 PMCID: PMC11997271 DOI: 10.1507/endocrj.ej24-0584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/17/2024] [Indexed: 02/04/2025] Open
Abstract
Pediatric patients with pheochromocytoma (PCC)/paraganglioma (PGL) (PPGL) are rare, and clinicopathological investigations, especially the relationship between gene analysis and histological features, are insufficient. We comprehensively examined the clinical data, germline/somatic variants (mutations), and pathological characteristics of operated tumors using immunohistochemical expression and histological grading by Grading of Adrenal PCC and PGL score. This study included 28 patients (15 males and 13 females) aged <19 years. The age at the diagnosis was 12.8 ± 4.5 years. The included patient often had multiple PPGLs, with 39 tumors, including 21 PCCs and 18 PGLs, with average tumor sizes of 45.0 ± 22.8 and 42.6 ± 23.6 mm, respectively. Genomic types examined by gene mutations and immunohistochemistry of CA9 for VHL, SDHB for SDHx, and MAX for MAX, classified them into 14 VHL (50%), ten SDHx (35.7%), one MAX (3.6%), and three unknown (10.7%) types. Tumor metastasis was limited to two SDHB-related PPGLs, but not to VHL-related PPGLs. In both patients, the metastatic sites were the bones. The average GAPP score of the PPGLs was 2.9 ± 1.5 in VHL and 5.3 ± 1.7 in SDHB, and histological grades were well-differentiated in VHL and moderately differentiated in SDHB. SSTR2 expression was positive in 90% of SDHB-related PPGLs, but negative in 75% and weakly or focally positive in 25% of VHL-related PPGLs. Most pediatric PPGLs (90%) demonstrated mutations in VHL, SDHB, and MAX, with histological features depending on the mutation type. Combined genetic and immunohistochemical examination is desirable for accurate genomic diagnosis, and clinicopathological study.
Collapse
Affiliation(s)
- Noriko Kimura
- Department of Clinical Research, and Department of Diagnostic Pathology, National Hospital Organization Hakodate Medical Center, Hakodate 041-8512, Japan
| | - Koji Muroya
- Department of Endocrinology and Metabolism, Kanagawa Children’s Medical Center, Yokohama 232-8555, Japan
| | - Masato Yonamine
- Laboratory of Laboratory/Sports Medicine, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Kazuhiro Takekoshi
- Laboratory of Laboratory/Sports Medicine, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Takeshi Sato
- Department of Pediatrics, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Rei Hirose
- Endocrinology and Diabetes Center, Yokohama Rosai Hospital, Yokohama 222-0036, Japan
| | - Takato Sasaki
- Department of Pediatric Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Kana Tamai
- Department of Pediatrics, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hiroyo Mabe
- Department of Pediatrics, Kumamoto University, Kumamoto 860-8556 Japan
| | - Junji Kawashima
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hiromichi Kijima
- Department of Diabetology and Endocrinology, Tonan Hospital, Sapporo 060-0004, Japan
| | - Yuki Naruke
- Department of Pathology, Chiba Children’s Hospital, Chiba 266-0007, Japan
| | - Takuyuki Katabami
- Department of Metabolism and Endocrinology, St. Marianna University Yokohama Seibu Hospital, Yokohama 241-0811, Japan
| |
Collapse
|
2
|
Li J, Yu K, Chen D, Luo G, Jia J. Predictive value of serum HIF-1α/HIF-2α and YKL-40 levels for vascular invasion and prognosis of follicular thyroid cancer. Clinics (Sao Paulo) 2024; 79:100486. [PMID: 39277981 PMCID: PMC11419804 DOI: 10.1016/j.clinsp.2024.100486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/01/2024] [Accepted: 08/08/2024] [Indexed: 09/17/2024] Open
Abstract
OBJECTIVE This study investigated the significance of serum hypoxia-inducible factor (HIF)-1α/HIF-2 α and Chitinase 3-Like protein 1 (YKL-40) levels in the assessment of vascular invasion and prognostic outcomes in patients with Follicular Thyroid Cancer (FTC). METHODS This prospective study comprised 83 patients diagnosed with FTC, who were subsequently categorized into a recurrence group (17 cases) and a non-recurrence group (66 cases). The pathological features of tumor vascular invasion were classified. Serum HIF-1α/HIF-2α and YKL-40 were quantified using a dual antibody sandwich enzyme-linked immunosorbent assay, while serum Thyroglobulin (Tg) levels were measured using an electrochemiluminescence immunoassay method. The Spearman test was employed to assess the correlation between serum factors, and the predictive value of diagnostic factors was determined using receiver operating characteristic curve analysis. A Cox proportional hazards regression model was utilized to analyze independent factors influencing prognosis. RESULTS Serum HIF-1α, HIF-2α, YKL-40, and Tg were elevated in patients exhibiting higher vascular invasion. A significant positive correlation was observed between Tg and HIF-1α, as well as between HIF-1α and YKL-40. The cut-off values for HIF-1α and YKL-40 in predicting recurrence were 48.25 pg/mL and 60.15 ng/mL, respectively. Patients exceeding these cut-off values experienced a lower recurrence-free survival rate. Furthermore, serum levels surpassing the cut-off value, in conjunction with vascular invasion (v2+), were identified as independent risk factors for recurrence in patients with FTC. CONCLUSION Serum HIF-1α/HIF-2α and YKL-40 levels correlate with vascular invasion in FTC, and the combination of HIF-1α and YKL-40 predicts recurrence in patients with FTC.
Collapse
Affiliation(s)
- Jiulong Li
- Department of Clinical Laboratory, Gaoping District People's Hospital of Nanchong, Nanchong City, Sichuan Province, China
| | - Kuai Yu
- Department of Clinical Laboratory, The People's Hospital of Wusheng, Guang'an City, Sichuan Province, China
| | - Dingchuan Chen
- Department of Clinical Laboratory, Sichuan Gem Flower Hospital, Chengdu City, Sichuan Province, China
| | - Guangcheng Luo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong City, Sichuan Province, China
| | - Jiedeng Jia
- Department of Vascular Surgery, Gaoping District People's Hospital of Nanchong, Nanchong City, Sichuan Province, China.
| |
Collapse
|
3
|
Iguchi DYV, Martins Filho SN, Soares IC, Siqueira SAC, Alves VAF, Assato AK, Yang JH, Almeida MQ, Villares Fragoso MCB, Fagundes GFC, Mendonca BB, Lourenço Junior DM, Hoff AO, Castroneves LA, Ferraz-de-Souza B, Giannella MLCC, Pereira MAA. Identification of Predictors of Metastatic Potential in Paragangliomas to Develop a Prognostic Score (PSPGL). J Endocr Soc 2024; 8:bvae093. [PMID: 38799767 PMCID: PMC11112433 DOI: 10.1210/jendso/bvae093] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Indexed: 05/29/2024] Open
Abstract
Context Paragangliomas (PGLs) are rare tumors in adrenal and extra-adrenal locations. Metastasis are found in approximately 5% to 35% of PGLs, and there are no reliable predictors of metastatic disease. Objective This work aimed to develop a prognostic score of metastatic potential in PGLs. Methods A retrospective analysis was conducted of clinical data from a cohort with PGLs and tumor histological assessment. Patients were divided into metastatic PGL (presence of metastasis) and nonmetastatic PGL (absence of metastasis ≥96 months of follow-up) groups. Univariate and multivariable analysis were performed to identify predictors of metastatic potential. A prognostic score was developed based on coefficients of multivariable analysis. Kaplan-Meier curves were generated to estimate disease-specific survival (DSS). Results Out of 263 patients, 35 patients had metastatic PGL and 110 patients had nonmetastatic PGL. In multivariable analysis, 4 features were independently related to metastatic disease and composed the Prognostic Score of Paragangliomas (PSPGL): presence of central or confluent necrosis (33 points), more than 3 mitosis/10 high-power field (HPF) (28 points), extension into adipose tissue (20 points), and extra-adrenal location (19 points). A PSPGL of 24 or greater showed similar sensitivity with higher specificity than the Pheochromocytoma of the Adrenal Gland Scaled Score (PASS) and Grading System for Adrenal Pheochromocytoma and Paraganglioma (GAPP). PSPGL less than or equal to 20 was associated with a risk of metastasis of approximately 10%, whereas a PSPGL of 40 or greater was associated with approximately 80%. The presence of metastasis and Ki-67 of 3% or greater were related to lower DSS. Conclusion The PSPGL, composed of 4 easy-to-assess parameters, demonstrated good performance in predicting metastatic potential and good ability in estimating metastasis risk.
Collapse
Affiliation(s)
- Daniela Yone Veiga Iguchi
- Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil
| | | | - Iberê Cauduro Soares
- Divisão de Anatomia Patológica, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Sheila Aparecida Coelho Siqueira
- Divisão de Anatomia Patológica, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil
| | - Venâncio Avancini Ferreira Alves
- Laboratório de Investigaçãoc Médica LIM/14, Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Aline Kawassaki Assato
- Laboratório de Investigaçãoc Médica LIM/14, Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Ji Hoon Yang
- Clínica de Endocrinologia, Hospital do Servidor Público Municipal de São Paulo, São Paulo 01532-000, Brazil
| | - Madson Q Almeida
- Laboratório de Endocrinologia Molecular e Celular LIM/25, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Maria Candida Barisson Villares Fragoso
- Laboratório de Hormônios e Genética Molecular LIM/42, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brazil
- Divisão de Endocrinologia e Metabologia, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Gustavo Freitas Cardoso Fagundes
- Laboratório de Endocrinologia Molecular e Celular LIM/25, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Berenice B Mendonca
- Laboratório de Hormônios e Genética Molecular LIM/42, Laboratório de Sequenciamento em Larga Escala (SELA), Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Delmar Muniz Lourenço Junior
- Laboratório de Endocrinologia Molecular e Celular LIM/25, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Ana O Hoff
- Divisão de Endocrinologia e Metabologia, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Luciana Audi Castroneves
- Divisão de Endocrinologia e Metabologia, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Bruno Ferraz-de-Souza
- Laboratório de Endocrinologia Celular e Molecular LIM/25, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo 01246-903, Brazil
- School of Medicine, University of Notre Dame Australia, Fremantle WA 6160, Australia
| | - Maria Lucia Cardillo Correa Giannella
- Laboratório de Carboidratos e Radioimunoensaio LIM/18, Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Maria Adelaide Albergaria Pereira
- Divisão de Endocrinologia e Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil
| |
Collapse
|
4
|
Tekin B, Erickson LA, Gupta S. von Hippel-Lindau disease-related neoplasia with an emphasis on renal manifestations. Semin Diagn Pathol 2024; 41:20-27. [PMID: 37980175 DOI: 10.1053/j.semdp.2023.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023]
Abstract
von Hippel-Lindau (VHL) disease is characterized by biallelic inactivation of the VHL gene leading to abnormal or absent VHL protein function, and constitutive activation of hypoxia-inducible factors (HIF) that leads to pro-tumorigenic signaling. Individuals with VHL disease develop numerous cysts and tumors involving multiple organs including the kidneys, central nervous system, endolymphatic sac, lungs, pancreatobiliary system, adrenal glands, epididymis, and/or broad ligament. On histologic examination, these lesions show morphologic overlap as they are frequently characterized by cells with clear cytoplasm and prominent vascularity. In addition to distinguishing non-renal tumors from metastatic clear cell renal cell carcinoma, understanding site-specific histopathologic and immunophenotypic features of these tumors has several applications. This includes distinguishing VHL-related tumors from those that arise sporadically and lack VHL gene alterations, guiding further genetic workup, and helping distinguish between different genetic predisposition syndromes. In this context, immunohistochemical studies for markers such as paired box 8 (PAX-8), carbonic anhydrase 9 (CA9), and glucose transporter 1 (GLUT-1) have an important role in routine clinical practice and represent cost-effective diagnostic tools. The recent development of targeted therapeutics directed against HIF-mediated signaling represents a significant milestone in the management of VHL disease and highlights the importance of accurately diagnosing and characterizing the wide spectrum of VHL disease-associated lesions.
Collapse
Affiliation(s)
- Burak Tekin
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street, Southwest, Rochester, MN 55905, USA
| | - Lori A Erickson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street, Southwest, Rochester, MN 55905, USA
| | - Sounak Gupta
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street, Southwest, Rochester, MN 55905, USA.
| |
Collapse
|
5
|
Martinelli S, Amore F, Canu L, Maggi M, Rapizzi E. Tumour microenvironment in pheochromocytoma and paraganglioma. Front Endocrinol (Lausanne) 2023; 14:1137456. [PMID: 37033265 PMCID: PMC10073672 DOI: 10.3389/fendo.2023.1137456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Pheochromocytomas and Paragangliomas (Pheo/PGL) are rare catecholamine-producing tumours derived from adrenal medulla or from the extra-adrenal paraganglia respectively. Around 10-15% of Pheo/PGL develop metastatic forms and have a poor prognosis with a 37% of mortality rate at 5 years. These tumours have a strong genetic determinism, and the presence of succinate dehydrogenase B (SDHB) mutations are highly associated with metastatic forms. To date, no effective treatment is present for metastatic forms. In addition to cancer cells, the tumour microenvironment (TME) is also composed of non-neoplastic cells and non-cellular components, which are essential for tumour initiation and progression in multiple cancers, including Pheo/PGL. This review, for the first time, provides an overview of the roles of TME cells such as cancer-associated fibroblasts (CAFs) and tumour-associated macrophages (TAMs) on Pheo/PGL growth and progression. Moreover, the functions of the non-cellular components of the TME, among which the most representatives are growth factors, extracellular vesicles and extracellular matrix (ECM) are explored. The importance of succinate as an oncometabolite is emerging and since Pheo/PGL SDH mutated accumulate high levels of succinate, the role of succinate and of its receptor (SUCNR1) in the modulation of the carcinogenesis process is also analysed. Further understanding of the mechanism behind the complicated effects of TME on Pheo/PGL growth and spread could suggest novel therapeutic targets for further clinical treatments.
Collapse
Affiliation(s)
- Serena Martinelli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliera Universitaria (AOU) Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumours (ENS@T) Center of Excellence, Florence, Italy
| | - Francesca Amore
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Letizia Canu
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliera Universitaria (AOU) Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumours (ENS@T) Center of Excellence, Florence, Italy
| | - Mario Maggi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliera Universitaria (AOU) Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumours (ENS@T) Center of Excellence, Florence, Italy
| | - Elena Rapizzi
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, Azienda Ospedaliera Universitaria (AOU) Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumours (ENS@T) Center of Excellence, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- *Correspondence: Elena Rapizzi,
| |
Collapse
|
6
|
Nosé V, Lazar AJ. Update from the 5th Edition of the World Health Organization Classification of Head and Neck Tumors: Familial Tumor Syndromes. Head Neck Pathol 2022; 16:143-157. [PMID: 35312981 PMCID: PMC9018953 DOI: 10.1007/s12105-022-01414-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/11/2022] [Indexed: 12/18/2022]
Abstract
The initiative of the 5th edition of the WHO classification of the Head and Neck Tumours establishing a new section dedicated to familial/heritable tumor syndromes with tumors and lesions in the head and neck region was much needed to better understand the tumours, diseases, and associated syndromes, as well as establish recommendations for monitoring and treating these patients. (WHO Classification of Tumours Editorial Board. Head and Neck tumours. Lyon (France): International Agency for Research on Cancer; 2022. https://publications.iarc.fr/ ). Within the newly established chapter on genetic tumor syndromes, we have described the main manifestations on the head and neck region in 15 syndromes. This review highlights the important findings within these syndromes, especially on the update on syndromes with tumors involving the head and neck region, as Gorlin syndrome/nevoid basal cell carcinoma syndrome associated with odontogenic keratocysts; Brooke-Spiegler syndrome/familial cylindromatosis and the associated membranous-type salivary gland basal cell adenoma, PTEN hamartoma tumor syndrome/Cowden syndrome with associated facial skin and mucosal lesions and characteristic multinodular thyroid lesions, Von Hippel Lindau syndrome and the associated middle ear endolymphatic sac tumor, as well as the fascinating genetic aspects of the diverse Head and Neck Paragangliomas. We will also discuss hyperparathyroidism-jaw tumor syndrome is characterized by parathyroid tumors in association with fibro-osseous jaw tumors, as well as head and neck desmoid tumors associated with familial adenomatous polyposis with Gardner syndrome variant familial, multicentric head and neck squamous cell carcinoma, tuberous sclerosis and neurofibromatosis type 1-associated head and neck lesions.
Collapse
Affiliation(s)
- Vania Nosé
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
7
|
Pheochromocytomas and Abdominal Paragangliomas: A Practical Guidance. Cancers (Basel) 2022; 14:cancers14040917. [PMID: 35205664 PMCID: PMC8869962 DOI: 10.3390/cancers14040917] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pheochromocytomas and abdominal paragangliomas (PPGLs) are rare. They can be discovered incidentally by imaging with computed tomography or magnetic resonance imaging and during hormonal surveillance in patients with known genetic variants that are associated with PPGLs. As most PPGLs are functioning, a hormonal work-up evaluating for catecholamine excess is recommended. Classical symptoms, such as tachycardia, hypertension and headache, can be present, but when the PPGL is discovered as an incidentaloma, symptoms may be lacking or be more discrete. PPGLs carry malignant potential, and patients should undergo close surveillance, as recurrence of disease or metastasis may develop. Genetic susceptibility for multifocal disease has gained more attention, and germline variants are commonly detected, thus facilitating detection of hereditary cases and afflicted family members. Any patient with a PPGL should be managed by an expert multidisciplinary team consisting of endocrinologists, radiologists, surgeons, pathologists and clinical geneticists. Abstract Pheochromocytomas and abdominal paragangliomas (PPGLs) are rare tumors arising from the adrenal medulla or the sympathetic nervous system. This review presents a practical guidance for clinicians dealing with PPGLs. The incidence of PPGLs has risen. Most cases are detected via imaging and less present with symptoms of catecholamine excess. Most PPGLs secrete catecholamines, with diffuse symptoms. Diagnosis is made by imaging and tests of catecholamines. Localized disease can be cured by surgery. PPGLs are the most heritable of all human tumors, and germline variants are found in approximately 30–50% of cases. Such variants can give information regarding the risk of developing recurrence or metastases as well as the risk of developing other tumors and may identify relatives at risk for disease. All PPGLs harbor malignant potential, and current histological and immunohistochemical algorithms can aid in the identification of indolent vs. aggressive tumors. While most patients with metastatic PPGL have slowly progressive disease, a proportion of patients present with an aggressive course, highlighting the need for more effective therapies in these cases. We conclude that PPGLs are rare but increasing in incidence and management should be guided by a multidisciplinary team.
Collapse
|
8
|
Chatzopoulos K, Aubry MC, Gupta S. Immunohistochemical Expression of Carbonic Anhydrase 9 (CA9), Glucose Transporter 1 (GLUT1), and Paired Box 8 (PAX8) in von Hippel Lindau Disease-Related Lesions. Hum Pathol 2022; 123:93-101. [DOI: 10.1016/j.humpath.2022.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/12/2022] [Indexed: 11/16/2022]
|
9
|
Sebestyén A, Dankó T, Sztankovics D, Moldvai D, Raffay R, Cervi C, Krencz I, Zsiros V, Jeney A, Petővári G. The role of metabolic ecosystem in cancer progression — metabolic plasticity and mTOR hyperactivity in tumor tissues. Cancer Metastasis Rev 2022; 40:989-1033. [PMID: 35029792 PMCID: PMC8825419 DOI: 10.1007/s10555-021-10006-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022]
Abstract
Despite advancements in cancer management, tumor relapse and metastasis are associated with poor outcomes in many cancers. Over the past decade, oncogene-driven carcinogenesis, dysregulated cellular signaling networks, dynamic changes in the tissue microenvironment, epithelial-mesenchymal transitions, protein expression within regulatory pathways, and their part in tumor progression are described in several studies. However, the complexity of metabolic enzyme expression is considerably under evaluated. Alterations in cellular metabolism determine the individual phenotype and behavior of cells, which is a well-recognized hallmark of cancer progression, especially in the adaptation mechanisms underlying therapy resistance. In metabolic symbiosis, cells compete, communicate, and even feed each other, supervised by tumor cells. Metabolic reprogramming forms a unique fingerprint for each tumor tissue, depending on the cellular content and genetic, epigenetic, and microenvironmental alterations of the developing cancer. Based on its sensing and effector functions, the mechanistic target of rapamycin (mTOR) kinase is considered the master regulator of metabolic adaptation. Moreover, mTOR kinase hyperactivity is associated with poor prognosis in various tumor types. In situ metabolic phenotyping in recent studies highlights the importance of metabolic plasticity, mTOR hyperactivity, and their role in tumor progression. In this review, we update recent developments in metabolic phenotyping of the cancer ecosystem, metabolic symbiosis, and plasticity which could provide new research directions in tumor biology. In addition, we suggest pathomorphological and analytical studies relating to metabolic alterations, mTOR activity, and their associations which are necessary to improve understanding of tumor heterogeneity and expand the therapeutic management of cancer.
Collapse
|
10
|
Pinato DJ, Murray SM, Forner A, Kaneko T, Fessas P, Toniutto P, Mínguez B, Cacciato V, Avellini C, Diaz A, Boyton RJ, Altmann DM, Goldin RD, Akarca AU, Marafioti T, Mauri FA, Casagrande E, Grillo F, Giannini E, Bhoori S, Mazzaferro V. Trans-arterial chemoembolization as a loco-regional inducer of immunogenic cell death in hepatocellular carcinoma: implications for immunotherapy. J Immunother Cancer 2021; 9:e003311. [PMID: 34593621 PMCID: PMC8487214 DOI: 10.1136/jitc-2021-003311] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Modulation of adaptive immunity may underscore the efficacy of trans-arterial chemoembolization (TACE). We evaluated the influence of TACE on T-cell function by phenotypic lymphocyte characterization in samples of patients undergoing surgery with (T+) or without (T-) prior-TACE treatment. METHODS We profiled intratumoral (IT), peritumoral (PT) and non-tumoral (NT) background tissue to evaluate regulatory CD4+/FOXP3+ (T-reg) and immune-exhausted CD8+/PD-1+ T-cells across T+ (n=58) and T- (n=61). We performed targeted transcriptomics and T-cell receptor sequencing in a restricted subset of samples (n=24) evaluated in relationship with the expression of actionable drivers of anti-cancer immunity including PD-L1, indoleamine 2,3 dehydrogenase (IDO-1), cytotoxic T-lymphocyte associated protein 4 (CTLA-4), Lag-3, Tim-3 and CD163. RESULTS We analyzed 119 patients resected (n=25, 21%) or transplanted (n=94, 79%) for Child-Pugh A (n=65, 55%) and Barcelona Clinic Liver Cancer stage A (n=92, 77%) hepatocellular carcinoma. T+ samples displayed lower IT CD4+/FOXP3+ (p=0.006), CD8+ (p=0.002) and CD8+/PD-1+ and NT CD8+/PD-1+ (p<0.001) compared with T-. Lower IT (p=0.005) and NT CD4+/FOXP3+ (p=0.03) predicted for improved recurrence-free survival. In a subset of samples (n=24), transcriptomic analysis revealed upregulation of a pro-inflammatory response in T+. T+ samples were enriched for IRF2 expression (p=0.01), an interferon-regulated transcription factor implicated in cancer immune-evasion. T-cell clonality and expression of PD-L1, IDO-1, CTLA-4, Lag-3, Tim-3 and CD163 was similar in T+ versus T-. CONCLUSIONS TACE is associated with lower IT density of immune-exhausted effector cytotoxic and T-regs, with significant upregulation of pro-inflammatory pathways. This highlights the pleiotropic effects of TACE in modulating the tumor microenvironment and strengthens the rationale for developing immunotherapy alongside TACE.
Collapse
Affiliation(s)
- David J Pinato
- Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
- Division of Oncology, Department of Translational Medicine, Universita del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Sam M Murray
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Alejandro Forner
- Liver Unit, Barcelona Clinic Liver Cancer (BCLC) Group, University of Barcelona, Hospital Clinic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Petros Fessas
- Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Pierluigi Toniutto
- Hepatology and Liver Transplantation Unit, Department of Medical Area (DAME), University of Udine, Udine, Italy
| | - Beatriz Mínguez
- Liver Unit, Hospital Universitari Vall d'Hebron, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Valentina Cacciato
- Gastroenterology Unit, Department of Internal Medicine, IRCCS-Ospedale Policlinico San Martino, Genoa, Italy
| | - Claudio Avellini
- Institute of Histopathology, Azienda Ospedaliero-Universitaria "Santa Maria della Misericordia", Udine, Italy
| | - Alba Diaz
- Pathology Department, Barcelona Clinic Liver Cancer (BCLC) Group, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Rosemary J Boyton
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Daniel M Altmann
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | | | - Ayse U Akarca
- Department of Histopathology, University College London Cancer Institute, London, UK
| | - Teresa Marafioti
- Department of Histopathology, University College London Cancer Institute, London, UK
| | - Francesco A Mauri
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Edoardo Casagrande
- Gastroenterology Unit, Department of Internal Medicine, IRCCS-Ospedale Policlinico San Martino, Genoa, Italy
| | - Federica Grillo
- Department of Surgical Sciences, IRCCS-Ospedale Policlinico San Martino, Genoa, Italy
| | - Edoardo Giannini
- Gastroenterology Unit, Department of Internal Medicine, IRCCS-Ospedale Policlinico San Martino, Genoa, Italy
| | - Sherrie Bhoori
- Department of Oncology, University of Milan, Milano, Italy
- Hepato-Pancreatic-Biliary Surgery and Liver Transplantation, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Vincenzo Mazzaferro
- Department of Oncology, University of Milan, Milano, Italy
- Hepato-Pancreatic-Biliary Surgery and Liver Transplantation, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| |
Collapse
|
11
|
Mete O, Pakbaz S, Lerario AM, Giordano TJ, Asa SL. Significance of Alpha-inhibin Expression in Pheochromocytomas and Paragangliomas. Am J Surg Pathol 2021; 45:1264-1273. [PMID: 33826547 DOI: 10.1097/pas.0000000000001715] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alpha-inhibin expression has been reported in pheochromocytomas and paragangliomas (PPGLs). We analyzed alpha-inhibin immunohistochemistry in 77 PPGLs (37 pheochromocytomas [PCCs] and 40 paragangliomas) and correlated the results with catecholamine profile, tumor size, Ki-67 labeling index, succinate dehydrogenase B subunit and carbonic anhydrase IX (CAIX) staining, and genetic pathogenesis. PPGLs were classified as pseudohypoxic cluster 1 disease with documented VHL mutation or SDHx mutation or biochemical phenotype, whereas NF1-driven and RET-driven PPGLs and those with a mature secretory (adrenergic or mixed adrenergic and noradrenergic) phenotype were classified as cluster 2 disease. The Cancer Genome Atlas data on INHA expression in PPGLs was examined. Alpha-inhibin was positive in 43 PPGLs (56%). Ki-67 labeling indices were 8.07% and 4.43% in inhibin-positive and inhibin-negative PPGLs, respectively (P<0.05). Alpha-inhibin expression did not correlate with tumor size. Alpha-inhibin was expressed in 92% of SDHx-related and 86% of VHL-related PPGLs. CAIX membranous staining was found in 8 of 51 (16%) tumors, including 1 SDHx-related PCC and all 5 VHL-related PCCs. NF1-driven and RET-driven PPGLs were negative for alpha-inhibin and CAIX. Alpha-inhibin was expressed in 77% of PPGLs with a pseudohypoxia signature, and 20% of PPGLs without a pseudohypoxia signature (P<0.05). PPGLs with a mature secretory phenotype were negative for CAIX. The Cancer Genome Atlas data confirmed higher expression of INHA in cluster 1 than in cluster 2 PPGLs. This study identifies alpha-inhibin as a highly sensitive (90.3%) marker for SDHx/VHL-driven pseudohypoxic PPGLs. Although CAIX has low sensitivity, it is the most specific biomarker of VHL-related pathogenesis. While alpha-inhibin cannot replace succinate dehydrogenase B subunit immunohistochemistry for detection of SDHx-related disease, it adds value in prediction of cluster 1 disease. Importantly, these data emphasize that alpha-inhibin is not a specific marker of adrenal cortical differentiation, as it is also expressed in PCCs.
Collapse
Affiliation(s)
- Ozgur Mete
- Department of Pathology, University Health Network
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Endocrine Oncology Site, The Princess Margaret Cancer Centre
| | - Sara Pakbaz
- Department of Pathology, University Health Network
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Antonio M Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes
| | - Thomas J Giordano
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Sylvia L Asa
- Department of Pathology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH
| |
Collapse
|
12
|
Pietrobon V, Cesano A, Marincola F, Kather JN. Next Generation Imaging Techniques to Define Immune Topographies in Solid Tumors. Front Immunol 2021; 11:604967. [PMID: 33584676 PMCID: PMC7873485 DOI: 10.3389/fimmu.2020.604967] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, cancer immunotherapy experienced remarkable developments and it is nowadays considered a promising therapeutic frontier against many types of cancer, especially hematological malignancies. However, in most types of solid tumors, immunotherapy efficacy is modest, partly because of the limited accessibility of lymphocytes to the tumor core. This immune exclusion is mediated by a variety of physical, functional and dynamic barriers, which play a role in shaping the immune infiltrate in the tumor microenvironment. At present there is no unified and integrated understanding about the role played by different postulated models of immune exclusion in human solid tumors. Systematically mapping immune landscapes or "topographies" in cancers of different histology is of pivotal importance to characterize spatial and temporal distribution of lymphocytes in the tumor microenvironment, providing insights into mechanisms of immune exclusion. Spatially mapping immune cells also provides quantitative information, which could be informative in clinical settings, for example for the discovery of new biomarkers that could guide the design of patient-specific immunotherapies. In this review, we aim to summarize current standard and next generation approaches to define Cancer Immune Topographies based on published studies and propose future perspectives.
Collapse
Affiliation(s)
| | | | | | - Jakob Nikolas Kather
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
13
|
Abstract
Over the last few years, cancer immunotherapy experienced tremendous developments and it is nowadays considered a promising strategy against many types of cancer. However, the exclusion of lymphocytes from the tumor nest is a common phenomenon that limits the efficiency of immunotherapy in solid tumors. Despite several mechanisms proposed during the years to explain the immune excluded phenotype, at present, there is no integrated understanding about the role played by different models of immune exclusion in human cancers. Hypoxia is a hallmark of most solid tumors and, being a multifaceted and complex condition, shapes in a unique way the tumor microenvironment, affecting gene transcription and chromatin remodeling. In this review, we speculate about an upstream role for hypoxia as a common biological determinant of immune exclusion in solid tumors. We also discuss the current state of ex vivo and in vivo imaging of hypoxic determinants in relation to T cell distribution that could mechanisms of immune exclusion and discover functional-morphological tumor features that could support clinical monitoring.
Collapse
|
14
|
Sharma R, Inglese M, Dubash S, Lu H, Pinato DJ, Sanghera C, Patel N, Chung A, Tait PD, Mauri F, Crum WR, Barwick TD, Aboagye EO. Monitoring Response to Transarterial Chemoembolization in Hepatocellular Carcinoma Using 18F-Fluorothymidine PET. J Nucl Med 2020; 61:1743-1748. [PMID: 32513905 PMCID: PMC8679631 DOI: 10.2967/jnumed.119.240598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/03/2020] [Indexed: 12/21/2022] Open
Abstract
Accurate disease monitoring is essential after transarterial chemoembolization (TACE) in hepatocellular carcinoma (HCC) because of the potential for profound adverse events and large variations in survival outcome. Posttreatment changes on conventional imaging can confound determination of residual or recurrent disease, magnifying the clinical challenge. On the basis of increased expression of thymidylate synthase (TYMS), thymidine kinase 1 (TK-1), and equilibrative nucleoside transporter 1 (SLC29A1) in HCC compared with liver tissue, we conducted a proof-of-concept study evaluating the efficacy of 3'-deoxy-3'-18F-fluorothymidine (18F-FLT) PET to assess response to TACE. Because previous PET studies in HCC have been hampered by high background liver signal, we investigated whether a temporal-intensity voxel clustering (kinetic spatial filtering, or KSF) improved lesion detection. Methods: A tissue microarray was built from 36 HCC samples and from matching surrounding cirrhotic tissue and was stained for TK-1 A prospective study was conducted; 18 patients with a diagnosis of HCC by the criteria of the American Association for the Study of Liver Diseases who were eligible for treatment with TACE were enrolled. The patients underwent baseline conventional imaging and dynamic 18F-FLT PET with KSF followed by TACE. Imaging was repeated 6-8 wk after TACE. The PET parameters were compared with modified enhancement-based RECIST. Results: Cancer Genome Atlas analysis revealed increased RNA expression of TYMS, TK-1, and SLC29A1 in HCC. TK-1 protein expression was significantly higher in HCC (P < 0.05). The sensitivity of 18F-FLT PET for baseline HCC detection was 73% (SUVmax, 9.7 ± 3.0; tumor to liver ratio, 1.2 ± 0.3). Application of KSF did not improve lesion detection. Lesion response after TACE by modified RECIST was 58% (14 patients with 24 lesions). A 30% reduction in mean 18F-FLT PET uptake was observed after TACE, correlating with an observed PET response of 60% (15/25). A significant and profound reduction in the radiotracer delivery parameter K1 after TACE was observed. Conclusion:18F-FLT PET can differentiate HCC from surrounding cirrhotic tissue, with PET parameters correlating with TACE response. KSF did not improve visualization of tumor lesions. These findings warrant further investigation.
Collapse
Affiliation(s)
- Rohini Sharma
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Marianna Inglese
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Suraiya Dubash
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Haonan Lu
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - David J Pinato
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Chandan Sanghera
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Neva Patel
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Radiological Sciences Unit, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Anthony Chung
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Paul D Tait
- Department of Radiology, Imperial College Healthcare NHS Trust, London, United Kingdom; and
| | - Francesco Mauri
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - William R Crum
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Institute of Translational Medicine and Therapeutics, Imperial College London, London, United Kingdom
| | - Tara D Barwick
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Radiology, Imperial College Healthcare NHS Trust, London, United Kingdom; and
| | - Eric O Aboagye
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, United Kingdom
| |
Collapse
|
15
|
Abed FM, Brown MA, Al-Mahmood OA, Dark MJ. SDHB and SDHA Immunohistochemistry in Canine Pheochromocytomas. Animals (Basel) 2020; 10:ani10091683. [PMID: 32957698 PMCID: PMC7552650 DOI: 10.3390/ani10091683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Pheochromocytomas are adrenal tumors that occur in both dogs and people. One of the more common gene families involved in the development of this tumor in people is succinate dehydrogenase (SDH). In people, immunohistochemistry can be used with biopsy samples to predict gene pathways that may be involved in the development of the tumor. This is faster and cheaper than performing extensive sequencing to determine if genes are involved. We tested 35 dog tumors to determine how likely SDH mutations were. While our data suggest significant numbers of SDH mutations, these mutations do not appear to be associated with tumor aggression. Abstract Pheochromocytomas (PCs) are tumors arising from the chromaffin cells of the adrenal glands and are the most common tumors of the adrenal medulla in animals. In people, these are highly correlated to inherited gene mutations in the succinate dehydrogenase (SDH) pathway; however, to date, little work has been done on the genetic basis of these tumors in animals. In humans, immunohistochemistry has proven valuable as a screening technique for SDH mutations. Human PCs that lack succinate dehydrogenase B (SDHB) immunoreactivity have a high rate of mutation in the SDH family of genes, while human PCs lacking succinate dehydrogenase A (SDHA) immunoreactivity have mutations in the SDHA gene. To determine if these results are similar for dogs, we performed SDHA and SDHB immunohistochemistry on 35 canine formalin-fixed, paraffin-embedded (FFPE) PCs. Interestingly, there was a loss of immunoreactivity for both SDHA and SDHB in four samples (11%), suggesting a mutation in SDHx including SDHA. An additional 25 (71%) lacked immunoreactivity for SDHB, while retaining SDHA immunoreactivity. These data suggest that 29 out of the 35 (82%) may have an SDH family mutation other than SDHA. Further work is needed to determine if canine SDH immunohistochemistry on PCs correlates to genetic mutations that are similar to human PCs.
Collapse
Affiliation(s)
- Firas M. Abed
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Melissa A. Brown
- Veterinary Diagnostic Laboratories, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Omar A. Al-Mahmood
- Department of Food, Nutrition and Packaging Science, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Michael J. Dark
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA;
- Veterinary Diagnostic Laboratories, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA;
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
- Correspondence: ; Tel.: +1-(352)-294-4138
| |
Collapse
|
16
|
Shen Y, Wang X, Lu J, Salfenmoser M, Wirsik NM, Schleussner N, Imle A, Freire Valls A, Radhakrishnan P, Liang J, Wang G, Muley T, Schneider M, Ruiz de Almodovar C, Diz-Muñoz A, Schmidt T. Reduction of Liver Metastasis Stiffness Improves Response to Bevacizumab in Metastatic Colorectal Cancer. Cancer Cell 2020; 37:800-817.e7. [PMID: 32516590 DOI: 10.1016/j.ccell.2020.05.005] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/12/2020] [Accepted: 05/06/2020] [Indexed: 12/19/2022]
Abstract
Tumors are influenced by the mechanical properties of their microenvironment. Using patient samples and atomic force microscopy, we found that tissue stiffness is higher in liver metastases than in primary colorectal tumors. Highly activated metastasis-associated fibroblasts increase tissue stiffness, which enhances angiogenesis and anti-angiogenic therapy resistance. Drugs targeting the renin-angiotensin system, normally prescribed to treat hypertension, inhibit fibroblast contraction and extracellular matrix deposition, thereby reducing liver metastases stiffening and increasing the anti-angiogenic effects of bevacizumab. Patients treated with bevacizumab showed prolonged survival when concomitantly treated with renin-angiotensin inhibitors, highlighting the importance of modulating the mechanical microenvironment for therapeutic regimens.
Collapse
Affiliation(s)
- Ying Shen
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Xiaohong Wang
- Biochemistry Center, University of Heidelberg, 69120 Heidelberg, Germany; Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China
| | - Junyan Lu
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Martin Salfenmoser
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Naita Maren Wirsik
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Nikolai Schleussner
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Andrea Imle
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Aida Freire Valls
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Praveen Radhakrishnan
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Jie Liang
- Section of Molecular Immunology, Institute of Immunology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Guoliang Wang
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Thomas Muley
- Thoracic Hospital, University Hospital Heidelberg, University Heidelberg, 69126 Heidelberg, Germany; Translational Lung Research Centre (TLRC) Heidelberg, Member of the German Centre for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Carmen Ruiz de Almodovar
- Biochemistry Center, University of Heidelberg, 69120 Heidelberg, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, University Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany.
| |
Collapse
|
17
|
Antonio K, Valdez MMN, Mercado-Asis L, Taïeb D, Pacak K. Pheochromocytoma/paraganglioma: recent updates in genetics, biochemistry, immunohistochemistry, metabolomics, imaging and therapeutic options. Gland Surg 2020; 9:105-123. [PMID: 32206603 DOI: 10.21037/gs.2019.10.25] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pheochromocytomas and paragangliomas (PPGLs), rare chromaffin/neural crest cell tumors, are commonly benign in their clinical presentation. However, there are a number of cases presenting as metastatic and their diagnosis and management becomes a dilemma because of their rarity. PPGLs are constantly evolving entities in the field of endocrinology brought about by endless research and discoveries, especially in genetics. Throughout the years, our knowledge and perception of these tumors and their genetic background has greatly expanded and changed, and each new discovery leads to advancement in the diagnosis, treatment and follow-up of PPGLs. In this review, we discuss the recent updates in the genetics, biochemistry, immunohistochemistry, metabolomics, imaging and treatment options of PPGLs.
Collapse
Affiliation(s)
- Karren Antonio
- Section on Medical Neuroendocrinology, The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.,Division of Endocrinology, University of Santo Tomas Hospital, Manila, Philippines
| | - Ma Margarita Noreen Valdez
- Section on Medical Neuroendocrinology, The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.,Division of Endocrinology, University of Santo Tomas Hospital, Manila, Philippines
| | | | - David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, Marseille, France
| | - Karel Pacak
- Section on Medical Neuroendocrinology, The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Buffet A, Calsina B, Flores S, Giraud S, Lenglet M, Romanet P, Deflorenne E, Aller J, Bourdeau I, Bressac-de Paillerets B, Calatayud M, Dehais C, De Mones Del Pujol E, Elenkova A, Herman P, Kamenický P, Lejeune S, Sadoul JL, Barlier A, Richard S, Favier J, Burnichon N, Gardie B, Dahia PL, Robledo M, Gimenez-Roqueplo AP. Germline mutations in the new E1' cryptic exon of the VHL gene in patients with tumours of von Hippel-Lindau disease spectrum or with paraganglioma. J Med Genet 2020; 57:752-759. [PMID: 31996412 PMCID: PMC7387210 DOI: 10.1136/jmedgenet-2019-106519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/03/2020] [Accepted: 01/06/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUNDS The incidence of germline mutations in the newly discovered cryptic exon (E1') of VHL gene in patients with von Hippel-Lindau (VHL) disease and in patients with paraganglioma or pheochromocytoma (PPGL) is not currently known. METHODS We studied a large international multicentre cohort of 1167 patients with a previous negative genetic testing. Germline DNA from 75 patients with a single tumour of the VHL spectrum ('Single VHL tumour' cohort), 70 patients with multiple tumours of the VHL spectrum ('Multiple VHL tumours' cohort), 76 patients with a VHL disease as described in the literature ('VHL-like' cohort) and 946 patients with a PPGL were screened for E1' genetic variants. RESULTS Six different genetic variants in E1' were detected in 12 patients. Two were classified as pathogenic, 3 as variants of unknown significance and 1 as benign. The rs139622356 was found in seven unrelated patients but described in only 16 patients out of the 31 390 of the Genome Aggregation Database (p<0.0001) suggesting that this variant might be either a recurrent mutation or a modifier mutation conferring a risk for the development of tumours and cancers of the VHL spectrum. CONCLUSIONS VHL E1' cryptic exon mutations contribute to 1.32% (1/76) of 'VHL-like' cohort and to 0.11% (1/946) of PPGL cohort and should be screened in patients with clinical suspicion of VHL, and added to panels for Next Generation Sequencing (NGS) diagnostic testing of hereditary PPGL. Our data highlight the importance of studying variants identified in deep intronic sequences, which would have been missed by examining only coding sequences of genes/exomes. These variants will likely be more frequently detected and studied with the upcoming implementation of whole-genome sequencing into clinical practice.
Collapse
Affiliation(s)
- Alexandre Buffet
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, F-75015, Paris, France
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain; and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Shahida Flores
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Sophie Giraud
- Genetics Department, Hospices Civils de LYON (HCL), University Hospital, East Biology and Pathology Center, B-A3, 59 Bld Pinel, 69677, Bron, France.,Réseau National pour Cancers Rares PREDIR labellisé par l'Institut National contre le Cancer, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Marion Lenglet
- École Pratique des Hautes Études, PSL Research University, Paris, France.,L'Institut du Thorax, INSERM, Centre National de la Recherche Scientifique (CNRS), Université de Nantes, Nantes, France
| | - Pauline Romanet
- Aix Marseille Univ, APHM, INSERM, MMG, Laboratory of Molecular Biology Hospital La Conception, Marseille, France
| | - Elisa Deflorenne
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, F-75015, Paris, France
| | - Javier Aller
- Endocrinology and Nutrition Service. Hospital Universitario Puerta de Hierro, 28222, Majadahonda, Spain
| | - Isabelle Bourdeau
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, Quebec, Canada
| | - Brigitte Bressac-de Paillerets
- Réseau National pour Cancers Rares PREDIR labellisé par l'Institut National contre le Cancer, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,Gustave Roussy, Université Paris-Saclay, Département de Biopathologie and INSERM U1186, Villejuif, F-94805, France
| | - María Calatayud
- Department of Endocrinology and Nutrition, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Caroline Dehais
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | | | - Atanaska Elenkova
- Department of Endocrinology, USHATE "Acad. Ivan Penchev", Medical University Sofia, Sofia, Bulgaria
| | - Philippe Herman
- Assistance Publique, Hôpitaux de Paris, Service ORL-CCF, hôpital Lariboisière, université Paris VII, Paris, France
| | - Peter Kamenický
- Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse, Le Kremlin Bicetre, France
| | - Sophie Lejeune
- Réseau National pour Cancers Rares PREDIR labellisé par l'Institut National contre le Cancer, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,Department of Clinical Genetics, Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| | - Jean Louis Sadoul
- Service d'Endocrinologie, Hôpital de L'Archet, CHU de Nice, Nice, France
| | - Anne Barlier
- Réseau National pour Cancers Rares PREDIR labellisé par l'Institut National contre le Cancer, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,Aix Marseille Univ, APHM, INSERM, MMG, Laboratory of Molecular Biology Hospital La Conception, Marseille, France
| | - Stephane Richard
- Réseau National pour Cancers Rares PREDIR labellisé par l'Institut National contre le Cancer, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,École Pratique des Hautes Études, PSL Research University, Paris, France.,Génétique Oncologique EPHE, INSERM U1186, Gustave Roussy Cancer Campus, Villejuif, France
| | - Judith Favier
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, F-75015, Paris, France
| | - Nelly Burnichon
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, F-75015, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
| | - Betty Gardie
- École Pratique des Hautes Études, PSL Research University, Paris, France.,L'Institut du Thorax, INSERM, Centre National de la Recherche Scientifique (CNRS), Université de Nantes, Nantes, France
| | - Patricia L Dahia
- Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain; and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Anne-Paule Gimenez-Roqueplo
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, F-75015, Paris, France.,Réseau National pour Cancers Rares PREDIR labellisé par l'Institut National contre le Cancer, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
| |
Collapse
|
19
|
Carbonic anhydrase 9 immunohistochemistry as a tool to predict or validate germline and somatic VHL mutations in pheochromocytoma and paraganglioma-a retrospective and prospective study. Mod Pathol 2020; 33:57-64. [PMID: 31383958 DOI: 10.1038/s41379-019-0343-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 11/08/2022]
Abstract
The development of pheochromocytomas and paragangliomas is strongly linked to the presence of germline mutations in more than 15 predisposing genes. Among them, germline and somatic VHL mutations account for ~10% of all cases. In contrast with SDHA and SDHB immunohistochemistries that are routinely used to validate SDHx gene mutations, there is no such tool available for VHL mutations. The aim of this study was to evaluate whether CA9 immunostaining could be used as a tool to predict the presence or validate the pathogenicity of VHL gene mutations in paraganglioma. Immunohistochemistry for CA9 was performed on 207 tumors. A retrospective series of 100 paragangliomas with known mutation status for paraganglioma susceptibility genes was first investigated. Then, a prospective series of 107 paragangliomas was investigated for CA9 immunostaining followed by germline and/or somatic genetic testing of all paraganglioma susceptibility genes by next-generation sequencing. Cytosolic CA9 protein expression was heterogeneous in the different samples. However, we observed that a membranous CA9 staining was almost exclusively observed in VHL-related cases. Forty two of 48 (88%) VHL-mutated samples showed a CA9 membranous immunostaining. Positive cells were either isolated, varying from 1 or 2 cells (5% of cases) to 10-20 cells per tumor block (35% of cases), grouped in areas of focal positivity representing between 1 and 20% of the tissue section (35% of cases), or widely distributed on 80-100% of the tumor sections (25% of samples). In contrast, 142/159 (91%) of non-VHL-mutated tumors presented no membrane CA9 localization. Our results demonstrate that VHL gene mutations can be predicted or validated reliably by an easy-to-perform and low-cost immunohistochemical procedure. CA9 immunohistochemistry on paragangliomas will improve the diagnosis of VHL-related disease, which is important for the surveillance and therapeutic management of paraganglioma patients, and in case of germline mutation, their family members.
Collapse
|
20
|
Oudijk L, Gaal J, Koopman K, de Krijger RR. An Update on the Histology of Pheochromocytomas: How Does it Relate to Genetics? Horm Metab Res 2019; 51:403-413. [PMID: 30142639 DOI: 10.1055/a-0672-1266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pheochromocytomas are rare neuroendocrine tumors of the adrenal gland, whereas any extra-adrenal tumor with similar histology is designated as paraganglioma. These tumors have a very high rate of germline mutations in a large number of genes, up to 35% to 40%, frequently predisposing for other tumors as well. Therefore, they represent a phenomenal challenge for treating physicians. This review focuses on pheochromocytomas only, with special attention to gross and microscopic clues to the diagnosis of genetic syndromes, including the role of succinate dehydrogenase subunit A and subunit B immunohistochemistry as surrogate markers for genetic analysis in the field of succinate dehydrogenase subunit gene mutations.
Collapse
Affiliation(s)
- Lindsey Oudijk
- Department of Pathology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - José Gaal
- Department of Pathology, Isala Clinics, Zwolle, The Netherlands
| | - Karen Koopman
- Department of Pathology, Isala Clinics, Zwolle, The Netherlands
| | - Ronald R de Krijger
- Department of Pathology, University Medical Center/Princess Maxima Center for Pediatric Oncology, Utrecht and Reinier de Graaf Hospital, Delft, The Netherlands
| |
Collapse
|
21
|
Pradhan R, George N, Mandal K, Agarwal A, Gupta SK. Endocrine Manifestations of Von Hippel-Landau Disease. Indian J Endocrinol Metab 2019; 23:159-164. [PMID: 31016171 PMCID: PMC6446673 DOI: 10.4103/ijem.ijem_252_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Von Hippel-Lindau (VHL) disease is an autosomal dominant disorder characterized by various endocrine, nonendocrine, benign, and malignant tumors in various organs. VHL tumor suppressor gene, located on short arm of chromosome 3 is responsible for this. Pheochromocytoma (PCC) is one of the important endocrine manifestations that needs to be ruled out in case of VHL suspicion. In this review, we summarize the endocrine manifestations of VHL disease and their management while giving case history of five such cases.
Collapse
Affiliation(s)
- Roma Pradhan
- Department of Endocrine Surgery, Dr. RMLIMS, Lucknow, Uttar Pradesh, India
| | - Nelson George
- Department of Endocrine Surgery, SGPGIMS, Lucknow, Uttar Pradesh, India
| | - Kaushik Mandal
- Department of Genetics, SGPGIMS, Lucknow, Uttar Pradesh, India
| | - Amit Agarwal
- Department of Endocrine Surgery, SGPGIMS, Lucknow, Uttar Pradesh, India
| | - Sushil K. Gupta
- Department of Endocrinology, SGPGIMS, Lucknow, Uttar Pradesh, India
| |
Collapse
|
22
|
Asa SL, Ezzat S, Mete O. The Diagnosis and Clinical Significance of Paragangliomas in Unusual Locations. J Clin Med 2018; 7:E280. [PMID: 30217041 PMCID: PMC6162705 DOI: 10.3390/jcm7090280] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 12/16/2022] Open
Abstract
Paragangliomas are neuroendocrine neoplasms, derived from paraganglia of the sympathetic and parasympathetic nervous systems. They are most commonly identified in the head and neck, being most frequent in the carotid body, followed by jugulotympanic paraganglia, vagal nerve and ganglion nodosum, as well as laryngeal paraganglia. Abdominal sites include the well-known urinary bladder tumors that originate in the Organ of Zuckerkandl. However, other unusual sites of origin include peri-adrenal, para-aortic, inter-aortocaval, and paracaval retroperitoneal sites, as well as tumors in organs where they may not be expected in the differential diagnosis of neuroendocrine neoplasms, such as thyroid, parathyroid, pituitary, gut, pancreas, liver, mesentery, lung, heart and mediastinum. The distinction of these lesions from epithelial neuroendocrine neoplasms is critical for several reasons. Firstly, the determination of clinical and biochemical features is different from that used for epithelial neuroendocrine tumors. Secondly, the genetic implications are different, since paragangliomas/pheochromocytomas have the highest rate of germline susceptibility at almost 40%. Finally, the characterization of metastatic disease is unique in these highly syndromic lesions. In this review, we summarize updated concepts by outlining the spectrum of anatomic locations of paragangliomas, the importance of morphology in establishing the correct diagnosis, the clinical implications for management, and the impact of genetics on the distinction between multifocal primary tumors compared with malignant disease.
Collapse
Affiliation(s)
- Sylvia L Asa
- Department of Pathology, University Health Network, Toronto, ON M5G 2C4, Canada.
- Endocrine Oncology Site, Princess Margaret Cancer Center, Toronto, ON M5G 2MG, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Shereen Ezzat
- Endocrine Oncology Site, Princess Margaret Cancer Center, Toronto, ON M5G 2MG, Canada.
- Department of Medicine, Division of Endocrinology, University Health Network, Toronto, ON M5G 2C4, Canada.
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Ozgur Mete
- Department of Pathology, University Health Network, Toronto, ON M5G 2C4, Canada.
- Endocrine Oncology Site, Princess Margaret Cancer Center, Toronto, ON M5G 2MG, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
23
|
Crespigio J, Berbel LCL, Dias MA, Berbel RF, Pereira SS, Pignatelli D, Mazzuco TL. Von Hippel-Lindau disease: a single gene, several hereditary tumors. J Endocrinol Invest 2018; 41:21-31. [PMID: 28589383 DOI: 10.1007/s40618-017-0683-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 04/30/2017] [Indexed: 12/27/2022]
Abstract
The Von Hippel-Lindau (VHL) disease is an autosomal dominant disorder characterized by the predisposition for multiple tumors caused by germline mutations in the tumor suppressor gene VHL. This disease is associated with a high morbidity and mortality and presents a variable expression, with different phenotypes from family to family, affecting different organs during the lifetime. The main manifestations of VHL are hemangioblastomas of the central nervous system and retina, renal carcinomas and cysts, bilateral pheochromocytomas, cystic and solid tumors of the pancreas, cystadenomas of the epididymis, and endolymphatic sac tumors. The discovery of any of the syndrome components should raise suspicion of this disease and other stigmas must then be investigated. Due to the complexities associated with management of the various VHL manifestation, the diagnosis and the follow-up of this syndrome is a challenge in the clinical practice and a multidisciplinary approach is needed. The particular relevance to endocrinologists is the detection of pheochromocytomas in 35% and islet cell tumors in 17% of VHL patients, which can be associated with hypertension, hypoglycemia, cardiac arrhythmias, and carcinoid syndrome. The purpose of this review is to define the Von Hippel-Lindau syndrome addressing its clinical aspects and classification, the importance of genetic counseling and to propose a protocol for clinical follow-up.
Collapse
Affiliation(s)
- J Crespigio
- Endocrine Interactions Research Group, Diretório dos Grupos de Pesquisa no Brasil (DGP/CNPq), Londrina, Brazil
- Post-graduation Program of Health Sciences, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | - L C L Berbel
- Endocrine Interactions Research Group, Diretório dos Grupos de Pesquisa no Brasil (DGP/CNPq), Londrina, Brazil
- Post-graduation Program of Health Sciences, Universidade Estadual de Londrina (UEL), Londrina, Brazil
- Division of Endocrinology of Medical Clinical Department, University Hospital, UEL, Londrina, Brazil
| | - M A Dias
- Endocrine Interactions Research Group, Diretório dos Grupos de Pesquisa no Brasil (DGP/CNPq), Londrina, Brazil
| | - R F Berbel
- Post-graduation Program of Health Sciences, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | - S S Pereira
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Clinical and Experimental Endocrinology, Department of Anatomy, Multidisciplinary Unit for Biomedical Research (UMIB), ICBAS, University of Porto, Porto, Portugal
| | - D Pignatelli
- Endocrine Interactions Research Group, Diretório dos Grupos de Pesquisa no Brasil (DGP/CNPq), Londrina, Brazil.
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.
- Department of Endocrinology, Hospital S.João, Porto, Portugal.
| | - T L Mazzuco
- Endocrine Interactions Research Group, Diretório dos Grupos de Pesquisa no Brasil (DGP/CNPq), Londrina, Brazil
- Post-graduation Program of Health Sciences, Universidade Estadual de Londrina (UEL), Londrina, Brazil
- Division of Endocrinology of Medical Clinical Department, University Hospital, UEL, Londrina, Brazil
| |
Collapse
|
24
|
Abstract
Pathologists use immunohistochemistry is their day-to-day practices to assist in distinguishing site of origin of metastatic carcinomas. Here, the work-up is discussed neuroendocrine carcinomas, squamous cell carcinomas and adenocarcinomas with particular attention to tumor incident rates and predictive values of the best-performing immunohistochemical markers.
Collapse
Affiliation(s)
- Edward B Stelow
- Department of Pathology, University of Virginia, Charlottesville, VA, United States.
| | - Hadi Yaziji
- Vitro Molecular Laboratories, Miami, FL, United States
| |
Collapse
|
25
|
Dos Santos Borrego A, Carrilho Ferreira P, Pinto FJ. Acute type A aortic dissection in a patient with paraganglioma. Rev Port Cardiol 2017; 36:777.e1-777.e6. [PMID: 29050867 DOI: 10.1016/j.repc.2016.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/16/2016] [Indexed: 12/28/2022] Open
Abstract
Acute aortic dissection is the most common acute aortic syndrome. It is more prevalent in males and in the elderly, and has a high mortality. Hypertension is the main risk factor. Diagnosis is based on clinical features, laboratory tests and imaging exams. Treatment is usually surgical, although in some cases an endovascular approach is an alternative. Paraganglioma is an uncommon neuroendocrine tumor. Most produce catecholamines, and so usually manifest with hypertensive crisis, palpitations, headache and sweating. This tumor is diagnosed by measurement of plasma or urinary catecholamines and by computed tomography, magnetic resonance imaging and 123I-metaiodobenzylguanidine (MIBG) scintigraphy. Surgery is the only potentially curative treatment.
Collapse
Affiliation(s)
| | - Pedro Carrilho Ferreira
- Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal; Serviço de Cardiologia, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa, Portugal
| | - Fausto J Pinto
- Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal; Serviço de Cardiologia, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa, Portugal; Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| |
Collapse
|
26
|
Borrego A, Carrilho Ferreira P, Pinto FJ. Acute type A aortic dissection in a patient with paraganglioma. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2017. [DOI: 10.1016/j.repce.2017.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
27
|
Pinato DJ, Black JR, Trousil S, Dina RE, Trivedi P, Mauri FA, Sharma R. Programmed cell death ligands expression in phaeochromocytomas and paragangliomas: Relationship with the hypoxic response, immune evasion and malignant behavior. Oncoimmunology 2017; 6:e1358332. [PMID: 29147618 PMCID: PMC5674959 DOI: 10.1080/2162402x.2017.1358332] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 12/23/2022] Open
Abstract
The hypoxic response underlies the pathogenesis and malignant behavior of PCC/PGL. Regulation of PD-1 receptor-ligand signaling, a therapeutically actionable driver of the anti-tumor immune response, is a hypoxic-driven trait across malignancies. We evaluated the prognostic role of PD ligands in association with biomarkers of hypoxia and angiogenesis in patients with PCC/PGL. Tissue microarrays sections including consecutive cases diagnosed between 1983–2011 were stained for PD-L1 and 2, hypoxia inducible factor 1a (Hif-1a), Carbonic Anhydrase IX (CaIX), Vascular Endothelial Growth Factor-A (VEGF-A). We explored the biologic significance of PD ligands expression using gene set enrichment analysis (GSEA) on The Cancer Genome Atlas (TCGA) for PCC/PGL (n = 184). In total, 100 patients, 10% malignant, 64% PCC, 29% familial with median tumor size of 4.7 cm (range 1–14) were included. Median follow-up was 4.7 y. We found PD-L1 expression in 18% of PCC/PGL, which was independent of adverse pathological features including capsular (CI), vascular invasion (VI), necrosis (N) and expression of biomarkers of hypoxia. PD-L2 expression (16%) strongly correlated with CI, VI, N and malignant behavior (p < 0.05) and was associated with stronger Hif-1a and CaIX immunolabeling (p < 0.01). PD-L2 was predictive of shorter survival (162 versus 309 months, HR 3.1 95%CI 1.1–9.2, p = 0.02). GSEA on TGCA samples confirmed enrichment of transcripts involved in hypoxia and anti-cancer immunity. We report for the first time PD ligands expression in PCC/PGL with a distinctive prognostic, clinico-pathologic and immuno-biologic role. These findings support a potential therapeutic role for PD-1/PD-L1 targeted checkpoint inhibitors in these tumors. KEY MESSAGE The molecular mechanisms underlying immune evasion in malignant phaeochromocytomas and paragangliomas (PCC/PGL) are poorly understood. This study demonstrates for the first time a distinctive immune-biologic and prognostic role of programmed death ligands 1 and 2 (PD-L1, PD-L2), two actionable drivers of the anti-cancer immune response. RNA-sequencing of tumor tissues reveals enrichment of transcripts relating to hypoxia and immune-exhaustion to explain the adverse clinical course observed in PD-L2 overexpressing tumors. These findings provide a rationale for the development of anti PD-1 therapies in malignant PCC/PGL.
Collapse
Affiliation(s)
- David J Pinato
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS London, UK
| | - James R Black
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS London, UK
| | - Sebastian Trousil
- Cutaneous Biology Research Centre, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Roberto E Dina
- Department of Histopathology, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS London, UK
| | - Pritesh Trivedi
- Department of Histopathology, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS London, UK
| | - Francesco A Mauri
- Department of Histopathology, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS London, UK
| | - Rohini Sharma
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS London, UK
| |
Collapse
|
28
|
Pinato DJ, Black JRM, Ramaswami R, Tan TM, Adjogatse D, Sharma R. Peptide receptor radionuclide therapy for metastatic paragangliomas. Med Oncol 2016; 33:47. [DOI: 10.1007/s12032-016-0737-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 01/27/2016] [Indexed: 12/26/2022]
|
29
|
Sampedro-Núñez M, Luque RM, Ramos-Levi AM, Gahete MD, Serrano-Somavilla A, Villa-Osaba A, Adrados M, Ibáñez-Costa A, Martín-Pérez E, Culler MD, Marazuela M, Castaño JP. Presence of sst5TMD4, a truncated splice variant of the somatostatin receptor subtype 5, is associated to features of increased aggressiveness in pancreatic neuroendocrine tumors. Oncotarget 2016; 7:6593-608. [PMID: 26673010 PMCID: PMC4872735 DOI: 10.18632/oncotarget.6565] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/21/2015] [Indexed: 12/13/2022] Open
Abstract
Purpose Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are rare and heterogeneous tumors, and their biological behavior is not well known. We studied the presence and potential functional roles of somatostatin receptors (sst1-5), focusing particularly on the truncated variants (sst5TMD4, sst5TMD5) and on their relationships with the angiogenic system (Ang/Tie-2 and VEGF) in human GEP-NETs. Experimental Design We evaluated 42 tumor tissue samples (26 primary/16 metastatic) from 26 patients with GEP-NETs, and 30 non-tumoral tissues (26 from adjacent non-tumor regions and 4 from normal controls) from a single center. Expression of sst1-5, sst5TMD4, sst5TMD5, Ang1-2, Tie-2 and VEGF was analyzed using real-time qPCR, immunofluorescence and immunohistochemistry. Expression levels were associated with tumor characteristics and clinical outcomes. Functional role of sst5TMD4 was analyzed in GEP-NET cell lines. Results sst1 exhibited the highest expression in GEP-NET, whilst sst2 was the most frequently observed sst-subtype (90.2%). Expression levels of sst1, sst2, sst3, sst5TMD4, and sst5TMD5 were significantly higher in tumor tissues compared to their adjacent non-tumoral tissue. Lymph-node metastases expressed higher levels of sst5TMD4 than in its corresponding primary tumor tissue. sst5TMD4 was also significantly higher in intestinal tumor tissues from patients with residual disease of intestinal origin compared to those with non-residual disease. Functional assays demonstrated that the presence of sst5TMD4 was associated to enhanced malignant features in GEP-NET cells. Angiogenic markers correlated positively with sst5TMD4, which was confirmed by immunohistochemical/fluorescence studies. Conclusions sst5TMD4 is overexpressed in GEP-NETs and is associated to enhanced aggressiveness, suggesting its potential value as biomarker and target in GEP-NETs.
Collapse
Affiliation(s)
- Miguel Sampedro-Núñez
- Department of Endocrinology and Nutrition, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, Madrid 28006, Spain
| | - Raúl M Luque
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofia, and CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba 14014, Spain
| | - Ana M Ramos-Levi
- Department of Endocrinology and Nutrition, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, Madrid 28006, Spain
| | - Manuel D Gahete
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofia, and CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba 14014, Spain
| | - Ana Serrano-Somavilla
- Department of Endocrinology and Nutrition, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, Madrid 28006, Spain
| | - Alicia Villa-Osaba
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofia, and CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba 14014, Spain
| | - Magdalena Adrados
- Department of Endocrinology and Nutrition, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, Madrid 28006, Spain
| | - Alejandro Ibáñez-Costa
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofia, and CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba 14014, Spain
| | - Elena Martín-Pérez
- Department of Endocrinology and Nutrition, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, Madrid 28006, Spain
| | | | - Mónica Marazuela
- Department of Endocrinology and Nutrition, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, Madrid 28006, Spain
| | - Justo P Castaño
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofia, and CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba 14014, Spain
| |
Collapse
|
30
|
Blanchet EM, Taieb D, Millo C, Martucci V, Chen CC, Merino M, Herscovitch P, Pacak K. 18F-FLT PET/CT in the Evaluation of Pheochromocytomas and Paragangliomas: A Pilot Study. J Nucl Med 2015; 56:1849-54. [PMID: 26359261 DOI: 10.2967/jnumed.115.159061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/23/2015] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED (18)F-FDG PET/CT has been proven to be a highly sensitive method for pheochromocytomas/paragangliomas (PHEOs/PGLs) associated with succinate dehydrogenase (SDH) mutations. This finding has been attributed to altered tumor cell metabolism resulting from these mutations and does not provide additional prognostic information to genotype. Therefore, identification of new biomarkers for aggressiveness is needed. A high Ki-67 index was proposed to be an additional prognostic factor. This pilot study aimed to evaluate 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) PET/CT, a PET proliferation tracer, as a potential imaging agent in a series of 12 PHEO/PGL patients with different genetic backgrounds, to compare (18)F-FLT uptake with (18)F-FDG PET/CT, and to evaluate classic factors of aggressiveness. METHODS Twelve patients (7 metastatic and 5 nonmetastatic) were prospectively evaluated with (18)F-FDG and (18)F-FLT and followed for at least 2 y after the initial imaging work-up. Uptake was assessed at a lesion level, visually and quantitatively by maximum standardized uptake values (SUVmax) for both tracers. (18)F-FLT uptake was compared with risk factors known to be linked with a poor prognosis in PGLs (SDHB-mutated status, lesion size, dopaminergic phenotype) and with (18)F-FDG uptake. RESULTS In 12 patients, 77 lesions were assessed. All lesions had low (18)F-FLT uptake (median SUVmax, 2.25; range, 0.7-4.5). There was no apparent superiority of (18)F-FLT uptake in progressive lesions, and most of the lesions showed a mismatch, with high (18)F-FDG uptake (median SUVmax, 10.8; range, 1.1-79.0) contrasting with low (18)F-FLT uptake. CONCLUSION This study suggests that PHEOs/PGLs-even those that progress-do not exhibit intense (18)F-FLT uptake. It provides the first in vivo demonstration that proliferation may not be a major determinant of (18)F-FDG uptake in these tumors. These findings provide new insight into the biologic behavior of PGL and suggest that antiproliferative agents may be suboptimal for treatment of these tumors.
Collapse
Affiliation(s)
- Elise M Blanchet
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland
| | - David Taieb
- La Timone University Hospital, European Center for Research in Medical Imaging, Aix-Marseille University, Marseille, France
| | - Corina Millo
- Positron Emission Tomography Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Victoria Martucci
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland
| | - Clara C Chen
- Nuclear Medicine Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland; and
| | - Maria Merino
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Peter Herscovitch
- Positron Emission Tomography Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Karel Pacak
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
31
|
Pheochromocytomas and Paragangliomas: An Update on Recent Molecular Genetic Advances and Criteria for Malignancy. Adv Anat Pathol 2015; 22:283-93. [PMID: 26262510 DOI: 10.1097/pap.0000000000000086] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pheochromocytomas are uncommon neuroendocrine tumors arising in the adrenal medulla, whereas paragangliomas arise from chromaffin cells in sympathetic and parasympathetic locations outside of the adrenal gland. Molecular genetic studies in the past few years have identified >10 genes involved in the pathogenesis of pheochromocytomas and paragangliomas, including RET oncogene, involved in the pathogenesis of multiple endocrine neoplasia (MEN) 2A and 2B, von Hippel-Lindau tumor-suppressor gene, neurofibromatosis type 1 gene, succinate dehydrogenase, THEM127, and several others. The presence of genetic alterations in some of these genes such as in MEN 2A and 2B can be used to diagnose these disorders clinically, and other mutations such as succinate dehydrogenase can be used in the pathologic prediction of benign and malignant pheochromocytomas and paragangliomas. Although it has been difficult to separate benign and malignant pheochromocytomas and paragangliomas, recent studies that may predict the behavior of these chromaffin-derived neoplasms have been reported. The Pheochromocytoma of the Adrenal Scale Score and the Grading system for Adrenal Pheochromocytoma and Paraganglioma scoring system are also discussed.
Collapse
|
32
|
Abstract
von Hippel-Lindau (VHL) disease is an autosomal dominant disorder caused by heterozygous mutations in the VHL tumor suppressor gene that is characterized by the occurrence of multiple endocrine and nonendocrine lesions. This review focuses on the endocrine manifestations of VHL disease. Pancreatic neuroendocrine proliferations (ductuloinsular complexes, islet dysplasia, endocrine microadenoma, and neuroendocrine tumors), pheochromocytomas, and extra-adrenal paragangliomas are important endocrine manifestations of VHL disease. They frequently display characteristic clinical, biochemical, and histopathologic features that, although not pathognomonic, can be helpful in suggesting VHL disease as the underlying etiology and distinguishing these tumors from sporadic cases. Recent improvements in treatment and outcomes of renal cell carcinomas have allowed pancreatic neuroendocrine tumors to emerge as a significant source of metastatic disease, making the accurate recognition and classification of these neoplasms by the pathologist of utmost importance to determine prognosis, treatment, and follow-up strategies for affected patients.
Collapse
Affiliation(s)
- Clarissa Cassol
- From the Department of Pathology, University Health Network, Toronto, Ontario, Canada, and the Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
33
|
Membrane carbonic anhydrase IX expression and relapse risk in resected stage I-II non-small-cell lung cancer. J Thorac Oncol 2015; 9:675-84. [PMID: 24662455 DOI: 10.1097/jto.0000000000000148] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Adjuvant chemotherapy reduces recurrences of non-small-cell lung cancer (NSCLC). To determine which patients need adjuvant chemotherapy, we assessed factors associated with time to relapse (TTR). METHODS In 230 resected stage I-II NSCLCs, we correlated immunohistochemistry scores for factors associated with cell growth rate, growth regulation, hypoxia, cell survival, and cell death with TTR. RESULTS With a median follow-up of 82 months (1-158) for those alive and relapse free at last follow-up, median time to recurrence was not reached. The 2- and 5-year probabilities of maintaining freedom from recurrence were 80.7% (95% confidence interval, 75.3%, 86.4%) and 74.6% (95% confidence interval, 68.6%, 81.2%), respectively. TTR curves flattened at an apparent cure rate of 70%. In multicovariate Cox models, factors correlating with shorter TTR were membranous carbonic anhydrase IX (mCAIX) staining (any versus none, hazard ratio = 2.083, p = 0.023) and node stage (N1 versus N0, hazard ratio = 2.591, p = 0.002). mCAIX scores correlated positively with tumor size, grade, squamous histology, necrosis, mitoses, Ki67, p53, nuclear DNA methyltransferase 1, and cytoplasmic enhancer-of-split-and-hairy-related protein, and they correlated inversely with papillary histology, epidermal growth factor receptor mutation (trend), copper transporter-1, and cytoplasmic hypoxia-inducible factor-1α, vascular endothelial growth factor, DNA methyltransferase 1, and excision repair cross-complementing rodent repair deficiency, complementation group 1. CONCLUSION Nodal stage and mCAIX immunohistochemistry were the strongest independent predictors of shorter TTR in resected NSCLCs. mCAIX correlated with tumor size, markers of tumor proliferation and necrosis, and tumor genetic characteristics, and it paradoxically correlated inversely with the hypoxia markers, hypoxia-inducible factor-1α and vascular endothelial growth factor. Presence of mCAIX could help determine patients with high risk of recurrence who might require adjuvant chemotherapy.
Collapse
|
34
|
Trousil S, Lee P, Pinato DJ, Ellis JK, Dina R, Aboagye EO, Keun HC, Sharma R. Alterations of choline phospholipid metabolism in endometrial cancer are caused by choline kinase alpha overexpression and a hyperactivated deacylation pathway. Cancer Res 2014; 74:6867-77. [PMID: 25267063 DOI: 10.1158/0008-5472.can-13-2409] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Metabolic rearrangements subsequent to malignant transformation are not well characterized in endometrial cancer. Identification of altered metabolites could facilitate imaging-guided diagnosis, treatment surveillance, and help to identify new therapeutic options. Here, we used high-resolution magic angle spinning magnetic resonance mass spectroscopy on endometrial cancer surgical specimens and normal endometrial tissue to investigate the key modulators that might explain metabolic changes, incorporating additional investigations using qRT-PCR, Western blotting, tissue microarrays (TMA), and uptake assays of [(3)H]-labeled choline. Lipid metabolism was severely dysregulated in endometrial cancer with various amino acids, inositols, nucleobases, and glutathione also altered. Among the most important lipid-related alterations were increased phosphocholine levels (increased 70% in endometrial cancer). Mechanistic investigations revealed that changes were not due to altered choline transporter expression, but rather due to increased expression of choline kinase α (CHKA) and an activated deacylation pathway, as indicated by upregulated expression of the catabolic enzymes LYPLA1, LYPLA2, and GPCPD1. We confirmed the significance of CHKA overexpression on a TMA, including a large series of endometrial hyperplasia, atypical hyperplasia, and adenocarcinoma tissues, supporting a role for CHKA in malignant transformation. Finally, we documented several-fold increases in the uptake of [(3)H]choline in endometrial cancer cell lines compared with normal endometrial stromal cells. Our results validate deregulated choline biochemistry as an important source of noninvasive imaging biomarkers for endometrial cancer.
Collapse
Affiliation(s)
- Sebastian Trousil
- Comprehensive Cancer Imaging Centre at Imperial College, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Patrizia Lee
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom. Department of Experimental Medicine, Imperial College London, London, United Kingdom
| | - David J Pinato
- Department of Experimental Medicine, Imperial College London, London, United Kingdom
| | - James K Ellis
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Roberto Dina
- Department of Pathology, Imperial College NHS Trust, London, United Kingdom
| | - Eric O Aboagye
- Comprehensive Cancer Imaging Centre at Imperial College, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Hector C Keun
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Rohini Sharma
- Department of Experimental Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
35
|
Taïeb D, Kaliski A, Boedeker CC, Martucci V, Fojo T, Adler JR, Pacak K. Current approaches and recent developments in the management of head and neck paragangliomas. Endocr Rev 2014; 35:795-819. [PMID: 25033281 PMCID: PMC4167435 DOI: 10.1210/er.2014-1026] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Head and neck paragangliomas (HNPGLs) are rare neuroendocrine tumors belonging to the family of pheochromocytoma/paraganglioma neoplasms. Despite advances in understanding the pathogenesis of these tumors, the growth potential and clinical outcome of individual cases remains largely unpredictable. Over several decades, surgical resection has long been the treatment of choice for HNPGLs. However, increasing experience in various forms of radiosurgery has been reported to result in curative-like outcomes, even for tumors localized in the most inaccessible anatomical areas. The emergence of such new therapies challenges the traditional paradigm for the management of HNPGLs. This review will assist and guide physicians who encounter patients with such tumors, either from a diagnostic or therapeutic standpoint. This review will also particularly emphasize current and emerging knowledge in genetics, imaging, and therapeutic options as well as the health-related quality of life for patients with HNPGLs.
Collapse
Affiliation(s)
- David Taïeb
- Department of Nuclear Medicine (D.T.), La Timone University Hospital, CERIMED, Aix-Marseille Univ, F-13385 Marseille, France; Department of Radiation Oncology (A.K.), Besançon University Hospital, F-25030 Besançon, France; Department of Otorhinolaryngology/Head and Neck Surgery (C.C.B.), HELIOS Hanseklinikum Stralsund, D-18435 Stralsund, Germany; Department of Otorhinolaryngology/Head and Neck Surgery (C.C.B.), University Hospital, Freiburg, Germany; Program in Reproductive and Adult Endocrinology (V.M., K.P.), Eunice Kennedy Shriver National Institute of Child Health and Human Development and Medical Oncology Branch (T.F.), National Institutes of Health, Bethesda, Maryland 20892; Department of Neurosurgery (J.R.A.), Stanford Hospital and Clinics, Stanford University, Stanford, California 94305
| | | | | | | | | | | | | |
Collapse
|
36
|
Hodin R, Lubitz C, Phitayakorn R, Stephen A. Diagnosis and management of pheochromocytoma. Curr Probl Surg 2014; 51:151-87. [DOI: 10.1067/j.cpsurg.2013.12.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 12/27/2013] [Indexed: 12/21/2022]
|
37
|
Pinato DJ, Tan TM, Toussi STK, Ramachandran R, Martin N, Meeran K, Ngo N, Dina R, Sharma R. An expression signature of the angiogenic response in gastrointestinal neuroendocrine tumours: correlation with tumour phenotype and survival outcomes. Br J Cancer 2013; 110:115-22. [PMID: 24231952 PMCID: PMC3887289 DOI: 10.1038/bjc.2013.682] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/30/2013] [Accepted: 10/08/2013] [Indexed: 01/16/2023] Open
Abstract
Background: Gastroenteropancreatic neuroendocrine tumours (GEP-NETs) are heterogeneous with respect to biological behaviour and prognosis. As angiogenesis is a renowned pathogenic hallmark as well as a therapeutic target, we aimed to investigate the prognostic and clinico-pathological role of tissue markers of hypoxia and angiogenesis in GEP-NETs. Methods: Tissue microarray (TMA) blocks were constructed with 86 tumours diagnosed from 1988 to 2010. Tissue microarray sections were immunostained for hypoxia inducible factor 1α (Hif-1α), vascular endothelial growth factor-A (VEGF-A), carbonic anhydrase IX (Ca-IX) and somatostatin receptors (SSTR) 1–5, Ki-67 and CD31. Biomarker expression was correlated with clinico-pathological variables and tested for survival prediction using Kaplan–Meier and Cox regression methods. Results: Eighty-six consecutive cases were included: 51% male, median age 51 (range 16–82), 68% presenting with a pancreatic primary, 95% well differentiated, 51% metastatic. Higher grading (P=0.03), advanced stage (P<0.001), high Hif-1α and low SSTR-2 expression (P=0.03) predicted for shorter overall survival (OS) on univariate analyses. Stage, SSTR-2 and Hif-1α expression were confirmed as multivariate predictors of OS. Median OS for patients with SSTR-2+/Hif-1α-tumours was not reached after median follow up of 8.8 years, whereas SSTR-2-/Hif-1α+ GEP-NETs had a median survival of only 4.2 years (P=0.006). Conclusion: We have identified a coherent expression signature by immunohistochemistry that can be used for patient stratification and to optimise treatment decisions in GEP-NETs independently from stage and grading. Tumours with preserved SSTR-2 and low Hif-1α expression have an indolent phenotype and may be offered less aggressive management and less stringent follow up.
Collapse
Affiliation(s)
- D J Pinato
- Division of Experimental Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS London, UK
| | - T M Tan
- Department of Endocrinology, Imperial College London, Hammersmith Campus, Du Cane Road, W120HS London, UK
| | - S T K Toussi
- Division of Experimental Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS London, UK
| | - R Ramachandran
- Department of Endocrinology, Imperial College London, Hammersmith Campus, Du Cane Road, W120HS London, UK
| | - N Martin
- Department of Endocrinology, Imperial College London, Hammersmith Campus, Du Cane Road, W120HS London, UK
| | - K Meeran
- Department of Endocrinology, Imperial College London, Hammersmith Campus, Du Cane Road, W120HS London, UK
| | - N Ngo
- Department of Pathology, Imperial College London, Hammersmith Campus, Du Cane Road, W120HS London, UK
| | - R Dina
- Department of Pathology, Imperial College London, Hammersmith Campus, Du Cane Road, W120HS London, UK
| | - R Sharma
- Division of Experimental Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, W120HS London, UK
| |
Collapse
|