1
|
Rapanotti MC, Cugini E, Scioli MG, Cenci T, Anzillotti S, Puzzuoli M, Terrinoni A, Ferlosio A, De Luca A, Orlandi A. The Clinical Relevance of Epithelial-to-Mesenchymal Transition Hallmarks: A Cut-Off-Based Approach in Healthy and Cancerous Cell Lines. Int J Mol Sci 2025; 26:3617. [PMID: 40332096 PMCID: PMC12026647 DOI: 10.3390/ijms26083617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
The atypical activation of the epithelial-to-mesenchymal transition represents one of the main mechanisms driving cancer cell dissemination. It enables epithelial cancer cells to detach from the primary tumor mass and gain survival advantages in the bloodstream, significantly contributing to the spread of circulating tumor cells. Notably, epithelial-to-mesenchymal transition is not a binary process but rather leads to the formation of a wide range of cell subpopulations characterized by the simultaneous expression of both epithelial and mesenchymal markers. Therefore, analyzing the modulation of EMT hallmarks during the conversion from healthy cells to metastatic cancer cells, which acquire stem mesenchymal characteristics, is of particular interest. This study investigates the expression of a panel of epithelial-to-mesenchymal transition-related genes in healthy cells, primary and metastatic cancer cells, and in mesenchymal cell lines, derived from various tissues, including the lung, colon, pancreas, skin, and neuro-ectoderm, with the aim of identifying potential cut-off values for assessing cancer aggressiveness. Interestingly, we found that the expression levels of CDH1, which encodes the epithelial marker E-cadherin, CDH5, encoding vascular endothelial cadherin, and the epithelial-to-mesenchymal transition-transcription factor ZEB1, effectively distinguished primary from metastatic cancer cells. Additionally, our data suggest a tissue-specific signature in the modulation of epithelial-to-mesenchymal transition markers during cancer progression. Overall, our results underscore the importance of investigating epithelial-to-mesenchymal transition as a tissue-specific process to identify the most suitable markers acting as potential indicators of disease aggressiveness and therapeutic responsiveness.
Collapse
Affiliation(s)
- Maria Cristina Rapanotti
- Anatomic Pathology, Department of Integrated Care Processes, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy (M.G.S.); (T.C.); (S.A.); (M.P.); (A.F.); (A.O.)
| | - Elisa Cugini
- Anatomic Pathology, Department of Integrated Care Processes, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy (M.G.S.); (T.C.); (S.A.); (M.P.); (A.F.); (A.O.)
- Department of Laboratory Medicine, Tor Vergata University Hospital, 00133 Rome, Italy;
| | - Maria Giovanna Scioli
- Anatomic Pathology, Department of Integrated Care Processes, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy (M.G.S.); (T.C.); (S.A.); (M.P.); (A.F.); (A.O.)
| | - Tonia Cenci
- Anatomic Pathology, Department of Integrated Care Processes, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy (M.G.S.); (T.C.); (S.A.); (M.P.); (A.F.); (A.O.)
| | - Silvia Anzillotti
- Anatomic Pathology, Department of Integrated Care Processes, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy (M.G.S.); (T.C.); (S.A.); (M.P.); (A.F.); (A.O.)
| | - Martina Puzzuoli
- Anatomic Pathology, Department of Integrated Care Processes, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy (M.G.S.); (T.C.); (S.A.); (M.P.); (A.F.); (A.O.)
| | - Alessandro Terrinoni
- Department of Laboratory Medicine, Tor Vergata University Hospital, 00133 Rome, Italy;
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Amedeo Ferlosio
- Anatomic Pathology, Department of Integrated Care Processes, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy (M.G.S.); (T.C.); (S.A.); (M.P.); (A.F.); (A.O.)
| | - Anastasia De Luca
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Augusto Orlandi
- Anatomic Pathology, Department of Integrated Care Processes, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy (M.G.S.); (T.C.); (S.A.); (M.P.); (A.F.); (A.O.)
| |
Collapse
|
2
|
Owczarek K, Caban M, Sosnowska D, Kajszczak D, Lewandowska U. The Anti-Metastatic Potential of Aronia Leaf Extracts on Colon Cancer Cells. Nutrients 2024; 16:4110. [PMID: 39683504 DOI: 10.3390/nu16234110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Numerous studies have demonstrated the health benefits of polyphenols found in aronia fruits; however, little is known about how aronia leaf polyphenols impact colorectal cancer (CRC). This study aimed to evaluate the in vitro anti-metastatic and anti-invasive activity of crude aronia leaf extract (ACE) and purified phenolic-rich aronia leaf extract (APE) against two CRC cell lines (SW-480 and HT-29). METHODS Migration and invasion potential of ACE and APE were evaluated. Moreover, ELISA and gelatin zymography were performed to detect translational and activity changes in CRC cells after aronia extracts treatment. RESULTS We found that a 100 µg/mL concentration of ACE and APE almost entirely downregulated the migration and invasion of SW-480 cells, showing greater effectiveness than HT-29 cells. The observed inhibition was concentration-dependent and statistically significant. Additionally, extracts reduced the product of MMP-2 and MMP-9 gene expression at the protein level and simultaneously inhibited the activity of both MMPs. An APE at 300 µg/mL for SW-480 and 600 µg/mL for HT-29 resulted in a notable reduction in MMP-2 protein synthesis by 72% and 50%, respectively. In contrast, MMP-9 protein synthesis decreased by 48% and 59% in HT-29 cells treated with 300 µg/mL and 600 µg/mL of ACE, respectively. The levels of gelatinase activity were similar for both CRC lines, and the APE tested at a concentration of 300 µg/mL reached almost the IC50 value after 48 h of incubation. CONCLUSIONS Based on the presented results, we provided an experimental foundation for future in vitro and in vivo studies on the potential effects and activities of aronia leaves.
Collapse
Affiliation(s)
- Katarzyna Owczarek
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| | - Miłosz Caban
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| | - Dorota Sosnowska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-530 Lodz, Poland
| | - Dominika Kajszczak
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-530 Lodz, Poland
| | - Urszula Lewandowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| |
Collapse
|
3
|
Wang Y, Wei Y, Huang J, Li X, You D, Wang L, Ma X. Prognostic value of matrix metalloproteinase-2 protein and matrix metalloproteinase-9 protein in colorectal cancer: a meta-analysis. BMC Cancer 2024; 24:1065. [PMID: 39210344 PMCID: PMC11360742 DOI: 10.1186/s12885-024-12775-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
INTRODUCTION Matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) are critical components of the extracellular matrix (ECM) in colorectal cancer (CRC). We aimed to evaluate the prognostic value of MMP-2 and MMP-9 in patients with CRC. METHODS We performed a meta-analysis of cohort studies with available data on the effect of MMP-2 and MMP-9 expression on both disease-free survival (DFS) and overall survival (OS) by the risk ratios (RRs) with their 95% confidence intervals (CIs). Studies were subgrouped based on the different tissue types, including cancer tissue and normal tissue, and the subgroup effect of MMP expression in different tissues was analyzed through meta-regression. To ensure the quality and reduce the risk of bias, the Newcastle‒Ottawa Scale (NOS) was used to assess the included studies. A sensitivity analysis was randomly performed to assess the potential impact of each study on our results. RESULTS Eighteen trials were selected (Table 1) and included a total of 3944 patients. According to our primary meta-analysis, the expression of MMP-2 was significantly associated with a decrease in OS (RR = 1.75, 95% CI = 1.34 to 2.29, P < 0.001) and DFS (RR = 2.62, 95% CI = 1.25 to 5.49, P < 0.001), and the expression of MMP-9 was not significantly associated with a decrease in OS (RR = 1.48, 95% CI = 0.97 to 2.24, P = 0.069) or DFS (RR = 1.60, 95% CI = 0.87 to 2.94, P = 0.133). According to the subgroup analysis of MMPs in different tissues, high MMP-2 expression in cancer tissue (RR = 1.90, 95% CI = 1.29 to 2.79) and normal tissue (RR = 1.59, 95% CI = 1.17 to 2.17) were significant indicators of poor OS. High MMP-2 expression in cancer tissue was significant indicator of poor DFS (RR = 2.12, 95% CI = 1.09 to 4.11). MMP-9 expression was also associated with poor OS (RR = 1.40, 95% CI = 0.85 to 2.29), but the difference in OS between the high and low expression groups was not statistically significant. CONCLUSIONS High MMP-2 expression, especially in cancer tissue, is significantly associated with both poor DFS and poor OS in patients with CRC. High MMP-9 expression tended to indicate a poor prognosis of CRC but the correlation was not significant.
Collapse
Affiliation(s)
- Yusha Wang
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuhao Wei
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Huang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, Sichuan, 610041, China
| | - Xinke Li
- West China Clinical Medical College of Sichuan University, Chengdu, Sichuan, China
| | - Diqing You
- Department of Hematology, School of Medicine UESTC, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Li Wang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Al-Ostoot FH, Salah S, Khanum SA. An Overview of Cancer Biology, Pathophysiological Development and It's Treatment Modalities: Current Challenges of Cancer anti-Angiogenic Therapy. Cancer Invest 2024; 42:559-604. [PMID: 38874308 DOI: 10.1080/07357907.2024.2361295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 11/22/2021] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
A number of conditions and factors can cause the transformation of normal cells in the body into malignant tissue by changing the normal functions of a wide range of regulatory, apoptotic, and signal transduction pathways. Despite the current deficiency in fully understanding the mechanism of cancer action accurately and clearly, numerous genes and proteins that are causally involved in the initiation, progression, and metastasis of cancer have been identified. But due to the lack of space and the abundance of details on this complex topic, we have emphasized here more recent advances in our understanding of the principles implied tumor cell transformation, development, invasion, angiogenesis, and metastasis. Inhibition of angiogenesis is a significant strategy for the treatment of various solid tumors, that essentially depend on cutting or at least limiting the supply of blood to micro-regions of tumors, leading to pan-hypoxia and pan-necrosis inside solid tumor tissues. Researchers have continued to enhance the efficiency of anti-angiogenic drugs over the past two decades, to identify their potential in the drug interaction, and to discover reasonable interpretations for possible resistance to treatment. In this review, we have discussed an overview of cancer history and recent methods use in cancer therapy, focusing on anti-angiogenic inhibitors targeting angiogenesis formation. Further, this review has explained the molecular mechanism of action of these anti-angiogenic inhibitors in various tumor types and their limitations use. In addition, we described the synergistic mechanisms of immunotherapy and anti-angiogenic therapy and summarizes current clinical trials of these combinations. Many phase III trials found that combining immunotherapy and anti-angiogenic therapy improved survival. Therefore, targeting the source supply of cancer cells to grow and spread with new anti-angiogenic agents in combination with different conventional therapy is a novel method to reduce cancer progression. The aim of this paper is to overview the varying concepts of cancer focusing on mechanisms involved in tumor angiogenesis and provide an overview of the recent trends in anti-angiogenic strategies for cancer therapy.
Collapse
Affiliation(s)
- Fares Hezam Al-Ostoot
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru, India
- Department of Biochemistry, Faculty of Education & Science, Albaydha University, Al-Baydha, Yemen
| | - Salma Salah
- Faculty of Medicine and Health Sciences, Thamar University, Dhamar, Yemen
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru, India
| |
Collapse
|
5
|
Deng X, Yang Z, Chan KW, Abu Bakar MZ. Exploring the Therapeutic Potential of 5-Fluorouracil-Loaded Calcium Carbonate Nanoparticles Combined with Natural Compound Thymoquinone for Colon Cancer Treatment. Pharmaceutics 2024; 16:1011. [PMID: 39204357 PMCID: PMC11360259 DOI: 10.3390/pharmaceutics16081011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Given the need for novel and effective therapies for colon cancer, this study aimed to investigate the effects of 5-fluorouracil-loaded calcium carbonate nanoparticles (5FU-CaCO3np) combined with thymoquinone (TQ) against colon cancer. A shaking incubator and a high-speed homogenizer were used to prepare the optimal 5FU-CaCO3np, with characterizations of physicochemical properties, in vitro drug release profile, and biocompatibility. In vitro experiments and molecular docking were employed to evaluate the therapeutic potential of the combination for colon cancer treatment. Study results revealed that 5FU-CaCO3np with a size of approximately 130 nm was synthesized using the high-speed homogenizer. Its favorable biocompatibility, pH sensitivity, and sustained release properties facilitated reduced toxic side effects of 5-FU on NIH3T3 normal cells and enhanced inhibitory effects on CT26 colon cancer cells. The combination of 5FU-CaCO3np (1.875 μM) and TQ (30 μM) showed significantly superior anti-colon cancer effects to 5FU-CaCO3np alone in terms of cell proliferation and migration inhibition, cell apoptosis induction, and spheroid growth suppression in CT26 cells (p < 0.05), with strong interactions between the drugs and targets (E-cadherin, Bcl-2, PCNA, and MMP-2). These results provide evidence for 5FU-CaCO3np as a novel regimen against colon cancer. Combining 5FU-CaCO3np and TQ may offer a new perspective for colon cancer therapy.
Collapse
Affiliation(s)
- Xi Deng
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (X.D.); (Z.Y.); (K.W.C.)
| | - Zhongming Yang
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (X.D.); (Z.Y.); (K.W.C.)
| | - Kim Wei Chan
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (X.D.); (Z.Y.); (K.W.C.)
| | - Md Zuki Abu Bakar
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (X.D.); (Z.Y.); (K.W.C.)
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
6
|
Večurkovská I, Stupák M, Kaťuchová J, Roškovičová V, Mašlanková J. Comparative analysis of matrix metalloproteinases by zymography in patients with colorectal carcinoma. Physiol Res 2023; 72:S593-S596. [PMID: 38165763 PMCID: PMC10861259 DOI: 10.33549/physiolres.935228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/13/2023] [Indexed: 02/01/2024] Open
Abstract
Zymography is an electrophoretic method in which proteins are separated in a polyacrylamide gel in the presence of sodium dodecyl sulfate (SDS-PAGE). This method is used for the detection of enzymatic activity and molecular characterization of proteins. In contrast to the standard SDS-PAGE method, a substrate is incorporated into the gel during zymography, which is subsequently cleaved by target proteases. Many studies have focused on the development and progression of inflammatory diseases affecting the gastrointestinal tract, emphasizing the role of the largest group of proteases, matrix metalloproteinases (MMPs). The most used classification of this group of enzymes (by researchers in MMP biology) is based in part on the historical evaluation of the substrate specificity of MMPs and in part on the cellular localization of MMPs. MMPs are thus classified into the groups of collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs (MT-MMPs), and others. An important group of MMPs are gelatinases which are involved in the breakdown of collagen type IV and gelatin of extracellular matrix and participate in the regulation of various physiological or pathological processes such as morphogenesis, angiogenesis, tissue repair, cirrhosis, arthritis, and metastasis. The present study's objective was to determine the amount of active MMP-9 and MMP-2 forms in tissue samples using zymography. The patient group was according to histology findings divided into the benign tumor (control) group (8 patients), and the malignant tumor group (24 patients). The respondents in the malignant tumor group were further divided according to the standard TNM classification. The results of this study confirmed that MMP-2, unlike MMP-9, can be used as a prognostic biomarker of CRC, because only the expression of active MMP-2 confirmed statistically significant differences between individual stages of CRC. Moreover, MMP-2 seems to play a more important role in higher stages of CRC. Substantial disparities in the determination of active MMPs between the observed groups support the assumption for the integration of zymography into clinical diagnostics of CRC together with molecular and other studies.
Collapse
Affiliation(s)
- I Večurkovská
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic.
| | | | | | | | | |
Collapse
|
7
|
He L, Kang Q, Chan KI, Zhang Y, Zhong Z, Tan W. The immunomodulatory role of matrix metalloproteinases in colitis-associated cancer. Front Immunol 2023; 13:1093990. [PMID: 36776395 PMCID: PMC9910179 DOI: 10.3389/fimmu.2022.1093990] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 01/22/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are an important class of enzymes in the body that function through the extracellular matrix (ECM). They are involved in diverse pathophysiological processes, such as tumor invasion and metastasis, cardiovascular diseases, arthritis, periodontal disease, osteogenesis imperfecta, and diseases of the central nervous system. MMPs participate in the occurrence and development of numerous cancers and are closely related to immunity. In the present study, we review the immunomodulatory role of MMPs in colitis-associated cancer (CAC) and discuss relevant clinical applications. We analyze more than 300 pharmacological studies retrieved from PubMed and the Web of Science, related to MMPs, cancer, colitis, CAC, and immunomodulation. Key MMPs that interfere with pathological processes in CAC such as MMP-2, MMP-3, MMP-7, MMP-9, MMP-10, MMP-12, and MMP-13, as well as their corresponding mechanisms are elaborated. MMPs are involved in cell proliferation, cell differentiation, angiogenesis, ECM remodeling, and the inflammatory response in CAC. They also affect the immune system by modulating differentiation and immune activity of immune cells, recruitment of macrophages, and recruitment of neutrophils. Herein we describe the immunomodulatory role of MMPs in CAC to facilitate treatment of this special type of colon cancer, which is preceded by detectable inflammatory bowel disease in clinical populations.
Collapse
Affiliation(s)
- Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China,*Correspondence: Zhangfeng Zhong, ; Wen Tan,
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, China,*Correspondence: Zhangfeng Zhong, ; Wen Tan,
| |
Collapse
|
8
|
Theodoro TR, Serrano RL, Turke KC, Waisberg J, Pinhal MAS. Alterations of the Extracellular Matrix in Colorectal Carcinoma. Genet Test Mol Biomarkers 2022; 26:468-475. [PMID: 36219734 DOI: 10.1089/gtmb.2021.0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: The process of proliferation and invasion of tumor cells depends on changes in the extracellular matrix (ECM) through the activation of enzymes and alterations in the profile of ECM components. Our aims are to investigate the mRNA and protein expression profiles of the ECM components, heparanase-1 (HPSE), heparanase-2 (HPSE2), matrix metalloproteinase-9 (MMP-9), and syndecan-1 (SDC1) in neoplastic and nonneoplastic tissues of 24 patients with colorectal carcinoma (CRC) and to test for associations between these expression patterns with the presence or absence of lymph node metastasis. Materials and Methods: This was a cross-sectional study in which 24 adult patients with CRC were admitted for resectional surgery. We analyzed the mRNA and protein expression patterns of the HPSE, HPSE2, MMP-9, and SDC1 genes by quantitative reverse transcription PCR and immunohistochemistry, respectively. Additionally, we investigated whether variations exist in the expression of the ECM components between the affected tissue and nontumoral tissue collected from the same patient. Tissue samples were collected immediately after the surgical resection. Results and Conclusion: The data showed higher mRNA and protein expression levels of HPSE2 (p = 0.0058), MMP-9 (p = 0.0268), and SDC1 (p = 0.0002) in tumor samples when compared with the nonneoplastic tissues. There was, however, only an increase in the level of the HPSE protein in the tumoral tissues. Increased expression of HPSE2 was observed in patients with lymph node metastasis (p = 0.031). This elevation in HPSE2 mRNA expression in patients with lymph node metastasis potentially indicates that it may participate in driving colorectal carcinoma progression.
Collapse
Affiliation(s)
| | | | | | - Jaques Waisberg
- Department of Surgery, Centro Universitário FMABC, Santo André, Brazil.,Department of Surgery, Hospital do Servidor Público Estadual, São Paulo, Brazil
| | | |
Collapse
|
9
|
Piet M, Paduch R. Ursolic and oleanolic acids in combination therapy inhibit migration of colon cancer cells through down-regulation of the uPA/uPAR-dependent MMPs pathway. Chem Biol Interact 2022; 368:110202. [PMID: 36191607 DOI: 10.1016/j.cbi.2022.110202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Colorectal cancer is one the most lethal cancers worldwide. Since chemotherapy is burdened with harmful effects, agents capable of enhancing the chemotherapeutic effect are being sought. Ursolic acid (UA) and oleanolic acid (OA) were analyzed for such properties. The aim of the study was to evaluate the ability of UA and OA administered individually and in combination with each other and/or a cytostatic drug camptothecin-11 (CPT-11) to limit the viability and migration of colorectal cancer cells. MATERIALS AND METHODS The cytotoxic effect of UA, OA and CPT-11 and impact on normal and cancer cell migration rate were assessed. Furthermore, the effect on factors crucial in cancer metastasis: MMP-2 and -9, uPA/uPAR, and E-cadherin were assessed with ELISA, Western Blotting and immunofluorescence assays. Statistical analysis was performed with One-Way Anova with Dunnett's test. RESULTS The studied compounds exhibited the most favorable properties, i.e. they reduced the viability and migration of cancer cells. Furthermore, the secretion, activity, and cellular level of cancer MMP-2 and -9 were decreased, as a result of uPA/uPAR down-regulation. The agents also increased the level of cellular E-cadherin. The effect of the studied agents on normal cells was milder. CONCLUSIONS The compounds exhibited stronger activity when administered in combination and, combined with CPT-11, enhanced anti-tumorigenic activity of the drug. The migration-limiting activity was based on down-regulation of the uPA/uPAR-dependent MMP pathway. Moreover, UA and OA exhibited a protective effect towards normal cells.
Collapse
Affiliation(s)
- Mateusz Piet
- Department of Virology and Immunology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland; Department of General Ophthalmology, Faculty of Medicine, Medical University of Lublin, ul Chmielna 1, 20-079, Lublin, Poland.
| |
Collapse
|
10
|
Koch J, Mönch D, Maaß A, Mangold A, Gužvić M, Mürdter T, Leibold T, Dahlke MH, Renner P. Pharmacologic Targeting of MMP2/9 Decreases Peritoneal Metastasis Formation of Colorectal Cancer in a Human Ex Vivo Peritoneum Culture Model. Cancers (Basel) 2022; 14:cancers14153760. [PMID: 35954423 PMCID: PMC9367441 DOI: 10.3390/cancers14153760] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 12/16/2022] Open
Abstract
Simple Summary We investigated the effects of matrix metalloproteinases (MMPs) on the peritoneal attachment of colorectal cancer cells in patient samples and in a human ex vivo peritoneum model. MMP2/9 overexpression and enhanced fibronectin cleavage occurred during peritoneal colonisation, which could be inhibited by specific MMP inhibition, thereby reducing cancer cell attachment. Abstract Background: Matrix metalloproteinases (MMPs) play a crucial role in tumour initiation, progression, and metastasis, including peritoneal carcinosis (PC) formation. MMPs serve as biomarkers for tumour progression in colorectal cancer (CRC), and MMP overexpression is associated with advanced-stage metastasis and poor survival. However, the molecular mechanisms of PC from CRC remain largely unclear. Methods: We investigated the role of MMPs during peritoneal colonisation by CRC cell lines in a human ex vivo peritoneum model and in patient-derived CRC and corresponding PC samples. MMP2 and MMP9 were inhibited using the small-molecule inhibitors batimastat and the specific MMP2/9 inhibitor III. Results: MMP2 and MMP9 were strongly upregulated in patient-derived samples and following peritoneal colonisation by CRC cells in the ex vivo model. MMP inhibition with batimastat reduced colonisation of HT29 and Colo205 cells by 36% and 68%, respectively (p = 0.0073 and p = 0.0002), while MMP2/9 inhibitor III reduced colonisation by 50% and 41%, respectively (p = 0.0003 and p = 0.0051). Fibronectin cleavage was enhanced in patient-derived samples of PC and during peritoneal colonisation in the ex vivo model, and this was inhibited by MMP2/9 inhibition. Conclusion: MMPs were upregulated in patient-derived samples and during peritoneal attachment of CRC cell lines in our ex vivo model. MMP2/9 inhibition prevented fibronectin cleavage and peritoneal colonisation by CRC cells. MMP inhibitors might thus offer a potential treatment strategy for patients with PC.
Collapse
Affiliation(s)
- Jana Koch
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (J.K.); (D.M.); (A.M.); (T.M.)
- University of Tübingen, 72074 Tübingen, Germany
| | - Dina Mönch
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (J.K.); (D.M.); (A.M.); (T.M.)
- University of Tübingen, 72074 Tübingen, Germany
| | - Annika Maaß
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (J.K.); (D.M.); (A.M.); (T.M.)
- University of Tübingen, 72074 Tübingen, Germany
| | - Alina Mangold
- Robert Bosch Centre for Tumour Diseases (RBCT), Department of General and Visceral Surgery, Robert Bosch Hospital, 70376 Stuttgart, Germany; (A.M.); (T.L.); (M.-H.D.)
| | | | - Thomas Mürdter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (J.K.); (D.M.); (A.M.); (T.M.)
- University of Tübingen, 72074 Tübingen, Germany
| | - Tobias Leibold
- Robert Bosch Centre for Tumour Diseases (RBCT), Department of General and Visceral Surgery, Robert Bosch Hospital, 70376 Stuttgart, Germany; (A.M.); (T.L.); (M.-H.D.)
| | - Marc-H. Dahlke
- Robert Bosch Centre for Tumour Diseases (RBCT), Department of General and Visceral Surgery, Robert Bosch Hospital, 70376 Stuttgart, Germany; (A.M.); (T.L.); (M.-H.D.)
| | - Philipp Renner
- Robert Bosch Centre for Tumour Diseases (RBCT), Department of General and Visceral Surgery, Robert Bosch Hospital, 70376 Stuttgart, Germany; (A.M.); (T.L.); (M.-H.D.)
- University Medical Centre Regensburg, 93053 Regensburg, Germany
- Correspondence:
| |
Collapse
|
11
|
Gastrointestinal cancer-associated fibroblasts expressing Junctional Adhesion Molecule-A are amenable to infection by oncolytic reovirus. Cancer Gene Ther 2022; 29:1918-1929. [PMID: 35869278 PMCID: PMC9750869 DOI: 10.1038/s41417-022-00507-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/13/2022] [Accepted: 07/06/2022] [Indexed: 01/25/2023]
Abstract
Gastrointestinal (GI) cancers are characterized by extensive tumor stroma that both promotes tumor progression and acts as a physical barrier for adjacent tumor cells, limiting the effect of current treatment modalities. Oncolytic virotherapy is currently investigated in clinical trials as a novel therapeutic agent for different malignancies of the GI tract, but it is largely unknown whether these viruses can also target the tumor stroma. Here, we investigated the tropism of two commonly studied OVs, adenovirus and reovirus, towards primary GI fibroblasts from human oesophageal, gastric, duodenal and pancreatic carcinomas (N = 36). GI fibroblasts were susceptible to type 3 Dearing (T3D) strain R124 and bioselected mutant reovirus (jin-3) infection but not oncolytic adenovirus (Ad5-Δ24). Efficient infection and apoptosis of human and mouse GI cancer-derived fibroblasts by these reoviruses was partially dependent on the expression of the reovirus entry receptor, Junctional Adhesion Molecule-A (JAM-A). Moreover, human GI cancer organoid-fibroblast co-cultures showed higher overall infectivity when containing JAM-A expressing fibroblasts as compared to JAM-A negative fibroblasts, indicating a potential role of JAM-A expressing fibroblasts for viral dissemination. We further show that JAM-A is not only necessary for efficient reovirus infection of fibroblasts but also partially mediates reovirus-induced apoptosis, dependent on signaling through the C-terminal PDZ-domain of JAM-A. Altogether, our data show the presence of JAM-A expressing fibroblasts in both human and murine GI cancers that are amenable to infection and induction of apoptosis by reovirus, extending the potential anti-cancer actions of reovirus with stromal targeting.
Collapse
|
12
|
Jing Y, Zhang Y, Pan R, Ding K, Chen R, Meng Q. Effect of Inhalation Anesthetics on Tumor Metastasis. Technol Cancer Res Treat 2022; 21:15330338221121092. [PMID: 36131554 PMCID: PMC9502254 DOI: 10.1177/15330338221121092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Many factors affect the prognosis of patients undergoing tumor surgery, and anesthesia is one of the potential influencing factors. In general anesthesia, inhalation anesthesia is widely used in the clinic because of its strong curative effect and high controllability. However, the effect of inhalation anesthetics on the tumor is still controversial. More and more research has proved that inhalation anesthetics can intervene in local recurrence and distant metastasis of tumor by acting on tumor biological behavior, immune response, and gene regulation. In this paper, we reviewed the research progress of diverse inhalation anesthetics promoting or inhibiting cancer in the critical events of tumor recurrence and metastasis, and compared the effects of inhalation anesthetics on patients' prognosis in clinical studies, to provide theoretical reference for anesthesia management of patients undergoing tumor surgery.
Collapse
Affiliation(s)
- Yixin Jing
- Department of Anesthesiology, 117921Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiguo Zhang
- Department of Anesthesiology, 117921Renmin Hospital of Wuhan University, Wuhan, China
| | - Rui Pan
- Department of Anesthesiology, 117921Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Ding
- Department of Anesthesiology, 117921Renmin Hospital of Wuhan University, Wuhan, China
| | - Rong Chen
- Department of Anesthesiology, 117921Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesiology, East Hospital, 117921Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingtao Meng
- Department of Anesthesiology, 117921Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesiology, East Hospital, 117921Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Hassn Mesrati M, Syafruddin SE, Mohtar MA, Syahir A. CD44: A Multifunctional Mediator of Cancer Progression. Biomolecules 2021; 11:1850. [PMID: 34944493 PMCID: PMC8699317 DOI: 10.3390/biom11121850] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022] Open
Abstract
CD44, a non-kinase cell surface transmembrane glycoprotein, has been widely implicated as a cancer stem cell (CSC) marker in several cancers. Cells overexpressing CD44 possess several CSC traits, such as self-renewal and epithelial-mesenchymal transition (EMT) capability, as well as a resistance to chemo- and radiotherapy. The CD44 gene regularly undergoes alternative splicing, resulting in the standard (CD44s) and variant (CD44v) isoforms. The interaction of such isoforms with ligands, particularly hyaluronic acid (HA), osteopontin (OPN) and matrix metalloproteinases (MMPs), drive numerous cancer-associated signalling. However, there are contradictory results regarding whether high or low CD44 expression is associated with worsening clinicopathological features, such as a higher tumour histological grade, advanced tumour stage and poorer survival rates. Nonetheless, high CD44 expression significantly contributes to enhanced tumourigenic mechanisms, such as cell proliferation, metastasis, invasion, migration and stemness; hence, CD44 is an important clinical target. This review summarises current research regarding the different CD44 isoform structures and their roles and functions in supporting tumourigenesis and discusses CD44 expression regulation, CD44-signalling pathways and interactions involved in cancer development. The clinical significance and prognostic value of CD44 and the potential of CD44 as a therapeutic target in cancer are also addressed.
Collapse
Affiliation(s)
- Malak Hassn Mesrati
- Nanobiotechnology Research Group, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (S.E.S.); (M.A.M.)
| | - M. Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (S.E.S.); (M.A.M.)
| | - Amir Syahir
- Nanobiotechnology Research Group, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| |
Collapse
|
14
|
Leonard NA, Reidy E, Thompson K, McDermott E, Peerani E, Tomas Bort E, Balkwill FR, Loessner D, Ryan AE. Stromal Cells Promote Matrix Deposition, Remodelling and an Immunosuppressive Tumour Microenvironment in a 3D Model of Colon Cancer. Cancers (Basel) 2021; 13:cancers13235998. [PMID: 34885111 PMCID: PMC8656544 DOI: 10.3390/cancers13235998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Colorectal cancer is the third most common type of cancer in the world. Immune cells and normal supporting cells (MSCs) within a tumour affect patient survival and change how well treatments work. This research aimed to develop a more relevant 3D cancer model that combines MSCs and immune cells with cancer cells to test the effects of multiple cell types on tumour growth. We successfully developed a 3D model that shows that MSCs and immune cells can change the cancer-supporting environment around the tumour cells. We show that combining MSCs and immune cells with cancer cells can increase the level of immune-suppressing molecules they release and change immunotherapeutic drug targets on the cancer cells, similar to changes seen in human tumours. Using this 3D model for research may be better for testing new drugs than traditional 2D methods and could enable the identification of new drug targets. Abstract Colorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide. CRC develops in a complex tumour microenvironment (TME) with both mesenchymal stromal cells (MSCs) and immune infiltrate, shown to alter disease progression and treatment response. We hypothesised that an accessible, affordable model of CRC that combines multiple cell types will improve research translation to the clinic and enable the identification of novel therapeutic targets. A viable gelatine-methacrloyl-based hydrogel culture system that incorporates CRC cells with MSCs and a monocyte cell line was developed. Gels were analysed on day 10 by PCR, cytokine array, microscopy and flow cytometry. The addition of stromal cells increased transcription of matrix remodelling proteins FN1 and MMP9, induced release of tumour-promoting immune molecules MIF, Serpin E1, CXCL1, IL-8 and CXCL12 and altered cancer cell expression of immunotherapeutic targets EGFR, CD47 and PD-L1. Treatment with PD153035, an EGFR inhibitor, revealed altered CRC expression of PD-L1 but only in gels lacking MSCs. We established a viable 3D model of CRC that combined cancer cells, MSCs and monocytic cells that can be used to research the role the stroma plays in the TME, identify novel therapeutic targets and improve the transitional efficacy of therapies.
Collapse
Affiliation(s)
- Niamh A. Leonard
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 V4AY Galway, Ireland;
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
- Correspondence: (N.A.L.); (A.E.R.)
| | - Eileen Reidy
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 V4AY Galway, Ireland;
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
| | - Kerry Thompson
- Centre for Microscopy and Imaging, Anatomy, School of Medicine, National University of Ireland Galway, H91 W2TY Galway, Ireland; (K.T.); (E.M.)
| | - Emma McDermott
- Centre for Microscopy and Imaging, Anatomy, School of Medicine, National University of Ireland Galway, H91 W2TY Galway, Ireland; (K.T.); (E.M.)
| | - Eleonora Peerani
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (E.P.); (E.T.B.); (F.R.B.); (D.L.)
| | - Elena Tomas Bort
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (E.P.); (E.T.B.); (F.R.B.); (D.L.)
| | - Frances R. Balkwill
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (E.P.); (E.T.B.); (F.R.B.); (D.L.)
| | - Daniela Loessner
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (E.P.); (E.T.B.); (F.R.B.); (D.L.)
- Faculty of Engineering and Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3800, Australia
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
| | - Aideen E. Ryan
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 V4AY Galway, Ireland;
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland
- Correspondence: (N.A.L.); (A.E.R.)
| |
Collapse
|
15
|
Buttacavoli M, Di Cara G, Roz E, Pucci-Minafra I, Feo S, Cancemi P. Integrated Multi-Omics Investigations of Metalloproteinases in Colon Cancer: Focus on MMP2 and MMP9. Int J Mol Sci 2021; 22:ijms222212389. [PMID: 34830271 PMCID: PMC8622288 DOI: 10.3390/ijms222212389] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) develops by genetic and epigenetic alterations. However, the molecular mechanisms underlying metastatic dissemination remain unclear and could benefit from multi-omics investigations of specific protein families. Matrix metalloproteinases (MMPs) are proteolytic enzymes involved in ECM remodeling and the processing of bioactive molecules. Increased MMP expression promotes the hallmarks of tumor progression, including angiogenesis, invasion, and metastasis, and is correlated with a shortened survival. Nevertheless, the collective role and the possible coordination of MMP members in CRC are poorly investigated. Here, we performed a multi-omics analysis of MMP expression in CRC using data mining and experimental investigations. Several databases were used to deeply mine different expressions between tumor and normal tissues, the genetic and epigenetic alterations, the prognostic value as well as the interrelationships with tumor immune-infiltrating cells (TIICs). A special focus was placed on to MMP2 and MMP9: their expression was correlated with immune markers and the interaction network of co-expressed genes disclosed their implication in epithelial to mesenchymal transition (EMT) and immune response. Finally, the activity levels of MMP2 and MMP9 in a cohort of colon cancer samples, including tissues and the corresponding sera, was also investigated by zymography. Our findings suggested that MMPs could have a high potency, as they are targeted in colon cancer, and might serve as novel biomarkers, especially for their involvement in the immune response. However, further studies are needed to explore the detailed biological functions and molecular mechanisms of MMPs in CRC, also in consideration of their expression and different regulation in several tissues.
Collapse
Affiliation(s)
- Miriam Buttacavoli
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.B.); (G.D.C.); (S.F.)
| | - Gianluca Di Cara
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.B.); (G.D.C.); (S.F.)
| | - Elena Roz
- La Maddalena Hospital III Level Oncological Department, Via San Lorenzo Colli, 90145 Palermo, Italy;
| | | | - Salvatore Feo
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.B.); (G.D.C.); (S.F.)
| | - Patrizia Cancemi
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.B.); (G.D.C.); (S.F.)
- Experimental Center of Onco Biology (COBS), 90145 Palermo, Italy;
- Correspondence: ; Tel.: +39-091-2389-7330
| |
Collapse
|
16
|
In silico modeling and molecular docking insights of kaempferitrin for colon cancer-related molecular targets. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Kim MS, Ha SE, Wu M, Zogg H, Ronkon CF, Lee MY, Ro S. Extracellular Matrix Biomarkers in Colorectal Cancer. Int J Mol Sci 2021; 22:9185. [PMID: 34502094 PMCID: PMC8430714 DOI: 10.3390/ijms22179185] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
The cellular microenvironment composition and changes therein play an extremely important role in cancer development. Changes in the extracellular matrix (ECM), which constitutes a majority of the tumor stroma, significantly contribute to the development of the tumor microenvironment. These alterations within the ECM and formation of the tumor microenvironment ultimately lead to tumor development, invasion, and metastasis. The ECM is composed of various molecules such as collagen, elastin, laminin, fibronectin, and the MMPs that cleave these protein fibers and play a central role in tissue remodeling. When healthy cells undergo an insult like DNA damage and become cancerous, if the ECM does not support these neoplastic cells, further development, invasion, and metastasis fail to occur. Therefore, ECM-related cancer research is indispensable, and ECM components can be useful biomarkers as well as therapeutic targets. Colorectal cancer specifically, is also affected by the ECM and many studies have been conducted to unravel the complex association between the two. Here we summarize the importance of several ECM components in colorectal cancer as well as their potential roles as biomarkers.
Collapse
Affiliation(s)
- Min-Seob Kim
- Department of Physiology, Digestive Disease Research Institute and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.-S.K.); (M.W.)
| | - Se-Eun Ha
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
| | - Moxin Wu
- Department of Physiology, Digestive Disease Research Institute and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.-S.K.); (M.W.)
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang 332000, China
| | - Hannah Zogg
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
| | - Charles F. Ronkon
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
| | - Moon-Young Lee
- Department of Physiology, Digestive Disease Research Institute and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.-S.K.); (M.W.)
| | - Seungil Ro
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
| |
Collapse
|
18
|
Al-Ostoot FH, Salah S, Khamees HA, Khanum SA. Tumor angiogenesis: Current challenges and therapeutic opportunities. Cancer Treat Res Commun 2021; 28:100422. [PMID: 34147821 DOI: 10.1016/j.ctarc.2021.100422] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/15/2022]
Abstract
Angiogenesis plays an important role in the development of cancer since it allows for the delivery of oxygen, nutrients, and growth factors as well as tumor dissemination to distant organs. Inhibition of angiogenesis is an important strategy for the prevention of multiple solid tumors that depend on cutting or at least reducing the blood supply to tumor micro-regions, resulting in pan-hypoxia and pan-necrosis within solid tumor tissues. These drugs are an important part of treatment for some types of cancer. As a stand-alone therapy, inhibition of tumor angiogenesis can arrest or halt tumor growth, but will not eliminate the tumor. Therefore, anti-angiogenic drugs in combinations with another anti-cancer treatment method, like chemotherapy, lead to being critical for optimum cancer patient outcomes. Over the last two decades, investigations have been made to improve the efficacy of anti-angiogenic drugs, recognize their potential in drug interactions, and come up with plausible explanations for possible treatment resistance. This review will offer an overview of the varying concepts of tumor angiogenesis, several important angiogenic factors; focus on the role of anti-angiogenesis strategies in cancer treatment.
Collapse
Affiliation(s)
- Fares Hezam Al-Ostoot
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru, India; Department of Biochemistry, Faculty of Education & Science, Al-Baydha University, Baydha, Yemen.
| | - Salma Salah
- Faculty of Medicine and Health Sciences, Thamar University, Dhamar, Yemen
| | - Hussien Ahmed Khamees
- Department of Studies in Physics, Manasagangotri, University of Mysore, Mysuru, India
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru, India.
| |
Collapse
|
19
|
Das S, Amin SA, Jha T. Inhibitors of gelatinases (MMP-2 and MMP-9) for the management of hematological malignancies. Eur J Med Chem 2021; 223:113623. [PMID: 34157437 DOI: 10.1016/j.ejmech.2021.113623] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/18/2021] [Accepted: 06/03/2021] [Indexed: 12/30/2022]
Abstract
Matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) are collectively known as gelatinases whereas MMP-2 is gelatinase-A and MMP-9 is termed as gelatinase-B. Gelatinases and other matrix metalloproteinases (MMPs) have long been associated with solid tumor invasion, metastasis and angiogenesis. However, there is paucity of data available regarding the role of gelatinases in hematological malignancies. Recent studies have shown that gelatinases activities or functions are correlated with hematological malignancies. Strategies for designing more specific gelatinase inhibitors like catalytic (CAT) domain inhibitors and hemopexin (PEX) domain inhibitors as well as signaling pathway based or gelatinase expression inhibitors had been reported against hematologic malignant cells. Several substrate based non-selective to non-substrate based relatively selective synthetic matrix metalloproteinase inhibitors (MMPIs) had been developed. Few MMPIs had reached in clinical trials during the period of 1990s-2000s. Unfortunately the anti-tumor and anti-metastatic efficacies of these MMPIs were not justified with patients having several advanced stage solid tumor cancers in any substantial number of clinical trials. Till date not a single MMPI passed phase III clinical trials designed for advanced metastatic cancers due to adverse events as well as lack of ability to show uniformity in disease prolongation. With the best of our knowledge no clinical trial study has been reported with small molecule synthetic inhibitors against hematological malignancies. This review looks at the outcome of clinical trials of MMPIs for advanced stage solid tumors. This can therefore, act as a learning experience for future development of successful gelatinase inhibitors for the management of hematological malignancies.
Collapse
Affiliation(s)
- Sanjib Das
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
20
|
Ayoup MS, Abu-Serie MM, Awad LF, Teleb M, Ragab HM, Amer A. Halting colorectal cancer metastasis via novel dual nanomolar MMP-9/MAO-A quinoxaline-based inhibitors; design, synthesis, and evaluation. Eur J Med Chem 2021; 222:113558. [PMID: 34116327 DOI: 10.1016/j.ejmech.2021.113558] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) and monoamine oxidase-A (MAO-A) are central signaling nodes in CRC and promotors of distant metastasis associated with high mortality rates. Novel series of quinoxaline-based dual MMP-9/MAO-A inhibitors were synthesized to suppress CRC progression. The design rationale combines the thematic pharmacophoric features of MMP-9 and MAO-A inhibitors in hybrid scaffolds. All derivatives were initially screened via MTT assay for cytotoxic effects on normal colonocytes to assess their safety profiles, then evaluated for their anticancer potential on HCT116 cells overexpressing MMP-9 and MAO-A. The most promising derivatives 8, 16, 17, 19, and 28 exhibited single digit nanomolar IC50 against HCT116 cells within their safe doses (EC100) on normal colonocytes. They suppressed HCT116 cell migration by 73.32, 61.29, 21.27, 28.82, and 27.48%, respectively as detected by wound healing assay. Enzymatic assays revealed that the selected derivatives were superior to the reference MMP-9 and MAO-A inhibitors (quercetin and clorgyline, respectively). The nanomolar dual MMP-9/MAO-A inhibitor 19 was identified as the most potent and balanced dual inhibitor among the evaluated series with considerable selectivity against MAO-A over MAO-B. Besides, qRT-PCR analysis was conducted to explore the hit compounds' potential to downregulate hypoxia-inducing factor (HIF-1α) in HCT116 cells being correlated with MAO-A mediated CRC migration and invasion. The five above-mentioned compounds significantly downregulated HIF-1α by more than 5 folds. Docking simulations predicted their possible binding modes with MMP-9 and MAO-A and highlighted their essential structural features. Finally, they recorded drug-like in silico physicochemical parameters and ADMET profiles.
Collapse
Affiliation(s)
- Mohammed Salah Ayoup
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt
| | - Laila F Awad
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Hanan M Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Adel Amer
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt; Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia.
| |
Collapse
|
21
|
Circulating Biomarkers of Colorectal Cancer (CRC)-Their Utility in Diagnosis and Prognosis. J Clin Med 2021; 10:jcm10112391. [PMID: 34071492 PMCID: PMC8199026 DOI: 10.3390/jcm10112391] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
The global burden of colorectal cancer (CRC) is expected to increase, with 2.2 million new cases and 1.1 million annual deaths by 2030. Therefore, the establishment of novel biomarkers useful in the early diagnosis of CRC is of utmost importance. A number of publications have documented the significance of the overexpression of several specific proteins, such as inflammatory mediators, in CRC progression. However, little is known about the potential utility of these proteins as circulating blood tumor biomarkers of CRC. Therefore, in the present review we report the results of our previous original studies as well as the findings of other authors who investigated whether inflammatory mediators might be used as novel biomarkers in the diagnosis and prognosis of CRC. Our study revealed that among all of the tested proteins, serum M-CSF, CXCL-8, IL-6 and TIMP-1 have the greatest value in the diagnosis and progression of CRC. Serum TIMP-1 is useful in differentiating between CRC and colorectal adenomas, whereas M-CSF and CRP are independent prognostic factors for the survival of patients with CRC. This review confirms the promising significance of these proteins as circulating biomarkers for CRC. However, due to their non-specific nature, further validation of their sensitivity and specificity is required.
Collapse
|
22
|
Zhang T, Wang Z, Liu Y, Huo Y, Liu H, Xu C, Mao R, Zhu Y, Liu L, Wei D, Liu G, Pan B, Tang Y, Zhou Z, Yang C, Guo Y. Plastin 1 drives metastasis of colorectal cancer through the IQGAP1/Rac1/ERK pathway. Cancer Sci 2020; 111:2861-2871. [PMID: 32350953 PMCID: PMC7419044 DOI: 10.1111/cas.14438] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor metastasis is the dominant cause of death in colorectal cancer (CRC) patients, and it often involves dysregulation of various cytoskeletal proteins. Plastin 1 (PLS1) is an actin-bundling protein that has been implicated in the structure of intestinal epithelial microvilli; however, its role in CRC metastasis has not yet been determined. In this study, we demonstrated that PLS1 is highly expressed in 33.3% (45/135) of CRC patients and is correlated with lymph node metastasis and poor survival. In in vitro and in vivo experiments, PLS1 induced the migration and invasion of CRC cells and the metastases to the liver and lung in mice. Moreover, the expressions of key factors for CRC metastases, matrix metalloproteinase (MMP) 9 and 2, were enhanced by PLS1, which was dependent on phosphorylating ERK1/2 activated by IQGAP1/Rac1 signaling. The connection between these signals and PLS1 was further confirmed in CRC tissues of patients and the metastatic nodules from a mouse model. These findings suggest that PLS1 promotes CRC metastasis through the IQGAP1/Rac1/ERK pathway. Targeting PLS1 may provide a potential approach to inhibit the metastasis of CRC cells.
Collapse
Affiliation(s)
- Tongtong Zhang
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Zheng Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanjun Liu
- Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Yongxu Huo
- Life Science College of Sichuan University, Chengdu, China
| | - Hongtao Liu
- Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Chenxin Xu
- Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Rui Mao
- Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Yifang Zhu
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Lei Liu
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Danfeng Wei
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Guanzhi Liu
- Bone and Joint Surgery Center, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Biran Pan
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Yan Tang
- Department of Pathology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Zheng Zhou
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Chunlei Yang
- Life Science College of Sichuan University, Chengdu, China
| | - Yuanbiao Guo
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| |
Collapse
|
23
|
Bai X, Bai G, Tang L, Liu L, Li Y, Jiang W. Changes in MMP-2, MMP-9, inflammation, blood coagulation and intestinal mucosal permeability in patients with active ulcerative colitis. Exp Ther Med 2020; 20:269-274. [PMID: 32536995 PMCID: PMC7282134 DOI: 10.3892/etm.2020.8710] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/04/2020] [Indexed: 12/15/2022] Open
Abstract
Changes in matrix metalloproteinase (MMP)-2, MMP-9, inflammation, blood coagulation factors and intestinal mucosal permeability in patients with active ulcerative colitis (UC) were investigated. A total of 50 active UC patients treated in our hospital from January 2016 to December 2018 were selected as the UC group, whereas 50 normal subjects receiving physical examination were selected as the control group. Venous blood was drawn to detect the content of early predictors, C-reactive protein (CRP), follistatin-like protein 1 (FSTL1) and D-dimer in serum. The disease activity index (DAI) score was recorded in both groups, the levels of MMP-2 and MMP-9 were determined, and the inflammatory factors interleukin (IL)-1, IL-6 and tumor necrosis factor (TNF)-α were also detected. Moreover, the blood coagulation factors, platelet count, prothrombin time (PT), activated partial thromboplastin time (APTT) and fibrinogen level were detected, the content of lactulose (L) and mannitol (M) in the urine after oral administration of L and M test liquid was determined via high-performance liquid chromatography in both groups, and the L/M ratio was calculated. In UC group, the content of CRP, FSTL1 and D-dimer was significantly higher than that in the control group (P<0.05). The DAI score was significantly higher (P<0.05), the content of MMP-2 and MMP-9 was remarkably raised (P<0.05), the platelet count, PT, APTT and fibrinogen level were all obviously increased (P<0.05), and the L/M ratio was notably lower (P<0.05) in the UC group than in the control group. In patients with active UC, MMP-2, MMP-9 and inflammatory factors were significantly increased, and there were changes in the blood coagulation factors and intestinal mucosal permeability, which further promote the occurrence and development of UC.
Collapse
Affiliation(s)
- Xuesong Bai
- Department of Gastroenterology, Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| | - Guang Bai
- Department of Gastroenterology, Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| | - Lidong Tang
- Department of Gastroenterology, Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| | - Lin Liu
- Department of Gastroenterology, Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| | - Yufeng Li
- Department of Gastroenterology, Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| | - Wei Jiang
- Department of Gastroenterology, Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| |
Collapse
|
24
|
Vos MC, van Tilborg A, Brands WJ, Boll D, van Hamont D, van der Putten H, Pijlman B, van der Wurff AAM, van Kuppevelt TH, Massuger LFAG. Polymorphisms in MMP-14 and MMP-2 genes and ovarian cancer survival. Cancer Biomark 2020; 25:233-241. [PMID: 31282404 DOI: 10.3233/cbm-181826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Functional polymorphisms in matrix metalloproteinases can increase or decrease the risk of cancer. This study focused on ovarian cancer and investigated how polymorphisms in the coding region of MMP-14 and the promoter region of MMP-2 are related to clinical characteristics including survival. METHODS In 144 patients with ovarian tumours from a Caucasian population, polymorphisms of MMP-14 (+7096 and +6767) and MMP-2 (-735 and -1306) were analysed. These results were then correlated to the immunohistochemical expression of MMP-14 and MMP-2 and clinical characteristics. RESULTS In these patients, the MMP-14 +7096 polymorphism showed only TT genotype, in sharp contrast to the described MAF (minimal allele frequency) C of 27%. The MMP-14 +6767 G>A polymorphism was found to have a hazard ratio of 2.09 (CI 1.00-4.35, p 0.046) for recurrence-free survival in advanced-stage patients. However, this significance disappeared after Bonferroni correction for multiple testing. No other correlations between MMP-14 and MMP-2 polymorphisms, immunohistochemistry and clinical characteristics were found, except between the MMP-2 -1306 polymorphism and differentiation grade, with a Spearman correlation coefficient of -0.19, p 0.064. CONCLUSIONS In ovarian cancer, the MMP-14 +6767 G>A polymorphism in the coding region seems to improve recurrence-free survival with a hazard ratio of 2.09 (CI 1.00-4.35, p 0.046). However, as this significance disappeared after correction for multiple testing, there is a need for further research on the functional effect of this change in the MMP-14 gene with larger patient sample sizes.
Collapse
Affiliation(s)
- M Caroline Vos
- Department of Obstetrics and Gynaecology, Elisabeth-Tweesteden Hospital, 5000 LC Tilburg, the Netherlands
| | - Angela van Tilborg
- Department of Obstetrics and Gynaecology and Department of Pathology, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, the Netherlands
| | - William J Brands
- Department of Pathology, Elisabeth-Tweesteden Hospital, 5000 LC Tilburg, the Netherlands
| | - Dorry Boll
- Department of Obstetrics and Gynaecology, Elisabeth-Tweesteden Hospital, 5000 LC Tilburg, the Netherlands
| | - Dennis van Hamont
- Department of Obstetrics and Gynaecology, Amphia Ziekenhuis, Breda, the Netherlands
| | - Hans van der Putten
- Department of Obstetrics and Gynaecology, Catharina Hospital, Eindhoven, the Netherlands
| | - Brenda Pijlman
- Department of Obstetrics and Gynaecology, Jeroen Bosch Ziekenhuis, s-Hertogenbosch, the Netherlands
| | | | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6500 HB Nijmegen, the Netherlands
| | - Leon F A G Massuger
- Department of Obstetrics and Gynaecology, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, the Netherlands
| |
Collapse
|
25
|
Bozhenko VK, Stanojevic US, Trotsenko ID, Zakharenko MV, Kiseleva YY, Solodkiy VA. [Comparison of matrix proteinase mRNA expression in morphologically normal, neoplastic, and metastatic colon tissue and colon biopsies from healthy donors]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 64:46-52. [PMID: 29460834 DOI: 10.18097/pbmc20186401046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Matrix metalloproteinases (MMPs) responsible for the extracellular matrix remodeling, the activation of various growth factors, and angiogenesis play an important role in the colorectal cancer (CRC) development. In the present work the comparative analysis of MMP-7, -8, -9, and -11 mRNA as well mRNA of the Ki-67 proliferation marker in tissue samples obtained from CRC patients and healthy individuals. Employing the real time PCR method the expression levels of several MMPs (MMP-7, -8, -9, and -11) and cell proliferation marker, Ki-67, were simultaneously measured in 256 tissue samples obtained from 112 patients with CRC: 112 samples of the primary tumor (CRC), 112 samples of the most distant border of morphologically normal colonic mucosa (MNT), 16 samples of liver metastases) and from 16 healthy volunteers who underwent colonoscopy and biopsy. The expression of both MMPs studied and Ki-67 was found to be elevated in CRC primary tumors and liver metastases compared with the normal mucosa. CRC tumor and metastatic cells exhibited similar proliferative activity. The metastases are characterized by the highest cross-correlation of MMPs among tissue types tested. For the first time it was shown that normal mucosa from healthy individuals and CRC patients varied in the MMP-8 expression level. They also had dissimilar MMP correlation patterns thus suggesting that epithelial cells adjusted to CRC tumor differ from mucosal epithelial cells of healthy individuals.
Collapse
Affiliation(s)
- V K Bozhenko
- Russian Scientific Center of Roentgenoradiology, Moscow, Russia
| | - U S Stanojevic
- Russian Scientific Center of Roentgenoradiology, Moscow, Russia
| | - I D Trotsenko
- Russian Scientific Center of Roentgenoradiology, Moscow, Russia; Peoples' Friendship University of Russia, Moscow, Russia
| | - M V Zakharenko
- Russian Scientific Center of Roentgenoradiology, Moscow, Russia
| | - Y Y Kiseleva
- Russian Scientific Center of Roentgenoradiology, Moscow, Russia
| | - V A Solodkiy
- Russian Scientific Center of Roentgenoradiology, Moscow, Russia
| |
Collapse
|
26
|
Zhenggang C, Shuren W, Jinghua L, Jinhong H, Qimin W, Lei T, Wenjun L, Fang Y, Qingyuan G, Dawei G, Ying W. [Effects of geranylgeranyltransferase Ⅰ gene silencing by RNA interference on the migration and invasion of tongue carcinoma]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 35:576-582. [PMID: 29333768 DOI: 10.7518/hxkq.2017.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE RNA interference was used to silence geranylgeranyltransferase Ⅰ(GGTase-Ⅰ) in vitro and to study the effect of GGTase-Ⅰ on the migration and invasion of tongue squamous cancer cells. METHODS Three small interfering RNAs (siRNA) were designed according to the GGTase-Ⅰ sequence by Genebank and were transfected into tongue squamous cancer cells Cal-27 to knock down GGTase-Ⅰ expression. The tested cells were divided into three groups, as follows: the RNA-interfered groups (GGTase-Ⅰ siRNA1, GGTase-Ⅰ siRNA 2, GGTase-Ⅰ siRNA 3), a negative control group (disrupted by random sequence NC-siRNA), and a blank control group. GGTase-Ⅰ and RhoA gene expressions were examined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. The optimum interference group was screened by qRT-PCR and Western blot and was assigned as the experimental group. Matrix metalloproteinase (MMP)-2 and MMP-9 protein expressions were examined by Western blot. GTP-RhoA expression of protein was examined by GST-pull down. The migration and invasion abilities were analyzed by wound healing assay and Transwell motility assay. RESULTS GGTase-Ⅰ mRNA and protein expression in Cal-27 decreased significantly after transfection of GGTase-I siRNA (P<0.05). No significant difference of RhoA gene expression was detected. MMP-2, MMP-9, and GTP-RhoA protein expressions decreased significantly (P<0.05). The migration and invasion abilities were inhibited (P<0.05). CONCLUSIONS To inhibit GGTase-Ⅰ expression, the migration and invasion abilities of tongue squamous cancer cells should also be inhibited. Further studies on GGTase-Ⅰ may provide novel effective molecular targets for tongue squamous cancer cells.
Collapse
Affiliation(s)
- Chen Zhenggang
- Dept. of Stomatology, Qingdao Municipal Hospital, Qingdao 266071, China;Dept. of Oral and Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wang Shuren
- Dept. of Stomatology, Jiaozhou People's Hospital, Jiaozhou 266300, China
| | - Li Jinghua
- Central Laboratory, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Han Jinhong
- Yantai Stomatological Hospital, Yantai 264008, China
| | - Wang Qimin
- Dept. of Stomatology, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Tong Lei
- Dept. of Stomatology, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Liu Wenjun
- Dept. of Ear-nose-throat, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Yang Fang
- Dept. of Stomatology, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Guo Qingyuan
- Dept. of Stomatology, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Guo Dawei
- Dept. of Stomatology, Qingdao Municipal Hospital, Qingdao 266071, China
| | - Wang Ying
- Dept. of Stomatology, Fourth People's Hospital of Jinan, Jinan 250031, China;College of Stomatology, Weifang Medical University, Weifang 261021, China
| |
Collapse
|
27
|
Guo H, Sun Z, Wei J, Xiang Y, Qiu L, Guo L, Zhao W, Xu Z, Mao J. Expressions of Matrix Metalloproteinases-9 and Tissue Inhibitor of Metalloproteinase-1 in Pituitary Adenomas and Their Relationships with Prognosis. Cancer Biother Radiopharm 2019; 34:1-6. [PMID: 30676069 DOI: 10.1089/cbr.2018.2589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To investigate the expression levels of matrix metalloproteinases-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) in pituitary adenomas (PAs), and to analyze the relationship of the expressions of the two with the prognosis of patients. METHODS A total of 108 patients with PAs diagnosed in our hospital from May 2010 to May 2012 were selected and divided into the invasive PA (IPA) group (n = 58) and the non-IPA group (n = 50) according to the invasiveness of PAs. Hematoxylin and eosin (H&E) staining was used to observe the pathological state of patients. The expression levels of MMP-9 and TIMP-1 were measured by immunohistochemistry and western blotting at protein level and reverse transcription-polymerase chain reaction at gene level, respectively. The expression levels of MMP-9 and TIMP-1 in serum of patients before operation were tested using enzyme-linked immunosorbent assay, and patients with PAs after operation were followed up. RESULT The positive expression rate of MMP-9 in IPAs was significantly higher than that in non-IPAs, whereas that of TIMP-1 was relatively high in non-IPAs, and the differences were statistically significant (p < 0.05). At both protein and gene levels, MMP-9 was highly expressed in IPAs, whereas TIMP-1 was highly expressed in non-IPAs, and the differences were statistically significant (p < 0.05 in all comparisons). Before operation, the expression level of MMP-9 in serum of patients with IPAs was relatively high, whereas that of TIMP-1 in serum of patients with non-IPAs was relatively high, and the differences were statistically significant (p < 0.05 in all comparisons). CONCLUSION The postoperative survival rate of patients with highly expressed MMP-9 was relatively low, whereas that of patients with highly expressed TIMP-1 was relatively high. The abnormal expressions of MMP-9 and TIMP-1 play important roles in the invasion process of PAs. The prognoses of patients with low expression MMP-9 and high expression TIMP-1 are more positive.
Collapse
Affiliation(s)
- Hong Guo
- 1 Department of Neurosurgery, Harrison International Peace Hospital affiliated to Hebei Medical University, Hengshui, China
| | - Zhaosheng Sun
- 1 Department of Neurosurgery, Harrison International Peace Hospital affiliated to Hebei Medical University, Hengshui, China
| | - Jianhui Wei
- 1 Department of Neurosurgery, Harrison International Peace Hospital affiliated to Hebei Medical University, Hengshui, China
| | - Yi Xiang
- 1 Department of Neurosurgery, Harrison International Peace Hospital affiliated to Hebei Medical University, Hengshui, China
| | - Lei Qiu
- 2 Department of Pathology, Harrison International Peace Hospital affiliated to Hebei Medical University, Hengshui, China
| | - Lianfeng Guo
- 3 Department of Laboratory Medicine, Harrison International Peace Hospital affiliated to Hebei Medical University, Hengshui, China
| | - Wangmiao Zhao
- 1 Department of Neurosurgery, Harrison International Peace Hospital affiliated to Hebei Medical University, Hengshui, China
| | - Zhanyi Xu
- 1 Department of Neurosurgery, Harrison International Peace Hospital affiliated to Hebei Medical University, Hengshui, China
| | - Jianhui Mao
- 1 Department of Neurosurgery, Harrison International Peace Hospital affiliated to Hebei Medical University, Hengshui, China
| |
Collapse
|
28
|
Kirchhain A, Poma N, Salvo P, Tedeschi L, Melai B, Vivaldi F, Bonini A, Franzini M, Caponi L, Tavanti A, Di Francesco F. Biosensors for measuring matrix metalloproteinases: An emerging research field. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.10.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Bruno A, Bassani B, D'Urso DG, Pitaku I, Cassinotti E, Pelosi G, Boni L, Dominioni L, Noonan DM, Mortara L, Albini A. Angiogenin and the MMP9-TIMP2 axis are up-regulated in proangiogenic, decidual NK-like cells from patients with colorectal cancer. FASEB J 2018; 32:5365-5377. [PMID: 29763380 DOI: 10.1096/fj.201701103r] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
NK cells are effector lymphocytes involved in tumor immunosurveillance; however, in patients with solid malignancies, NK cells have compromised functions. We have previously reported that lung tumor-associated NK cells (TANKs; peripheral blood) and tumor-infiltrating NK cells (TINKs) show proangiogenic, decidual NK-like (dNK) phenotype. In this study, we functionally and molecularly investigated TINKs and TANKs from blood and tissue samples of patients with colorectal cancer (CRC), a neoplasm in which inflammation and angiogenesis have clinical relevance, and compared them to NK cells from controls and patients with nononcologic inflammatory bowel disease. CRC TINKs/TANKs showed decreased expression for the activatory marker NKG2D, impaired degranulation activity, a decidual-like NK polarization toward the CD56brightCD16dim/-CD9+CD49+ subset. TINKs and TANKs secreted cytokines with proangiogenic activities, and induce endothelial cell proliferation, migration, adhesion, and the formation of capillary-like structures in vitro. dNK cells release specific proangiogenic factors; among which, angiogenin and invasion-associated enzymes related to the MMP9-TIMP1/2 axis. Here, we describe, for the first time, to our knowledge, the expression of angiogenin, MMP2/9, and TIMP by TANKs in patients with CRC. This phenotype could be relevant to the invasive capabilities and proangiogenic functions of CRC-NK cells and become a novel biomarker. STAT3/STAT5 activation was observed in CRC-TANKs, and treatment with pimozide, a STAT5 inhibitor, reduced endothelial cell capability to form capillary-like networks, inhibiting VEGF and angiogenin production without affecting the levels of TIMP1, TIMP2, and MMP9, indicating that STAT5 is involved in cytokine modulation but not invasion-associated molecules. Combination of Stat5 or MMP inhibitors with immunotherapy could help repolarize CRC TINKs and TANKs to anti-tumor antimetastatic ones.-Bruno, A., Bassani, B., D'Urso, D. G., Pitaku, I., Cassinotti, E., Pelosi, G., Boni, L., Dominioni, L., Noonan, D. M., Mortara, L., Albini, A. Angiogenin and the MMP9-TIMP2 axis are up-regulated in proangiogenic, decidual NK-like cells from patients with colorectal cancer.
Collapse
Affiliation(s)
- Antonino Bruno
- Vascular Biology and Angiogenesis Laboratory, Science and Technology Pole (PST), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Barbara Bassani
- Vascular Biology and Angiogenesis Laboratory, Science and Technology Pole (PST), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Davide Giuseppe D'Urso
- Vascular Biology and Angiogenesis Laboratory, Science and Technology Pole (PST), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Ilvana Pitaku
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Elisa Cassinotti
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Giuseppe Pelosi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Luigi Boni
- Department of Medical-Surgical Physiopathology and Transplantation, University of Milan-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ca' Granda, Polyclinic Hospital, Milan, Italy
| | - Lorenzo Dominioni
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Douglas M Noonan
- Vascular Biology and Angiogenesis Laboratory, Science and Technology Pole (PST), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy.,Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; and
| | - Lorenzo Mortara
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; and
| | - Adriana Albini
- Vascular Biology and Angiogenesis Laboratory, Science and Technology Pole (PST), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy.,Department of Medicine and Surgery, University Milano-Bicocca, Monza, Italy
| |
Collapse
|
30
|
Abstract
Matrix metalloproteinases (MMPs) are believed to be of importance in the growth and spread of colorectal cancer (CRC). MMP-9 level has been suggested as a biological predictor of prognosis in CRC as well as in other types of cancer such as breast and cervical cancer. The purpose of this study was to investigate the stability over time of MMP-9 in cryopreserved plasma, colorectal tumor tissue extract and macroscopically tumor-free colon mucosa tissue extract samples. Plasma and tissue samples were taken from patients at primary CRC surgery and analyzed for MMP-9. Aliquots of samples from the same patients were stored at – 80 °C pending analysis. These aliquots were analyzed using identical methods after storage periods of nine (plasma) and twelve (tissue) years. No significant difference in plasma MMP-9 concentration was seen between baseline samples and those after 9 years of cryopreservation (median values 9.9 and 9.7 ng/mL, respectively; p > 0.05). MMP-9 levels in the tumor-free tissue extracts had increased to baseline (median values 7.1 and 8.1 ng/mL, respectively; p < 0.01). MMP-9 levels in the tumor tissue extracts had also increased significantly (median values 89.9 and 133.5 ng/mL, respectively; p < 0.01). We have demonstrated that MMP-9 levels in frozen citrated plasma are stable if stored at − 80 °C, whereas MMP-9 levels in extracts from tumor tissue and tumor-free intestinal mucosa appear to increase with time. We conclude that MMP-9 levels in cryopreserved plasma may be considered stable over time and are thus suitable for comparison purposes in consecutive series.
Collapse
Affiliation(s)
- Andreas Jonsson
- Hallands Hospital Varberg, Region Halland, 432 37, Varberg, Sweden
- Fibrinolysis Laboratory, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 416 85, Göteborg, Sweden
| | - Claes Hjalmarsson
- Department of Surgery, Sahlgrenska University Hopital, Göteborg, Sweden
| | - Peter Falk
- Fibrinolysis Laboratory, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 416 85, Göteborg, Sweden
| | - Marie-Lois Ivarsson
- Fibrinolysis Laboratory, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 416 85, Göteborg, Sweden.
| |
Collapse
|
31
|
González-Quezada BA, Santana-Bejarano UF, Corona-Rivera A, Pimentel-Gutiérrez HJ, Silva-Cruz R, Ortega-De-la-Torre C, Franco-Topete R, Franco-Topete K, Centeno-Flores MW, Maciel-Gutiérrez VM, Corona-Rivera JR, Armendáriz-Borunda J, Bobadilla-Morales L. Expression profile of NF-κB regulated genes in sporadic colorectal cancer patients. Oncol Lett 2018; 15:7344-7354. [PMID: 29849793 DOI: 10.3892/ol.2018.8201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 01/24/2018] [Indexed: 01/15/2023] Open
Abstract
Colorectal cancer (CRC) is the fourth leading worldwide cause of cancer-associated mortalities. Nuclear factor-κB (NF-κB) is a transcriptional regulator of multiple genes associated with CRC. Tumor tissue were compared with normal adjacent mucosa from 30 sporadic patients with CRC were investigated. A total of 8 non-CRC patients were analyzed as a control group. In the present study, the protein expression of NF-κB/p65 was detected by immunohistochemistry, and the gene expression profiles of cyclin D1 (CCND1), prostaglandin-endoperoxide synthase 2, vascular endothelial growth factor A, matrix metallopeptidase 9, BCL2 apoptosis regulator (BCL2), BCL2 like 1, nitric oxide synthase 2, tumor necrosis factor and arachidonate lipoxygenase were detected by reverse transcription-quantitative polymerase chain reaction. NF-κB/p65 and genes expression profiles were classified according to tumor-node-metastasis (TNM) clinicopathological parameters, followed by statistical analysis. Higher protein expression of NF-κB/p65 in the cytoplasm of tumor tissues compared with adjacent normal mucosa was reported; this increment was positively associated with all clinicopathological parameters, except for tumor localization site. The selected genes demonstrated a diverse associative pattern when analyzed with clinicopathological parameters. CCND1 was positively associated with all TNM parameters and BCL2 was negatively associated with all TNM parameters, thus indicating their importance as strong molecular biomarkers for CRC. According to these results, not all selected genes regulated by NF-κB/p65 show increased expression during CRC development, whereas the transcription factor did. The present study suggests that NF-κB/p65 overexpression is necessary for CRC establishment and progression, but its transcriptional activity is not sufficient to regulate all target genes in CRC. NF-κB/p65 and the gene expression profiles reported in the present study may be therapeutically useful. Considering the heterogeneity of the disease, the particular evaluation of these molecules may allow for the selection of proper diagnosis, treatment and follow-up for patients with sporadic CRC.
Collapse
Affiliation(s)
- Betsy Annel González-Quezada
- Cytogenetics and Genomics Laboratory, Human Genetic Institute 'Dr. Enrique Corona Rivera', University of Guadalajara, Guadalajara, Jalisco 44340, México.,Cytogenetics Unit, Pediatric Hematology and Oncology Service, Hospital Civil of Guadalajara 'Dr. Juan I. Menchaca', Guadalajara, Jalisco 44340, México
| | - Uriel Francisco Santana-Bejarano
- Cytogenetics and Genomics Laboratory, Human Genetic Institute 'Dr. Enrique Corona Rivera', University of Guadalajara, Guadalajara, Jalisco 44340, México.,Cytogenetics Unit, Pediatric Hematology and Oncology Service, Hospital Civil of Guadalajara 'Dr. Juan I. Menchaca', Guadalajara, Jalisco 44340, México
| | - Alfredo Corona-Rivera
- Cytogenetics and Genomics Laboratory, Human Genetic Institute 'Dr. Enrique Corona Rivera', University of Guadalajara, Guadalajara, Jalisco 44340, México.,Cytogenetics Unit, Pediatric Hematology and Oncology Service, Hospital Civil of Guadalajara 'Dr. Juan I. Menchaca', Guadalajara, Jalisco 44340, México
| | - Helia Judith Pimentel-Gutiérrez
- Cytogenetics and Genomics Laboratory, Human Genetic Institute 'Dr. Enrique Corona Rivera', University of Guadalajara, Guadalajara, Jalisco 44340, México.,Cytogenetics Unit, Pediatric Hematology and Oncology Service, Hospital Civil of Guadalajara 'Dr. Juan I. Menchaca', Guadalajara, Jalisco 44340, México
| | - Rocío Silva-Cruz
- Cytogenetics and Genomics Laboratory, Human Genetic Institute 'Dr. Enrique Corona Rivera', University of Guadalajara, Guadalajara, Jalisco 44340, México
| | - Citlalli Ortega-De-la-Torre
- Cytogenetics Unit, Pediatric Hematology and Oncology Service, Hospital Civil of Guadalajara 'Dr. Juan I. Menchaca', Guadalajara, Jalisco 44340, México
| | - Ramón Franco-Topete
- Pathological Anatomy Service, Hospital Civil of Guadalajara 'Dr. Juan I. Menchaca', Guadalajara, Jalisco 44340, México
| | - Karina Franco-Topete
- Pathological Anatomy Service, Hospital Civil of Guadalajara 'Dr. Juan I. Menchaca', Guadalajara, Jalisco 44340, México
| | | | - Víctor Manuel Maciel-Gutiérrez
- Colon and Rectum Service, Health Sciences University Center, University of Guadalajara, Guadalajara, Jalisco 44340, México
| | - Jorge Román Corona-Rivera
- Cytogenetics and Genomics Laboratory, Human Genetic Institute 'Dr. Enrique Corona Rivera', University of Guadalajara, Guadalajara, Jalisco 44340, México
| | - Juan Armendáriz-Borunda
- Molecular Biology and Gene Therapy Institute, Health Sciences University Center, University of Guadalajara, Guadalajara, Jalisco 44340, México
| | - Lucina Bobadilla-Morales
- Cytogenetics and Genomics Laboratory, Human Genetic Institute 'Dr. Enrique Corona Rivera', University of Guadalajara, Guadalajara, Jalisco 44340, México.,Cytogenetics Unit, Pediatric Hematology and Oncology Service, Hospital Civil of Guadalajara 'Dr. Juan I. Menchaca', Guadalajara, Jalisco 44340, México
| |
Collapse
|
32
|
Ciołczyk-Wierzbicka D, Laidler P. The inhibition of invasion of human melanoma cells through N-cadherin knock-down. Med Oncol 2018; 35:42. [PMID: 29492694 PMCID: PMC5830464 DOI: 10.1007/s12032-018-1104-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 02/23/2018] [Indexed: 12/27/2022]
Abstract
N-cadherin seems to promote cell migration and invasion in many types of cancers. The object of this study is recognition of the possible role of N-cadherin and selected downstream protein kinases: PI3K, ERK1/2, and mTOR in cell invasion in malignant melanoma. Melanoma cells were transfected with the small interfering RNA (siRNA) that targets human N-cadherin gene (CDH2). Inhibitors LY294002 (PI3K), U0126 (ERK1/2), and everolimus (mTOR) were used to inhibit selected kinases of signalling pathways. In vitro cell invasion was studied using Matrigel and an analysis of matrix metalloproteinases MMP-2 and MMP-9 activity by gelatinase zymogram assay. Treatment of melanoma cell with either siRNA against N-cadherin or protein kinase inhibitors led to significantly decreased MMPs expression and activity, as well as diminished invasion. Both the current and the former results suggest that activation of PI3/AKT, mTOR, and ERK kinase, following N-cadherin expression, contributes not only to increased proliferation but also invasive potential of melanoma cells. The results also indicate that N-cadherin, as well as the studied kinases, should be considered as a potential target in melanoma therapy.
Collapse
Affiliation(s)
- Dorota Ciołczyk-Wierzbicka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, ul. Kopernika 7, 31-034, Kraków, Poland.
| | - Piotr Laidler
- Chair of Medical Biochemistry, Jagiellonian University Medical College, ul. Kopernika 7, 31-034, Kraków, Poland
| |
Collapse
|
33
|
Liu H, Zeng Z, Wang S, Li T, Mastriani E, Li QH, Bao HX, Zhou YJ, Wang X, Liu Y, Liu W, Hu S, Gao S, Yu M, Qi Y, Shen Z, Wang H, Gao T, Dong L, Johnston RN, Liu SL. Main components of pomegranate, ellagic acid and luteolin, inhibit metastasis of ovarian cancer by down-regulating MMP2 and MMP9. Cancer Biol Ther 2017; 18:990-999. [PMID: 29173024 PMCID: PMC5718784 DOI: 10.1080/15384047.2017.1394542] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is the third most common cancer in the female reproductive organs and epithelial ovarian cancer has the highest lethality of all gynecological cancers. Pomegranate fruit juice (PFJ) has been shown to inhibit the growth of several types of cancer other than ovarian cancer. In this study, we exposed the ovarian cancer cell line A2780 to PFJ and two of its components (ellagic acid and luteolin). MTT and wound healing assays demonstrated that all three treatments suppressed the proliferation and migration of the ovarian cancer cells. In addition, western blotting and ELISA assays showed that the expression levels of MMP2 and MMP9 gradually decreased after treatment with increasing concentrations of ellagic acid and luteolin. To confirm our findings in the in vitro experiments, we used another ovarian cancer cell line, ES-2, in nude mice experiments. All three treatments inhibited tumor growth without obvious side-effects. Furthermore, compared with the control group, the expression levels of MMP2 and MMP9 were depressed. Ellagic acid induced a greater effect than luteolin, suggesting that ellagic acid might be a promising candidate for further preclinical testing for treatment of human ovarian cancer.
Collapse
Affiliation(s)
- Huidi Liu
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China.,d Department of Biochemistry and Molecular Biology , University of Calgary , Calgary , Alberta , Canada
| | - Zheng Zeng
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Siwen Wang
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Ting Li
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Emilio Mastriani
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Qing-Hai Li
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Hong-Xia Bao
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Yu-Jie Zhou
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Xiaoyu Wang
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Yongfang Liu
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Wei Liu
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Sijing Hu
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Shan Gao
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Miao Yu
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Yingying Qi
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Zhihang Shen
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Hongyue Wang
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Tingting Gao
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Lingqin Dong
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China
| | - Randal N Johnston
- d Department of Biochemistry and Molecular Biology , University of Calgary , Calgary , Alberta , Canada
| | - Shu-Lin Liu
- a Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China) , Harbin Medical University , Harbin , Heilongjiang Province , China.,b HMU-UCFM Centre for Infection and Genomics , Harbin Medical University , Harbin , Heilongjiang Province , China.,c Department of Microbiology, Immunology and Infectious Diseases , University of Calgary , Calgary , Alberta , Canada
| |
Collapse
|
34
|
Polymorphisms in matrix metalloproteinases 2, 3, and 8 increase recurrence and mortality risk by regulating enzyme activity in gastric adenocarcinoma. Oncotarget 2017; 8:105971-105983. [PMID: 29285307 PMCID: PMC5739694 DOI: 10.18632/oncotarget.22516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/29/2017] [Indexed: 12/19/2022] Open
Abstract
The association of polymorphisms in matrix metalloproteinases (MMPs) with clinical outcomes of gastric adenocarcinoma has not been examined. Ten polymorphisms in MMP1, 2, 3, 7, 8, 9, 12, and 13 were genotyped and investigated, and patients were followed for an average of 58 months. The activities of MMP2, 3, and 8 were measured. Recurrence risk increased in patients with the MMP2 rs2285053 CC genotype (hazard ratio [HR], 1.85), MMP3 rs679620 AA genotype (HR, 2.15), and MMP8 rs1940475 TT genotype (HR, 2.22) on recurrence free survival (RFS). Co-presence of the unfavorable MMP2 rs2285053 CC and MMP8 rs1940475 TT genotypes resulted in an additional increased risk of recurrence (RFS: HR, 4.42; 95% confidence interval [CI], 2.15-9.09; p<0.0001) and risk of death (overall survival ( OS) : HR, 6.59; 95% CI, 3.15-13.19; p<0.0001). Theoretical survival tree analysis revealed that recurrence-free survival significantly varied from 15.5 to 87 months among patients with different polymorphisms in MMP2, 3, and 8. The enzymatic activities of MMP2 and MMP3 increased (MMP2 rs2285053 CC: 888.60 vs. CT: 392.00, p <0.0001; MMP3 rs679620 AA: 131.10 vs. GG: 107.74, p=0.015), whereas those of MMP8 decreased (MMP8 rs1940475 TT: 133.78 vs. CC: 147.54, p=0.011) in gastric cancer tissues. These results suggest that polymorphisms in MMP2, 3, and 8 may increase cancer recurrence and patient death by increasing or decreasing enzyme activity in patients with gastric adenocarcinoma.
Collapse
|
35
|
Associations of MMP-2 and MMP-9 gene polymorphism with ulinastatin efficacy in patients with severe acute pancreatitis. Biosci Rep 2017; 37:BSR20160612. [PMID: 28779012 PMCID: PMC5569160 DOI: 10.1042/bsr20160612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 07/10/2017] [Accepted: 08/04/2017] [Indexed: 01/11/2023] Open
Abstract
We aim to explore the associations between matrix metalloproteinase (MMP) MMP-2/MMP-9 gene polymorphism with ulinastatin (UTI) efficacy in treating severe acute pancreatitis (SAP). A total of 276 SAP patients were assigned into the control (n=135) and observation (n=141) groups. PCR-restriction fragment length polymorphism (PCR-RFLP) was used for genotype and allele frequency distribution. Relevance of MMP-2/MMP-9 genotypes with UTI efficacy was analyzed. The observation group showed lowered duration in symptoms (abdominal distension, abdominal pain, tenderness, and rebound tenderness) than the control group. Laboratory analysis (serum calcium, white blood cells, serum amylase, urine amylase, APACHE-II, and Balthazar CTIS scores) were decreased, while serum albumin levels increased after 7th day of therapy. The total effective rate of UTI for patients with MMP-2 C-1306T C/C genotype was higher than those with C/T and T/T genotypes after the 7th day of therapy, which was lower in patients with MMP-9 C-1562T C/C and C/T genotypes than those with T/T genotype. The duration for symptoms in patients with MMP-9 C-1562T T/T genotype was shorter than those with C/C and C/T genotypes, which was less in patients with MMP-2 C-1306T C/C genotype than those with C/T and T/T genotypes. The improvement values of APACHE-II and Balthazar CTIS scores for patients with MMP-2 C-1306T C/C genotype were higher than those with C/T and T/T genotypes, which for patients with MMP-9 C-1562T C/C and C/T genotypes were lower than those with T/T genotype. These results demonstrated that MMP-2/MMP-9 gene polymorphism was associated with UTI efficacy for SAP.
Collapse
|
36
|
Hsu HH, Kuo WW, Day CH, Shibu MA, Li SY, Chang SH, Shih HN, Chen RJ, Viswanadha VP, Kuo YH, Huang CY. Taiwanin E inhibits cell migration in human LoVo colon cancer cells by suppressing MMP-2/9 expression via p38 MAPK pathway. ENVIRONMENTAL TOXICOLOGY 2017; 32:2021-2031. [PMID: 27807932 DOI: 10.1002/tox.22379] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
Taiwanin E is a natural compound which is structurally analogous to estrogen II and is abundantly found in Taiwania cryptomerioides. It has been previously reported for its anticancer effects; however, the pharmaceutical effect of Taiwanin E on Human LoVo colon cancer cells is not clear. In this study, we investigated the effects of Taiwanin E on metastasis and the associated mechanism of action on Human LoVo colon cancer cells with respect to the modulations in their cell migration and signaling pathways associated with migration. The results showed that Taiwanin E inhibited cell migration ability correlated with reduced expression and activity of MMP-2 and MMP-9. In addition, Taiwanin E induced activation of p38 through phosphorylation. Inhibition of p38α/β significantly abolished the effect of Taiwanin E on cell migration and MMP-2/-9 activity. Our results conclude that Taiwanin E inhibited cell migration chiefly via p38α MAPK pathway and in a lesser extend via p38β MAPK. The results elucidate the potential of the phytoestrogen natural compound Taiwanin E as a cancer therapeutic agent in inhibiting the cell migration. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 2021-2031, 2017.
Collapse
Affiliation(s)
- Hsi-Hsien Hsu
- Division of Colorectal Surgery, Mackay Memorial Hospital, Taipei, Taiwan
- Nursing Division, Mackay Medicine, Nursing and Management College, Taipei, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Cecilia Hsuan Day
- Department of Nursing, Mei Ho University, Pingguang Road, Pingtung, Taiwan
| | | | - Shin-Yi Li
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Sheng-Huang Chang
- Department of Health, Executive Yuan, Tsao-Tun Psychiatric Center, Nantou, Taiwan
| | - Hui-Nung Shih
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
37
|
Unique insight into microenvironmental changes in colorectal cancer: Ex vivo assessment of matrix metalloprotease-mediated molecular changes in human colorectal tumor tissue and corresponding non-neoplastic adjacent tissue. Oncol Lett 2017; 13:3774-3780. [PMID: 28529592 DOI: 10.3892/ol.2017.5900] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/10/2017] [Indexed: 12/24/2022] Open
Abstract
Matrix metalloprotease (MMP)-mediated tissue remodeling is one of the malignant changes driving colorectal cancer. Measurement of altered MMP expression/activity is not sufficient to fully understand the effect of MMP-mediated tissue remodeling. Biomarkers are required that specifically reflect the dynamic processes of the MMP-mediated degradation of signature proteins from colorectal tissue. The aim of the present study was to profile and characterize the release of MMP-degraded type III collagen (C3M) and citrullinated and MMP-degraded vimentin (VICM) from tumor tissue and corresponding non-neoplastic adjacent tissue (NAT) in a human colorectal cancer ex vivo model. Colorectal tumor tissue and NAT biopsies from tissue removed during resection of colorectal cancer patients (n=13) were cut into pieces of 2 mm2 and cultured for 24 h in growth medium. C3M and VICM were evaluated by ELISA. As part of the characterization, C3M was determined subsequent to the tumor tissue being cleaved with recombinant MMP-2/-9 and trypsin. C3M was generated by MMP-2/-9, but not by trypsin. In addition, the level of C3M was significantly elevated in the conditioned medium from tumor tissues (3.7 ng/ml) compared with that observed in the conditioned medium from the NATs (2.2 ng/ml) and in the growth medium alone (1.9 ng/ml). The level of VICM was significantly elevated in the tumor tissues (0.51 ng/ml) and NATs (0.52 ng/ml) compared with that in the growth medium alone (0.03 ng/ml). No differences were detected between the tumor tissues and NATs. No correlation was observed between biomarker levels from the tumor tissue and corresponding NAT, and the biomarker levels did not correlate with tumor stage. In conclusion, the present study provided support of the concept that C3M and VICM are applicable as tools to investigate dynamic tissue changes of colorectal tumor tissue and corresponding NAT. By the assessment of these specific MMP-mediated molecular changes, the present study provides novel and relevant insight into the dynamic changes of colorectal tumor tissue and corresponding NAT.
Collapse
|
38
|
Isaacson KJ, Martin Jensen M, Subrahmanyam NB, Ghandehari H. Matrix-metalloproteinases as targets for controlled delivery in cancer: An analysis of upregulation and expression. J Control Release 2017; 259:62-75. [PMID: 28153760 DOI: 10.1016/j.jconrel.2017.01.034] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/18/2017] [Accepted: 01/26/2017] [Indexed: 02/07/2023]
Abstract
While commonly known for degradation of the extracellular matrix, matrix metalloproteinases (MMPs) exhibit broad potential for use in targeting of bioactive and imaging agents in cancer treatment. MMPs are upregulated at all stages of expression in cancers. A comprehensive analysis of published literature on expression of all MMP subtypes at the genetic, protein, and activity levels in normal and diseased tissues indicate targeting applicability in a variety of cancers. This expression significantly increases at advanced cancer stages, providing an improved opportunity for controlled release in higher-stage patients. Since MMPs are integral at every stage of metastasis, MMP roles in cancer are discussed with a focus on MMP distribution and mobility within cells and tumors for cancer targeting applications. Several strategies for MMP utilization in targeting - such as matrix degradation, MMP cleavage, MMP binding, and MMP-induced environmental changes - are addressed.
Collapse
Affiliation(s)
- Kyle J Isaacson
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA
| | - M Martin Jensen
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA
| | - Nithya B Subrahmanyam
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA
| | - Hamidreza Ghandehari
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
39
|
Chaudhary AK, Chaudhary S, Ghosh K, Shanmukaiah C, Nadkarni AH. Secretion and Expression of Matrix Metalloproteinase-2 and 9 from Bone Marrow Mononuclear Cells in Myelodysplastic Syndrome and Acute Myeloid Leukemia. Asian Pac J Cancer Prev 2017; 17:1519-29. [PMID: 27039800 DOI: 10.7314/apjcp.2016.17.3.1519] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Matrix metalloproteinase -2 (gelatinase-A, Mr 72,000 type IV collagenase, MMP-2) and -9 (gelatinase-B, Mr 92,000 type IV collagenase, MMP-9) are key molecules that play roles in tumor growth, invasion, tissue remodeling, metastasis and stem-cell regulation by digesting extracellular matrix barriers. MMP-2 and -9 are well known to impact on solid cancer susceptibility, whereas, in hematological malignancies, a paucity of data is available to resolve the function of these regulatory molecules in bone marrow mononuclear cells (BM-MNCs) and stromal cells of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). OBJECTIVES The present study aimed to investigate mRNA expression and gelatinase A and B secretion from BM-MNCs in vitro and genotypic associations of MMP-2 (-1306 C/T; rs243865), MMP-9 (-1562 C/T; rs3918242), tissue inhibitor of metalloproteinase -1 (TIMP-1) (372T/C; rs4898, Exon 5) and TIMP-2 (-418G/C; rs8179090) in MDS and AML. RESULTS The study covered cases of confirmed MDS (n=50), AML (n=32) and healthy controls (n=110). MMP- 9 mRNA expression revealed 2 fold increased expression in MDS-RAEB II and 2.5 fold in AML M-4 (60-70% blasts). Secretion of gelatinase- B also revealed the MMP-9 mRNA expression and ELISA data also supported these data. We noted that those patients having more blast crises presented with more secretion of MMP-9 and its mRNA expression. In contrast MMP-9 (-1562 C/T) showed significant polymorphic associations in MDS (p<0.02) and AML (p<0.02). MMP-9 mRNA expression of C/T and T/T genotypes were 1.5 and 2.5 fold increased in MDS and AML respectively. In AML, MMP-2 C/T and T/T genotypes showed 2.0 fold mRNA expression. Only MMP-9 (-1306 C/T) showed significant 4 fold (p<0.001) increased risk with chemical and x-ray exposed MDS, while tobacco and cigarette smokers have 3 fold (p<0.04) risk in AML. CONCLUSIONS In view of our results, MMP-9 revealed synergistic secretion and expression in blast crises of MDS and AML with 'gene' polymorphic effects and is significantly associated with increased risk with tobacco, cigarette and environmental exposure. Release and secretion of these enzymes may influence hematopoietic cell behavior and may be important in the clinical point of view. It may offer valuable tools for diagnosis and prognosis, as well as possible targets for the treatments.
Collapse
Affiliation(s)
- Ajay K Chaudhary
- Department of Haematogenetics, National Institute of Immunohematology (NIIH-ICMR), King Edward Memorial Hospital Campus, Mumbai, India E-mail : ,
| | | | | | | | | |
Collapse
|
40
|
Sarkar M, Khare V, Ghosh MK. The DEAD box protein p68: a novel coactivator of Stat3 in mediating oncogenesis. Oncogene 2016; 36:3080-3093. [PMID: 27941883 DOI: 10.1038/onc.2016.449] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/03/2016] [Accepted: 10/23/2016] [Indexed: 02/06/2023]
Abstract
DEAD box RNA helicase p68 acts as a transcriptional coactivator of several oncogenic transcription factors apart from being a vital player of RNA metabolism. Signal transducer and activator of transcription 3 (Stat3) is a major oncogenic contributor of diverse cancers, including that of colon. Deciphering the mechanistic insights of coactivation of Stat3 transcriptional activity may aid in improved therapeutic strategies. Here we report for the first time a novel mechanism of alliance between p68 and Stat3 in stimulating transcriptional activity of Stat3. Interestingly, we observed that the expression of p68 and Stat3 bears strong positive correlation and significant colocalization in normal and colon carcinoma patient samples. We demonstrated that p68 directly interacts with Stat3 in HEK293 cells as well as multiple colon cancer cell lines. Additionally, p68 positively modulated both mRNA and protein expression levels of Stat3 target genes; promoter activity of Stat3 target gene Mcl-1 in multiple colon cancer cell lines. Also, p68 occupied the promoters of multiple Stat3 target genes in enhancing Stat3-dependent transcription. Moreover, the strong positive correlation between the abundance of p68 and Stat3 target genes in the same set of colon carcinoma samples further supported our observations. Enhanced expression levels of Stat3 target genes observed in primary tumors and metastatic lung nodules, generated in mice colorectal allograft model using syngeneic cells stably expressing p68, further reinforced our in vitro findings. Hence, this study unravels novel modes of p68-mediated oncogenesis through coactivation of Stat3 and enhancing Stat3 signaling.
Collapse
Affiliation(s)
- M Sarkar
- Signal Transduction in Cancer and Stem Cells Laboratory, Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| | - V Khare
- Signal Transduction in Cancer and Stem Cells Laboratory, Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| | - M K Ghosh
- Signal Transduction in Cancer and Stem Cells Laboratory, Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| |
Collapse
|
41
|
Vos MC, Hollemans E, Ezendam N, Feijen H, Boll D, Pijlman B, van der Putten H, Klinkhamer P, van Kuppevelt TH, van der Wurff AAM, Massuger LFAG. MMP-14 and CD44 in Epithelial-to-Mesenchymal Transition (EMT) in ovarian cancer. J Ovarian Res 2016; 9:53. [PMID: 27590006 PMCID: PMC5010680 DOI: 10.1186/s13048-016-0262-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/23/2016] [Indexed: 11/25/2022] Open
Abstract
Background To investigate the expression of MMP-14 and CD44 as well as epithelial-to-mesenchymal transition(EMT)-like changes in ovarian cancer and to determine correlations with clinical outcome. Methods In 97 patients with ovarian cancer, MMP-14 and CD44 expression as determined by immunohistochemistry was investigated in relation to EMT-like changes. To determine this, immunohistochemical staining of E-cadherin and vimentin was performed. Results Patients with expression of both MMP-14 and CD44 in their tumors had a poor prognosis despite complete debulking. Serous histology in advanced-stage tumors (FIGO IIB-IV) correlated with CD44 (rho .286, p < 0.01). Also, CD44 correlated with percentage vimentin expression (rho .217, p < 0.05). In logistic regression analysis with complete debulking as the outcome parameter, CD44 expression was found to be significant (OR 3,571 (95 % Confidence Interval 1,112–11,468) p = 0.032), though this was not the case for MMP-14 and EMT parameters. Conclusion The subgroup of patients with double expression of MMP-14 and CD44 had a poor prognosis despite complete debulking. Serous subtype in advanced-stage patients and CD44 expression were found to be correlated with vimentin expression, and CD44 expression was found to be significantly correlated with complete debulking. However, a significant correlation between EMT and clinical parameters was not found.
Collapse
Affiliation(s)
- Maria Caroline Vos
- Department of Obstetrics and Gynaecology, Elisabeth-Tweesteden Hospital, PO Box 90151, 5000, LC, Tilburg, The Netherlands.
| | - Eva Hollemans
- Department of Obstetrics and Gynaecology, Elisabeth-Tweesteden Hospital, PO Box 90151, 5000, LC, Tilburg, The Netherlands.,Department of Pathology, Elisabeth-Tweesteden Hospital, PO Box 90151, 5000, LC, Tilburg, The Netherlands
| | - Nicole Ezendam
- Netherlands Comprehensive Cancer Organisation, Utrecht, The Netherlands.,CoRPS, Tilburg University, Tilburg, The Netherlands
| | - Harry Feijen
- Department of Obstetrics and Gynecology, Amphia Hospital, Breda, The Netherlands
| | - Dorry Boll
- Department of Obstetrics and Gynecology, Elisabeth Tweesteden Hospital, Tilburg, The Netherlands.,Present address: Department of Obstetrics and Gynaecology, Catharina Hospital, Eindhoven, The Netherlands
| | - Brenda Pijlman
- Department of Obstetrics and Gynaecology, Jeroen Bosch Hospital, 's-Hertogenbosch, The Netherlands
| | - Hans van der Putten
- Present address: Department of Obstetrics and Gynaecology, Catharina Hospital, Eindhoven, The Netherlands
| | | | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, PO Box 9101, 6500, HB, Nijmegen, The Netherlands
| | - Anneke A M van der Wurff
- Department of Pathology, Elisabeth-Tweesteden Hospital, PO Box 90151, 5000, LC, Tilburg, The Netherlands
| | - Leon F A G Massuger
- Department of Obstetrics and Gynecology, Radboud University Medical Centre, PO Box 9101, 6500, HB, Nijmegen, The Netherlands
| |
Collapse
|
42
|
Zheng H, Ma R, Wang Q, Zhang P, Li D, Wang Q, Wang J, Li H, Liu H, Wang Z. MiR-625-3p promotes cell migration and invasion via inhibition of SCAI in colorectal carcinoma cells. Oncotarget 2016; 6:27805-15. [PMID: 26314959 PMCID: PMC4695027 DOI: 10.18632/oncotarget.4738] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 07/16/2015] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) play a critical role in controlling tumor invasion and metastasis via regulating the expression of a variety of targets, which act as oncogenes or tumor suppressor genes. Abnormally expressed miR-625-3p has been observed in several types of human cancers. However, the molecular mechanisms of miR-625-3p-mediated tumorigenesis are largely elusive. Therefore, the aim of this study was to evaluate the biological function and molecular insight on miR-625-3p-induced oncogenesis in colorectal carcinoma (CRC). The effects of miR-625-3p in cell migration and invasion were analyzed by wound healing assay and transwell assay, respectively. In addition, the expression of miR-625-3p and its targets was detected in five human CRC cell lines. In the present study, we found that overexpression of miR-625-3p promoted migration and invasion in SW480 cells, whereas downregulation of miR-625-3p inhibited cell motility in SW620 cells. More importantly, we observed potential binding sites for miR-625-3p in the 3′-untranslated region of suppressor of cancer cell invasion (SCAI). Notably, we identified that overexpression of miR-625-3p inhibited the expression of SCAI, while depletion of miR-625-3p increased SCAI level, suggesting that SCAI could be a target of miR-625-3p. Additionally, we revealed that miR-625-3p exerts its oncogenic functions through regulation of SCAI/E-cadherin/MMP-9 pathways. Our findings indicate the pivotal role of miR-625-3p in invasion that warrants further exploration whether targeting miR-625-3p could be a promising approach for the treatment of CRC.
Collapse
Affiliation(s)
- Hailun Zheng
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Renqiang Ma
- Cancer Center, ENT Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qizhi Wang
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Pei Zhang
- Faculty of Pharmacy, Bengbu Medical College, Biochemical Drugs Engineering and Technological Research Center of Anhui Province, Bengbu, Anhui, China
| | - Dapeng Li
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Qiangwu Wang
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Jianchao Wang
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Huabin Li
- Cancer Center, ENT Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hao Liu
- Faculty of Pharmacy, Bengbu Medical College, Biochemical Drugs Engineering and Technological Research Center of Anhui Province, Bengbu, Anhui, China
| | - Zhiwei Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou, China
| |
Collapse
|
43
|
Bager CL, Gudmann N, Willumsen N, Leeming DJ, Karsdal MA, Bay-Jensen AC, Høgdall E, Balslev I, He Y. Quantification of fibronectin as a method to assess ex vivo extracellular matrix remodeling. Biochem Biophys Res Commun 2016; 478:586-91. [PMID: 27475500 DOI: 10.1016/j.bbrc.2016.07.108] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 11/28/2022]
Abstract
Altered architecture, composition and quality of the extracellular matrix (ECM) are pathological hallmarks of several inflammatory and fibro-proliferative pathological processes such as osteoarthritis (OA), rheumatoid arthritis (RA), fibrosis and cancer. One of the most important components of the ECM is fibronectin. Fibronectin serves as an adhesion molecule anchoring cells to the underlying basement membrane through direct interaction with integrin receptors. Fibronectin hereby modulates the properties of the ECM and affects cellular processes. Quantification of fibronectin remodeling could therefore be used to assess the changes in the ECM that occur during progression of fibro-proliferative pathologies. Ex vivo models are becoming state-of-the-art tools to study ECM remodeling as the cellular composition and the organization of the ECM are preserved. Ex vivo models may therefore be a valuable tool to study the ECM remodeling that occurs during progression of fibro-proliferative pathologies. The aim of this study was to quantify fibronectin remodeling in ex vivo models of cartilage and cancer. A competitive The enzyme-linked immunosorbent assay (ELISA) against the C-terminus of fibronectin was developed (FBN-C). The assay was evaluated in relation to specificity, technical performance and as a marker for quantification of fibronectin in cartilage and cancer ex vivo models. The ELISA was specific and technically stable. Cleavage of tumor tissue with MMP-2 released significantly higher levels of FBN-C compared to tissue with buffer only and western blot analysis revealed that FBN-C recognizes both full length and degraded fibronectin. When ex vivo cartilage cultures were stimulated with the anabolic factor TGFβ and catabolic factors TNF-α and OSM, significantly higher levels of FBN-C were found in the conditioned media. Lastly, FBN-C was released from a cancer ex vivo model. In conclusion, we were able to quantify fibronectin remodeling in ex vivo models of cartilage and cancer. Quantification of fibronectin remodeling could be a valuable tool to understand ECM remodeling in ex vivo models of fibro-proliferative pathologies.
Collapse
Affiliation(s)
- C L Bager
- Nordic Bioscience A/S, Herlev, Denmark; Technical University of Denmark, Denmark.
| | - N Gudmann
- Nordic Bioscience A/S, Herlev, Denmark
| | | | | | | | | | | | | | - Y He
- Nordic Bioscience A/S, Herlev, Denmark
| |
Collapse
|
44
|
Lu YM, Chen W, Zhu JS, Chen WX, Chen NW. Eriocalyxin B blocks human SW1116 colon cancer cell proliferation, migration, invasion, cell cycle progression and angiogenesis via the JAK2/STAT3 signaling pathway. Mol Med Rep 2016; 13:2235-40. [PMID: 26795301 DOI: 10.3892/mmr.2016.4800] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 09/16/2015] [Indexed: 11/06/2022] Open
Abstract
Eriocalyxin B, a natural ent-kaurene diterpene compound, has been shown to prevent carcinogenesis and tumor development. However, little is known regarding the mechanism underlying the antitumor activity of Eriocalyxin B in human colon cancer. The aim of the present study was to examine the role of Eriocalyxin B in SW1116 cells, and to verify the hypothesis that the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway may serve as a therapeutic target in human colon cancer treatment. Cell proliferation was measured with a Cell Counting kit‑8 assay, and the cell cycle was assessed by flow cytometry. Cell migration and invasion were measured by Transwell analysis. In addition, western blot analysis was performed to detect the protein expression levels in SW1116 cells treated with various concentrations of Eriocalyxin B. The results demonstrated that 1 µmol/l Eriocalyxin B was effective at inhibiting JAK2 and STAT3 phosphorylation, followed by the downregulation of JAK2 and STAT3 downstream target expression, which resulted in the inhibition of cell proliferation, migration, invasion and angiogenesis. Eriocalyxin B also suppressed the expression of proliferation‑associated protein (proliferating cell nuclear antigen) and angiogenesis‑associated proteins (vascular endothelial growth factor and vascular endothelial growth factor receptor 2), as well as that of migration- and invasion‑associated proteins (matrix metalloproteinase 2 and 9). These results suggested that Eriocalyxin B may suppress JAK2/STAT3 signaling, and thus act as a therapeutic or preventive agent in the treatment of human colon cancer.
Collapse
Affiliation(s)
- Yun-Min Lu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Wei Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Jin-Shui Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Wei-Xiong Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Ni-Wei Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
45
|
AbdElazeem MA, El-Sayed M. The pattern of CD44 and matrix metalloproteinase 9 expression is a useful predictor of ulcerative colitis–associated dysplasia and neoplasia. Ann Diagn Pathol 2015; 19:369-74. [PMID: 26420348 DOI: 10.1016/j.anndiagpath.2015.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/13/2015] [Accepted: 08/24/2015] [Indexed: 02/07/2023]
|
46
|
Rui X, Yan XI, Zhang K. Baicalein inhibits the migration and invasion of colorectal cancer cells via suppression of the AKT signaling pathway. Oncol Lett 2015; 11:685-688. [PMID: 26870267 DOI: 10.3892/ol.2015.3935] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 02/10/2015] [Indexed: 12/20/2022] Open
Abstract
The anticancer effect of baicalein has been known for a number of years. However, its anti-metastatic effect and associated mechanisms in colorectal cancer (CRC) remain unclear. The present study investigated the hypothesis that treatment with baicalein may inhibit the proliferation, motility and invasion of human CRC cell lines via regulation of the protein kinase B (AKT) signaling pathway. Baicalein was demonstrated to significantly inhibit the migration and invasion of CRC cells (P=0.01). Additionally, after treatment with baicalein for 24 h, the protein expression levels of matrix metalloproteinase-2 (MMP-2) and MMP-9 in CRC cells were significantly reduced in a dose-dependent manner (P=0.01). Furthermore, treatment with baicalein significantly reduced the expression levels of phosphorylated AKT (P=0.01). In conclusion, baicalein appears to inhibit CRC cell migration and invasion by reducing the expression of MMP-2 and MMP-9 via suppression of the AKT signaling pathway. Thus, baicalein is a potential novel therapeutic agent for patients with CRC.
Collapse
Affiliation(s)
- Xiaojiang Rui
- Department of Gastroenterology, 323 Hospital of the People's Liberation Army, Xi'an, Shaanxi 710054, P.R. China
| | - X I Yan
- Department of Gastroenterology, 323 Hospital of the People's Liberation Army, Xi'an, Shaanxi 710054, P.R. China
| | - Kai Zhang
- Department of Gastroenterology, 323 Hospital of the People's Liberation Army, Xi'an, Shaanxi 710054, P.R. China
| |
Collapse
|
47
|
Erstad DJ, Tumusiime G, Cusack JC. Prognostic and Predictive Biomarkers in Colorectal Cancer: Implications for the Clinical Surgeon. Ann Surg Oncol 2015. [DOI: 10.1245/s10434-015-4706-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
48
|
Wen FH, Sun LM, Li HL, Yin CG. Expression of pituitary tumor-transforming gene 1, matrix metalloproteinase-2 and matrix metalloproteinase-9 in gastric carcinoma. Shijie Huaren Xiaohua Zazhi 2015; 23:3147-3151. [DOI: 10.11569/wcjd.v23.i19.3147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the expression of pituitary tumor-transforming gene 1 (PTTG1), matrix metalloproteinase (MMP)-2 and MMP-9 in gastric carcinoma and explore the role of PTTG1, MMP-2 and MMP-9 in the development, metastasis and prognosis of gastric carcinoma.
METHODS: Expression of PTTG1, MMP-2 and MMP-9 in 80 gastric carcinoma tissues was detected by Streptavidin-Peroxidase immunohistochemistry staining. The correlation of PTTG1, MMP-2 and MMP-9 expression and their relationship with clinicopathologic factors of gastric carcinoma were analyzed.
RESULTS: The positive rates of PTTG1, MMP-2 and MMP-9 expression were significantly correlated with differentiation degree, lymph node metastasis and TNM stage (P < 0.05), but not with age, gender or pathologic type (P > 0.05). There was a positive correlation between the expression of PTTG1, MMP-2 and MMP-9 (P < 0.05).
CONCLUSION: PTTG1, MMP-2 and MMP-9 may play an important role in the occurrence, development, invasion and metastasis of gastric carcinoma. They may serve as molecular biological indexes for evaluating tumor infiltration and metastasis.
Collapse
|
49
|
Wang C, Ma HX, Jin MS, Zou YB, Teng YL, Tian Z, Wang HY, Wang YP, Duan XM. Association of matrix metalloproteinase (MMP)-2 and -9 expression with extra-gastrointestinal stromal tumor metastasis. Asian Pac J Cancer Prev 2015; 15:4187-92. [PMID: 24935368 DOI: 10.7314/apjcp.2014.15.10.4187] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Matrix metalloproteinase (MMP)-2 and MMP-9 are important proteases involved in invasion and metastasis of various tumors. Extra-gastrointestinal stromal tumors (EGISTs) are rare neoplasms. This study was performed to assess MMP-2 and MMP-9 expression in EGIST tissue samples for association with clinicopathological data from the patients. Twenty-one surgical EGIST tissue specimens were collected for analysis of MMP-2 and MMP- 9 expression using immunohistochemistry. MMP-2 and MMP-9 proteins were expressed in all of the epithelial cell types of EGISTs, whereas they were only expressed in 75% of the spindle cell type, although there was no statistically significant difference (p>0.05). Expression of MMP-2 and MMP-9 proteins was associated with tumor size, mitotic rate, tumor necrosis, and distant metastasis (p<0.05). MMP-2 expression was linked with MMP-9 levels (p<0.05). However, there was no correlation between MMP-9 expression and age, sex, primary site, or cell morphology in any of these 21 EGIST patients (p>0.05). Moreover, expression of MMP-2 and MMP-9 proteins increased with the degree of EGIST risk. This study provided evidence of an association of MMP-2 and MMP-9 expression with advanced EGIST behavior.
Collapse
Affiliation(s)
- Chao Wang
- Pathological Diagnosis Centre, The First Hospital Affiliated to Bethune Medical College, Jilin University, Changchun, Jilin, China E-mail :
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Fu B, Wang Y, Zhang X, Lang B, Zhou X, Xu X, Zeng T, Liu W, Zhang X, Guo J, Wang G. MiR-221-induced PUMA silencing mediates immune evasion of bladder cancer cells. Int J Oncol 2015; 46:1169-80. [PMID: 25585941 DOI: 10.3892/ijo.2015.2837] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/05/2015] [Indexed: 11/06/2022] Open
Abstract
Immune evasion of cancer cells is mainly due to the impaired transduction of apoptotic signals from immune cells to cancer cells, as well as inhibition of subsequent apoptosis signal cascades within the cancer cells. Over the past few decades, the research has focused more on the impaired transduction of the apoptotic signal from immune cells to cancer cells, rather than inhibition of the intracellular signaling pathways. In this study, miR‑221 inhibitor was transfected into bladder cancer cell lines 5637, J82 and T24 to repress the expression of miR‑221. As a result, the repression of miR‑221 on p53 upregulated modulator of apoptosis (PUMA) was abolished, resulting in increased expression of the pro-apoptotic Bax and reduced expression of the anti-apoptotic Bcl-2, which promotes apoptosis of bladder cancer cells. The expression of MMP-2, MMP-9 and VEGF-C were reduced, resulting in reduced invasiveness and infiltration capability of bladder cancer cells, thereby inhibiting the immune evasion of bladder cancer cells.
Collapse
Affiliation(s)
- Bin Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Yibing Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Xiali Zhang
- Department of Laboratory Animal Science, Nanchang University, Nanchang 330006, P.R. China
| | - Bin Lang
- School of Health Sciences, Macao Polytechnic Institute, Macao 999078, P.R. China
| | - Xiaocheng Zhou
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Xiaoyuan Xu
- Key Laboratory of System Bio-medicine of Jiangxi Province, Medical College of Jiujiang University, Jiangxi, Jiujiang 332000, P.R. China
| | - Tao Zeng
- Jiangxi Provincil People's Hospital, Nanchang 330006, P.R. China
| | - Weipeng Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Xu Zhang
- Department of Urology, Chinese PLA General Hospital, Beijing 100039, P.R. China
| | - Ju Guo
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R. China
| |
Collapse
|