1
|
Alsaidan OA. Recent advancements in aptamers as promising nanotool for therapeutic and diagnostic applications. Anal Biochem 2025; 702:115844. [PMID: 40090606 DOI: 10.1016/j.ab.2025.115844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 03/18/2025]
Abstract
Aptamers are single-strand oligonucleotide molecules having certain structural interactions which allow them to bind to specific targets. Modified nucleotides are added during or after a selection procedure like Systematic Evolution of Ligands by Exponential Enrichment i.e., SELEX to enhance the characteristics and functionality of aptamers. Aptamers are extensible molecular tools with several uses such as in drug administration, biosensing, bioimaging, drug therapies and diagnostics. The ability to detect is improved by using aptamer-based sensors in conjunction with biological molecules among other sensing techniques. Chemical modification, and strong resistance to denaturation, aptamers are appropriate biological recognizing agents for developing sensitive and repeatable aptasensors. This review discusses the most current developments in the aptamers, SELEX method, applications of aptamers as innovative diagnostic, therapeutic & theragnostic tool along with major limitations & prospective directions in the future.
Collapse
Affiliation(s)
- Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, P.O. Box 2014, Sakaka, 72341, Saudi Arabia.
| |
Collapse
|
2
|
Bok T, Hysi E, Kolios MC. Quantitative ultrasound and photoacoustic assessments of red blood cell aggregation in the human radial artery. PHOTOACOUSTICS 2025; 43:100711. [PMID: 40165999 PMCID: PMC11957594 DOI: 10.1016/j.pacs.2025.100711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/12/2025] [Accepted: 03/03/2025] [Indexed: 04/02/2025]
Abstract
We develop concurrent US and photoacoustic (PA) imaging to characterize structural/physiological impact of in-vivo red blood cell (RBC) aggregation. PA images at 700/800/900 nm were collected from the radial arteries of 12 participants across age groups (20 s/30 s/40 s) alongside US images (21 MHz, VevoLAZR). RBC aggregate size was estimated from US-derived structure-factor-size-estimation (D SFSE) and PA-derived spectral-slope (SS), along with oxygen saturation (sO2). At peak systole (PS), D SFSE PS and SSPS approximated 1 RBC and -0.1 dB/MHz, respectively, across all ages, with sO2 PS values of 97.1 %, 94.7 %, and 93.0 % for each group. At end diastole (ED), D SFSE ED, SSED and sO2 ED values were 2.6, 3.4, and 4.7 RBCs; -0.7, -0.9, and -1.2 dB/MHz; and 98.7 %, 97.2 %, and 96.7 %, respectively. Differences between SSED and SSPS (δSS) and sO2 ED and sO2 PS (δsO2) increased with age, indicating aging-related increases in DSFSE and δSS, as well as decreases in sO2 PS and sO2 ED.
Collapse
Affiliation(s)
- Taehoon Bok
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, Ontario M5B 1T8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Toronto Metropolitan University and St. Michael’s Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Eno Hysi
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, Ontario M5B 1T8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Toronto Metropolitan University and St. Michael’s Hospital, Toronto, Ontario M5B 1T8, Canada
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Michael C. Kolios
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, Ontario M5B 1T8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Toronto Metropolitan University and St. Michael’s Hospital, Toronto, Ontario M5B 1T8, Canada
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
3
|
Farag A, Kohan A, Sekine T, Mirshahvalad SA, Metser U, Mafeld S, Tan K, Veit-Haibach P. Measuring hypoxia in chronic limb-threatening ischemia using 18F-FAZA kinetic modelling - a pilot study. EJNMMI Res 2025; 15:48. [PMID: 40287606 PMCID: PMC12033150 DOI: 10.1186/s13550-025-01243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Chronic limb- threatening ischemia (CLTI) is a serious condition that can lead to amputation, and in some cases, it can be associated with mortality. Current clinical evaluation methods have several limitations. Therefore, new methods to assess CLTI are needed to better understand and measure underlying causes and functionality, and hence potentially improve the treatment. In this study, we use dynamic 18F-FAZA PET-imaging as a method of measuring hypoxia as a marker associated with CLTI, on twelve patients identified with CLTI who underwent 18F-FAZA PET-MR imaging. RESULTS The kinetic modelling goodness-of-fit metrics using AIF from independent limb with the irreversible-2TC3K model distinguished between index and contralateral limbs better than the reversable-2TC4K model. The Spearman correlation coefficients between the standardized uptake value (SUV) SUV-to-SUVmed ratio and the perfusion parameter, [Formula: see text], was rs = -0.07 for index and rs = 0.22 for contralateral limbs. For the SUV-to-SUVmed ratio correlation with diffusion parameter, [Formula: see text], it is found to be negative for both index (rs = -0.16) and contralateral (rs = -0.11). CONCLUSIONS The kinetic modelling of 18F-FAZA dynamic PET-MR was able to differentiate between index and contralateral limbs in CLTI patients, and the diffusion metric from the kinetic modelling can potentially be used as a metric to measure hypoxia in CLTI. TRIAL REGISTRATION ClinicalTrials.gov, NCT04054609. Registered 20,190,611, https//clinicaltrials.gov/study/NCT04054609.
Collapse
Affiliation(s)
- Adam Farag
- Toronto Joint Dept. Medical Imaging, Women's College Hospital, University Medical Imaging Toronto, University Health Network, Mount Sinai Hospital, University of Toronto, 610 University Ave, Toronto, ON, M5G 2M9, Canada.
| | - Andres Kohan
- Toronto Joint Dept. Medical Imaging, Women's College Hospital, University Medical Imaging Toronto, University Health Network, Mount Sinai Hospital, University of Toronto, 610 University Ave, Toronto, ON, M5G 2M9, Canada
| | - Tetsuro Sekine
- Department of Radiology, Nippon Medical School Musashi Kosugi Hospital, 1-383, Kosugi-cho, Nakahara-ku, Kanagawa, 211-8533, Japan
| | - Seyed Ali Mirshahvalad
- Toronto Joint Dept. Medical Imaging, Women's College Hospital, University Medical Imaging Toronto, University Health Network, Mount Sinai Hospital, University of Toronto, 610 University Ave, Toronto, ON, M5G 2M9, Canada
| | - Ur Metser
- Toronto Joint Dept. Medical Imaging, Women's College Hospital, University Medical Imaging Toronto, University Health Network, Mount Sinai Hospital, University of Toronto, 610 University Ave, Toronto, ON, M5G 2M9, Canada
| | - Sebastian Mafeld
- Toronto Joint Dept. Medical Imaging, Women's College Hospital, University Medical Imaging Toronto, University Health Network, Mount Sinai Hospital, University of Toronto, 610 University Ave, Toronto, ON, M5G 2M9, Canada
| | - Kongteng Tan
- Toronto Joint Dept. Medical Imaging, Women's College Hospital, University Medical Imaging Toronto, University Health Network, Mount Sinai Hospital, University of Toronto, 610 University Ave, Toronto, ON, M5G 2M9, Canada
| | - Patrick Veit-Haibach
- Toronto Joint Dept. Medical Imaging, Women's College Hospital, University Medical Imaging Toronto, University Health Network, Mount Sinai Hospital, University of Toronto, 610 University Ave, Toronto, ON, M5G 2M9, Canada
| |
Collapse
|
4
|
Wang Y, Zhou H, Ju S, Dong X, Zheng C. The solid tumor microenvironment and related targeting strategies: a concise review. Front Immunol 2025; 16:1563858. [PMID: 40207238 PMCID: PMC11979131 DOI: 10.3389/fimmu.2025.1563858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/12/2025] [Indexed: 04/11/2025] Open
Abstract
The malignant tumor is a serious disease threatening human life. Increasing studies have confirmed that the tumor microenvironment (TME) is composed of a variety of complex components that precisely regulate the interaction of tumor cells with other components, allowing tumor cells to continue to proliferate, resist apoptosis, evade immune surveillance and clearance, and metastasis. However, the characteristics of each component and their interrelationships remain to be deeply understood. To target TME, it is necessary to deeply understand the role of various components of TME in tumor growth and search for potential therapeutic targets. Herein, we innovatively classify the TME into physical microenvironment (such as oxygen, pH, etc.), mechanical microenvironment (such as extracellular matrix, blood vessels, etc.), metabolic microenvironment (such as glucose, lipids, etc.), inflammatory microenvironment and immune microenvironment. We introduce a concise but comprehensive classification of the TME; depict the characteristics of each component in TME; summarize the existing methods for detecting each component in TME; highlight the current strategies and potential therapeutic targets for TME; discuss current challenges in presenting TME and its clinical applications; and provide our prospect on the future research direction and clinical benefits of TME.
Collapse
Affiliation(s)
- Yingliang Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan, China
| | - Huimin Zhou
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuguang Ju
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan, China
| | - Xiangjun Dong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan, China
| |
Collapse
|
5
|
Skipar K, Hompland T, Lund KV, Fjeldbo CS, Lindemann K, Hellebust TP, Lyng H, Bruheim K. Tolerability, safety and feasibility of metformin combined with chemoradiotherapy in patients with locally advanced cervical cancer: A phase II, randomized study. Acta Oncol 2025; 64:439-447. [PMID: 40105683 PMCID: PMC11971942 DOI: 10.2340/1651-226x.2025.43045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/01/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND AND PURPOSE Locally advanced cervical cancer is treated with chemoradiotherapy. The treatment-related morbidity is high. Tumor hypoxia has prognostic impact and represents a valid, interventional target. This phase II study investigated efficacy of the antidiabetic drug metformin to modify hypoxia according to established biomarkers. Preliminary results including tolerability, safety and feasibility are reported here. PATIENTS AND METHODS Patients were included in a 1:1 randomized, open-label design, comparing standard chemoradiotherapy ± metformin. Metformin 850 mg twice daily was administered 1 week before and during chemoradiotherapy. Magnetic resonance images (MRI) and tumor biopsies were collected at baseline, after 1 week of metformin treatment, and at brachytherapy for biomarker assessments. Tolerability and safety were determined by treatment completion rates and frequency of adverse events (AEs). Safety was further evaluated by possible increase in MRI-based hypoxia during the first week of metformin. Feasibility was determined by proportion of completed study interventions and imaging and biopsy procedures. RESULTS In total, 18 and 23 patients were allocated to the intervention and control arm, respectively. Eighteen and 15 patients completed metformin treatment for 1 and 5 weeks. Frequency of AEs ≥ grade 3 was not significantly different between study arms. Most AEs were gastrointestinal toxicities. Tumors with increase in hypoxia during the first week were all below the defined safety limit. A total of 98% of scheduled MR series and biopsies were collected with satisfactory quality. INTERPRETATION Addition of metformin to chemoradiotherapy is tolerable and safe. Serial sampling of MRI and tumor biopsies for hypoxia biomarker assessment is feasible.
Collapse
Affiliation(s)
- Kjersti Skipar
- Department of Oncology, Telemark Hospital Trust, Skien, Norway; Department of Radiation Biology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Tord Hompland
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway
| | - Kjersti V Lund
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Kristina Lindemann
- Department of Surgical Oncology, Section for gynecological oncology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Taran P Hellebust
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway
| | - Heidi Lyng
- Department of Radiation Biology, Oslo University Hospital, Oslo, Norway; Department of Physics, University of Oslo, Oslo, Norway
| | - Kjersti Bruheim
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Luo HY, Lin WQ, Zhu SS, Yang SY, Ye TX, Qin F, Chen C. A near infrared fluorescent probe for hypoxia based on dicyanoisophorone and its application in Hela cells imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125383. [PMID: 39547141 DOI: 10.1016/j.saa.2024.125383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/30/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Hypoxia will accelerate tumors metastasis and deterioration, thereby limiting the effects of chemotherapy or radiotherapy. Thus, developing efficient techniques for detecting hypoxia in tumor cells is extremely important for cancer diagnosis and therapy. In this work, we reported a dicyanoisophorone-based probe (DCI-Azo) that specifically switched on its near infrared emission with hypoxia up-regulated azo-reductase (AzoR). In order to reduce the difficulty of synthesis and simplify the post-processing process, we adopted a one-pot-synthesis method to synthesized NIR fluorophore (DCI-Am) with yield 97 %. Based on the fluorophore, DCI-Azo was designed and synthesized. The sensitivity of DCI-Azo for hypoxia in vitro was evaluated with Na2S2O4 and rat liver microsomes. It exhibited near-infrared emission (λem = 650 nm), large Stokes Shift (>160 nm), high sensitivity (LOD 0.53 μg mL-1 rat liver microsomes), high selectivity, and low cytotoxicity (cell viability > 80 % after incubation for 24 h). Moreover, the probe was successfully used for detecting hypoxia (1% O2) in Hela cells and tumor tissue in mouse model. The fluorescence intensity in Hela cells has increased ∼ 26-fold when the oxygen level is reduced to 1 % from 21 % O2. The fluorescence intensity of the tumor area enhanced ∼ 5 folds compared to the normal area nearby. All these features demonstrated that the probe DCI-Azo was a versatile tool for in vivo assay and imaging for cancer diagnosis studies.
Collapse
Affiliation(s)
- Hong-Yuan Luo
- Innovation Center for Enzyme Catalysis and Drug Synthesis, School of Pharmacy and Pharmaceutical Sciences, Xiamen Medical College, Xiamen 361023, PR China; Institute of Respiratory Diseases, Xiamen Medical College, Xiamen 361023, PR China.
| | - Wei-Qi Lin
- Xiamen Products Quality Supervision & Inspection Institute, Xiamen 361004, PR China
| | - Shan-Shan Zhu
- Innovation Center for Enzyme Catalysis and Drug Synthesis, School of Pharmacy and Pharmaceutical Sciences, Xiamen Medical College, Xiamen 361023, PR China
| | - Shuang-Ying Yang
- Innovation Center for Enzyme Catalysis and Drug Synthesis, School of Pharmacy and Pharmaceutical Sciences, Xiamen Medical College, Xiamen 361023, PR China; School of Pharmacy, Fujian Medical University, Fuzhou 350004, PR China
| | - Ting-Xiu Ye
- Innovation Center for Enzyme Catalysis and Drug Synthesis, School of Pharmacy and Pharmaceutical Sciences, Xiamen Medical College, Xiamen 361023, PR China
| | - Fei Qin
- Innovation Center for Enzyme Catalysis and Drug Synthesis, School of Pharmacy and Pharmaceutical Sciences, Xiamen Medical College, Xiamen 361023, PR China
| | - Chuan Chen
- Innovation Center for Enzyme Catalysis and Drug Synthesis, School of Pharmacy and Pharmaceutical Sciences, Xiamen Medical College, Xiamen 361023, PR China.
| |
Collapse
|
7
|
Daimiel Naranjo I, Bhowmik A, Basukala D, Lo Gullo R, Mazaheri Y, Kapetas P, Eskreis-Winkler S, Pinker K, Thakur SB. Assessment of Hypoxia in Breast Cancer: Emerging Functional MR Imaging and Spectroscopy Techniques and Clinical Applications. J Magn Reson Imaging 2025; 61:83-96. [PMID: 38703143 DOI: 10.1002/jmri.29424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
Breast cancer is one of the most prevalent forms of cancer affecting women worldwide. Hypoxia, a condition characterized by insufficient oxygen supply in tumor tissues, is closely associated with tumor aggressiveness, resistance to therapy, and poor clinical outcomes. Accurate assessment of tumor hypoxia can guide treatment decisions, predict therapy response, and contribute to the development of targeted therapeutic interventions. Over the years, functional magnetic resonance imaging (fMRI) and magnetic resonance spectroscopy (MRS) techniques have emerged as promising noninvasive imaging options for evaluating hypoxia in cancer. Such techniques include blood oxygen level-dependent (BOLD) MRI, oxygen-enhanced MRI (OE) MRI, chemical exchange saturation transfer (CEST) MRI, and proton MRS (1H-MRS). These may help overcome the limitations of the routinely used dynamic contrast-enhanced (DCE) MRI and diffusion-weighted imaging (DWI) techniques, contributing to better diagnosis and understanding of the biological features of breast cancer. This review aims to provide a comprehensive overview of the emerging functional MRI and MRS techniques for assessing hypoxia in breast cancer, along with their evolving clinical applications. The integration of these techniques in clinical practice holds promising implications for breast cancer management. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Isaac Daimiel Naranjo
- Department of Radiology, HM Hospitales, Madrid, Spain
- School of Medicine, Universidad CEU San Pablo, Madrid, Spain
| | - Arka Bhowmik
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Dibash Basukala
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, New York, USA
| | - Roberto Lo Gullo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yousef Mazaheri
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Panagiotis Kapetas
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Sarah Eskreis-Winkler
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Katja Pinker
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sunitha B Thakur
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
8
|
Kleynhans J, Ebenhan T, Sathekge MM. Expanding Role for Gallium-68 PET Imaging in Oncology. Semin Nucl Med 2024; 54:778-791. [PMID: 38964934 DOI: 10.1053/j.semnuclmed.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Gallium-68 has gained substantial momentum since 2003 as a versatile radiometal that is extremely useful for application in the development of novel oncology targeting diagnostic radiopharmaceuticals. It is available through both generator produced radioactivity and via cyclotron production methods and can therefore be implemented in either small- or large-scale production facilities. It can also be implemented within different spectrum of infrastructure settings with relative ease. Whilst many of the radiopharmaceuticals are being development and investigated, which is summarized in this manuscript, [68Ga]Ga-SSTR2 and [68Ga]Ga-PSMA has prominence in current clinical guidelines. The novel tracer [68Ga]Ga-FAPi has also gained significant interest in the clinical context. A comparison of the labelling strategies followed to incorporate gallium-68 and fluorine-18 into the same molecular targeting constructs clearly demonstrate that gallium-68 complexation is the most convenient approach. Recently, cold kit based starting products are available to make the small-scale production of gallium-68 radiopharmaceuticals even more efficient when combined with generator produced gallium-68. The regulatory aspects is currently changing to support the implementation of gallium-68 and other diagnostic radiopharmaceuticals, simplifying the translation towards clinical use. Overall, the development of gallium-68 based radiopharmaceuticals is not only rapidly changing the landscape of diagnosis in oncology, but this growth also promotes innovation and progress in new applications of therapeutic radiometals such as lutetium-177 and actinium-225.
Collapse
Affiliation(s)
- Janke Kleynhans
- Department of Pharmaceutical and Pharmacological Sciences, Radiopharmaceutical Research, Katholieke Universiteit Leuven, Leuven, Belgium.
| | - Thomas Ebenhan
- Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa; Preclinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pretoria, South Africa
| | - Mike Machaba Sathekge
- Preclinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pretoria, South Africa; Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| |
Collapse
|
9
|
Ciepła J, Smolarczyk R. Tumor hypoxia unveiled: insights into microenvironment, detection tools and emerging therapies. Clin Exp Med 2024; 24:235. [PMID: 39361163 PMCID: PMC11449960 DOI: 10.1007/s10238-024-01501-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Hypoxia is one of the defining characteristics of the tumor microenvironment (TME) in solid cancers. It has a major impact on the growth and spread of malignant cells as well as their resistance to common treatments like radiation and chemotherapy. Here, we explore the complex functions of hypoxia in the TME and investigate its effects on angiogenesis, immunological evasion, and cancer cell metabolism. For prognostic and therapeutic reasons, hypoxia identification is critical, and recent developments in imaging and molecular methods have enhanced our capacity to precisely locate underoxygenated areas inside tumors. Furthermore, targeted therapies that take advantage of hypoxia provide a potential new direction in the treatment of cancer. Therapeutic approaches that specifically target hypoxic conditions in tumors without causing adverse effects are being led by hypoxia-targeted nanocarriers and hypoxia-activated prodrugs (HAPs). This review provides an extensive overview of this dynamic and clinically significant area of oncology research by synthesizing current knowledge about the mechanisms of hypoxia in cancer, highlighting state-of-the-art detection methodologies, and assessing the potential and efficacy of hypoxia-targeted therapies.
Collapse
Affiliation(s)
- Joanna Ciepła
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland.
| |
Collapse
|
10
|
Maingueneau C, Lafargue AE, Guillouet S, Fillesoye F, Cao Pham TT, Jordan B, Perrio C. 18 F-Fluorination of Nitroimidazolyl-Containing Sultone: A Direct Access to a Highly Hydrophilic Radiotracer for High-Performance Positron Emission Tomography Imaging of Hypoxia. JACS AU 2024; 4:3248-3257. [PMID: 39211595 PMCID: PMC11350728 DOI: 10.1021/jacsau.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
Hypoxia, characterized by nonphysiological levels of oxygen tension, is a key phenomenon common to the majority of malignant tumors with poor prognosis. Many efforts have been made to develop hypoxia imaging for diagnosis, staging, and monitoring of diseases, as well as for evaluating therapies. PET Imaging using 18F-fluoronitroimidazoles (i.e., [18F]FMISO as a lead radiotracer) has demonstrated potential for clinical investigations, but the poor contrast and prolonged acquisition times (>2.5 h) strongly limit its accuracy and routine developments. Here, we report an original [18F]fluoronitroimidazole bearing a sulfo group ([18F]FLUSONIM) that displays highly hydrophilic properties and rapid clearance, providing high-performance hypoxia specific PET imaging. We describe the synthesis and radiosynthesis of [18F]FLUSONIM, its in vivo preclinical evaluation by PET imaging in healthy rats and a rhabdomyosarcoma rat model, as well as its radiometabolization and histological studies. [18F]FLUSONIM was prepared in a single step by high yielding radiofluorination of a sultone precursor, highlighting the advantages of this new radiolabeling approach not yet explored for radiopharmaceutical development. PET imaging experiments were conducted by systematically comparing [18F]FLUSONIM to [18F]FMISO as a reference. The overall results unequivocally demonstrate that the developed radiopharmaceutical meets the criteria of an ideal candidate for hypoxia PET imaging-rapid and efficient radiosynthesis, total stability, exclusive urinary elimination, high specificity for hypoxic regions, unprecedented tumor/background ratios, short acquisition delays (<60 min), and promising potential for further preclinical and clinical applications.
Collapse
Affiliation(s)
- Clémence Maingueneau
- CNRS,
CEA, Normandie Univ, UNICAEN, Cyceron, Boulevard Henri Becquerel, Caen 14074, France
| | - Anne-Elodie Lafargue
- CNRS,
CEA, Normandie Univ, UNICAEN, Cyceron, Boulevard Henri Becquerel, Caen 14074, France
| | - Stéphane Guillouet
- CNRS,
CEA, Normandie Univ, UNICAEN, Cyceron, Boulevard Henri Becquerel, Caen 14074, France
| | - Fabien Fillesoye
- CNRS,
CEA, Normandie Univ, UNICAEN, Cyceron, Boulevard Henri Becquerel, Caen 14074, France
| | - Thanh T. Cao Pham
- UCLouvain,
Biomedical Magnetic Resonance Unit (REMA), Avenue Mounier 73.08, Woluwe-Saint-Lambert 1200, Belgium
| | - Bénédicte
F. Jordan
- UCLouvain,
Biomedical Magnetic Resonance Unit (REMA), Avenue Mounier 73.08, Woluwe-Saint-Lambert 1200, Belgium
| | - Cécile Perrio
- CNRS,
CEA, Normandie Univ, UNICAEN, Cyceron, Boulevard Henri Becquerel, Caen 14074, France
| |
Collapse
|
11
|
Lee TW, Singleton DC, Harms JK, Lu M, McManaway SP, Lai A, Tercel M, Pruijn FB, Macann AMJ, Hunter FW, Wilson WR, Jamieson SMF. Clinical relevance and therapeutic predictive ability of hypoxia biomarkers in head and neck cancer tumour models. Mol Oncol 2024; 18:1885-1903. [PMID: 38426642 PMCID: PMC11306523 DOI: 10.1002/1878-0261.13620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/20/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Tumour hypoxia promotes poor patient outcomes, with particularly strong evidence for head and neck squamous cell carcinoma (HNSCC). To effectively target hypoxia, therapies require selection biomarkers and preclinical models that can accurately model tumour hypoxia. We established 20 patient-derived xenograft (PDX) and cell line-derived xenograft (CDX) models of HNSCC that we characterised for their fidelity to represent clinical HNSCC in gene expression, hypoxia status and proliferation and that were evaluated for their sensitivity to hypoxia-activated prodrugs (HAPs). PDX models showed greater fidelity in gene expression to clinical HNSCC than cell lines, as did CDX models relative to their paired cell lines. PDX models were significantly more hypoxic than CDX models, as assessed by hypoxia gene signatures and pimonidazole immunohistochemistry, and showed similar hypoxia gene expression to clinical HNSCC tumours. Hypoxia or proliferation status alone could not determine HAP sensitivity across our 20 HNSCC and two non-HNSCC tumour models by either tumour growth inhibition or killing of hypoxia cells in an ex vivo clonogenic assay. In summary, our tumour models provide clinically relevant HNSCC models that are suitable for evaluating hypoxia-targeting therapies; however, additional biomarkers to hypoxia are required to accurately predict drug sensitivity.
Collapse
Affiliation(s)
- Tet Woo Lee
- Auckland Cancer Society Research CentreUniversity of AucklandNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryUniversity of AucklandNew Zealand
| | - Dean C. Singleton
- Auckland Cancer Society Research CentreUniversity of AucklandNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryUniversity of AucklandNew Zealand
- Department of Molecular Medicine and PathologyUniversity of AucklandNew Zealand
| | - Julia K. Harms
- Auckland Cancer Society Research CentreUniversity of AucklandNew Zealand
| | - Man Lu
- Auckland Cancer Society Research CentreUniversity of AucklandNew Zealand
| | - Sarah P. McManaway
- Auckland Cancer Society Research CentreUniversity of AucklandNew Zealand
| | - Amy Lai
- Auckland Cancer Society Research CentreUniversity of AucklandNew Zealand
- Department of Pharmacology and Clinical PharmacologyUniversity of AucklandNew Zealand
| | - Moana Tercel
- Auckland Cancer Society Research CentreUniversity of AucklandNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryUniversity of AucklandNew Zealand
| | - Frederik B. Pruijn
- Auckland Cancer Society Research CentreUniversity of AucklandNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryUniversity of AucklandNew Zealand
| | | | - Francis W. Hunter
- Auckland Cancer Society Research CentreUniversity of AucklandNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryUniversity of AucklandNew Zealand
- Oncology Therapeutic AreaJanssen Research and DevelopmentSpring HousePAUSA
| | - William R. Wilson
- Auckland Cancer Society Research CentreUniversity of AucklandNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryUniversity of AucklandNew Zealand
| | - Stephen M. F. Jamieson
- Auckland Cancer Society Research CentreUniversity of AucklandNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryUniversity of AucklandNew Zealand
- Department of Pharmacology and Clinical PharmacologyUniversity of AucklandNew Zealand
| |
Collapse
|
12
|
Kwon SY, Thi-Thu Ngo H, Son J, Hong Y, Min JJ. Exploiting bacteria for cancer immunotherapy. Nat Rev Clin Oncol 2024; 21:569-589. [PMID: 38840029 DOI: 10.1038/s41571-024-00908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/07/2024]
Abstract
Immunotherapy has revolutionized the treatment of cancer but continues to be constrained by limited response rates, acquired resistance, toxicities and high costs, which necessitates the development of new, innovative strategies. The discovery of a connection between the human microbiota and cancer dates back 4,000 years, when local infection was observed to result in tumour eradication in some individuals. However, the true oncological relevance of the intratumoural microbiota was not recognized until the turn of the twentieth century. The intratumoural microbiota can have pivotal roles in both the pathogenesis and treatment of cancer. In particular, intratumoural bacteria can either promote or inhibit cancer growth via remodelling of the tumour microenvironment. Over the past two decades, remarkable progress has been made preclinically in engineering bacteria as agents for cancer immunotherapy; some of these bacterial products have successfully reached the clinical stages of development. In this Review, we discuss the characteristics of intratumoural bacteria and their intricate interactions with the tumour microenvironment. We also describe the many strategies used to engineer bacteria for use in the treatment of cancer, summarizing contemporary data from completed and ongoing clinical trials. The work described herein highlights the potential of bacteria to transform the landscape of cancer therapy, bridging ancient wisdom with modern scientific innovation.
Collapse
Affiliation(s)
- Seong-Young Kwon
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, Republic of Korea
| | - Hien Thi-Thu Ngo
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea
- Department of Biomedical Sciences, Chonnam National University Medical School, Jeonnam, Republic of Korea
- Department of Biochemistry, Hanoi Medical University, Hanoi, Vietnam
| | - Jinbae Son
- CNCure Biotech, Jeonnam, Republic of Korea
| | - Yeongjin Hong
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea
- CNCure Biotech, Jeonnam, Republic of Korea
- Department of Microbiology and Immunology, Chonnam National University Medical School, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Chonnam National University, Jeonnam, Republic of Korea
| | - Jung-Joon Min
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea.
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, Republic of Korea.
- Department of Biomedical Sciences, Chonnam National University Medical School, Jeonnam, Republic of Korea.
- CNCure Biotech, Jeonnam, Republic of Korea.
- Department of Microbiology and Immunology, Chonnam National University Medical School, Jeonnam, Republic of Korea.
- National Immunotherapy Innovation Center, Chonnam National University, Jeonnam, Republic of Korea.
| |
Collapse
|
13
|
Li T, Murley GA, Liang X, Chin RL, de la Cerda J, Schuler FW, Pagel MD. Evaluations of an Early Change in Tumor Pathophysiology in Response to Radiotherapy with Oxygen Enhanced Electron Paramagnetic Resonance Imaging (OE EPRI). Mol Imaging Biol 2024; 26:448-458. [PMID: 38869818 PMCID: PMC11830149 DOI: 10.1007/s11307-024-01925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE Electron Paramagnetic Resonance Imaging (EPRI) can image the partial pressure of oxygen (pO2) within in vivo tumor models. We sought to develop Oxygen Enhanced (OE) EPRI that measures tumor pO2 with breathing gases of 21% O2 (pO221%) and 100% O2 (pO2100%), and the differences in pO2 between breathing gases (ΔpO2). We applied OE EPRI to study the early change in tumor pathophysiology in response to radiotherapy in two tumor models of pancreatic cancer. PROCEDURES We developed a protocol that intraperitoneally administered OX071, a trityl radical contrast agent, and then acquired anatomical MR images to localize the tumor. Subsequently, we acquired two pO221% and two pO2100% maps using the T1 relaxation time of OX071 measured with EPRI and a R1-pO2 calibration of OX071. We studied 4T1 flank tumor model to evaluate the repeatability of OE EPRI. We then applied OE EPRI to study COLO 357 and Su.86.86 flank tumor models treated with 10 Gy radiotherapy. RESULTS The repeatability of mean pO2 for individual tumors was ± 2.6 Torr between successive scans when breathing 21% O2 or 100% O2, representing a precision of 9.6%. Tumor pO221% and pO2100% decreased after radiotherapy for both models, although the decreases were not significant or only moderately significant, and the effect sizes were modest. For comparison, ΔpO2 showed a large, highly significant decrease after radiotherapy, and the effect size was large. MANOVA and analyses of the HF10 hypoxia fraction provided similar results. CONCLUSIONS EPRI can evaluate tumor pO2 with outstanding precision relative to other imaging modalities. The change in ΔpO2 before vs. after treatment was the best parameter for measuring the early change in tumor pathophysiology in response to radiotherapy. Our studies have established ΔpO2 from OE EPRI as a new parameter, and have established that OE EPRI is a valuable new methodology for molecular imaging.
Collapse
Affiliation(s)
- Tianzhe Li
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas Health Science Center, Houston, TX, 77030, USA
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, 68105, USA
| | - Grace A Murley
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Xiaofei Liang
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Renee L Chin
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Jorge de la Cerda
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - F William Schuler
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mark D Pagel
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Medical Physics, University of Wisconsin, Madison, WI, 53705, USA.
| |
Collapse
|
14
|
Folz J, Jo J, Gonzalez ME, Eido A, Zhai T, Caruso R, Kleer CG, Wang X, Kopelman R. Photoacoustic lifetime oxygen imaging of radiotherapy-induced tumor reoxygenation In Vivo. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2024; 21:100241. [PMID: 39005728 PMCID: PMC11243757 DOI: 10.1016/j.jpap.2024.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Purpose Early detection and diagnosis of cancer is critical for achieving positive therapeutic outcomes. Biomarkers that can provide clinicians with clues to the outcome of a given therapeutic course are highly desired. Oxygen is a small molecule that is nearly universally present in biological tissues and plays a critical role in the effectiveness of radiotherapies by reacting with DNA radicals and subsequently impairing cellular repair of double strand breaks.Techniques for measuring oxygen in biological tissues often use blood oxygen saturation to approximate the oxygen partial pressure in surrounding tissues despite the complex, nonlinear, and dynamic relationship between these two separate oxygen populations. Methods and materials We combined a directly oxygen-sensitive, tumor-targeted, chemical contrast nanoelement with the photoacoustic lifetime-based (PALT) oxygen imaging technique to obtain image maps of oxygen in breast cancer tumors in vivo. The oxygen levels of patient-derived xenografts in a mouse model were characterized before and after a course of radiotherapy. Results We show that, independent of tumor size, radiotherapy induced an increase in the overall oxygenation levels of the tumor. Further, this increase in the oxygenation of the tumor significantly correlated with a positive response to radiotherapy, as demonstrated by a reduction in tumor volume over the twenty-day monitoring period following therapy and histological staining. Conclusion Our PALT imaging presented here is simple, fast, and non-invasive. Facilized by the PALT approach, imaging of tumor reoxygenation may be utilized as a simple, early indicator for evaluating cancer response to radiotherapy. Further characterization of the reoxygenation degree, temporal onset, and possible theragnostic implications are warranted.
Collapse
Affiliation(s)
- Jeff Folz
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Janggun Jo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maria E. Gonzalez
- Department of Pathology, University of Michigan Health System, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Ahmad Eido
- Department of Pathology, University of Michigan Health System, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Tianqu Zhai
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Roberta Caruso
- Department of Pathology, University of Michigan Health System, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Celina G. Kleer
- Department of Pathology, University of Michigan Health System, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Raoul Kopelman
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Health System, Ann Arbor, MI 48109, USA
| |
Collapse
|
15
|
Choen S, Kent MS, Loucks FA, Winger JA, Zwingenberger AL. Assessment of tumor hypoxia in spontaneous canine tumors after treatment with OMX, a novel H-NOX oxygen carrier, with [ 18F]FMISO PET/CT. BMC Vet Res 2024; 20:196. [PMID: 38741109 PMCID: PMC11089780 DOI: 10.1186/s12917-024-04061-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Hypoxia is a detrimental factor in solid tumors, leading to aggressiveness and therapy resistance. OMX, a tunable oxygen carrier from the heme nitric oxide/oxygen-binding (H-NOX) protein family, has the potential to reduce tumor hypoxia. [18F]Fluoromisonidazole ([18F]FMISO) positron emission tomography (PET) is the most widely used and investigated method for non-invasive imaging of tumor hypoxia. In this study, we used [18F]FMISO PET/CT (computed tomography) to assess the effect of OMX on tumor hypoxia in spontaneous canine tumors. RESULTS Thirteen canine patients with various tumors (n = 14) were randomly divided into blocks of two, with the treatment groups alternating between receiving intratumoral (IT) OMX injection (OMX IT group) and intravenous (IV) OMX injection (OMX IV group). Tumors were regarded as hypoxic if maximum tumor-to-muscle ratio (TMRmax) was greater than 1.4. In addition, hypoxic volume (HV) was defined as the region with tumor-to-muscle ratio greater than 1.4 on [18F]FMISO PET images. Hypoxia was detected in 6/7 tumors in the OMX IT group and 5/7 tumors in the OMX IV injection group. Although there was no significant difference in baseline hypoxia between the OMX IT and IV groups, the two groups showed different responses to OMX. In the OMX IV group, hypoxic tumors (n = 5) exhibited significant reductions in tumor hypoxia, as indicated by decreased TMRmax and HV in [18F]FMISO PET imaging after treatment. In contrast, hypoxic tumors in the OMX IT group (n = 6) displayed a significant increase in [18F]FMISO uptake and variable changes in TMRmax and HV. CONCLUSIONS [18F]FMISO PET/CT imaging presents a promising non-invasive procedure for monitoring tumor hypoxia and assessing the efficacy of hypoxia-modulating therapies in canine patients. OMX has shown promising outcomes in reducing tumor hypoxia, especially when administered intravenously, as evident from reductions in both TMRmax and HV in [18F]FMISO PET imaging.
Collapse
Affiliation(s)
- Sangkyung Choen
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, 1 Shields Ave, 2112 Tupper Hall, Davis, CA, 95616, USA
| | - Michael S Kent
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, 1 Shields Ave, 2112 Tupper Hall, Davis, CA, 95616, USA
| | | | | | - Allison L Zwingenberger
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, 1 Shields Ave, 2112 Tupper Hall, Davis, CA, 95616, USA.
| |
Collapse
|
16
|
Okamoto M, Yamaguchi S, Sawaya R, Echizenya S, Ishi Y, Kaneko S, Motegi H, Toyonaga T, Hirata K, Fujimura M. Identifying G6PC3 as a Potential Key Molecule in Hypoxic Glucose Metabolism of Glioblastoma Derived from the Depiction of 18F-Fluoromisonidazole and 18F-Fluorodeoxyglucose Positron Emission Tomography. BIOMED RESEARCH INTERNATIONAL 2024; 2024:2973407. [PMID: 38449509 PMCID: PMC10917478 DOI: 10.1155/2024/2973407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/17/2024] [Accepted: 02/10/2024] [Indexed: 03/08/2024]
Abstract
Purpose Glioblastoma is the most aggressive primary brain tumor, characterized by its distinctive intratumoral hypoxia. Sequential preoperative examinations using fluorine-18-fluoromisonidazole (18F-FMISO) and fluorine-18-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) could depict the degree of glucose metabolism with hypoxic condition. However, molecular mechanism of glucose metabolism under hypoxia in glioblastoma has been unclear. The aim of this study was to identify the key molecules of hypoxic glucose metabolism. Methods Using surgically obtained specimens, gene expressions associated with glucose metabolism were analyzed in patients with glioblastoma (n = 33) who underwent preoperative 18F-FMISO and 18F-FDG PET to identify affected molecules according to hypoxic condition. Tumor in vivo metabolic activities were semiquantitatively evaluated by lesion-normal tissue ratio (LNR). Protein expression was confirmed by immunofluorescence staining. To evaluate prognostic value, relationship between gene expression and overall survival was explored in another independent nonoverlapping clinical cohort (n = 17) and validated by The Cancer Genome Atlas (TCGA) database (n = 167). Results Among the genes involving glucose metabolic pathway, mRNA expression of glucose-6-phosphatase 3 (G6PC3) correlated with 18F-FDG LNR (P = 0.03). In addition, G6PC3 mRNA expression in 18F-FMISO high-accumulated glioblastomas was significantly higher than that in 18F-FMISO low-accumulated glioblastomas (P < 0.01). Protein expression of G6PC3 was consistent with mRNA expression, which was confirmed by immunofluorescence analysis. These findings indicated that the G6PC3 expression might be facilitated by hypoxic condition in glioblastomas. Next, we investigated the clinical relevance of G6PC3 in terms of prognosis. Among the glioblastoma patients who received gross total resection, mRNA expressions of G6PC3 in the patients with poor prognosis (less than 1-year survival) were significantly higher than that in the patients who survive more than 3 years. Moreover, high mRNA expression of G6PC3 was associated with poor overall survival in glioblastoma, as validated by TCGA database. Conclusion G6PC3 was affluently expressed in glioblastoma tissues with coincidentally high 18F-FDG and 18F-FMISO accumulation. Further, it might work as a prognostic biomarker of glioblastoma. Therefore, G6PC3 is a potential key molecule of glucose metabolism under hypoxia in glioblastoma.
Collapse
Affiliation(s)
- Michinari Okamoto
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo 060-8638, Japan
| | - Shigeru Yamaguchi
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo 060-8638, Japan
| | - Ryosuke Sawaya
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo 060-8638, Japan
| | - Sumire Echizenya
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo 060-8638, Japan
| | - Yukitomo Ishi
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo 060-8638, Japan
| | - Sadahiro Kaneko
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo 060-8638, Japan
| | - Hiroaki Motegi
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo 060-8638, Japan
| | - Takuya Toyonaga
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo 060-8638, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo 060-8638, Japan
| | - Miki Fujimura
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo 060-8638, Japan
| |
Collapse
|
17
|
Sambasivan K, Barrington SF, Connor SE, Witney TH, Blower PJ, Urbano TG. Is there a role for [ 18F]-FMISO PET to guide dose adaptive radiotherapy in head and neck cancer? A review of the literature. Clin Transl Imaging 2024; 12:137-155. [PMID: 39286295 PMCID: PMC7616449 DOI: 10.1007/s40336-023-00607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/12/2023] [Indexed: 09/19/2024]
Abstract
Purpose Hypoxia is a major cause of radioresistance in head and neck cancer (HNC), resulting in treatment failure and disease recurrence. 18F-fluoromisonidazole [18F]FMISO PET has been proposed as a means of localising intratumoural hypoxia in HNC so that radiotherapy can be specifically escalated in hypoxic regions. This concept may not be deliverable in routine clinical practice, however, given that [18F]FMISO PET is costly, time consuming and difficult to access. The aim of this review was to summarise clinical studies involving [18F]FMISO PET to ascertain whether it can be used to guide radiotherapy treatment in HNC. Methods A comprehensive literature search was conducted on PubMed and Web of Science databases. Studies investigating [18F]FMISO PET in newly diagnosed HNC patients were considered eligible for review. Results We found the following important results from our literature review: 1)Studies have focussed on comparing [18F]FMISO PET to other hypoxia biomarkers, but currently there is no evidence of a strong correlation between [18F]FMISO and these biomarkers.2)The results of [18F]FMISO PET imaging are not necessarily repeatable, and the location of uptake may vary during treatment.3)Tumour recurrences do not always occur within the pretreatment hypoxic volume on [18F]FMISO PET.4)Dose modification studies using [18F]FMISO PET are in a pilot phase and so far, none have demonstrated the efficacy of radiotherapy dose painting according to [18F]FMISO uptake on PET. Conclusions Our results suggest it is unlikely [18F]FMISO PET will be suitable for radiotherapy dose adaptation in HNC in a routine clinical setting. Part of the problem is that hypoxia is a dynamic phenomenon, and thus difficult to delineate on a single scan. Currently, it is anticipated that [18F]FMISO PET will remain useful within the research setting only.
Collapse
Affiliation(s)
- Khrishanthne Sambasivan
- Department of Clinical Oncology, Guy's and St Thomas' NHS Foundation Trust, London, UK; School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Sally F Barrington
- King's College London and Guy's and St Thomas' PET Centre; School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, London, UK
| | - Steve Ej Connor
- Department of Neuroradiology, King's College Hospital NHS Foundation Trust, London, UK Department of Radiology, Guy's and St Thomas' NHS Foundation Trust, London, UK; School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, UK
| | - Timothy H Witney
- King's College London, School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, London, United Kingdom
| | - Philip J Blower
- King's College London, School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, London, United Kingdom
| | - Teresa Guerrero Urbano
- Department of Clinical Oncology, Guy's and St Thomas' NHS Foundation Trust, London, UK; Faculty of Dentistry, Oral & Craniofacial Sciences and School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| |
Collapse
|
18
|
Low JM, Rodriguez-Berriguete G, Higgins GS. Repurposing radiosensitising medicines for radiotherapy: an overview. BMJ ONCOLOGY 2024; 3:e000192. [PMID: 39886153 PMCID: PMC11235008 DOI: 10.1136/bmjonc-2023-000192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/06/2023] [Indexed: 02/01/2025]
Abstract
Repurposing established non-cancer drugs for the treatment of cancer offers potential benefits such as speed of clinical translation and financial efficiencies. In this study, we assess the landscape of repurposing drugs for combined use with radiotherapy (RT) based on their capacity to increase tumour radiosensitivity. Using a literature-based approach, we identified 42 radiosensitising drugs with varied non-cancer indications and mechanisms of action, that have entered or completed clinical trials in combination with RT or with chemoradiotherapy. Two compounds, nicotinamide and nimorazole, have entered routine but limited clinical use in combination with radiotherapy. We provide an overview on these successfully repurposed drugs, and highlight some examples of unsuccessful repurposing efforts and drug candidates with an uncertain prospect of success. Upon reviewing the trials, we identified some common themes behind the unsuccessful efforts, including poor trial reporting, absence of biomarkers and patient selection, sub-optimal pharmacological properties, inappropriate trial design, lack or inadequate consideration of pre-clinical and clinical data, and limited funding support. We point out future directions to mitigate these issues and increase the likelihood of success in repurposing drug treatments for radiotherapy.
Collapse
Affiliation(s)
- Jie Man Low
- Department of Oncology, Oxford University Hospitals NHS Trust, Oxford, UK
| | | | | |
Collapse
|
19
|
Kim H, Hua Y, Epel B, Sundramoorthy S, Halpern H, Chen CT, Kao CM. A Preclinical Positron Emission Tomography (PET) and Electron-Paramagnetic-Resonance-Imaging (EPRI) Hybrid System: PET Detector Module. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2023; 7:794-801. [PMID: 37981977 PMCID: PMC10655702 DOI: 10.1109/trpms.2023.3301788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
We report the design and experimental validation of a compact positron emission tomography (PET) detector module (DM) intended for building a preclinical PET and electron-paramagnetic-resonance-imaging hybrid system that supports sub-millimeter image resolution and high-sensitivity, whole-body animal imaging. The DM is eight detector units (DU) in a row. Each DU contains 12×12 lutetium-yttrium oxyorthosilicate (LYSO) crystals having a 1.05 mm pitch read by 4×4 silicon photomultipliers (SiPM) having a 3.2 mm pitch. A small-footprint, highly-multiplexing readout employing only passive electronics is devised to produce six outputs for the DM, including two outputs derived from SiPM cathodes for determining event time and active DU and four outputs derived from SiPM anodes for determining energy and active crystal. Presently, we have developed two DMs that are 1.28×10.24 cm2 in extent and approximately 1.8 cm in thickness, with their outputs sampled at 0.7 GS/s and analyzed offline. For both DMs, our results show successfully discriminated DUs and crystals. With no correction for SiPM nonlinearity, the average energy resolution for crystals in a DU ranges from 14% to 16%. While not needed for preclinical imaging, the DM may support 300-400 ps time-of-flight resolution.
Collapse
Affiliation(s)
- Heejong Kim
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | - Yuexuan Hua
- Raycan Technology Co., Ltd., Suzhou, Jiangsu, China
| | - Boris Epel
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, USA
| | | | - Howard Halpern
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, USA
| | - Chin-Tu Chen
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | - Chien-Min Kao
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
20
|
Zhdanov AV, Sen R, Devoy C, Li L, Tangney M, Papkovsky DB. Analysis of tumour oxygenation in model animals on a phosphorescence lifetime based macro-imager. Sci Rep 2023; 13:18732. [PMID: 37907625 PMCID: PMC10618169 DOI: 10.1038/s41598-023-46224-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 10/30/2023] [Indexed: 11/02/2023] Open
Abstract
Monitoring of tissue O2 is essential for cancer development and treatment, as hypoxic tumour regions develop resistance to radio- and chemotherapy. We describe a minimally invasive technique for the monitoring of tissue oxygenation in developing grafted tumours, which uses the new phosphorescence lifetime based Tpx3Cam imager. CT26 cells stained with a near-infrared emitting nanoparticulate O2 probe NanO2-IR were injected into mice to produce grafted tumours with characteristic phosphorescence. The tumours were allowed to develop for 3, 7, 10 and 17 days, with O2 imaging experiments performed on live and euthanised animals at different time points. Despite a marked trend towards decreased O2 in dead animals, their tumour areas produced phosphorescence lifetime values between 44 and 47 µs, which corresponded to hypoxic tissue with 5-20 μM O2. After the O2 imaging in animals, confocal Phosphorescence Lifetime Imaging Microscopy was conducted to examine the distribution of NanO2-IR probe in the tumours, which were excised, fixed and sliced for the purpose. The probe remained visible as bright and discrete 'islands' embedded in the tumour tissue until day 17 of tumour growth. Overall, this O2 macro-imaging method using NanO2-IR holds promise for long-term studies with grafted tumours in live animal models, providing quantitative 2D mapping of tissue O2.
Collapse
Affiliation(s)
- Alexander V Zhdanov
- School of Biochemistry and Cell Biology, University College Cork, Pharmacy Building, College Road, Cork, Ireland
| | - Rajannya Sen
- School of Biochemistry and Cell Biology, University College Cork, Pharmacy Building, College Road, Cork, Ireland
| | - Ciaran Devoy
- Cancer Research @UCC, University College Cork, Cork, Ireland
| | - Liang Li
- School of Biochemistry and Cell Biology, University College Cork, Pharmacy Building, College Road, Cork, Ireland
| | - Mark Tangney
- Cancer Research @UCC, University College Cork, Cork, Ireland
| | - Dmitri B Papkovsky
- School of Biochemistry and Cell Biology, University College Cork, Pharmacy Building, College Road, Cork, Ireland.
| |
Collapse
|
21
|
Gertsenshteyn I, Epel B, Giurcanu M, Barth E, Lukens J, Hall K, Martinez JF, Grana M, Maggio M, Miller RC, Sundramoorthy SV, Krzykawska-Serda M, Pearson E, Aydogan B, Weichselbaum RR, Tormyshev VM, Kotecha M, Halpern HJ. Absolute oxygen-guided radiation therapy improves tumor control in three preclinical tumor models. Front Med (Lausanne) 2023; 10:1269689. [PMID: 37904839 PMCID: PMC10613495 DOI: 10.3389/fmed.2023.1269689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/28/2023] [Indexed: 11/01/2023] Open
Abstract
Background Clinical attempts to find benefit from specifically targeting and boosting resistant hypoxic tumor subvolumes have been promising but inconclusive. While a first preclinical murine tumor type showed significant improved control with hypoxic tumor boosts, a more thorough investigation of efficacy from boosting hypoxic subvolumes defined by electron paramagnetic resonance oxygen imaging (EPROI) is necessary. The present study confirms improved hypoxic tumor control results in three different tumor types using a clonogenic assay and explores potential confounding experimental conditions. Materials and methods Three murine tumor models were used for multi-modal imaging and radiotherapy: MCa-4 mammary adenocarcinomas, SCC7 squamous cell carcinomas, and FSa fibrosarcomas. Registered T2-weighted MRI tumor boundaries, hypoxia defined by EPROI as pO2 ≤ 10 mmHg, and X-RAD 225Cx CT boost boundaries were obtained for all animals. 13 Gy boosts were directed to hypoxic or equal-integral-volume oxygenated tumor regions and monitored for regrowth. Kaplan-Meier survival analysis was used to assess local tumor control probability (LTCP). The Cox proportional hazards model was used to assess the hazard ratio of tumor progression of Hypoxic Boost vs. Oxygenated Boost for each tumor type controlling for experimental confounding variables such as EPROI radiofrequency, tumor volume, hypoxic fraction, and delay between imaging and radiation treatment. Results An overall significant increase in LTCP from Hypoxia Boost vs. Oxygenated Boost treatments was observed in the full group of three tumor types (p < 0.0001). The effects of tumor volume and hypoxic fraction on LTCP were dependent on tumor type. The delay between imaging and boost treatments did not have a significant effect on LTCP for all tumor types. Conclusion This study confirms that EPROI locates resistant tumor hypoxic regions for radiation boost, increasing clonogenic LTCP, with potential enhanced therapeutic index in three tumor types. Preclinical absolute EPROI may provide correction for clinical hypoxia images using additional clinical physiologic MRI.
Collapse
Affiliation(s)
- Inna Gertsenshteyn
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, United States
- Department of Radiology, The University of Chicago, Chicago, IL, United States
- Center for EPR Imaging In Vivo Physiology, The University of Chicago, Chicago, IL, United States
| | - Boris Epel
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, United States
- Center for EPR Imaging In Vivo Physiology, The University of Chicago, Chicago, IL, United States
- O2M Technologies, Chicago, IL, United States
| | - Mihai Giurcanu
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, United States
| | - Eugene Barth
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, United States
- Center for EPR Imaging In Vivo Physiology, The University of Chicago, Chicago, IL, United States
| | - John Lukens
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, United States
- Center for EPR Imaging In Vivo Physiology, The University of Chicago, Chicago, IL, United States
| | - Kayla Hall
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, United States
- Center for EPR Imaging In Vivo Physiology, The University of Chicago, Chicago, IL, United States
| | - Jenipher Flores Martinez
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, United States
- Center for EPR Imaging In Vivo Physiology, The University of Chicago, Chicago, IL, United States
| | - Mellissa Grana
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, United States
- Center for EPR Imaging In Vivo Physiology, The University of Chicago, Chicago, IL, United States
| | - Matthew Maggio
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, United States
- Center for EPR Imaging In Vivo Physiology, The University of Chicago, Chicago, IL, United States
| | - Richard C. Miller
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, United States
- Center for EPR Imaging In Vivo Physiology, The University of Chicago, Chicago, IL, United States
| | - Subramanian V. Sundramoorthy
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, United States
- Center for EPR Imaging In Vivo Physiology, The University of Chicago, Chicago, IL, United States
| | - Martyna Krzykawska-Serda
- Center for EPR Imaging In Vivo Physiology, The University of Chicago, Chicago, IL, United States
- Department of Biophysics and Cancer Biology, Jagiellonian University, Kraków, Poland
| | - Erik Pearson
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, United States
- Center for EPR Imaging In Vivo Physiology, The University of Chicago, Chicago, IL, United States
| | - Bulent Aydogan
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, United States
| | - Ralph R. Weichselbaum
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, United States
| | | | | | - Howard J. Halpern
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, United States
- Center for EPR Imaging In Vivo Physiology, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
22
|
Mittal S, Mallia MB. Molecular imaging of tumor hypoxia: Evolution of nitroimidazole radiopharmaceuticals and insights for future development. Bioorg Chem 2023; 139:106687. [PMID: 37406518 DOI: 10.1016/j.bioorg.2023.106687] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
Though growing evidence has been collected in support of the concept of dose escalation based on the molecular level images indicating hypoxic tumor sub-volumes that could be radio-resistant, validation of the concept is still a work in progress. Molecular imaging of tumor hypoxia using radiopharmaceuticals is expected to provide the required input to plan dose escalation through Image Guided Radiation Therapy (IGRT) to kill/control the radio-resistant hypoxic tumor cells. The success of the IGRT, therefore, is heavily dependent on the quality of images obtained using the radiopharmaceutical and the extent to which the image represents the true hypoxic status of the tumor in spite of the heterogeneous nature of tumor hypoxia. Available literature on radiopharmaceuticals for imaging hypoxia is highly skewed in favor of nitroimidazole as the pharmacophore given their ability to undergo oxygen dependent reduction in hypoxic cells. In this context, present review on nitroimidazole radiopharmaceuticals would be immensely helpful to the researchers to obtain a birds-eye view on what has been achieved so far and what can be tried differently to obtain a better hypoxia imaging agent. The review also covers various methods of radiolabeling that could be utilized for developing radiotracers for hypoxia targeting applications.
Collapse
Affiliation(s)
- Sweety Mittal
- Radiopharmaceuticals Division, Bhabha Atomic Research Center, Mumbai 400085, India.
| | - Madhava B Mallia
- Radiopharmaceuticals Division, Bhabha Atomic Research Center, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
23
|
Murphy PS, Galette P, van der Aart J, Janiczek RL, Patel N, Brown AP. The role of clinical imaging in oncology drug development: progress and new challenges. Br J Radiol 2023; 96:20211126. [PMID: 37393537 PMCID: PMC10546429 DOI: 10.1259/bjr.20211126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/14/2023] [Accepted: 06/06/2023] [Indexed: 07/03/2023] Open
Abstract
In 2008, the role of clinical imaging in oncology drug development was reviewed. The review outlined where imaging was being applied and considered the diverse demands across the phases of drug development. A limited set of imaging techniques was being used, largely based on structural measures of disease evaluated using established response criteria such as response evaluation criteria in solid tumours. Beyond structure, functional tissue imaging such as dynamic contrast-enhanced MRI and metabolic measures using [18F]flourodeoxyglucose positron emission tomography were being increasingly incorporated. Specific challenges related to the implementation of imaging were outlined including standardisation of scanning across study centres and consistency of analysis and reporting. More than a decade on the needs of modern drug development are reviewed, how imaging has evolved to support new drug development demands, the potential to translate state-of-the-art methods into routine tools and what is needed to enable the effective use of this broadening clinical trial toolset. In this review, we challenge the clinical and scientific imaging community to help refine existing clinical trial methods and innovate to deliver the next generation of techniques. Strong industry-academic partnerships and pre-competitive opportunities to co-ordinate efforts will ensure imaging technologies maintain a crucial role delivering innovative medicines to treat cancer.
Collapse
Affiliation(s)
| | - Paul Galette
- Telix Pharmaceuticals (US) Inc, Fishers, United States
| | | | | | | | - Andrew P. Brown
- Vale Imaging Consultancy Solutions, Harston, Cambridge, United Kingdom
| |
Collapse
|
24
|
Liu T, Dahle MA, Lystad MH, Marignol L, Karlsen M, Redalen KR. In vitro and in vivo characterization of [ 64Cu][Cu(elesclomol)] as a novel theranostic agent for hypoxic solid tumors. Eur J Nucl Med Mol Imaging 2023; 50:3576-3588. [PMID: 37382663 PMCID: PMC10547809 DOI: 10.1007/s00259-023-06310-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
PURPOSE Hypoxic tumors are associated with therapy resistance and poor cancer prognosis, but methods to detect and counter tumor hypoxia remain insufficient. Our purpose was to investigate 64Cu(II)-elesclomol ([64Cu][Cu(ES)]) as a novel theranostic agent for hypoxic tumors, by implementing an improved production method and assessing its therapeutic and diagnostic potential compared to the established Cu-64 radiopharmaceuticals [64Cu]CuCl2 and [diacetyl-bis(N4-methylthiosemicarbazone) [64Cu][Cu(ATSM)]. METHODS Cu-64 was produced using a biomedical cyclotron at 12 MeV with the reaction 64Ni(p,n)64Cu, followed by synthesis of [64Cu]CuCl2, [64Cu][Cu(ATSM)], and [64Cu][Cu(ES)]. In vitro therapeutic effects were assessed in both normoxic and hypoxic cells (22Rv1 and PC3 prostate cancer cells, and U-87MG glioblastoma cells) using the clonogenic assay and analyzing cellular uptake and internalization. In vivo therapeutic effects were assessed in 22Rv1 xenografts in BALB/cAnN-Foxn1nu/nu/Rj mice receiving a single or multiple doses of radiopharmaceutical, before their feasibility to detect tumor hypoxia was assessed by positron emission tomography (PET) in 22Rv1 and U-87MG xenografts. RESULTS In vitro and in vivo studies demonstrated that [64Cu][Cu(ES)] reduced cell survival and inhibited tumor growth more effectively than [64Cu][Cu(ATSM)] and [64Cu]CuCl2. Hypoxia increased the cellular uptake and internalization of [64Cu][Cu(ES)] and [64Cu][Cu(ATSM)]. [64Cu][Cu(ES)]-PET tumor hypoxia detection was feasible and also revealed an unexpected finding of uptake in the brain. CONCLUSION To the best of our knowledge, this is the first time that ES is radiolabeled with [64Cu]CuCl2 to [64Cu][Cu(ES)]. We demonstrated superior therapeutic effects of [64Cu][Cu(ES)] compared to [64Cu][Cu(ATSM)] and [64Cu]CuCl2 and that [64Cu][Cu(ES)]-PET is feasible. [64Cu][Cu(ES)] is a promising theranostic agent for hypoxic solid tumors.
Collapse
Affiliation(s)
- Tengzhi Liu
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Maria Aanesland Dahle
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mathilde Hirsum Lystad
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Laure Marignol
- Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity St. James's Cancer Institute, Trinity College, Dublin, Ireland
| | - Morten Karlsen
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Kathrine Røe Redalen
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
25
|
Lima EABF, Song PN, Reeves K, Larimer B, Sorace AG, Yankeelov TE. Predicting response to combination evofosfamide and immunotherapy under hypoxic conditions in murine models of colon cancer. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:17625-17645. [PMID: 38052529 PMCID: PMC10703000 DOI: 10.3934/mbe.2023783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The goal of this study is to develop a mathematical model that captures the interaction between evofosfamide, immunotherapy, and the hypoxic landscape of the tumor in the treatment of tumors. Recently, we showed that evofosfamide, a hypoxia-activated prodrug, can synergistically improve treatment outcomes when combined with immunotherapy, while evofosfamide alone showed no effects in an in vivo syngeneic model of colorectal cancer. However, the mechanisms behind the interaction between the tumor microenvironment in the context of oxygenation (hypoxic, normoxic), immunotherapy, and tumor cells are not fully understood. To begin to understand this issue, we develop a system of ordinary differential equations to simulate the growth and decline of tumors and their vascularization (oxygenation) in response to treatment with evofosfamide and immunotherapy (6 combinations of scenarios). The model is calibrated to data from in vivo experiments on mice implanted with colon adenocarcinoma cells and longitudinally imaged with [18F]-fluoromisonidazole ([18F]FMISO) positron emission tomography (PET) to quantify hypoxia. The results show that evofosfamide is able to rescue the immune response and sensitize hypoxic tumors to immunotherapy. In the hypoxic scenario, evofosfamide reduces tumor burden by $ 45.07 \pm 2.55 $%, compared to immunotherapy alone, as measured by tumor volume. The model accurately predicts the temporal evolution of five different treatment scenarios, including control, hypoxic tumors that received immunotherapy, normoxic tumors that received immunotherapy, evofosfamide alone, and hypoxic tumors that received combination immunotherapy and evofosfamide. The average concordance correlation coefficient (CCC) between predicted and observed tumor volume is $ 0.86 \pm 0.05 $. Interestingly, the model values to fit those five treatment arms was unable to accurately predict the response of normoxic tumors to combination evofosfamide and immunotherapy (CCC = $ -0.064 \pm 0.003 $). However, guided by the sensitivity analysis to rank the most influential parameters on the tumor volume, we found that increasing the tumor death rate due to immunotherapy by a factor of $ 18.6 \pm 9.3 $ increases CCC of $ 0.981 \pm 0.001 $. To the best of our knowledge, this is the first study to mathematically predict and describe the increased efficacy of immunotherapy following evofosfamide.
Collapse
Affiliation(s)
- Ernesto A. B. F. Lima
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th St, Austin, TX 78712, USA
- Texas Advanced Computing Center, The University of Texas at Austin, 10100 Burnet Rd (R8700), Austin, TX 78758, USA
| | - Patrick N. Song
- Department of Radiology, The University of Alabama at Birmingham, 619 19th St S, Birmingham, AL 35294, USA
- Graduate Biomedical Sciences, The University of Alabama at Birmingham, 1075 13th St S, Birmingham, AL 35294, USA
| | - Kirsten Reeves
- Department of Radiology, The University of Alabama at Birmingham, 619 19th St S, Birmingham, AL 35294, USA
- Graduate Biomedical Sciences, The University of Alabama at Birmingham, 1075 13th St S, Birmingham, AL 35294, USA
| | - Benjamin Larimer
- Department of Radiology, The University of Alabama at Birmingham, 619 19th St S, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, 1824 6th Ave S, Birmingham, AL 35233, USA
| | - Anna G. Sorace
- Department of Radiology, The University of Alabama at Birmingham, 619 19th St S, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, 1824 6th Ave S, Birmingham, AL 35233, USA
- Department of Biomedical Engineering, The University of Alabama at Birmingham, 1075 13th St S, Birmingham, AL 35294, USA
| | - Thomas E. Yankeelov
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th St, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, 1107 W. Dean Keeton St, Austin, TX 78712, USA
- Department of Diagnostic Medicine, The University of Texas at Austin, 1601 Trinity St Bldg B, Austin, TX 78712, USA
- Department of Oncology, The University of Texas at Austin, 1601 Trinity St Bldg B, Austin, TX 78712, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, 623 W. 38th St Ste 300, Austin, TX 78705, USA
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1400 Pressler St Unit 1472, Houston, TX 77030, USA
| |
Collapse
|
26
|
Carmona-Bozo JC, Manavaki R, Miller JL, Brodie C, Caracò C, Woitek R, Baxter GC, Graves MJ, Fryer TD, Provenzano E, Gilbert FJ. PET/MRI of hypoxia and vascular function in ER-positive breast cancer: correlations with immunohistochemistry. Eur Radiol 2023; 33:6168-6178. [PMID: 37166494 PMCID: PMC10415421 DOI: 10.1007/s00330-023-09572-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/16/2022] [Accepted: 02/08/2023] [Indexed: 05/12/2023]
Abstract
OBJECTIVES To explore the relationship between indices of hypoxia and vascular function from 18F-fluoromisonidazole ([18F]-FMISO)-PET/MRI with immunohistochemical markers of hypoxia and vascularity in oestrogen receptor-positive (ER +) breast cancer. METHODS Women aged > 18 years with biopsy-confirmed, treatment-naïve primary ER + breast cancer underwent [18F]-FMISO-PET/MRI prior to surgery. Parameters of vascular function were derived from DCE-MRI using the extended Tofts model, whilst hypoxia was assessed using the [18F]-FMISO influx rate constant, Ki. Histological tumour sections were stained with CD31, hypoxia-inducible factor (HIF)-1α, and carbonic anhydrase IX (CAIX). The number of tumour microvessels, median vessel diameter, and microvessel density (MVD) were obtained from CD31 immunohistochemistry. HIF-1α and CAIX expression were assessed using histoscores obtained by multiplying the percentage of positive cells stained by the staining intensity. Regression analysis was used to study associations between imaging and immunohistochemistry variables. RESULTS Of the lesions examined, 14/22 (64%) were ductal cancers, grade 2 or 3 (19/22; 86%), with 17/22 (77%) HER2-negative. [18F]-FMISO Ki associated negatively with vessel diameter (p = 0.03), MVD (p = 0.02), and CAIX expression (p = 0.002), whilst no significant relationships were found between DCE-MRI pharmacokinetic parameters and immunohistochemical variables. HIF-1α did not significantly associate with any PET/MR imaging indices. CONCLUSION Hypoxia measured by [18F]-FMISO-PET was associated with increased CAIX expression, low MVD, and smaller vessel diameters in ER + breast cancer, further corroborating the link between inadequate vascularity and hypoxia in ER + breast cancer. KEY POINTS • Hypoxia, measured by [18F]-FMISO-PET, was associated with low microvessel density and small vessel diameters, corroborating the link between inadequate vascularity and hypoxia in ER + breast cancer. • Increased CAIX expression was associated with higher levels of hypoxia measured by [18F]-FMISO-PET. • Morphologic and functional abnormalities of the tumour microvasculature are the major determinants of hypoxia in cancers and support the previously reported perfusion-driven character of hypoxia in breast carcinomas.
Collapse
Affiliation(s)
- Julia C Carmona-Bozo
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218 - Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Roido Manavaki
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218 - Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Jodi L Miller
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Cara Brodie
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Corradina Caracò
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218 - Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Ramona Woitek
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218 - Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Gabrielle C Baxter
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218 - Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Martin J Graves
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218 - Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Tim D Fryer
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Box 65 - Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Elena Provenzano
- Cancer Research UK - Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Cambridge Breast Unit, Cambridge University Hospitals NHS Foundation Trust, Box 97 - Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Fiona J Gilbert
- Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218 - Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
27
|
Henjum H, Dahle TJ, Mairani A, Pilskog S, Stokkevåg C, Boer CG, Redalen KR, Minn H, Malinen E, Ytre‐Hauge KS. Combined RBE and OER optimization in proton therapy with FLUKA based on EF5-PET. J Appl Clin Med Phys 2023; 24:e14014. [PMID: 37161820 PMCID: PMC10476997 DOI: 10.1002/acm2.14014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/14/2023] [Accepted: 04/10/2023] [Indexed: 05/11/2023] Open
Abstract
INTRODUCTION Tumor hypoxia is associated with poor treatment outcome. Hypoxic regions are more radioresistant than well-oxygenated regions, as quantified by the oxygen enhancement ratio (OER). In optimization of proton therapy, including OER in addition to the relative biological effectiveness (RBE) could therefore be used to adapt to patient-specific radioresistance governed by intrinsic radiosensitivity and hypoxia. METHODS A combined RBE and OER weighted dose (ROWD) calculation method was implemented in a FLUKA Monte Carlo (MC) based treatment planning tool. The method is based on the linear quadratic model, with α and β parameters as a function of the OER, and therefore a function of the linear energy transfer (LET) and partial oxygen pressure (pO2 ). Proton therapy plans for two head and neck cancer (HNC) patients were optimized with pO2 estimated from [18 F]-EF5 positron emission tomography (PET) images. For the ROWD calculations, an RBE of 1.1 (RBE1.1,OER ) and two variable RBE models, Rørvik (ROR) and McNamara (MCN), were used, alongside a reference plan without incorporation of OER (RBE1.1 ). RESULTS For the HNC patients, treatment plans in line with the prescription dose and with acceptable target ROWD could be generated with the established tool. The physical dose was the main factor modulated in the ROWD. The impact of incorporating OER during optimization of HNC patients was demonstrated by the substantial difference found between ROWD and physical dose in the hypoxic tumor region. The largest physical dose differences between the ROWD optimized plans and the reference plan was 12.2 Gy. CONCLUSION The FLUKA MC based tool was able to optimize proton treatment plans taking the tumor pO2 distribution from hypoxia PET images into account. Independent of RBE-model, both elevated LET and physical dose were found in the hypoxic regions, which shows the potential to increase the tumor control compared to a conventional optimization approach.
Collapse
Affiliation(s)
- Helge Henjum
- Department of Physics and TechnologyUniversity of BergenBergenNorway
| | - Tordis Johnsen Dahle
- Department of Physics and TechnologyUniversity of BergenBergenNorway
- Department of Oncology and Medical PhysicsHaukeland University HospitalBergenNorway
| | - Andrea Mairani
- Centro Nazionale di Adroterapia Oncologica (CNAO Foundation)PaviaItaly
- Heidelberg Ion Beam Therapy Center (HIT)HeidelbergGermany
| | - Sara Pilskog
- Department of Physics and TechnologyUniversity of BergenBergenNorway
- Department of Oncology and Medical PhysicsHaukeland University HospitalBergenNorway
| | - Camilla Stokkevåg
- Department of Physics and TechnologyUniversity of BergenBergenNorway
- Department of Oncology and Medical PhysicsHaukeland University HospitalBergenNorway
| | | | - Kathrine Røe Redalen
- Department of PhysicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Heikki Minn
- Department of Oncology and RadiotherapyTurku University HospitalTurkuFinland
- Turku PET CentreUniversity of TurkuTurkuFinland
| | - Eirik Malinen
- Department of PhysicsUniversity of OsloOsloNorway
- Department of Medical PhysicsOslo University HospitalOsloNorway
| | | |
Collapse
|
28
|
Dos Santos SN, Wuest M, Jans HS, Woodfield J, Nario AP, Krys D, Dufour J, Glubrecht D, Bergman C, Bernardes ES, Wuest F. Comparison of three 18F-labeled 2-nitroimidazoles for imaging hypoxia in breast cancer xenografts: [ 18F]FBNA, [ 18F]FAZA and [ 18F]FMISO. Nucl Med Biol 2023; 124-125:108383. [PMID: 37651917 DOI: 10.1016/j.nucmedbio.2023.108383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Tumour hypoxia is associated with increased metastasis, invasion, poor therapy response and prognosis. Most PET radiotracers developed and used for clinical hypoxia imaging belong to the 2-nitroimidazole family. Recently we have developed novel 2-nitroimidazole-derived PET radiotracer [18F]FBNA (N-(4-[18F]fluoro-benzyl)-2-(2-nitro-1H-imidazol-1-yl)-acet-amide), an 18F-labeled analogue of antiparasitic drug benznidazole. The present study aimed to analyze its radio-pharmacological properties and systematically compare its PET imaging profiles with [18F]FMISO and [18F]FAZA in preclinical triple-negative (MDA-MB231) and estrogen receptor-positive (MCF-7) breast cancer models. METHODS In vitro cellular uptake experiments were carried out in MDA-MB321 and MCF-7 cells under normoxic and hypoxic conditions. Metabolic stability in vivo was determined in BALB/c mice using radio-TLC analysis. Dynamic PET experiments over 3 h post-injection were performed in MDA-MB231 and MCF-7 tumour-bearing mice. Those PET data were used for kinetic modelling analysis utilizing the reversible two-tissue-compartment model. Autoradiography was carried out in tumour tissue slices and compared to HIF-1α immunohistochemistry. Detailed ex vivo biodistribution was accomplished in BALB/c mice, and this biodistribution data were used for dosimetry calculation. RESULTS Under hypoxic conditions in vitro cellular uptake was elevated in both cell lines, MCF-7 and MDA-MB231, for all three radiotracers. After intravenous injection, [18F]FBNA formed two radiometabolites, resulting in a final fraction of 65 ± 9 % intact [18F]FBNA after 60 min p.i. After 3 h p.i., [18F]FBNA tumour uptake reached SUV values of 0.78 ± 0.01 in MCF-7 and 0.61 ± 0.04 in MDA-MB231 tumours (both n = 3), representing tumour-to-muscle ratios of 2.19 ± 0.04 and 1.98 ± 0.15, respectively. [18F]FMISO resulted in higher tumour uptakes (SUV 1.36 ± 0.04 in MCF-7 and 1.23 ± 0.08 in MDA-MB231 (both n = 4; p < 0.05) than [18F]FAZA (0.66 ± 0.11 in MCF-7 and 0.63 ± 0.14 in MDA-MB231 (both n = 4; n.s.)), representing tumour-to-muscle ratios of 3.24 ± 0.30 and 3.32 ± 0.50 for [18F]FMISO, and 2.92 ± 0.74 and 3.00 ± 0.42 for [18F]FAZA, respectively. While the fraction per time of radiotracer entering the second compartment (k3) was similar within uncertainties for all three radiotracers in MDA-MB231 tumours, it was different in MCF-7 tumours. The ratios k3/(k3 + k2) and K1*k3/(k3 + k2) in MCF-7 tumours were also significantly different, indicating dissimilar fractions of radiotracer bound and trapped intracellularly: K1*k3/(k2 + k3) [18F]FMISO (0.0088 ± 0.001)/min, n = 4; p < 0.001) > [18F]FAZA (0.0052 ± 0.002)/min, n = 4; p < 0.01) > [18F]FBNA (0.003 ± 0.001)/min, n = 3). In contrast, in MDA-MB231 tumours, only K1 was significantly elevated for [18F]FMISO. However, this did not result in significant differences for K1*k3/(k2 + k3) for all three 2-nitroimidazoles in MDA-MB231 tumours. CONCLUSION Novel 2-nitroimidazole PET radiotracer [18F]FBNA showed uptake into hypoxic breast cancer cells and tumour tissue presumably associated with elevated HIF1-α expression. Systematic comparison of PET imaging performance with [18F]FMISO and [18F]FAZA in different types of preclinical breast cancer models revealed a similar tumour uptake profile for [18F]FBNA with [18F]FAZA and, despite its higher lipophilicity, still a slightly higher muscle tissue clearance compared to [18F]FMISO.
Collapse
Affiliation(s)
- Sofia Nascimento Dos Santos
- Radiopharmacy Center, Nuclear and Energy Research Institute (IPEN / CNEN - SP), CEP 05508-000 São Paulo, SP, Brazil
| | - Melinda Wuest
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton T6G 2R7, Alberta, Canada
| | - Hans-Sonke Jans
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton T6G 2R7, Alberta, Canada
| | - Jenilee Woodfield
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton T6G 2R7, Alberta, Canada
| | - Arian Pérez Nario
- Radiopharmacy Center, Nuclear and Energy Research Institute (IPEN / CNEN - SP), CEP 05508-000 São Paulo, SP, Brazil
| | - Daniel Krys
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton T6G 2R7, Alberta, Canada
| | - Jennifer Dufour
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton T6G 2R7, Alberta, Canada
| | - Darryl Glubrecht
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton T6G 2R7, Alberta, Canada
| | - Cody Bergman
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton T6G 2R7, Alberta, Canada
| | - Emerson Soares Bernardes
- Radiopharmacy Center, Nuclear and Energy Research Institute (IPEN / CNEN - SP), CEP 05508-000 São Paulo, SP, Brazil
| | - Frank Wuest
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton T6G 2R7, Alberta, Canada.
| |
Collapse
|
29
|
Bodalal Z, Bogveradze N, Ter Beek LC, van den Berg JG, Sanders J, Hofland I, Trebeschi S, Groot Lipman KBW, Storck K, Hong EK, Lebedyeva N, Maas M, Beets-Tan RGH, Gomez FM, Kurilova I. Radiomic signatures from T2W and DWI MRI are predictive of tumour hypoxia in colorectal liver metastases. Insights Imaging 2023; 14:133. [PMID: 37477715 PMCID: PMC10361926 DOI: 10.1186/s13244-023-01474-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/27/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Tumour hypoxia is a negative predictive and prognostic biomarker in colorectal cancer typically assessed by invasive sampling methods, which suffer from many shortcomings. This retrospective proof-of-principle study explores the potential of MRI-derived imaging markers in predicting tumour hypoxia non-invasively in patients with colorectal liver metastases (CLM). METHODS A single-centre cohort of 146 CLMs from 112 patients were segmented on preoperative T2-weighted (T2W) images and diffusion-weighted imaging (DWI). HIF-1 alpha immunohistochemical staining index (high/low) was used as a reference standard. Radiomic features were extracted, and machine learning approaches were implemented to predict the degree of histopathological tumour hypoxia. RESULTS Radiomic signatures from DWI b200 (AUC = 0.79, 95% CI 0.61-0.93, p = 0.002) and ADC (AUC = 0.72, 95% CI 0.50-0.90, p = 0.019) were significantly predictive of tumour hypoxia. Morphological T2W TE75 (AUC = 0.64, 95% CI 0.42-0.82, p = 0.092) and functional DWI b0 (AUC = 0.66, 95% CI 0.46-0.84, p = 0.069) and b800 (AUC = 0.64, 95% CI 0.44-0.82, p = 0.071) images also provided predictive information. T2W TE300 (AUC = 0.57, 95% CI 0.33-0.78, p = 0.312) and b = 10 (AUC = 0.53, 95% CI 0.33-0.74, p = 0.415) images were not predictive of tumour hypoxia. CONCLUSIONS T2W and DWI sequences encode information predictive of tumour hypoxia. Prospective multicentre studies could help develop and validate robust non-invasive hypoxia-detection algorithms. CRITICAL RELEVANCE STATEMENT Hypoxia is a negative prognostic biomarker in colorectal cancer. Hypoxia is usually assessed by invasive sampling methods. This proof-of-principle retrospective study explores the role of AI-based MRI-derived imaging biomarkers in non-invasively predicting tumour hypoxia in patients with colorectal liver metastases (CLM).
Collapse
Affiliation(s)
- Zuhir Bodalal
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Nino Bogveradze
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
- Department of Radiology, American Hospital Tbilisi, Tbilisi, Georgia
| | - Leon C Ter Beek
- Department of Medical Physics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jose G van den Berg
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joyce Sanders
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ingrid Hofland
- Core Facility Molecular Pathology & Biobank, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Stefano Trebeschi
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Kevin B W Groot Lipman
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Koen Storck
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Eun Kyoung Hong
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Natalya Lebedyeva
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Monique Maas
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Regina G H Beets-Tan
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Fernando M Gomez
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
- Hospital Clinic-Hospital Sant Joan de Deu, Barcelona, Spain.
| | - Ieva Kurilova
- Department of Radiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| |
Collapse
|
30
|
Dubec MJ, Buckley DL, Berks M, Clough A, Gaffney J, Datta A, McHugh DJ, Porta N, Little RA, Cheung S, Hague C, Eccles CL, Hoskin PJ, Bristow RG, Matthews JC, van Herk M, Choudhury A, Parker GJM, McPartlin A, O'Connor JPB. First-in-human technique translation of oxygen-enhanced MRI to an MR Linac system in patients with head and neck cancer. Radiother Oncol 2023; 183:109592. [PMID: 36870608 DOI: 10.1016/j.radonc.2023.109592] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
BACKGROUND AND PURPOSE Tumour hypoxia is prognostic in head and neck cancer (HNC), associated with poor loco-regional control, poor survival and treatment resistance. The advent of hybrid MRI - radiotherapy linear accelerator or 'MR Linac' systems - could permit imaging for treatment adaptation based on hypoxic status. We sought to develop oxygen-enhanced MRI (OE-MRI) in HNC and translate the technique onto an MR Linac system. MATERIALS AND METHODS MRI sequences were developed in phantoms and 15 healthy participants. Next, 14 HNC patients (with 21 primary or local nodal tumours) were evaluated. Baseline tissue longitudinal relaxation time (T1) was measured alongside the change in 1/T1 (termed ΔR1) between air and oxygen gas breathing phases. We compared results from 1.5 T diagnostic MR and MR Linac systems. RESULTS Baseline T1 had excellent repeatability in phantoms, healthy participants and patients on both systems. Cohort nasal concha oxygen-induced ΔR1 significantly increased (p < 0.0001) in healthy participants demonstrating OE-MRI feasibility. ΔR1 repeatability coefficients (RC) were 0.023-0.040 s-1 across both MR systems. The tumour ΔR1 RC was 0.013 s-1 and the within-subject coefficient of variation (wCV) was 25% on the diagnostic MR. Tumour ΔR1 RC was 0.020 s-1 and wCV was 33% on the MR Linac. ΔR1 magnitude and time-course trends were similar on both systems. CONCLUSION We demonstrate first-in-human translation of volumetric, dynamic OE-MRI onto an MR Linac system, yielding repeatable hypoxia biomarkers. Data were equivalent on the diagnostic MR and MR Linac systems. OE-MRI has potential to guide future clinical trials of biology guided adaptive radiotherapy.
Collapse
Affiliation(s)
- Michael J Dubec
- Division of Cancer Sciences, University of Manchester, Manchester, UK; Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK.
| | - David L Buckley
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK; Biomedical Imaging, University of Leeds, Leeds, UK
| | - Michael Berks
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Abigael Clough
- Radiotherapy, The Christie NHS Foundation Trust, Manchester, UK
| | - John Gaffney
- Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Anubhav Datta
- Division of Cancer Sciences, University of Manchester, Manchester, UK; Radiology, The Christie NHS Foundation Trust, Manchester, UK
| | - Damien J McHugh
- Division of Cancer Sciences, University of Manchester, Manchester, UK; Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - Nuria Porta
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - Ross A Little
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Susan Cheung
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Christina Hague
- Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Cynthia L Eccles
- Division of Cancer Sciences, University of Manchester, Manchester, UK; Radiotherapy, The Christie NHS Foundation Trust, Manchester, UK
| | - Peter J Hoskin
- Division of Cancer Sciences, University of Manchester, Manchester, UK; Department of Clinical Oncology, Mount Vernon Cancer Centre, Northwood, UK
| | - Robert G Bristow
- Division of Cancer Sciences, University of Manchester, Manchester, UK; Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Julian C Matthews
- Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Marcel van Herk
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Ananya Choudhury
- Division of Cancer Sciences, University of Manchester, Manchester, UK; Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Geoff J M Parker
- Bioxydyn Ltd, Manchester, UK; Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Andrew McPartlin
- Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Radiation Oncology, Princess Margaret Cancer Center, Toronto, Canada
| | - James P B O'Connor
- Division of Cancer Sciences, University of Manchester, Manchester, UK; Radiology, The Christie NHS Foundation Trust, Manchester, UK; Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| |
Collapse
|
31
|
Schwenck J, Sonanini D, Cotton JM, Rammensee HG, la Fougère C, Zender L, Pichler BJ. Advances in PET imaging of cancer. Nat Rev Cancer 2023:10.1038/s41568-023-00576-4. [PMID: 37258875 DOI: 10.1038/s41568-023-00576-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 06/02/2023]
Abstract
Molecular imaging has experienced enormous advancements in the areas of imaging technology, imaging probe and contrast development, and data quality, as well as machine learning-based data analysis. Positron emission tomography (PET) and its combination with computed tomography (CT) or magnetic resonance imaging (MRI) as a multimodality PET-CT or PET-MRI system offer a wealth of molecular, functional and morphological data with a single patient scan. Despite the recent technical advances and the availability of dozens of disease-specific contrast and imaging probes, only a few parameters, such as tumour size or the mean tracer uptake, are used for the evaluation of images in clinical practice. Multiparametric in vivo imaging data not only are highly quantitative but also can provide invaluable information about pathophysiology, receptor expression, metabolism, or morphological and functional features of tumours, such as pH, oxygenation or tissue density, as well as pharmacodynamic properties of drugs, to measure drug response with a contrast agent. It can further quantitatively map and spatially resolve the intertumoural and intratumoural heterogeneity, providing insights into tumour vulnerabilities for target-specific therapeutic interventions. Failure to exploit and integrate the full potential of such powerful imaging data may lead to a lost opportunity in which patients do not receive the best possible care. With the desire to implement personalized medicine in the cancer clinic, the full comprehensive diagnostic power of multiplexed imaging should be utilized.
Collapse
Affiliation(s)
- Johannes Schwenck
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
- Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany
| | - Dominik Sonanini
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
- Medical Oncology and Pulmonology, Department of Internal Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Jonathan M Cotton
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany
| | - Hans-Georg Rammensee
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany
- Department of Immunology, IFIZ Institute for Cell Biology, Eberhard Karls University of Tübingen, Tübingen, Germany
- German Cancer Research Center, German Cancer Consortium DKTK, Partner Site Tübingen, Tübingen, Germany
| | - Christian la Fougère
- Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany
- German Cancer Research Center, German Cancer Consortium DKTK, Partner Site Tübingen, Tübingen, Germany
| | - Lars Zender
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany
- Medical Oncology and Pulmonology, Department of Internal Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany
- German Cancer Research Center, German Cancer Consortium DKTK, Partner Site Tübingen, Tübingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany.
- German Cancer Research Center, German Cancer Consortium DKTK, Partner Site Tübingen, Tübingen, Germany.
| |
Collapse
|
32
|
Vinciguerra A, Bedarida V, Pronier C, El Zein S, Wassef M, Atallah S, Chatelet F, Molher J, Manivet P, Herman P, Adle-Biassette H, Verillaud B. Expression, Prognostic Value and Correlation with HPV Status of Hypoxia-Induced Markers in Sinonasal Squamous Cell Carcinoma. J Pers Med 2023; 13:jpm13050767. [PMID: 37240937 DOI: 10.3390/jpm13050767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: In head and neck squamous cell carcinoma, tumor hypoxia has been associated with radio/chemoresistance and poor prognosis, whereas human papillomavirus (HPV)-positive status has a positive impact on treatment response and survival outcomes. The aim of this study was to evaluate the expression and the potential prognostic value of hypoxia-induced endogenous markers in patients treated for squamous cell carcinoma of the nasal cavity and paranasal sinuses (SNSCC), and their correlation with HPV status. (2) Methods: In this monocentric study, patients treated in a curative intent for a SNSCC were screened retrospectively. Protein expression of CA-IX, GLUT-1, VEGF, VEGF-R1, and HIF-1α was determined by immunohistochemical staining, scored, and then correlated with overall survival (OS) and locoregional recurrence free survival (LRRFS). HPV status was assessed and correlated with hypoxic markers. (3) Results: 40 patients were included. A strong expression of CA-IX, GLUT-1, VEGF, and VEGF-R1 was detected in 30%, 32.5%, 50%, and 37.5% of cases, respectively. HIF-1α was detected in 27.5% of cases. High CA-IX expression was associated in univariate analysis with poor OS (p = 0.035), but there was no significant association between GLUT-1, VEGF, VEGF-R1, and HIF-1α expression, and OS/LRRFS. There was no correlation found between HPV status and hypoxia-induced endogenous markers (all p > 0.05). (4) Conclusions: This study provides data on the expression of hypoxia-induced endogenous markers in patients treated for SNSCC and underlines the potential role of CA-IX as a prognostic biomarker for SNSCC.
Collapse
Affiliation(s)
- Alessandro Vinciguerra
- Otorhinolaryngology and Skull Base Center, AP-HP, Hôpital Lariboisière, 75010 Paris, France
| | - Vincent Bedarida
- Otorhinolaryngology and Skull Base Center, AP-HP, Hôpital Lariboisière, 75010 Paris, France
- Centre de Ressources Biologiques Biobank Lariboisière (BB-0033-00064), DMU BioGem, AP-HP, 75010 Paris, France
| | - Charlotte Pronier
- Université Rennes, CHU Rennes, Virology, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, F-35000 Rennes, France
| | - Sophie El Zein
- Pathology Department, Institut Curie, 75010 Paris, France
| | - Michel Wassef
- Pathology Department, DMU DREAM, AP-HP, Hôpital Lariboisière, 75010 Paris, France
| | - Sarah Atallah
- Otorhinolaryngology and Skull Base Center, AP-HP, Hôpital Lariboisière, 75010 Paris, France
- Université Paris Cité, 75010 Paris, France
| | - Florian Chatelet
- Otorhinolaryngology and Skull Base Center, AP-HP, Hôpital Lariboisière, 75010 Paris, France
- Université Paris Cité, 75010 Paris, France
- INSERM UMR 1153 ECSTRRA Team, 75010 Paris, France
| | - Joffrey Molher
- Otorhinolaryngology and Skull Base Center, AP-HP, Hôpital Lariboisière, 75010 Paris, France
| | - Philippe Manivet
- Centre de Ressources Biologiques Biobank Lariboisière (BB-0033-00064), DMU BioGem, AP-HP, 75010 Paris, France
- Université Paris Cité, 75010 Paris, France
- INSERM U1141 NeuroDiderot, 75010 Paris, France
| | - Philippe Herman
- Otorhinolaryngology and Skull Base Center, AP-HP, Hôpital Lariboisière, 75010 Paris, France
- Université Paris Cité, 75010 Paris, France
- INSERM U1141 NeuroDiderot, 75010 Paris, France
| | - Homa Adle-Biassette
- Pathology Department, DMU DREAM, AP-HP, Hôpital Lariboisière, 75010 Paris, France
- Université Paris Cité, 75010 Paris, France
- INSERM U1141 NeuroDiderot, 75010 Paris, France
| | - Benjamin Verillaud
- Otorhinolaryngology and Skull Base Center, AP-HP, Hôpital Lariboisière, 75010 Paris, France
- Université Paris Cité, 75010 Paris, France
- INSERM U1141 NeuroDiderot, 75010 Paris, France
| |
Collapse
|
33
|
Fortier V, Levesque IR. MR-oximetry with fat DESPOT. Magn Reson Imaging 2023; 97:112-121. [PMID: 36608912 DOI: 10.1016/j.mri.2022.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE The R1 relaxation rate of fat is a promising marker of tissue oxygenation. Existing techniques to map fat R1 in MR-oximetry offer limited spatial coverage, require long scan times, or pulse sequences that are not readily available on clinical scanners. This work addresses these limitations with a 3D voxel-wise fat R1 mapping technique for MR-oximetry based on a variable flip angle (VFA) approach at 3 T. METHODS Varying levels of dissolved oxygen (O2) were generated in a phantom consisting of vials of safflower oil emulsion, used to approximate human fat. Joint voxel-wise mapping of fat and water R1 was performed with a two-compartment VFA model fitted to multi-echo gradient-echo magnitude data acquired at four flip angles, referred to as Fat DESPOT. Global R1 was also calculated. Variations of fat, water, and global R1 were investigated as a function of the partial pressure of O2 (pO2). Inversion-prepared stimulated echo magnetic resonance spectroscopy was used as the reference technique for R1 measurements. RESULTS Fat R1 from Fat DESPOT was more sensitive than water R1 and global R1 to variations in pO2, consistent with previous studies performed with different R1 mapping techniques. Fat R1 sensitivity to pO2 variations with Fat DESPOT (median O2 relaxivity r1, O2 = 1.57× 10-3 s-1 mmHg-1) was comparable to spectroscopy-based measurements for methylene, the main fat resonance (median r1, O2= 1.80 × 10-3 s-1 mmHg-1). CONCLUSION Fat and water R1 can be measured on a voxel-wise basis using a two-component fit to multi-echo 3D VFA magnitude data in a clinically acceptable scan time. Fat and water R1 measured with Fat DESPOT were sensitive to variations in pO2. These observations suggest an approach to 3D in vivo MR oximetry.
Collapse
Affiliation(s)
- Véronique Fortier
- Medical Physics Unit, McGill University, Montréal, QC, Canada; Biomedical Engineering, McGill University, Montréal, QC, Canada; Medical Imaging, McGill University Health Centre, Montréal, QC, Canada; Department of Diagnostic Radiology, McGill University, Montréal, QC, Canada; Gerald Bronfman Department of Oncology, McGill University, Montréal, QC, Canada.
| | - Ives R Levesque
- Medical Physics Unit, McGill University, Montréal, QC, Canada; Biomedical Engineering, McGill University, Montréal, QC, Canada; Gerald Bronfman Department of Oncology, McGill University, Montréal, QC, Canada; Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
34
|
How the histological structure of some lung cancers shaped almost 70 years of radiobiology. Br J Cancer 2023; 128:407-412. [PMID: 36344595 PMCID: PMC9938174 DOI: 10.1038/s41416-022-02041-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Pivotal research led by Louis Harold Gray in the 1950s suggested that oxygen plays a vital role during radiotherapy. By proving that tumours have large necrotic cores due to hypoxia and that hypoxic cells require significantly larger doses of ionising radiation to achieve the same cell kill, Thomlinson and Gray inspired the subsequent decades of research into better defining the mechanistic role of molecular oxygen at the time of radiation. Ultimately, the work pioneered by Thomlinson and Gray led to numerous elegant studies which demonstrated that tumour hypoxia predicts for poor patient outcomes. Furthermore, this subsequently resulted in investigations into markers and measurement of hypoxia, as well as modification strategies. However, despite an abundance of pre-clinical data supporting hypoxia-targeted treatments, there is limited widespread application of hypoxia-targeted therapies routinely used in clinical practice. Significant contributing factors underpinning disappointing clinical trial results include the use of model systems which are more hypoxic than human tumours and a failure to stratify patients based on levels of hypoxia. However, translating the original findings of Thomlinson and Gray remains a research priority with the potential to significantly improve patient outcomes and specifically those receiving radiotherapy.
Collapse
|
35
|
Pulumati A, Pulumati A, Dwarakanath BS, Verma A, Papineni RVL. Technological advancements in cancer diagnostics: Improvements and limitations. Cancer Rep (Hoboken) 2023; 6:e1764. [PMID: 36607830 PMCID: PMC9940009 DOI: 10.1002/cnr2.1764] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/20/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Cancer is characterized by the rampant proliferation, growth, and infiltration of malignantly transformed cancer cells past their normal boundaries into adjacent tissues. It is the leading cause of death worldwide, responsible for approximately 19.3 million new diagnoses and 10 million deaths globally in 2020. In the United States alone, the estimated number of new diagnoses and deaths is 1.9 million and 609 360, respectively. Implementation of currently existing cancer diagnostic techniques such as positron emission tomography (PET), X-ray computed tomography (CT), and magnetic resonance spectroscopy (MRS), and molecular diagnostic techniques, have enabled early detection rates and are instrumental not only for the therapeutic management of cancer patients, but also for early detection of the cancer itself. The effectiveness of these cancer screening programs are heavily dependent on the rate of accurate precursor lesion identification; an increased rate of identification allows for earlier onset treatment, thus decreasing the incidence of invasive cancer in the long-term, and improving the overall prognosis. Although these diagnostic techniques are advantageous due to lack of invasiveness and easier accessibility within the clinical setting, several limitations such as optimal target definition, high signal to background ratio and associated artifacts hinder the accurate diagnosis of specific types of deep-seated tumors, besides associated high cost. In this review we discuss various imaging, molecular, and low-cost diagnostic tools and related technological advancements, to provide a better understanding of cancer diagnostics, unraveling new opportunities for effective management of cancer, particularly in low- and middle-income countries (LMICs). RECENT FINDINGS Herein we discuss various technological advancements that are being utilized to construct an assortment of new diagnostic techniques that incorporate hardware, image reconstruction software, imaging devices, biomarkers, and even artificial intelligence algorithms, thereby providing a reliable diagnosis and analysis of the tumor. Also, we provide a brief account of alternative low cost-effective cancer therapy devices (CryoPop®, LumaGEM®, MarginProbe®) and picture archiving and communication systems (PACS), emphasizing the need for multi-disciplinary collaboration among radiologists, pathologists, and other involved specialties for improving cancer diagnostics. CONCLUSION Revolutionary technological advancements in cancer imaging and molecular biology techniques are indispensable for the accurate diagnosis and prognosis of cancer.
Collapse
Affiliation(s)
- Akhil Pulumati
- University of Missouri‐Kansas CityKansas CityMissouriUSA
| | - Anika Pulumati
- University of Missouri‐Kansas CityKansas CityMissouriUSA
| | - Bilikere S. Dwarakanath
- Central Research FacilitySri Ramachandra Institute of Higher Education and Research PorurChennaiIndia
- Department of BiotechnologyIndian Academy Degree CollegeBangaloreIndia
| | | | - Rao V. L. Papineni
- PACT & Health LLCBranfordConnecticutUSA
- Department of SurgeryUniversity of Kansas Medical CenterKansas CityKansasUSA
| |
Collapse
|
36
|
Choen S, Kent MS, Chaudhari AJ, Cherry SR, Krtolica A, Zwingenberger AL. Kinetic Evaluation of the Hypoxia Radiotracers [ 18F]FMISO and [ 18F]FAZA in Dogs with Spontaneous Tumors Using Dynamic PET/CT Imaging. Nucl Med Mol Imaging 2023; 57:16-25. [PMID: 36643946 PMCID: PMC9832187 DOI: 10.1007/s13139-022-00780-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/12/2022] [Accepted: 09/28/2022] [Indexed: 02/01/2023] Open
Abstract
Purpose We evaluated the kinetics of the hypoxia PET radiotracers, [18F]fluoromisonidazole ([18F]FMISO) and [18F]fluoroazomycin-arabinoside ([18F]FAZA), for tumor hypoxia detection and to assess the correlation of hypoxic kinetic parameters with static imaging measures in canine spontaneous tumors. Methods Sixteen dogs with spontaneous tumors underwent a 150-min dynamic PET scan using either [18F]FMISO or [18F]FAZA. The maximum tumor-to-muscle ratio (TMRmax) > 1.4 on the last image frame was used as the standard threshold to determine tumor hypoxia. The tumor time-activity curves were analyzed using irreversible and reversible two-tissue compartment models and graphical methods. TMRmax was compared with radiotracer trapping rate (k 3), influx rate (K i), and distribution volume (V T). Results Tumor hypoxia was detected in 7/8 tumors in the [18F]FMISO group and 4/8 tumors in the [18F]FAZA group. All hypoxic tumors were detected at > 120 min with [18F]FMISO and at > 60 min with [18F]FAZA. [18F]FAZA showed better fit with the reversible model. TMRmax was strongly correlated with the irreversible parameters (k 3 and K i) for [18F]FMISO at > 90 min and with the reversible parameter (V T) for [18F]FAZA at > 120 min. Conclusions Our results showed that [18F]FAZA provided a promising alternative radiotracer to [18F]FMISO with detecting the presence of tumor hypoxia at an earlier time (60 min), consistent with its favorable faster kinetics. The strong correlation between TMRmax over the 90-150 min and 120-150 min timeframes with [18F]FMISO and [18F]FAZA, respectively, with kinetic parameters associated with tumor hypoxia for each radiotracer, suggests that a static scan measurement (TMRmax) is a good alternative to quantify tumor hypoxia. Supplementary Information The online version contains supplementary material available at 10.1007/s13139-022-00780-4.
Collapse
Affiliation(s)
- Sangkyung Choen
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA USA
| | - Michael S. Kent
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA USA
| | - Abhijit J. Chaudhari
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA USA ,Department of Radiology, School of Medicine, University of California, CA Sacramento, USA
| | - Simon R. Cherry
- Department of Biomedical Engineering, College of Engineering, University of California, Davis, CA USA
| | | | - Allison L. Zwingenberger
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA USA
| |
Collapse
|
37
|
Smith PJ, McKeown SR, Patterson LH. Targeting DNA topoisomerase IIα (TOP2A) in the hypoxic tumour microenvironment using unidirectional hypoxia-activated prodrugs (uHAPs). IUBMB Life 2023; 75:40-54. [PMID: 35499745 PMCID: PMC10084299 DOI: 10.1002/iub.2619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/24/2022] [Accepted: 04/03/2022] [Indexed: 12/29/2022]
Abstract
The hypoxic tumour microenvironment (hTME), arising from inadequate and chaotic vascularity, can present a major obstacle for the treatment of solid tumours. Hypoxic tumour cells compromise responses to treatment since they can generate resistance to radiotherapy, chemotherapy and immunotherapy. The hTME impairs the delivery of a range of anti-cancer drugs, creates routes for metastasis and exerts selection pressures for aggressive phenotypes; these changes potentially occur within an immunosuppressed environment. Therapeutic strategies aimed at the hTME include targeting the molecular changes associated with hypoxia. An alternative approach is to exploit the prevailing lack of oxygen as a principle for the selective activation of prodrugs to target cellular components within the hTME. This review focuses on the design concepts and rationale for the use of unidirectional Hypoxia-Activated Prodrugs (uHAPs) to target the hTME as exemplified by the uHAPs AQ4N and OCT1002. These agents undergo irreversible reduction in a hypoxic environment to active forms that target DNA topoisomerase IIα (TOP2A). This nuclear enzyme is essential for cell division and is a recognised chemotherapeutic target. An activated uHAP interacts with the enzyme-DNA complex to induce DNA damage, cell cycle arrest and tumour cell death. uHAPs are designed to overcome the shortcomings of conventional HAPs and offer unique pharmacodynamic properties for effective targeting of TOP2A in the hTME. uHAP therapy in combination with standard of care treatments has the potential to enhance outcomes by co-addressing the therapeutic challenge presented by the hTME.
Collapse
Affiliation(s)
- Paul J Smith
- Cancer and Genetics Division, School of Medicine, Cardiff University, Cardiff, UK
| | | | - Laurence H Patterson
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
38
|
deSouza NM, Choudhury A, Greaves M, O’Connor JPB, Hoskin PJ. Imaging hypoxia in endometrial cancer: How and why should it be done? Front Oncol 2022; 12:1020907. [PMID: 36439503 PMCID: PMC9682004 DOI: 10.3389/fonc.2022.1020907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2023] Open
Affiliation(s)
- Nandita M. deSouza
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
- Department of Imaging, The Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Ananya Choudhury
- Radiation Oncology, The Christie National Health Service (NHS) Foundation Trust Manchester, Manchester, United Kingdom
- The Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Mel Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | - James P. B. O’Connor
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom
- Department of Imaging, The Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
- The Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Peter J. Hoskin
- The Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Radiation Oncology, Mount Vernon Cancer Centre, Northwood, United Kingdom
| |
Collapse
|
39
|
Ivan M, Fishel ML, Tudoran OM, Pollok KE, Wu X, Smith PJ. Hypoxia signaling: Challenges and opportunities for cancer therapy. Semin Cancer Biol 2022; 85:185-195. [PMID: 34628029 PMCID: PMC8986888 DOI: 10.1016/j.semcancer.2021.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022]
Abstract
Hypoxia is arguably the first recognized cancer microenvironment hallmark and affects virtually all cellular populations present in tumors. During the past decades the complex adaptive cellular responses to oxygen deprivation have been largely elucidated, raising hope for new anti cancer agents. Despite undeniable preclinical progress, therapeutic targeting of tumor hypoxia is yet to transition from bench to bedside. This review focuses on new pharmacological agents that exploit tumor hypoxia or interfere with hypoxia signaling and discusses strategies to maximize their therapeutic impact.
Collapse
Affiliation(s)
- Mircea Ivan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Melissa L Fishel
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, IU Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Oana M Tudoran
- The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Cluj, Romania
| | - Karen E Pollok
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xue Wu
- Ohio State University, Columbus, OH, USA
| | - Paul J Smith
- School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
40
|
Li P, Wang D, Hu J, Yang X. The role of imaging in targeted delivery of nanomedicine for cancer therapy. Adv Drug Deliv Rev 2022; 189:114447. [PMID: 35863515 DOI: 10.1016/j.addr.2022.114447] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/27/2022] [Accepted: 07/06/2022] [Indexed: 01/24/2023]
Abstract
Nanomedicines overcome the pharmacokinetic limitations of traditional drug formulations and have promising prospect in cancer treatment. However, nanomedicine delivery in vivo is still facing challenges from the complex physiological environment. For the purpose of effective tumor therapy, they should be designed to guarantee the five features principle, including long blood circulation, efficient tumor accumulation, deep matrix penetration, enhanced cell internalization and accurate drug release. To ensure the excellent performance of the designed nanomedicine, it would be better to monitor the drug delivery process as well as the therapeutic effects by real-time imaging. In this review, we summarize strategies in developing nanomedicines for efficiently meeting the five features of drug delivery, and the role of several imaging modalities (fluorescent imaging (FL), magnetic resonance imaging (MRI), computed tomography (CT), photoacoustic imaging (PAI), positron emission tomography (PET), and electron microscopy) in tracing drug delivery and therapeutic effect in vivo based on five features principle.
Collapse
Affiliation(s)
- Puze Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dongdong Wang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
41
|
Gertsenshteyn I, Epel B, Ahluwalia A, Kim H, Fan X, Barth E, Zamora M, Markiewicz E, Tsai HM, Sundramoorthy S, Leoni L, Lukens J, Bhuiyan M, Freifelder R, Kucharski A, Giurcanu M, Roman BB, Karczmar G, Kao CM, Halpern H, Chen CT. The optimal 18F-fluoromisonidazole PET threshold to define tumor hypoxia in preclinical squamous cell carcinomas using pO 2 electron paramagnetic resonance imaging as reference truth. Eur J Nucl Med Mol Imaging 2022; 49:4014-4024. [PMID: 35792927 PMCID: PMC9529789 DOI: 10.1007/s00259-022-05889-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/19/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE To identify the optimal threshold in 18F-fluoromisonidazole (FMISO) PET images to accurately locate tumor hypoxia by using electron paramagnetic resonance imaging (pO2 EPRI) as ground truth for hypoxia, defined by pO2 [Formula: see text] 10 mmHg. METHODS Tumor hypoxia images in mouse models of SCCVII squamous cell carcinoma (n = 16) were acquired in a hybrid PET/EPRI imaging system 2 h post-injection of FMISO. T2-weighted MRI was used to delineate tumor and muscle tissue. Dynamic contrast enhanced (DCE) MRI parametric images of Ktrans and ve were generated to model tumor vascular properties. Images from PET/EPR/MRI were co-registered and resampled to isotropic 0.5 mm voxel resolution for analysis. PET images were converted to standardized uptake value (SUV) and tumor-to-muscle ratio (TMR) units. FMISO uptake thresholds were evaluated using receiver operating characteristic (ROC) curve analysis to find the optimal FMISO threshold and unit with maximum overall hypoxia similarity (OHS) with pO2 EPRI, where OHS = 1 shows perfect overlap and OHS = 0 shows no overlap. The means of dice similarity coefficient, normalized Hausdorff distance, and accuracy were used to define the OHS. Monotonic relationships between EPRI/PET/DCE-MRI were evaluated with the Spearman correlation coefficient ([Formula: see text]) to quantify association of vasculature on hypoxia imaged with both FMISO PET and pO2 EPRI. RESULTS FMISO PET thresholds to define hypoxia with maximum OHS (both OHS = 0.728 [Formula: see text] 0.2) were SUV [Formula: see text] 1.4 [Formula: see text] SUVmean and SUV [Formula: see text] 0.6 [Formula: see text] SUVmax. Weak-to-moderate correlations (|[Formula: see text]|< 0.70) were observed between PET/EPRI hypoxia images with vascular permeability (Ktrans) or fractional extracellular-extravascular space (ve) from DCE-MRI. CONCLUSION This is the first in vivo comparison of FMISO uptake with pO2 EPRI to identify the optimal FMISO threshold to define tumor hypoxia, which may successfully direct hypoxic tumor boosts in patients, thereby enhancing tumor control.
Collapse
Affiliation(s)
- Inna Gertsenshteyn
- Department of Radiology, The University of Chicago, Chicago, IL, USA
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
- Center for EPR Imaging In Vivo Physiology, The University of Chicago, Chicago, IL, USA
| | - Boris Epel
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
- Center for EPR Imaging In Vivo Physiology, The University of Chicago, Chicago, IL, USA
| | | | - Heejong Kim
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Xiaobing Fan
- Department of Radiology, The University of Chicago, Chicago, IL, USA
- Integrated Small Animal Imaging Research Resource, OSRF, The University of Chicago, Chicago, IL, USA
| | - Eugene Barth
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
- Center for EPR Imaging In Vivo Physiology, The University of Chicago, Chicago, IL, USA
| | - Marta Zamora
- Department of Radiology, The University of Chicago, Chicago, IL, USA
- Integrated Small Animal Imaging Research Resource, OSRF, The University of Chicago, Chicago, IL, USA
| | - Erica Markiewicz
- Integrated Small Animal Imaging Research Resource, OSRF, The University of Chicago, Chicago, IL, USA
| | - Hsiu-Ming Tsai
- Integrated Small Animal Imaging Research Resource, OSRF, The University of Chicago, Chicago, IL, USA
| | - Subramanian Sundramoorthy
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
- Center for EPR Imaging In Vivo Physiology, The University of Chicago, Chicago, IL, USA
| | - Lara Leoni
- Integrated Small Animal Imaging Research Resource, OSRF, The University of Chicago, Chicago, IL, USA
| | - John Lukens
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
- Center for EPR Imaging In Vivo Physiology, The University of Chicago, Chicago, IL, USA
| | - Mohammed Bhuiyan
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | | | - Anna Kucharski
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Mihai Giurcanu
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
| | - Brian B Roman
- Department of Radiology, The University of Chicago, Chicago, IL, USA
- Integrated Small Animal Imaging Research Resource, OSRF, The University of Chicago, Chicago, IL, USA
| | - Gregory Karczmar
- Department of Radiology, The University of Chicago, Chicago, IL, USA
- Integrated Small Animal Imaging Research Resource, OSRF, The University of Chicago, Chicago, IL, USA
| | - Chien-Min Kao
- Department of Radiology, The University of Chicago, Chicago, IL, USA
- Integrated Small Animal Imaging Research Resource, OSRF, The University of Chicago, Chicago, IL, USA
| | - Howard Halpern
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, USA
- Center for EPR Imaging In Vivo Physiology, The University of Chicago, Chicago, IL, USA
| | - Chin-Tu Chen
- Department of Radiology, The University of Chicago, Chicago, IL, USA.
- Integrated Small Animal Imaging Research Resource, OSRF, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
42
|
Herscovitch P. Regulatory Agencies and PET/CT Imaging in the Clinic. Curr Cardiol Rep 2022; 24:1361-1371. [PMID: 35913674 PMCID: PMC9340745 DOI: 10.1007/s11886-022-01749-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/13/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE OF REVIEW The regulatory steps necessary to bring new PET radiopharmaceuticals to the clinic will be reviewed. The US Food and Drug Administration (FDA) provides approval to manufacture and use diagnostic radiopharmaceuticals, including those for cardiovascular PET/CT. Medicare not only provides insurance reimbursement for imaging procedures for its beneficiaries but also sets an example for third-party insurers to cover these procedures. RECENT FINDINGS FDA provides extensive guidance for performing studies to obtain the safety and efficacy data needed to approve PET radiopharmaceuticals, and the pace of approval has recently increased. There also has been considerable progress in insurance coverage for PET by Medicare. Several promising agents for cardiovascular PET imaging are in the development pipeline. Challenges remain, however, including low levels of reimbursement and the application of appropriate use criteria for imaging procedures. It is important for cardiologists to understand the regulatory steps involved in translating PET radiopharmaceuticals to the clinic. Recent progress in both FDA approvals and Medicare coverage should facilitate the clinical use of new PET agents for molecular imaging of the heart.
Collapse
Affiliation(s)
- Peter Herscovitch
- Positron Emission Tomography Department, National Institutes of Health Clinical Center, Rm 1C-495, 10 Center DR, MSC1180, Bethesda, MD, 20892-1180, USA.
| |
Collapse
|
43
|
Nuzzo S, Iaboni M, Ibba ML, Rienzo A, Musumeci D, Franzese M, Roscigno G, Affinito A, Petrillo G, Quintavalle C, Ciccone G, Esposito CL, Catuogno S. Selection of RNA aptamers targeting hypoxia in cancer. Front Mol Biosci 2022; 9:956935. [PMID: 36188221 PMCID: PMC9515380 DOI: 10.3389/fmolb.2022.956935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Hypoxia plays a crucial role in tumorigenesis and drug resistance, and it is recognised as a major factor affecting patient clinical outcome. Therefore, the detection of hypoxic areas within the tumour micro-environment represents a useful way to monitor tumour growth and patients’ responses to treatments, properly guiding the choice of the most suitable therapy. To date, non-invasive hypoxia imaging probes have been identified, but their applicability in vivo is strongly limited due to an inadequate resistance to the low oxygen concentration and the acidic pH of the tumour micro-environment. In this regard, nucleic acid aptamers represent very powerful tools thanks to their peculiar features, including high stability to harsh conditions and a small size, resulting in easy and efficient tumour penetration. Here, we describe a modified cell-SELEX (Systematic Evolution of Ligands by EXponential enrichment) approach that allows the isolation of specific RNA aptamers for the detection of the hypoxic phenotype in breast cancer (BC) cells. We demonstrated the effectiveness of the proposed method in isolating highly stable aptamers with an improved and specific binding to hypoxic cells. To our knowledge, this is the first example of a cell-SELEX approach properly designed and modified to select RNA aptamers against hypoxia-related epitopes expressed on tumour cell surfaces. The selected aptamers may provide new effective tools for targeting hypoxic areas within the tumour with great clinical potential.
Collapse
Affiliation(s)
| | | | - Maria Luigia Ibba
- Institute Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), National Research Council (CNR), Naples, Italy
| | - Anna Rienzo
- Institute Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), National Research Council (CNR), Naples, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, “Federico II” University of Naples, Naples, Italy
| | | | - Giuseppina Roscigno
- Department of Molecular Medicine and Medical Biotechnology, “Federico II” University of Naples, Naples, Italy
| | - Alessandra Affinito
- Department of Molecular Medicine and Medical Biotechnology, “Federico II” University of Naples, Naples, Italy
- Percuros B.V., Enschede, Netherlands
| | - Gianluca Petrillo
- Department of Molecular Medicine and Medical Biotechnology, “Federico II” University of Naples, Naples, Italy
| | - Cristina Quintavalle
- Institute Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), National Research Council (CNR), Naples, Italy
| | - Giuseppe Ciccone
- Institute Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), National Research Council (CNR), Naples, Italy
| | - Carla Lucia Esposito
- Institute Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), National Research Council (CNR), Naples, Italy
- *Correspondence: Carla Lucia Esposito, ; Silvia Catuogno,
| | - Silvia Catuogno
- Institute Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), National Research Council (CNR), Naples, Italy
- *Correspondence: Carla Lucia Esposito, ; Silvia Catuogno,
| |
Collapse
|
44
|
Hildingsson S, Gebre-Medhin M, Zschaeck S, Adrian G. Hypoxia in relationship to tumor volume using hypoxia PET-imaging in head & neck cancer - A scoping review. Clin Transl Radiat Oncol 2022; 36:40-46. [PMID: 35769424 PMCID: PMC9234341 DOI: 10.1016/j.ctro.2022.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 01/19/2023] Open
Abstract
Background Hypoxia and large tumor volumes are negative prognostic factors for patients with head and neck squamous cell carcinoma (HNSCC) treated with radiation therapy (RT). PET-scanning with specific hypoxia-tracers (hypoxia-PET) can be used to non-invasively assess hypoxic tumor volume. Primary tumor volume is readily available for patients undergoing RT. However, the relationship between hypoxic volume and primary tumor volume is yet an open question. The current study investigates the hypotheses that larger tumors contain both a larger hypoxic volume and a higher hypoxic fraction. Methods PubMed and Embase were systematically searched to identify articles fulfilling the predefined criteria. Individual tumor data (primary tumor volume and hypoxic volume/fraction) was extracted. Relationship between hypoxic volume and primary tumor volume was investigated by linear regression. The correlation between hypoxic fraction and log2(primary tumor volume) was determined for each cohort and in a pooled analysis individual regression slopes and coefficients of determination (R2) were weighted according to cohort size. Results 21 relevant articles were identified and individual data from 367 patients was extracted, out of which 323 patients from 17 studies had quantifiable volumes of interest. A correlation between primary tumor volume and PET-determined hypoxic volume was found (P <.001, R2 = 0.46). Larger tumors had a significantly higher fraction of hypoxia compared with smaller tumors (P<.01). The weighted analysis of all studies revealed that for each doubling of the tumor volume, the hypoxic fraction increased by four percentage points. Conclusion This study shows correlations between primary tumor volume and hypoxic volume as well as primary tumor volume and the hypoxic fraction in patients with HNSCC. The findings suggest that not only do large tumors contain more cancer cells, they also have a higher proportion of potentially radioresistant hypoxic cells. This knowledge can be important when individualizing RT.
Collapse
Affiliation(s)
- Sofia Hildingsson
- Division of Oncology and Pathology, Clinical Sciences, Lund University, Lund, Sweden
| | - Maria Gebre-Medhin
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund University, Lund, Sweden
| | - Sebastian Zschaeck
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Gabriel Adrian
- Division of Oncology and Pathology, Clinical Sciences, Lund University, Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
45
|
Fletcher T, Thompson AJ, Ashrafian H, Darzi A. The measurement and modification of hypoxia in colorectal cancer: overlooked but not forgotten. Gastroenterol Rep (Oxf) 2022; 10:goac042. [PMID: 36032656 PMCID: PMC9406947 DOI: 10.1093/gastro/goac042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/18/2022] [Accepted: 07/21/2022] [Indexed: 11/14/2022] Open
Abstract
Tumour hypoxia is the inevitable consequence of a tumour's rapid growth and disorganized, inefficient vasculature. The compensatory mechanisms employed by tumours, and indeed the absence of oxygen itself, hinder the ability of all treatment modalities. The clinical consequence is poorer overall survival, disease-free survival, and locoregional control. Recognizing this, clinicians have been attenuating the effect of hypoxia, primarily with hypoxic modification or with hypoxia-activated pro-drugs, and notable success has been demonstrated. However, in the case of colorectal cancer (CRC), there is a general paucity of knowledge and evidence surrounding the measurement and modification of hypoxia, and this is possibly due to the comparative inaccessibility of such tumours. We specifically review the role of hypoxia in CRC and focus on the current evidence for the existence of hypoxia in CRC, the majority of which originates from indirect positron emission topography imaging with hypoxia selective radiotracers; the evidence correlating CRC hypoxia with poorer oncological outcome, which is largely based on the measurement of hypoxia inducible factor in correlation with clinical outcome; the evidence of hypoxic modification in CRC, of which no direct evidence exists, but is reflected in a number of indirect markers; the prognostic and monitoring implications of accurate CRC hypoxia quantification and its potential in the field of precision oncology; and the present and future imaging tools and technologies being developed for the measurement of CRC hypoxia, including the use of blood-oxygen-level-dependent magnetic resonance imaging and diffuse reflectance spectroscopy.
Collapse
Affiliation(s)
- Teddy Fletcher
- Department of Surgery and Cancer, Queen Elizabeth the Queen Mother Wing, St Mary’s Hospital, Imperial College London, London, UK
| | - Alex J Thompson
- The Hamlyn Centre, Institute of Global Health Innovation, Imperial College London, London, UK
| | - Hutan Ashrafian
- Department of Surgery and Cancer, Queen Elizabeth the Queen Mother Wing, St Mary’s Hospital, Imperial College London, London, UK
| | - Ara Darzi
- Department of Surgery and Cancer, Queen Elizabeth the Queen Mother Wing, St Mary’s Hospital, Imperial College London, London, UK
| |
Collapse
|
46
|
Dolezel M, Slavik M, Blazek T, Kazda T, Koranda P, Veverkova L, Burkon P, Cvek J. FMISO-Based Adaptive Radiotherapy in Head and Neck Cancer. J Pers Med 2022; 12:jpm12081245. [PMID: 36013194 PMCID: PMC9410424 DOI: 10.3390/jpm12081245] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Concurrent chemoradiotherapy represents one of the most used strategies in the curative treatment of patients with head and neck (HNC) cancer. Locoregional failure is the predominant recurrence pattern. Tumor hypoxia belongs to the main cause of treatment failure. Positron emission tomography (PET) using hypoxia radiotracers has been studied extensively and has proven its feasibility and reproducibility to detect tumor hypoxia. A number of studies confirmed that the uptake of FMISO in the recurrent region is significantly higher than that in the non-recurrent region. The escalation of dose to hypoxic tumors may improve outcomes. The technical feasibility of optimizing radiotherapeutic plans has been well documented. To define the hypoxic tumour volume, there are two main approaches: dose painting by contour (DPBC) or by number (DPBN) based on PET images. Despite amazing technological advances, precision in target coverage, and surrounding tissue sparring, radiation oncology is still not considered a targeted treatment if the “one dose fits all” approach is used. Using FMISO and other hypoxia tracers may be an important step for individualizing radiation treatment and together with future radiomic principles and a possible genome-based adjusting dose, will move radiation oncology into the precise and personalized era.
Collapse
Affiliation(s)
- Martin Dolezel
- Department of Oncology, Palacky University Medical School & Teaching Hospital, 77900 Olomouc, Czech Republic;
| | - Marek Slavik
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, 65652 Brno, Czech Republic; (T.K.); (P.B.)
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
- Correspondence:
| | - Tomas Blazek
- Department of Oncology, Faculty of Medicine, University Hospital Ostrava, 70852 Ostrava, Czech Republic; (T.B.); (J.C.)
| | - Tomas Kazda
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, 65652 Brno, Czech Republic; (T.K.); (P.B.)
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Pavel Koranda
- Department of Nuclear Medicine, Palacky University Medical School & Teaching Hospital, 77900 Olomouc, Czech Republic;
| | - Lucia Veverkova
- Department of Radiology, Palacky University Medical School & Teaching Hospital, 77900 Olomouc, Czech Republic;
| | - Petr Burkon
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, 65652 Brno, Czech Republic; (T.K.); (P.B.)
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Jakub Cvek
- Department of Oncology, Faculty of Medicine, University Hospital Ostrava, 70852 Ostrava, Czech Republic; (T.B.); (J.C.)
| |
Collapse
|
47
|
Gallez B. The Role of Imaging Biomarkers to Guide Pharmacological Interventions Targeting Tumor Hypoxia. Front Pharmacol 2022; 13:853568. [PMID: 35910347 PMCID: PMC9335493 DOI: 10.3389/fphar.2022.853568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is a common feature of solid tumors that contributes to angiogenesis, invasiveness, metastasis, altered metabolism and genomic instability. As hypoxia is a major actor in tumor progression and resistance to radiotherapy, chemotherapy and immunotherapy, multiple approaches have emerged to target tumor hypoxia. It includes among others pharmacological interventions designed to alleviate tumor hypoxia at the time of radiation therapy, prodrugs that are selectively activated in hypoxic cells or inhibitors of molecular targets involved in hypoxic cell survival (i.e., hypoxia inducible factors HIFs, PI3K/AKT/mTOR pathway, unfolded protein response). While numerous strategies were successful in pre-clinical models, their translation in the clinical practice has been disappointing so far. This therapeutic failure often results from the absence of appropriate stratification of patients that could benefit from targeted interventions. Companion diagnostics may help at different levels of the research and development, and in matching a patient to a specific intervention targeting hypoxia. In this review, we discuss the relative merits of the existing hypoxia biomarkers, their current status and the challenges for their future validation as companion diagnostics adapted to the nature of the intervention.
Collapse
Affiliation(s)
- Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
48
|
Zhang Q, Hou K, Chen H, Zeng N, Wu Y. Nanotech Probes: A Revolution in Cancer Diagnosis. Front Oncol 2022; 12:933125. [PMID: 35875155 PMCID: PMC9300983 DOI: 10.3389/fonc.2022.933125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Recent advances in nanotechnologies for cancer diagnosis and treatment have received considerable attention worldwide. Nanoparticles are being used to create nanodrugs and probes to diagnose and treat a variety of diseases, including cancer. Nanomedicines have unique advantages, such as increased surface-to-volume ratios, which enable them to interact with, absorb, and deliver small biomolecules to a very specific target, thereby improving the effectiveness of both probes and drugs. Nanoprobe biotechnology also plays an important role in the discovery of novel cancer biomarkers, and nanoprobes have become an important part of early clinical diagnosis of cancer. Various organic and inorganic nanomaterials have been developed as biomolecular carriers for the detection of disease biomarkers. Thus, we designed this review to evaluate the advances in nanoprobe technology in tumor diagnosis.
Collapse
Affiliation(s)
| | | | | | - Ning Zeng
- *Correspondence: Yiping Wu, ; Ning Zeng,
| | - Yiping Wu
- *Correspondence: Yiping Wu, ; Ning Zeng,
| |
Collapse
|
49
|
van der Heide CD, Dalm SU. Radionuclide imaging and therapy directed towards the tumor microenvironment: a multi-cancer approach for personalized medicine. Eur J Nucl Med Mol Imaging 2022; 49:4616-4641. [PMID: 35788730 PMCID: PMC9606105 DOI: 10.1007/s00259-022-05870-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022]
Abstract
Targeted radionuclide theranostics is becoming more and more prominent in clinical oncology. Currently, most nuclear medicine compounds researched for cancer theranostics are directed towards targets expressed in only a small subset of cancer types, limiting clinical applicability. The identification of cancer-specific targets that are (more) universally expressed will allow more cancer patients to benefit from these personalized nuclear medicine–based interventions. A tumor is not merely a collection of cancer cells, it also comprises supporting stromal cells embedded in an altered extracellular matrix (ECM), together forming the tumor microenvironment (TME). Since the TME is less genetically unstable than cancer cells, and TME phenotypes can be shared between cancer types, it offers targets that are more universally expressed. The TME is characterized by the presence of altered processes such as hypoxia, acidity, and increased metabolism. Next to the ECM, the TME consists of cancer-associated fibroblasts (CAFs), macrophages, endothelial cells forming the neo-vasculature, immune cells, and cancer-associated adipocytes (CAAs). Radioligands directed at the altered processes, the ECM, and the cellular components of the TME have been developed and evaluated in preclinical and clinical studies for targeted radionuclide imaging and/or therapy. In this review, we provide an overview of the TME targets and their corresponding radioligands. In addition, we discuss what developments are needed to further explore the TME as a target for radionuclide theranostics, with the hopes of stimulating the development of novel TME radioligands with multi-cancer, or in some cases even pan-cancer, application.
Collapse
Affiliation(s)
| | - Simone U Dalm
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
50
|
Subasinghe SAAS, Pautler RG, Samee MAH, Yustein JT, Allen MJ. Dual-Mode Tumor Imaging Using Probes That Are Responsive to Hypoxia-Induced Pathological Conditions. BIOSENSORS 2022; 12:478. [PMID: 35884281 PMCID: PMC9313010 DOI: 10.3390/bios12070478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 05/02/2023]
Abstract
Hypoxia in solid tumors is associated with poor prognosis, increased aggressiveness, and strong resistance to therapeutics, making accurate monitoring of hypoxia important. Several imaging modalities have been used to study hypoxia, but each modality has inherent limitations. The use of a second modality can compensate for the limitations and validate the results of any single imaging modality. In this review, we describe dual-mode imaging systems for the detection of hypoxia that have been reported since the start of the 21st century. First, we provide a brief overview of the hallmarks of hypoxia used for imaging and the imaging modalities used to detect hypoxia, including optical imaging, ultrasound imaging, photoacoustic imaging, single-photon emission tomography, X-ray computed tomography, positron emission tomography, Cerenkov radiation energy transfer imaging, magnetic resonance imaging, electron paramagnetic resonance imaging, magnetic particle imaging, and surface-enhanced Raman spectroscopy, and mass spectrometric imaging. These overviews are followed by examples of hypoxia-relevant imaging using a mixture of probes for complementary single-mode imaging techniques. Then, we describe dual-mode molecular switches that are responsive in multiple imaging modalities to at least one hypoxia-induced pathological change. Finally, we offer future perspectives toward dual-mode imaging of hypoxia and hypoxia-induced pathophysiological changes in tumor microenvironments.
Collapse
Affiliation(s)
| | - Robia G. Pautler
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.G.P.); (M.A.H.S.)
| | - Md. Abul Hassan Samee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.G.P.); (M.A.H.S.)
| | - Jason T. Yustein
- Integrative Molecular and Biomedical Sciences and the Department of Pediatrics in the Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Matthew J. Allen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA;
| |
Collapse
|