1
|
Fadlullah MZH, Nix D, Herberts C, Maurice-Dror C, Wyatt AW, Schmidt B, Fairbourn B, Tan AC, Wang L, Kohli M. Multi-gene risk score for prediction of clinical outcomes in treatment-naïve metastatic castrate-resistant prostate cancer. JNCI Cancer Spectr 2025; 9:pkaf025. [PMID: 40036789 PMCID: PMC11954629 DOI: 10.1093/jncics/pkaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/16/2025] [Accepted: 02/15/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND To determine the performance of a multi-gene copy number variation (MG-CNV) risk score in metastatic tissue and plasma biospecimens from treatment-naïve metastatic castration-resistant prostate cancer (mCRPC) patients for prediction of clinical outcomes. METHODS The mCRPC tissue and plasma cell-free DNA (cfDNA) biospecimen sequencing results obtained from publicly accessed cohorts in dbGaP, cBioPortal, and an institutional mCRPC cohort were used to develop a MG-CNV risk score derived from gains in AR, MYC, COL22A1, PIK3CA, PIK3CB, NOTCH1 and losses in TMPRSS2, NCOR1, ZBTB16, TP53, NKX3-1 in independent cohorts for determining overall survival (OS), progression-free survival (PFS) to first-line androgen receptor pathway inhibitors (ARPIs). The range of the risk scores for each cohort was dichotomized into "high-risk" and "low-risk" groups and association with OS/PFS determined. Univariate and multivariable Cox proportional hazards regressions were applied for survival analyses (P < .05 for statistical significance). RESULTS Of 1137 metastatic tissue-plasma biospecimens across all cohorts, 699/1137 were treatment-naive mCRPC (235/699 metastatic tissue; 464/699 plasma-cfDNA), and 311/1137 were matched tissue-cfDNA pairs. In multivariable analysis, the MG-CNV risk score derived from metastatic tissue or in cfDNA was statistically significantly associated with OS with high score associated with short survival (hazard ratio = 2.65, confidence interval = 1.99 to 3.51; P = 1.35-11) and shorter PFS to ARPIs (median PFS of 7.8 months) compared with 14 months in patients with low-risk score. CONCLUSIONS A molecular risk score in treatment-naïve mCRPC state obtained either in metastatic tissue or cfDNA predicts clinical survival outcomes and offers a tumor biology-based tool to design biomarker-based enrichment clinical trials.
Collapse
Affiliation(s)
- Muhammad Zaki Hidayatullah Fadlullah
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
- Department of Biomedical Informatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - David Nix
- Department of Biomedical Informatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Cameron Herberts
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | - Alexander W Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Bogdana Schmidt
- Division of Urology, Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Brayden Fairbourn
- Department of Internal Medicine, Spencer Fox Eccles School of Medicine, Salt Lake City, UT, United States
| | - Aik-Choon Tan
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
- Department of Biomedical Informatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Manish Kohli
- Division of Oncology, Department of Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
2
|
da Silva IP, de Amorim LGCR, Piredda GV, Mass-Lindenbaum M, de Moraes FCA, Freitas PFS, Melão BVLA, Brandão HM, da Trindade KM. Cabazitaxel versus abiraterone or enzalutamide for metastatic castration-resistant prostate cancer following docetaxel failure: a systematic review and meta-analysis. Clin Transl Oncol 2025:10.1007/s12094-025-03851-y. [PMID: 39987332 DOI: 10.1007/s12094-025-03851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/08/2025] [Indexed: 02/24/2025]
Abstract
PURPOSE Treatment for metastatic castration-resistant prostate cancer (mCRPC) includes chemotherapy and inhibition of the androgen receptor pathway. However, the optimal treatment sequence in this scenario is not yet fully understood. Therefore, we conducted a systematic review and meta-analysis comparing cabazitaxel versus abiraterone or enzalutamide for efficacy and safety outcomes as second-line therapy in mCRPC patients after docetaxel failure. METHODS We searched PubMed, Embase, and Cochrane databases for interventional studies comparing cabazitaxel versus abiraterone or enzalutamide for patients with mCRPC who have experienced treatment failure with docetaxel as their first-line therapy. We computed hazard ratios (HRs) or odds ratios (ORs) with 95% confidence intervals (CIs). RESULTS Eight studies, comprising 1,897 patients were included, of whom 548 (28.8%) received cabazitaxel. Mean follow-up time ranged from 3 to 16.4 months. Median age ranged from 68.1 to 73.9 years in the cabazitaxel group, and 68.0 to 73.1 years in the abiraterone or enzalutamide group. In our meta-analysis, cabazitaxel significantly improved progression-free survival (PFS) rates (HR 0.60; 95% CI 0.47-0.78; p < 0.001) compared to abiraterone or enzalutamide. There were no differences between groups in overall survival (HR 0.76; 95% CI 0.46-1.24; p = 0.27), therapy-related grade ≥ 3 adverse events (AEs) (OR 3.00; 95% CI 0.72-12.40; p = 0.12), and PSA decline ≥ 50% (OR 1.20; 95% CI 0.51-2.80; p = 0.67). CONCLUSIONS In this systematic review and meta-analysis of men with mCRPC after docetaxel failure, second-line therapy with cabazitaxel was associated with a longer PFS compared with abiraterone or enzalutamide, though without a significant difference in OS.
Collapse
Affiliation(s)
| | | | | | - Marcelo Mass-Lindenbaum
- Department of Medicine, Centro de Innovación en Piso Pélvico, Hospital Sótero del Río, Santiago, Chile
| | | | - Pedro F S Freitas
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, USA
| | | | | | - Karine Martins da Trindade
- Latin American Cooperative Oncology Group, Genitourinary Group (LACOG-GU), Porto Alegre, Brazil.
- Division of Oncology, Intituto D'Or de Pesquisa e Ensino, Fortaleza, Brazil.
| |
Collapse
|
3
|
Baboudjian M, Peyrottes A, Dariane C, Fromont G, Denis JA, Fiard G, Kassab D, Ladoire S, Lehmann-Che J, Ploussard G, Rouprêt M, Barthélémy P, Roubaud G, Lamy PJ. Circulating Biomarkers Predictive of Treatment Response in Patients with Hormone-sensitive or Castration-resistant Metastatic Prostate Cancer: A Systematic Review. Eur Urol Oncol 2024; 7:1228-1245. [PMID: 38824003 DOI: 10.1016/j.euo.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND AND OBJECTIVE Metastatic prostate cancer (mPCa) harbors genomic alterations that may predict targeted therapy efficacy. These alterations can be identified not only in tissue but also directly in biologic fluids (ie, liquid biopsies), mainly blood. Liquid biopsies may represent a safer and less invasive alternative for monitoring patients treated for mPCa. Current research focuses on the description and validation of novel predictive biomarkers to improve precision medicine in mPCa. Our aim was to systematically review the current evidence on liquid biopsy biomarkers for predicting treatment response in mPCa. METHODS We systematically searched Medline, Web of Science, and evidence-based websites for publications on circulating biomarkers in mPCa between March 2013 and February 2024 for review. Endpoints were: prediction of overall survival, biochemical or radiographic progression-free survival after treatment (chemotherapy, androgen deprivation therapy, androgen receptor pathway inhibitors [ARPIs], immunotherapy, or PARP inhibitors [PARPIs]). For each biomarker, the level of evidence (LOE) for clinical validity was attributed: LOE IA and IB, high level of evidence; LOE IIB and IIC, intermediate level; and LOE IIIC and LOE IV-VD, weak level. KEY FINDINGS AND LIMITATIONS The predictive value of each biomarker for the response to several therapies was evaluated in both metastatic hormone-sensitive (mHSPC) and castration-resistant prostate cancer (mCRPC). In patients with mCRPC, BRCA1/2 or ATM mutations predicted response to ARPIs (LOE IB) and PARPIs (LOE IIB), while AR-V7 transcripts or AR-V7 protein levels in circulating tumor cells (CTCs) predicted response to ARPIs and taxanes (LOE IB). CTC quantification predicted response to cabazitaxel, abiraterone, and radium-223 (LOE IIB), while TP53 alterations predicted response to 177Lu prostate-specific membrane antigen radioligand treatment (LOE IIB). AR copy number in circulating tumor DNA before the first treatment line and before subsequent lines predicted response to docetaxel, cabazitaxel, and ARPIs (LOE IIB). In mHSPC, DNA damage in lymphocytes was predictive of the response to radium-223 (LOE IIB). CONCLUSIONS AND CLINICAL IMPLICATIONS BRCA1/2, ATM, and AR alterations detected in liquid biopsies may help clinicians in management of patients with mPCa. The other circulating biomarkers did not reach the LOE required for routine clinical use and should be validated in prospective independent studies. PATIENT SUMMARY We reviewed studies assessing the value of biomarkers in blood or urine for management of metastatic prostate cancer. The evidence indicates that some biomarkers could help in selecting patients eligible for specific treatments.
Collapse
Affiliation(s)
- Michael Baboudjian
- Department of Urology, North Academic Hospital, AP-HM, Marseille, France
| | - Arthur Peyrottes
- Service d'Urologie et de Transplantation Rénale, Hôpital Saint-Louis, AP-HP, Université de Paris, Paris, France
| | - Charles Dariane
- Department of Urology, European Hospital Georges-Pompidou, University Paris Cité, Paris, France; UMR-S1151, CNRS UMR-S8253 Institut Necker Enfants Malades, Paris, France
| | - Gaëlle Fromont
- INSERM UMR1069, Nutrition Croissance et Cancer, University of Tours, Tours, France; Department of Pathology, CHRU de Tours, Tours, France
| | - Jérôme Alexandre Denis
- INSERM UMR_S938, CRSA, Biologie et Thérapeutiques du Cancer, Saint-Antoine University Hospital, Sorbonne Université, Paris, France; Service de Biochimie Endocrinienne et Oncologique, Oncobiologie Cellulaire et Moléculaire, GH Pitié-Salpêtrière, AP-HP, Paris, France
| | - Gaëlle Fiard
- Department of Urology, CHU Grenoble Alpes, University of Grenoble Alpes CNRS, Grenoble INP, TIMC, Grenoble, France
| | | | - Sylvain Ladoire
- Department of Medical Oncology, Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center, Dijon, France; University of Burgundy-Franche Comté, Dijon, France; INSERM U1231, Dijon, France
| | - Jacqueline Lehmann-Che
- INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie, Université Paris Cité, Paris, France; UF Oncologie Moléculaire, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Guillaume Ploussard
- Department of Urology, La Croix du Sud Hospital, Quint-Fonsegrives, France; Department of Urology, Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France
| | - Morgan Rouprêt
- Department of Urology, University Hospital Pitié-Salpêtrière, Paris, France; Faculty of Medicine, Sorbonne University, Paris, France
| | - Philippe Barthélémy
- Medical Oncology Department, Institut de Cancérologie Strasbourg Europe, Strasbourg, France
| | - Guilhem Roubaud
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France
| | - Pierre-Jean Lamy
- Biopathologie et Génétique des Cancers, Institut Médical d'Analyse Génomique, Imagenome, Inovie, Montpellier, France; Unité de Recherche Clinique, Clinique Beausoleil, Montpellier, France.
| |
Collapse
|
4
|
Yoshida S, Kajiwara D, Seki M, Tayama M, Tanaka Y, Mizutani H, Fujita R, Yamamura K, Okajima S, Asai M, Minamiguchi K. TAS3681, an androgen receptor antagonist, prevents drug resistance driven by aberrant androgen receptor signaling in prostate cancer. Mol Oncol 2024; 18:1980-2000. [PMID: 38600681 PMCID: PMC11306513 DOI: 10.1002/1878-0261.13641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/04/2024] [Accepted: 03/15/2024] [Indexed: 04/12/2024] Open
Abstract
Second-generation androgen receptor (AR) signaling inhibitors (ARSIs), such as abiraterone and enzalutamide, prolong the life of patients with castration-resistant prostate cancer (CRPC). However, patients receiving ARSIs ultimately develop resistance through various complex mechanisms, including AR mutations, constitutively active AR-splice variants (AR-Vs), and AR overexpression. Here, we characterized a novel AR pure antagonist, TAS3681, which inhibits AR transcriptional activity and downregulates AR-full length (AR-FL) and AR-Vs. TAS3681 reduced the protein levels of AR-FL and AR-Vs including AR-V7 in enzalutamide-resistant cells (SAS MDV No. 3-14), in vitro and in vivo, showing strong antitumor efficacy in an AR-V7-positive xenograft model. In AR-overexpressing VCaP (prostate cancer) cells, conversely to enzalutamide, TAS3681 effectively suppressed cell proliferation and downregulated AR expression. Importantly, TAS3681 blocked the transcriptional activity of various mutant ARs, including mutations F877L/T878A and H875Y/T878A, which confer resistance to enzalutamide, and V716M and H875Y mutations, which confer resistance to darolutamide. Our results demonstrate that TAS3681 suppresses the reactivation of AR signaling, which causes resistance to ARSIs, via a newly identified mechanism of action. Therefore, TAS3681 could be a new therapeutic option for CRPC treatment.
Collapse
MESH Headings
- Male
- Humans
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Androgen Receptor Antagonists/pharmacology
- Androgen Receptor Antagonists/therapeutic use
- Cell Line, Tumor
- Animals
- Signal Transduction/drug effects
- Mice, Nude
- Mice
- Xenograft Model Antitumor Assays
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- Cell Proliferation/drug effects
- Phenylthiohydantoin/pharmacology
- Phenylthiohydantoin/analogs & derivatives
- Phenylthiohydantoin/therapeutic use
- Benzamides/pharmacology
- Nitriles/pharmacology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
Collapse
Affiliation(s)
- Shohei Yoshida
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.TsukubaJapan
| | - Daisuke Kajiwara
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.TsukubaJapan
| | - Masanao Seki
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.TsukubaJapan
| | - Manabu Tayama
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.TsukubaJapan
| | - Yuki Tanaka
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.TsukubaJapan
| | - Hiroya Mizutani
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.TsukubaJapan
| | - Ryoto Fujita
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.TsukubaJapan
| | - Keisuke Yamamura
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.TsukubaJapan
| | - Shigeo Okajima
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.TsukubaJapan
| | - Masanori Asai
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.TsukubaJapan
| | - Kazuhisa Minamiguchi
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.TsukubaJapan
| |
Collapse
|
5
|
Zengin ZB, Henderson NC, Park JJ, Ali A, Nguyen C, Hwang C, Barata PC, Bilen MA, Graham L, Mo G, Kilari D, Tripathi A, Labriola M, Rothstein S, Garje R, Koshkin VS, Patel VG, Schweizer MT, Armstrong AJ, McKay RR, Alva A, Dorff T. Clinical implications of AR alterations in advanced prostate cancer: a multi-institutional collaboration. Prostate Cancer Prostatic Dis 2024:10.1038/s41391-024-00805-3. [PMID: 38383885 DOI: 10.1038/s41391-024-00805-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/09/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND AR gene alterations can develop in response to pressure of testosterone suppression and androgen receptor targeting agents (ARTA). Despite this, the relevance of these gene alterations in the context of ARTA treatment and clinical outcomes remains unclear. METHODS Patients with castration-resistant prostate cancer (CRPC) who had undergone genomic testing and received ARTA treatment were identified in the Prostate Cancer Precision Medicine Multi-Institutional Collaborative Effort (PROMISE) database. Patients were stratified according to the timing of genomic testing relative to the first ARTA treatment (pre-/post-ARTA). Clinical outcomes such as time to progression, PSA response, and overall survival were compared based on alteration types. RESULTS In total, 540 CRPC patients who received ARTA and had tissue-based (n = 321) and/or blood-based (n = 244) genomic sequencing were identified. Median age was 62 years (range 39-90) at the time of the diagnosis. Majority were White (72.2%) and had metastatic disease (92.6%) at the time of the first ARTA treatment. Pre-ARTA genomic testing was available in 24.8% of the patients, and AR mutations and amplifications were observed in 8.2% and 13.1% of the patients, respectively. Further, time to progression was longer in patients with AR amplifications (25.7 months) compared to those without an AR alteration (9.6 months; p = 0.03). In the post-ARTA group (n = 406), AR mutations and AR amplifications were observed in 18.5% and 35.7% of the patients, respectively. The most common mutation in post-ARTA group was L702H (9.9%). CONCLUSION In this real-world clinicogenomics database-driven study we explored the development of AR alterations and their association with ARTA treatment outcomes. Our study showed that AR amplifications are associated with longer time to progression on first ARTA treatment. Further prospective studies are needed to optimize therapeutic strategies for patients with AR alterations.
Collapse
Affiliation(s)
- Zeynep B Zengin
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | - Joseph J Park
- Division of Hematology and Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Alicia Ali
- Division of Hematology and Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Charles Nguyen
- Division of Hematology and Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Clara Hwang
- Division of Hematology/Oncology, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Pedro C Barata
- Tulane Cancer Center, Tulane University, New Orleans, LA, USA
| | - Mehmet A Bilen
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Laura Graham
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - George Mo
- University of Washington/Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Deepak Kilari
- Department of Medicine, Froedtert Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Matthew Labriola
- Division of Medical Oncology, Duke University Medical Center, Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC, USA
| | | | - Rohan Garje
- Holden Comprehensive Cancer Center, Iowa City, IA, USA
| | - Vadim S Koshkin
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Vaibhav G Patel
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Arvinas Inc, New Haven, CT, USA
| | | | - Andrew J Armstrong
- Division of Medical Oncology, Duke University Medical Center, Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC, USA
| | - Rana R McKay
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Ajjai Alva
- Division of Hematology and Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Tanya Dorff
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| |
Collapse
|
6
|
Dorff T, Zengin Z, Henderson N, Ali A, Nguyen C, Hwang C, Barata PC, Bilen M, Graham L, Mo G, Kilari D, Tripathi A, Labriola M, Rothstein S, Garje R, Koshkin V, Patel V, Schweizer M, Armstrong A, McKay R, Alva A. Clinical implications of AR alterations in advanced prostate cancer: A multi-institutional collaboration. RESEARCH SQUARE 2023:rs.3.rs-3201150. [PMID: 37609284 PMCID: PMC10441451 DOI: 10.21203/rs.3.rs-3201150/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Background AR gene alterations can develop in response to pressure of testosterone suppression and androgen receptor targeting agents (ARTA). Despite this, the relevance of these gene alterations in the context of ARTA treatment and clinical outcomes remains unclear. Methods Patients with castration-resistant prostate cancer (CRPC) who had undergone genomic testing and received ARTA treatment were identified in the Prostate Cancer Precision Medicine Multi-Institutional Collaborative Effort (PROMISE) database. Patients were stratified according to the timing of genomic testing relative to the first ARTA treatment (pre-/post-ARTA). Clinical outcomes such as time to progression, PSA response, and overall survival were compared based on alteration types. Results In total, 540 CRPC patients who received ARTA and had tissue-based (n=321) and/or blood-based (n=244) genomic sequencing were identified. Median age was 62 years (range 39-90) at the time of the diagnosis. Majority were White (72.2%) and had metastatic disease (92.6%) at the time of the first ARTA treatment. Pre-ARTA genomic testing was available in 24.8% of the patients, and AR mutations and amplifications were observed in 8.2% and 13.1% of the patients, respectively. Further, time to progression was longer in patients with AR amplifications (25.7 months) compared to those without an AR alteration (9.6 months; p=0.03). In the post-ARTA group (n=406), AR mutations and AR amplifications were observed in 18.5% and 35.7% of the patients, respectively. The most common mutation in post-ARTA group was L702H (9.9%). Conclusion To our knowledge, this is the largest real-world clinicogenomics database-driven study exploring the development of ARalterations and their association with ARTA treatment outcomes. Our study showed that AR amplifications are associated with longer time to progression on first ARTA treatment. Further prospective studies are needed to optimize therapeutic strategies for patients with AR alterations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pedro C Barata
- Division of Medical Oncology, Department of Medicine, University Hospitals Seidman Cancer Center and Case Comprehensive Cancer Center
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Pejčić T, Todorović Z, Đurašević S, Popović L. Mechanisms of Prostate Cancer Cells Survival and Their Therapeutic Targeting. Int J Mol Sci 2023; 24:ijms24032939. [PMID: 36769263 PMCID: PMC9917912 DOI: 10.3390/ijms24032939] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Prostate cancer (PCa) is today the second most common cancer in the world, with almost 400,000 deaths annually. Multiple factors are involved in the etiology of PCa, such as older age, genetic mutations, ethnicity, diet, or inflammation. Modern treatment of PCa involves radical surgical treatment or radiation therapy in the stages when the tumor is limited to the prostate. When metastases develop, the standard procedure is androgen deprivation therapy, which aims to reduce the level of circulating testosterone, which is achieved by surgical or medical castration. However, when the level of testosterone decreases to the castration level, the tumor cells adapt to the new conditions through different mechanisms, which enable their unhindered growth and survival, despite the therapy. New knowledge about the biology of the so-called of castration-resistant PCa and the way it adapts to therapy will enable the development of new drugs, whose goal is to prolong the survival of patients with this stage of the disease, which will be discussed in this review.
Collapse
Affiliation(s)
- Tomislav Pejčić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Clinic of Urology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
- Correspondence: ; Tel.: +381-641281844
| | - Zoran Todorović
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- University Medical Centre “Bežanijska kosa”, University of Belgrade, 11000 Belgrade, Serbia
| | - Siniša Đurašević
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Lazar Popović
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
- Medical Oncology Department, Oncology Institute of Vojvodina, 21000 Novi Sad, Serbia
| |
Collapse
|
8
|
Eickelschulte S, Riediger AL, Angeles AK, Janke F, Duensing S, Sültmann H, Görtz M. Biomarkers for the Detection and Risk Stratification of Aggressive Prostate Cancer. Cancers (Basel) 2022; 14:cancers14246094. [PMID: 36551580 PMCID: PMC9777028 DOI: 10.3390/cancers14246094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Current strategies for the clinical management of prostate cancer are inadequate for a precise risk stratification between indolent and aggressive tumors. Recently developed tissue-based molecular biomarkers have refined the risk assessment of the disease. The characterization of tissue biopsy components and subsequent identification of relevant tissue-based molecular alterations have the potential to improve the clinical decision making and patient outcomes. However, tissue biopsies are invasive and spatially restricted due to tumor heterogeneity. Therefore, there is an urgent need for complementary diagnostic and prognostic options. Liquid biopsy approaches are minimally invasive with potential utility for the early detection, risk stratification, and monitoring of tumors. In this review, we focus on tissue and liquid biopsy biomarkers for early diagnosis and risk stratification of prostate cancer, including modifications on the genomic, epigenomic, transcriptomic, and proteomic levels. High-risk molecular alterations combined with orthogonal clinical parameters can improve the identification of aggressive tumors and increase patient survival.
Collapse
Affiliation(s)
- Samaneh Eickelschulte
- Junior Clinical Cooperation Unit, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Anja Lisa Riediger
- Junior Clinical Cooperation Unit, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Arlou Kristina Angeles
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Florian Janke
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Stefan Duensing
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Holger Sültmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Magdalena Görtz
- Junior Clinical Cooperation Unit, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-42-2603
| |
Collapse
|
9
|
Martin-Way D, Puche-Sanz I, Cozar JM, Zafra-Gomez A, Gomez-Regalado MDC, Morales-Alvarez CM, Hernandez AF, Martinez-Gonzalez LJ, Alvarez-Cubero MJ. Genetic variants of antioxidant enzymes and environmental exposures as molecular biomarkers associated with the risk and aggressiveness of bladder cancer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156965. [PMID: 35764155 DOI: 10.1016/j.scitotenv.2022.156965] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Bladder cancer (BC) is one of the top 10 most common tumours worldwide; however, no molecular markers are currently available for tumour management and follow-up. BC could benefit from molecular biomarkers in environmental disease, which provide mechanistic understanding of individual susceptibility to exposure-related cancers and allow characterizing genetic alterations in the molecular pathway for malignancy. This case-control study performed a molecular analysis in 99 BC and 125 controls. Buccal swabs were collected to assess SNPs in eleven genes coding for xenobiotic detoxification enzymes, cellular antioxidant defences, and hormone synthesis and signalling (NAT2 (rs1801280), GPX1 (rs1050450 and rs17650792), TXNRD1 (rs7310505), PRDX3 (rs3740562), PON1 (rs662), SOD1 (rs10432782), SOD2 (rs4880), CAT (rs1001179), CYP17A1 (rs743572) and ESR1 (rs746432)). A structured questionnaire was administered to study participants to assess environmental and dietary chemical exposures. Several miRNAs associated with BC and detoxification/antioxidant pathways were analysed in a subsample of the study population, including miR-93-5p, miR-221-3p, miR-126, miR-27a-3p, miR-193b, and miR-193a-5p. Levels of selected environmental pollutants (polycyclic aromatic hydrocarbons and endocrine disrupting chemicals) were determined in urine from a subsample of BC cases and controls. We found that CYP17A1, CAT, SOD1, ESR1, PON1, and GPX1 (rs17650792) were associated with BC risk. Furthermore, exposure to smoke and/or dust, and alcohol intake were identified as risk factors for BC. Increased urinary levels of benzo[a]pyrene and bisphenol A were observed in BC patients relative to controls, along with an increased expression of miR-193b, miR-27a and miR-93-5p in BC. Nevertheless, further studies with a larger sample size are warranted to confirm these exploratory results. This study also shows that the combination of genetic markers (PON1 and CYP17A1) and miRNA (miR-221-3p and miR-93-5p) open a new scenario in the use of non-invasive biomarkers in the stratification of BC to guide personalized medicine, which is extremely urged in the current clinical setting.
Collapse
Affiliation(s)
- D Martin-Way
- Urology Department, University Hospital Fuenlabrada, Fuenlabrada, Madrid, Spain
| | - I Puche-Sanz
- Urology Department, University Hospital Virgen de las Nieves, Av. de las Fuerzas Armadas 2, 18014 Granada, Spain
| | - J M Cozar
- Urology Department, University Hospital Virgen de las Nieves, Av. de las Fuerzas Armadas 2, 18014 Granada, Spain
| | - A Zafra-Gomez
- University of Granada, Department of Analytical Chemistry, Campus of Fuentenueva, 18071 Granada, Spain
| | - M D C Gomez-Regalado
- University of Granada, Department of Analytical Chemistry, Campus of Fuentenueva, 18071 Granada, Spain
| | - C M Morales-Alvarez
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain; University of Granada, Department of Biochemistry and Molecular Biology III, Faculty of Medicine, PTS, Granada, Spain
| | - A F Hernandez
- University of Granada, Legal Medicine and Toxicology Department, Faculty of Medicine, PTS, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, 18014 Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain
| | - L J Martinez-Gonzalez
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain.
| | - M J Alvarez-Cubero
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain; University of Granada, Department of Biochemistry and Molecular Biology III, Faculty of Medicine, PTS, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, 18014 Granada, Spain
| |
Collapse
|
10
|
Cursano MC, Conteduca V, Scarpi E, Gurioli G, Casadei C, Gargiulo S, Altavilla A, Lolli C, Vincenzi B, Tonini G, Santini D, De Giorgi U. Grade group system and plasma androgen receptor status in the first line treatment for metastatic castration resistant prostate cancer. Sci Rep 2022; 12:7319. [PMID: 35513478 PMCID: PMC9072417 DOI: 10.1038/s41598-022-10751-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 01/06/2021] [Indexed: 11/21/2022] Open
Abstract
In localized prostate cancer (PCa), Grade Group (GG) and Gleason Score (GS) have a well-established prognostic role. In metastatic castration resistant prostate cancer (mCRPC), the prognostic role of GS and GG is less defined. In first-line treatment of mCRPC, androgen receptor (AR)-directed drugs (abiraterone acetate, enzalutamide) and docetaxel represent the referring options. There is no evidence that the GS/GG systems can add information to guide the choice between AR-directed drugs and docetaxel in the first-line setting of mCRPC. Nowadays there are no validated biomarkers, which define patients who may benefit or not from hormonal treatments or chemotherapy. Androgen receptor (AR) copy number variations (CNV) are predictive factors of poor response to abiraterone and enzalutamide. There are no available data about the association between AR CNV and GG. In this retrospective study, we analysed the association of the highest GG score with AR CNV and their impact on the clinical outcome of AR-directed drugs and docetaxel as first-line therapy for mCRPC patients. Patients benefit from docetaxel, abiraterone or enzalutamide regardless the GG. However, the presence of GG5 and AR CNV gain identifies a subgroup of patients with poor prognosis, which could benefit from front-line docetaxel instead of AR-directed drugs.
Collapse
Affiliation(s)
- M C Cursano
- Department of Medical Oncology, Campus Bio-Medico University, via Alvaro del Portillo, 200, 00128, Rome, Italy.
| | - V Conteduca
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli, 40, 47014, Meldola, Italy.
| | - E Scarpi
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - G Gurioli
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - C Casadei
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli, 40, 47014, Meldola, Italy
| | - S Gargiulo
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - A Altavilla
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli, 40, 47014, Meldola, Italy
| | - C Lolli
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli, 40, 47014, Meldola, Italy
| | - B Vincenzi
- Department of Medical Oncology, Campus Bio-Medico University, via Alvaro del Portillo, 200, 00128, Rome, Italy
| | - G Tonini
- Department of Medical Oncology, Campus Bio-Medico University, via Alvaro del Portillo, 200, 00128, Rome, Italy
| | - D Santini
- Department of Medical Oncology, Campus Bio-Medico University, via Alvaro del Portillo, 200, 00128, Rome, Italy
| | - U De Giorgi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli, 40, 47014, Meldola, Italy
| |
Collapse
|
11
|
Chen G, Jia G, Chao F, Xie F, Zhang Y, Hou C, Huang Y, Tang H, Yu J, Zhang J, Jia S, Xu G. Urine- and Blood-Based Molecular Profiling of Human Prostate Cancer. Front Oncol 2022; 12:759791. [PMID: 35402245 PMCID: PMC8984469 DOI: 10.3389/fonc.2022.759791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/02/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Prostate cancer (PCa) is one of the most common malignant tumors, accounting for 20% of total tumors ranked first in males. PCa is usually asymptomatic at the early stage and the specificity of the current biomarkers for the detection of PCa is low. The present study evaluates circulating tumor DNA (ctDNA) in blood or urine, which can be used as biomarkers of PCa and the combination of these markers may increase the sensitivity and specificity of the detection of PCa. METHODS Tissue, blood, and urine samples were collected from patients with PCa. All prostate tissue specimens underwent pathological examination. A hybrid-capture-based next-generation sequencing assay was used for plasma and urinary ctDNA profiling. Sequencing data were analyzed by an in-house pipeline for mutation calling. Mutational profiles of PCa and BPH were compared in both plasma and urine samples. Associations of detected mutations and clinical characteristics were statistically analyzed. RESULTS A significant association of mutation allele frequencies (MAFs) in the blood samples with patients with metastatic PCa rather than patients with primary PCa, and MAFs are changed after treatment in patients with PCa. Further, the number of mutations in urine is not associated with clinical characteristics of PCa patients, but the frequencies of mutation alleles in the urine are associated with patient age. Comparison of cfDNA aberration profiles between urine and blood reveals more alterations in urine than in blood, including TP53, AR, ATM, MYC, and SPOP mutations. CONCLUSION This work provides the potential clinical application of urine, in addition to blood, as a powerful and convenient non-invasive approach in personalized medicine for patients with PCa.
Collapse
Affiliation(s)
- Gang Chen
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Guojin Jia
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Fan Chao
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Feng Xie
- Huidu Shanghai Medical Sciences Ltd, Shanghai, China
| | - Yue Zhang
- Huidu Shanghai Medical Sciences Ltd, Shanghai, China
| | - Chuansheng Hou
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yong Huang
- Huidu Shanghai Medical Sciences Ltd, Shanghai, China
| | - Haoran Tang
- Huidu Shanghai Medical Sciences Ltd, Shanghai, China
| | - Jianjun Yu
- Huidu Shanghai Medical Sciences Ltd, Shanghai, China
| | - Jihong Zhang
- Research Center for Clinical Research, Jinshan Hospital, Fudan University, Shanghai, China
| | - Shidong Jia
- Huidu Shanghai Medical Sciences Ltd, Shanghai, China
| | - Guoxiong Xu
- Research Center for Clinical Research, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Tan W, Zheng T, Wang A, Roacho J, Thao S, Du P, Jia S, Yu J, King BL, Kohli M. Dynamic changes in gene alterations during chemotherapy in metastatic castrate resistant prostate cancer. Sci Rep 2022; 12:4672. [PMID: 35304525 PMCID: PMC8933498 DOI: 10.1038/s41598-022-08520-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/22/2022] [Indexed: 11/09/2022] Open
Abstract
Docetaxel chemotherapy is a standard treatment option for metastatic castrate resistant prostate cancer (mCRPC) patients. To date, the genomic perturbations underlying the emergence of resistance in mCRPC patients during chemotherapy treatment have not been fully characterized. Previous studies have established that AR, TP53, RB1 and PTEN gene alterations are frequent at this stage of progression and that TP53, RB1 and PTEN, but not AR alterations are associated with poor outcome. However, the clonal dynamics of these key driver cancer genes during chemotherapy in mCRPC patients have not been described. Toward this goal, we performed a retrospective analysis of serially profiled cell-free DNA (cfDNA) alterations in blood samples collected from mCRPC patients before and after starting chemotherapy who were followed for response and clinical outcomes. While AR alterations and measures of mutational load were significantly reduced in patients with stable or decreased PSA levels after 3 cycles of chemotherapy, reductions in RB1, TP53 and PTEN alterations were relatively modest, which may represent the persistence of a clonal signature associated with the emergence of treatment-induced lineage plasticity (TILP) underlying resistance. The ability to monitor these driver gene clonal dynamics during chemotherapy may have utility in the clinical setting.
Collapse
Affiliation(s)
- Winston Tan
- Department of Medicine, Mayo Clinic, Jacksonville, USA
| | - Tiantian Zheng
- Predicine, Inc., 3555 Arden Road, Hayward, CA, 94545, USA
| | - Amy Wang
- Predicine, Inc., 3555 Arden Road, Hayward, CA, 94545, USA
| | - Joanna Roacho
- Predicine, Inc., 3555 Arden Road, Hayward, CA, 94545, USA
| | - Seng Thao
- Predicine, Inc., 3555 Arden Road, Hayward, CA, 94545, USA
| | - Pan Du
- Predicine, Inc., 3555 Arden Road, Hayward, CA, 94545, USA
| | - Shidong Jia
- Predicine, Inc., 3555 Arden Road, Hayward, CA, 94545, USA
| | - Jianjun Yu
- Predicine, Inc., 3555 Arden Road, Hayward, CA, 94545, USA
| | - Bonnie L King
- Predicine, Inc., 3555 Arden Road, Hayward, CA, 94545, USA.
| | - Manish Kohli
- Division of Oncology, Department of Medicine, Jack R. and Hazel M. Robertson Presidential Endowed Chair, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Dr. Rm. 4263, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
13
|
Tan LL, Loganathan N, Agarwalla S, Yang C, Yuan W, Zeng J, Wu R, Wang W, Duraiswamy S. Current commercial dPCR platforms: technology and market review. Crit Rev Biotechnol 2022; 43:433-464. [PMID: 35291902 DOI: 10.1080/07388551.2022.2037503] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Digital polymerase chain reaction (dPCR) technology has provided a new technique for molecular diagnostics, with superior advantages, such as higher sensitivity, precision, and specificity over quantitative real-time PCRs (qPCR). Eight companies have offered commercial dPCR instruments: Fluidigm Corporation, Bio-Rad, RainDance Technologies, Life Technologies, Qiagen, JN MedSys Clarity, Optolane, and Stilla Technologies Naica. This paper discusses the working principle of each offered dPCR device and compares the associated: technical aspects, usability, costs, and current applications of each dPCR device. Lastly, up-and-coming dPCR technologies are also presented, as anticipation of how the dPCR device landscape may likely morph in the next few years.
Collapse
Affiliation(s)
- Li Ling Tan
- Singapore Institute of Manufacturing Technology, Singapore, Singapore.,Materials Science and Engineering School, Nanyang Technological University, Singapore, Singapore
| | - Nitin Loganathan
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Sushama Agarwalla
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India
| | - Chun Yang
- Mechanical and Aerospace Engineering School, Nanyang Technological University, Singapore, Singapore
| | - Weiyong Yuan
- Faculty of Materials & Energy, Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing, China.,Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing, China
| | - Jasmine Zeng
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Ruige Wu
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Wei Wang
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Suhanya Duraiswamy
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India
| |
Collapse
|
14
|
Treatment-driven tumour heterogeneity and drug resistance: lessons from solid tumours. Cancer Treat Rev 2022; 104:102340. [DOI: 10.1016/j.ctrv.2022.102340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
|
15
|
Mizuno K, Sumiyoshi T, Okegawa T, Terada N, Ishitoya S, Miyazaki Y, Kojima T, Katayama H, Fujimoto N, Hatakeyama S, Shiota M, Yoshimura K, Matsui Y, Narita S, Matsumoto H, Kurahashi R, Kanno H, Ito K, Kimura H, Kamiyama Y, Sunada T, Goto T, Kobayashi T, Yamada H, Tsuchiya N, Kamba T, Matsuyama H, Habuchi T, Eto M, Ohyama C, Ito A, Nishiyama H, Okuno H, Kamoto T, Fujimoto A, Ogawa O, Akamatsu S. Clinical Impact of Detecting Low-Frequency Variants in Cell-Free DNA on Treatment of Castration-Resistant Prostate Cancer. Clin Cancer Res 2021; 27:6164-6173. [PMID: 34526361 DOI: 10.1158/1078-0432.ccr-21-2328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/09/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Although cell-free DNA (cfDNA) testing is expected to drive cancer precision medicine, little is known about the significance of detecting low-frequency variants in circulating cell-free tumor DNA (ctDNA) in castration-resistant prostate cancer (CRPC). We aimed to identify genomic profile including low-frequency variants in ctDNA from patients with CRPC and investigate the clinical utility of detecting variants with variant allele frequency (VAF) below 1%. EXPERIMENTAL DESIGN This prospective, multicenter cohort study enrolled patients with CRPC eligible for treatment with abiraterone or enzalutamide. We performed targeted sequencing of pretreatment cfDNA and paired leukocyte DNA with molecular barcodes, and ctDNA variants with a VAF ≥0.1% were detected using an in-house pipeline. We investigated progression-free survival (PFS) and overall survival (OS) after different ctDNA fraction cutoffs were applied. RESULTS One hundred patients were analyzed (median follow-up 10.7 months). We detected deleterious ATM, BRCA2, and TP53 variants even in samples with ctDNA fraction below 2%. When the ctDNA fraction cutoff value of 0.4% was applied, significant differences in PFS and OS were found between patients with and without defects in ATM or BRCA2 [HR, 2.52; 95% confidence interval (CI), 1.24-5.11; P = 0.0091] and TP53 (HR, 3.74; 95% CI, 1.60-8.71; P = 0.0014). However, these differences were no longer observed when the ctDNA fraction cutoff value of 2% was applied, and approximately 50% of the samples were classified as ctDNA unquantifiable. CONCLUSIONS Detecting low-frequency ctDNA variants with a VAF <1% is important to identify clinically informative genomic alterations in CRPC.
Collapse
Affiliation(s)
- Kei Mizuno
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takayuki Sumiyoshi
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takatsugu Okegawa
- Department of Urology, Kyorin University School of Medicine, Mitaka, Japan
| | - Naoki Terada
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Satoshi Ishitoya
- Department of Urology, Japanese Red Cross Otsu Hospital, Otsu, Japan
| | - Yu Miyazaki
- Department of Urology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Takahiro Kojima
- Department of Urology, Faculty of Medicine and Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Hiromichi Katayama
- Department of Urology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naohiro Fujimoto
- Department of Urology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shingo Hatakeyama
- Department of Advanced Blood Purification Therapy, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Yoshimura
- Department of Urology, Shizuoka General Hospital, Sizuoka, Japan
| | - Yoshiyuki Matsui
- Department of Urology, National Cancer Center Hospital, Tokyo, Japan
| | - Shintaro Narita
- Department of Urology, Akita University Graduate School of Medicine, Akita, Japan
| | - Hiroaki Matsumoto
- Department of Urology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Ryoma Kurahashi
- Department of Urology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hidenori Kanno
- Department of Urology, Yamagata University School of Medicine, Yamagata, Japan
| | - Katsuhiro Ito
- Department of Urology, Ijinkai Takeda General Hospital, Kyoto, Japan
| | - Hiroko Kimura
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Kamiyama
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takuro Sunada
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takayuki Goto
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Kobayashi
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hitoshi Yamada
- Department of Urology, Ijinkai Takeda General Hospital, Kyoto, Japan
| | - Norihiko Tsuchiya
- Department of Urology, Yamagata University School of Medicine, Yamagata, Japan
| | - Tomomi Kamba
- Department of Urology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideyasu Matsuyama
- Department of Urology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Tomonori Habuchi
- Department of Urology, Akita University Graduate School of Medicine, Akita, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chikara Ohyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akihiro Ito
- Department of Urology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Nishiyama
- Department of Urology, Faculty of Medicine and Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Okuno
- Department of Urology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Toshiyuki Kamoto
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Akihiro Fujimoto
- Department of Human Genetics, The University of Tokyo, Graduate School of Medicine, Tokyo, Japan
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shusuke Akamatsu
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
16
|
Circulating androgen receptor gene amplification and resistance to 177Lu-PSMA-617 in metastatic castration-resistant prostate cancer: results of a Phase 2 trial. Br J Cancer 2021; 125:1226-1232. [PMID: 34333554 DOI: 10.1038/s41416-021-01508-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/21/2021] [Accepted: 07/21/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND In a Phase 2 clinical trial, we aimed to determine the lutetium-177 [177Lu]-PSMA-617 activity and the clinical utility of levels of plasma androgen receptor (AR) gene in patients with heavily pretreated metastatic castration-resistant prostate cancer (mCRPC). METHODS We determined AR copy number in pretreatment plasma samples. We used logistic regression to estimate the odds ratio (OR) and 95% confidence intervals (95% CIs) in order to evaluate the independent relevance of AR status and to evaluate patients with early progressive disease (PD) defined as treatment interruption occurring within 4 months after the start of 177Lu-PSMA-617. RESULTS Twelve of the 15 (80%) with AR gene gain and 5 of the 25 (20%) patients with no gain of AR had early PD (p = 0.0002). The OR for patients without PSA response having AR gain was 3.69 (95% CI 0.83-16.36, p = 0.085). The OR for patients with early PD having AR gain was 16.00, (95% CI 3.23-79.27, p = 0.0007). Overall, median PFS and OS were 7.5 and 12.4 months, respectively. AR-gained had a significant shorter OS compared to AR-normal patients (7.4 vs 19.1 months, p = 0.020). No treatment interruptions due to adverse effects were reported. DISCUSSION Plasma AR status helped to indicate mCRPC with early resistance to 177Lu-PSMA-617. TRIAL REGISTRATION NCT03454750.
Collapse
|
17
|
Prostate Cancer Biomarkers: From diagnosis to prognosis and precision-guided therapeutics. Pharmacol Ther 2021; 228:107932. [PMID: 34174272 DOI: 10.1016/j.pharmthera.2021.107932] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022]
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed malignancies and among the leading causes of cancer-related death worldwide. It is a highly heterogeneous disease, ranging from remarkably slow progression or inertia to highly aggressive and fatal disease. As therapeutic decision-making, clinical trial design and outcome highly depend on the appropriate stratification of patients to risk groups, it is imperative to differentiate between benign versus more aggressive states. The incorporation of clinically valuable prognostic and predictive biomarkers is also potentially amenable in this process, in the timely prevention of metastatic disease and in the decision for therapy selection. This review summarizes the progress that has so far been made in the identification of the genomic events that can be used for the classification, prediction and prognostication of PCa, and as major targets for clinical intervention. We include an extensive list of emerging biomarkers for which there is enough preclinical evidence to suggest that they may constitute crucial targets for achieving significant advances in the management of the disease. Finally, we highlight the main challenges that are associated with the identification of clinically significant PCa biomarkers and recommend possible ways to overcome such limitations.
Collapse
|
18
|
Conteduca V, Wetterskog D, Castro E, Scarpi E, Romero-Laorden N, Gurioli G, Jayaram A, Lolli C, Schepisi G, Wingate A, Casadei C, Lozano R, Brighi N, Aragón IM, Marin-Aguilera M, Gonzalez-Billalabeitia E, Mellado B, Olmos D, Attard G, De Giorgi U. Plasma androgen receptor and response to adapted and standard docetaxel regimen in castration-resistant prostate cancer: A multicenter biomarker study. Eur J Cancer 2021; 152:49-59. [PMID: 34077818 DOI: 10.1016/j.ejca.2021.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 03/27/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Plasma AR status has been identified as a potential biomarker of response in metastatic castration-resistant prostate cancer (mCRPC) patients receiving docetaxel or AR-targeted therapies. However, the relevance of plasma AR in the overall management of CRPC patients receiving different docetaxel doses is unknown. PATIENTS AND METHODS This was a multi-institution study of associations between baseline plasma AR copy number status, assessed by droplet digital PCR, and outcome in 325 mCRPC patients receiving docetaxel at standard or adapted regimen at the discretion of the treating physician. Upon analysis, patients were assigned randomly to either a training (n = 217) or validation (n = 108) cohort. RESULTS In the training cohort, AR-gained patients treated with adapted docetaxel regimen had a significantly worse median progression-free survival (PFS) (3.8 vs 6.3 months, hazard ratio [HR] 2.58, 95% confidence interval [CI] 1.34-4.95, p < 0.0001), median overall survival (10.8 vs 20.6 months, HR 1.98, 95% CI 1.09-3.62, p = 0.0064) and PSA response (PSA > -50%: odds ratio 4.88 95%CI 1.55-14.32, p = 0.013) as compared to plasma AR normal patients. These findings were all confirmed in the validation cohort. However, in patients treated with standard docetaxel regimen, these differences were not seen. The interaction between AR CN status and dose reduction of docetaxel was considered as independent factor for PFS in both the training and validation cohort (HR 2.84, 95% CI 1.41-5.73, p = 0.003, and HR 4.79, 95% CI 1.79-12.82, p = 0.002). CONCLUSION Despite the retrospective non-randomised design of this study, our hypothesis-generating findings could suggest plasma AR as a potential biomarker for optimal docetaxel timing and dose in mCRPC patients. Prospective trials are warranted.
Collapse
Affiliation(s)
- Vincenza Conteduca
- IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | | | - Elena Castro
- Prostate Cancer Research Unit, Spanish National Cancer Research Centre
| | - Emanuela Scarpi
- IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | | | - Giorgia Gurioli
- IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | | | - Cristian Lolli
- IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giuseppe Schepisi
- IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Anna Wingate
- University College London Cancer Institute, London, UK
| | - Chiara Casadei
- IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Rebeca Lozano
- Centro Nacional Investigaciones Oncologica, Madrid, Spain
| | - Nicole Brighi
- IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Isabel M Aragón
- Genitourinary Translational Research Unit, Institute of Biomedical Research, Malaga, Spain
| | | | - Enrique Gonzalez-Billalabeitia
- Department of Hematology & Medical Oncology, Hospital Universitario Morales Meseguer, IMIB-Universidad de Murcia, Murcia, Spain
| | - Begoña Mellado
- Medical Oncology Department, IDIBAPS, Hospital Clínico y Provincial, Barcelona, Spain
| | - David Olmos
- Prostate Cancer Research Unit, Spanish National Cancer Research Centre
| | | | - Ugo De Giorgi
- IRCCS Istituto Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
19
|
Liu M, Shi H, Yan J, Zhang Y, Ma Y, Le K, Li Z, Xing N, Li G. Gene polymorphism-related differences in the outcomes of abiraterone for prostate cancer: a systematic overview. Am J Cancer Res 2021; 11:1873-1894. [PMID: 34094659 PMCID: PMC8167691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023] Open
Abstract
Numerous prostate cancer (PC) associated genes have been reported in previous genome-wide association studies. Elucidation of prostate cancer pharmacogenomics have enhanced studies into the impact of germline genetic changes on treatment, in addition to evaluating related genomic alterations and biomarkers in prostate tumor tissues. Currently, Abiraterone (Abi) is used as one of the therapeutic options for PC. In this article, germline variants that have been associated with responses to Abi in patients with advanced PC are summarized. These include biomarker genes such as CYP17A1, AR-V7, HSD3B1, SLCO2B1, SULT1E1, and SRD5A2 that are involved in homologous recombination, as well as in gene expression mutations in important signaling pathways, such as WNT and Abi metabolic pathways.
Collapse
Affiliation(s)
- Min Liu
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Hongzhe Shi
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Jiaqing Yan
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Yuan Zhang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Yinglin Ma
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Kaidi Le
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Zhongdong Li
- Department of Pharmacy, Electric Power Teaching Hospital, Capital Medical UniversityBeijing 100073, China
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| | - Guohui Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021, China
| |
Collapse
|
20
|
Tamura T, Yoshioka Y, Sakamoto S, Ichikawa T, Ochiya T. Extracellular vesicles as a promising biomarker resource in liquid biopsy for cancer. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2021; 2:148-174. [PMID: 39703905 PMCID: PMC11656527 DOI: 10.20517/evcna.2021.06] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2024]
Abstract
Liquid biopsy is a minimally invasive biopsy method that uses molecules in body fluids as biomarkers, and it has attracted attention as a new cancer therapy tool. Liquid biopsy has considerable clinical application potential, such as in early diagnosis, pathological condition monitoring, and tailored treatment development based on cancer biology and the predicted treatment response of individual patients. Extracellular vesicles (EVs) are lipid membranous vesicles released from almost all cell types, and they represent a novel liquid biopsy resource. EVs carry complex molecular cargoes, such as proteins, RNAs [e.g., mRNA and noncoding RNAs (microRNA, transfer RNA, circular RNA and long noncoding RNA)], and DNA fragments; these cargoes are delivered to recipient cells and serve as a cell-to-cell communication system. The molecular contents of EVs largely reflect the cell of origin and thus show cell-type specificity. In particular, cancer-derived EVs contain cancer-specific molecules expressed in parental cancer cells. Therefore, analysis of cancer-derived EVs might indicate the presence and nature of cancer. High-speed analytical technologies, such as mass spectrometry and high-throughput sequencing, have generated large data sets for EV cargoes that can be used to identify many candidate EV-associated biomarkers. Here, we will discuss the challenges and prospects of EV-based liquid biopsy compared to other biological resources (e.g., circulating tumor cells and cell-free DNA) and summarize the novel studies that have identified the remarkable potential of EVs as a cancer biomarker.
Collapse
Affiliation(s)
- Takaaki Tamura
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo
160-0023, Japan
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba
260-8670, Japan
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo
160-0023, Japan
| | - Shinichi Sakamoto
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba
260-8670, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba
260-8670, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo
160-0023, Japan
| |
Collapse
|
21
|
Mechanisms and markers of resistance to androgen signaling inhibitors in patients with metastatic castration-resistant prostate cancer. Urol Oncol 2021; 39:728.e13-728.e24. [PMID: 33637400 DOI: 10.1016/j.urolonc.2021.01.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/21/2020] [Accepted: 01/29/2021] [Indexed: 12/09/2022]
Abstract
Next-generation androgen signaling inhibitors such as abiraterone and enzalutamide are widely used for the treatment of metastatic castration-resistant prostate cancer. Unfortunately, baseline and acquired resistance to these treatments is commonly observed. In the last few years, significant effort has been devoted to uncover the molecular mechanisms and predictive markers of resistance. These analyses identified various DNA (single nucleotide variations, amplifications) and RNA variants (e.g., the splice variant AR-V7) of androgen receptor in association with resistance to abiraterone and enzalutamide therapies. Additionally, androgen receptor independent resistance mechanisms were also described. Some of these alterations can be detected in tumor tissues and/or in liquid biopsies of prostate cancer patients and therefore may serve as predictive biomarkers. According to the diversity of potential resistance mechanisms, it appears that a combination of markers representing various resistance mechanisms may provide better performance as single markers. In the present review, we summarize the most important androgen receptor dependent and independent resistance mechanisms and pay attention to methodological details. Recent data has highlighted that some of the resistance mechanisms to next-generation antiandrogen agents are associated with a better response to other therapies, we give an overview on currently ongoing clinical studies evaluating this promising aspect.
Collapse
|
22
|
Conteduca V, Wetterskog D, Gonzalez-Billalabeitia E, Brighi N, De Giorgi U, Attard G. Circulating Androgen Receptor for Prognosis and Treatment Selection in Prostate Cancer. Eur Urol Oncol 2021; 4:740-744. [PMID: 33436326 DOI: 10.1016/j.euo.2020.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 11/15/2022]
Abstract
Analysis of androgen receptor (AR) status, particularly AR copy number, in plasma DNA is a minimally invasive method with the potential to identify treatment resistance in patients with castration-resistant prostate cancer (CRPC) starting enzalutamide or abiraterone. Patients with elevated plasma AR do not have worse outcomes than patients with normal plasma AR when treated with taxanes. Consequently, circulating AR may improve clinical decision-making between AR-directed therapies versus taxanes and probably also between adapted versus standard taxane regimens. The evidence indicates that circulating AR could have a role in overall CRPC management. Promising clinical implications of plasma AR testing are measurement in earlier stages of prostate cancer, disease monitoring, and within the context of a multiplex biomarker strategy to improve treatment selection for CRPC patients. PATIENT SUMMARY: Measurement of the copy number of androgen receptor genes in plasma is a promising tool for guiding personalised treatment in patients with castration-resistant prostate cancer. However, prospective trials to validate these findings are needed.
Collapse
Affiliation(s)
- Vincenza Conteduca
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori "Dino Amadori" (IRST) IRCCS, via Maroncelli 40, 47014 Meldola, Italy.
| | | | | | - Nicole Brighi
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori "Dino Amadori" (IRST) IRCCS, via Maroncelli 40, 47014 Meldola, Italy
| | - Ugo De Giorgi
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori "Dino Amadori" (IRST) IRCCS, via Maroncelli 40, 47014 Meldola, Italy
| | | |
Collapse
|
23
|
Aurilio G, Cimadamore A, Mazzucchelli R, Lopez-Beltran A, Verri E, Scarpelli M, Massari F, Cheng L, Santoni M, Montironi R. Androgen Receptor Signaling Pathway in Prostate Cancer: From Genetics to Clinical Applications. Cells 2020; 9:E2653. [PMID: 33321757 PMCID: PMC7763510 DOI: 10.3390/cells9122653] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 01/10/2023] Open
Abstract
Around 80-90% of prostate cancer (PCa) cases are dependent on androgens at initial diagnosis; hence, androgen ablation therapy directed toward a reduction in serum androgens and the inhibition of androgen receptor (AR) is generally the first therapy adopted. However, the patient's response to androgen ablation therapy is variable, and 20-30% of PCa cases become castration resistant (CRPCa). Several mechanisms can guide treatment resistance to anti-AR molecules. In this regard, AR-dependent and -independent resistance mechanisms can be distinguished within the AR pathway. In this article, we investigate the multitude of AR signaling aspects, encompassing the biological structure of AR, current AR-targeted therapies, mechanisms driving resistance to AR, and AR crosstalk with other pathways, in an attempt to provide a comprehensive review for the PCa research community. We also summarize the new anti-AR drugs approved in non-metastatic castration-resistant PCa, in the castration-sensitive setting, and combination therapies with other drugs.
Collapse
Affiliation(s)
- Gaetano Aurilio
- Medical Oncology Division of Urogenital and Head and Neck Tumours, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (G.A.); (E.V.)
| | - Alessia Cimadamore
- Section of Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, 60126 Ancona, Italy; (A.C.); (R.M.); (M.S.)
| | - Roberta Mazzucchelli
- Section of Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, 60126 Ancona, Italy; (A.C.); (R.M.); (M.S.)
| | | | - Elena Verri
- Medical Oncology Division of Urogenital and Head and Neck Tumours, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (G.A.); (E.V.)
| | - Marina Scarpelli
- Section of Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, 60126 Ancona, Italy; (A.C.); (R.M.); (M.S.)
| | - Francesco Massari
- Division of Oncology, S. Orsola-Malpighi Hospital, 40138 Bologna, Italy;
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Matteo Santoni
- Oncology Unit, Macerata Hospital, 62100 Macerata, Italy;
| | - Rodolfo Montironi
- Section of Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, 60126 Ancona, Italy; (A.C.); (R.M.); (M.S.)
| |
Collapse
|
24
|
Tolmeijer SH, Boerrigter E, Schalken JA, Geerlings MJ, van Oort IM, van Erp NP, Gerritsen WR, Ligtenberg MJ, Mehra N. A Systematic Review and Meta-Analysis on the Predictive Value of Cell-Free DNA–Based Androgen Receptor Copy Number Gain in Patients With Castration-Resistant Prostate Cancer. JCO Precis Oncol 2020; 4:714-729. [DOI: 10.1200/po.20.00084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE It has been suggested that androgen receptor copy number gain ( AR gain) detected in cell-free DNA (cfDNA) can predict treatment response to androgen receptor signaling inhibitors (ARSIs) in patients with castration-resistant prostate cancer (CRPC). But it is unclear whether cfDNA-based AR gain is a true resistance mechanism to ARSIs or mainly a reflection of the tumor burden. In this systematic review, we aim to summarize current literature and comment on the potential of cfDNA-based AR gain as a predictive biomarker to guide therapy choices. METHODS A literature search was conducted in PubMed/Medline, Cochrane, Embase, and Web of Science databases. Sixteen articles published before November 2019 were selected for the meta-analysis, representing more than 1,000 patients. By using a random effects model, the progression-free survival (PFS) and overall survival (OS) were compared between patients with and without cfDNA-based AR gain who had been treated with ARSIs or with taxane chemotherapy. RESULTS Upon treatment with ARSIs, the PFS (hazard ratio [HR], 2.33; 95% CI, 2.00 to 2.72; P < .0001) and the OS (HR, 3.83; 95% CI, 3.11 to 4.70; P < .0001) were worse for patients with cfDNA-based AR gain, independent of the line and type of ARSIs. The OS and PFS in patients treated with first-line docetaxel or second-line or third-line cabazitaxel seemed to be unaffected by AR gain, despite a higher disease burden in patients with AR gain. AR gain was associated with reduced response with later lines of docetaxel. CONCLUSION In patients with CRPC, cfDNA-based AR gain is associated with a worse response to ARSIs. The effect on patients who are receiving taxane chemotherapy seems to be dependent on the type and line, although data are limited. Future prospective studies are essential to assess the true potential of cfDNA-based AR gain as a minimally invasive biomarker to guide therapy choice.
Collapse
Affiliation(s)
- Sofie H. Tolmeijer
- Department of Medical Oncology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Emmy Boerrigter
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jack A. Schalken
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Maartje J. Geerlings
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Inge M. van Oort
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nielka P. van Erp
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Winald R. Gerritsen
- Department of Medical Oncology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjolijn J.L. Ligtenberg
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Niven Mehra
- Department of Medical Oncology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
25
|
Report From the International Society of Urological Pathology (ISUP) Consultation Conference on Molecular Pathology of Urogenital Cancers. I. Molecular Biomarkers in Prostate Cancer. Am J Surg Pathol 2020; 44:e15-e29. [PMID: 32044806 DOI: 10.1097/pas.0000000000001450] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The combined clinical and molecular heterogeneity of prostate cancer necessitates the use of prognostic, predictive, and diagnostic biomarkers to assist the clinician with treatment selection. The pathologist plays a critical role in guiding molecular biomarker testing in prostate cancer and requires a thorough knowledge of the current testing options. In the setting of clinically localized prostate cancer, prognostic biomarkers such as Ki-67 labeling, PTEN loss or mRNA-based genomic signatures can be useful to help determine whether definitive therapy is required. In the setting of advanced disease, predictive biomarkers, such as the presence of DNA repair deficiency mediated by BRCA2 loss or mismatch repair gene defects, may suggest the utility of poly-ADP ribosylase inhibition or immune checkpoint blockade. Finally, androgen receptor-related biomarkers or diagnostic biomarkers indicating the presence of small cell neuroendocrine prostate cancer may help guide the use of androgen receptor signaling inhibitors and chemotherapy. In this review, we examine the current evidence for several prognostic, predictive and diagnostic tissue-based molecular biomarkers in prostate cancer management. For each assay, we summarize a recent survey of the International Society of Urology Pathology (ISUP) members on current testing practices and include recommendations for testing that emerged from the ISUP Working Group on Molecular Pathology of Prostate Cancer and the 2019 Consultation Conference on Molecular Pathology of Urogenital Cancers.
Collapse
|
26
|
Crucitta S, Del Re M, Paolieri F, Bloise F, Sbrana A, Sammarco E, Mercinelli C, Cucchiara F, Fontanelli L, Galli L, Danesi R. CYP17A1 polymorphism c.-362T>C predicts clinical outcome in metastatic castration-resistance prostate cancer patients treated with abiraterone. Cancer Chemother Pharmacol 2020; 86:527-533. [PMID: 32945940 DOI: 10.1007/s00280-020-04133-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/22/2020] [Indexed: 01/27/2023]
Abstract
BACKGROUND Abiraterone became a standard hormonal therapy for patients with metastatic castration-resistance prostate cancer (mCRPC). However, patients may experience primary resistance to treatment. To date, few predictive biomarkers of efficacy have been identified. Our aim was to investigate the association between the single nucleotide polymorphism (SNP) c.-362T>C in the CYP17A1 gene, and clinical outcome in mCRPC patients treated with abiraterone. PATIENTS AND METHODS mCRPC patients candidate to receive abiraterone were enrolled in the present retrospective pharmacogenetic study. Based on a literature selection, CYP17A1 rs2486758 (c.-362T > C) was selected and analysed by real-time PCR on genomic DNA extracted from whole blood. Univariate analysis was performed to test the association between the SNP and treatment-related clinical outcomes. RESULTS Sixty mCRPC patients were enrolled in the present study. Patients carrying the mutant CYP17A1 c.-362CT/CC genotypes showed a shorter median progression-free survival (PFS) and prostate-specific antigen-PFS (PSA-PFS) compared to patients carrying the TT genotype (10.7 vs 14.2 months and 8 vs 16 months, respectively; p = 0.04). No association between the selected SNP and the overall survival was found. CONCLUSIONS These findings suggest an association between CYP17A1 c.-362T>C polymorphism and poorer clinical outcome with abiraterone for mCRPC patients. However, further validations on larger cohort of patients are needed to confirm its role as a predictive biomarker for abiraterone resistance.
Collapse
Affiliation(s)
- Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, 55, Via Roma, 56126, Pisa, Italy
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, 55, Via Roma, 56126, Pisa, Italy.
| | - Federico Paolieri
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesco Bloise
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Andrea Sbrana
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Enrico Sammarco
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Chiara Mercinelli
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Federico Cucchiara
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, 55, Via Roma, 56126, Pisa, Italy
| | - Lorenzo Fontanelli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, 55, Via Roma, 56126, Pisa, Italy
| | - Luca Galli
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, 55, Via Roma, 56126, Pisa, Italy
| |
Collapse
|
27
|
López-Campos F, Linares-Espinós E, Maldonado Pijoan X, Sancho Pardo G, Morgan TM, Martínez-Ballesteros C, Martínez-Salamanca J, Couñago F. Genetic testing for the clinician in prostate cancer. Expert Rev Mol Diagn 2020; 20:933-946. [PMID: 32885704 DOI: 10.1080/14737159.2020.1816170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Prostate cancer (PCa) is one of the most common cancers worldwide and a leading cause of cancer-related mortality. Although the diagnosis and treatment of prostate cancer has improved substantially in recent years, new molecular biomarkers are needed to further prolong survival and improve the quality of life in these patients. AREAS COVERED This review analyzes the current evidence for prognostic and predictive molecular biomarkers that can be applied across different clinical scenarios, ranging from localized disease to metastatic castration-resistant PCa, with a particular emphasis on the biomarkers likely to become available in routine clinical practice in the near future. EXPERT OPINION There is a growing need for molecular testing to identify the most indolent types of prostate cancer to help optimize treatment strategies and spare treatment in these patients when possible. Current trends in the treatment of prostate cancer underscore the unmet clinical need for biomarkers to improve decision-making in a challenging clinical setting.
Collapse
Affiliation(s)
| | - Estefanía Linares-Espinós
- Urology Department, Hospital Universitario La Paz , Madrid, Spain
- Urology Department, Lyx Institute of Urology , Madrid, Spain
- Urology Department, Francisco De Vitoria University , Madrid, Spain
| | | | - Gemma Sancho Pardo
- Radiation Oncology Department, Hospital De La Santa Creu I Sant Pau , Barcelona, Spain
| | - Todd Mathew Morgan
- Urology Department. Michigan Center for Translational Pathology. Comprehensive Cancer Center, Cancer Center Floor B1 Reception C , Ann Arbor, MI, USA
| | - Claudio Martínez-Ballesteros
- Urology Department, Lyx Institute of Urology , Madrid, Spain
- Urology Department, Hospital Universitario Puerta De Hierro Majadahonda , Majadahonda, Spain
| | - Juan Martínez-Salamanca
- Urology Department, Lyx Institute of Urology , Madrid, Spain
- Urology Department, Francisco De Vitoria University , Madrid, Spain
- Urology Department, Hospital Universitario Puerta De Hierro Majadahonda , Majadahonda, Spain
| | - Felipe Couñago
- Radiation Oncology Department, Hospital Universitario Quirón Salud Madrid , Madrid, Spain
- Hospital de La Luz. Madrid
- Universidad Europea de Madrid
| |
Collapse
|
28
|
Ponti G, Maccaferri M, Percesepe A, Tomasi A, Ozben T. Liquid biopsy with cell free DNA: new horizons for prostate cancer. Crit Rev Clin Lab Sci 2020; 58:60-76. [PMID: 32805148 DOI: 10.1080/10408363.2020.1803789] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although prostate cancer (PCa) is one of the most common tumors in European males, the only minimally invasive diagnostic tool in PCa setup is the determination of PSA in serum. Cell-free DNA (cfDNA) has been demonstrated to be helpful for PCa diagnosis but has not yet been integrated into the clinical setting. This review aims to provide a systematic update of cfDNA and its fragmentation patterns in PCa reported in literature published over the last twenty years. Due to the high variability of the scientific methods adopted and a lack of standardized median cfDNA levels, results fluctuate across different studies. These differences may be due to the cfDNA source, the quantification method, or the fragmentation pattern. Blood plasma is the most frequently analyzed biological fluid, but seminal plasma has been reported to contain higher cfDNA concentration due to its vicinity to the tumor origin. CfDNA has been shown to be composed of single-stranded (ssDNA) and double-stranded DNA (dsDNA), so the total cfDNA concentration should be preferred as it corresponds best to the tumor mass. Fluorometry and capillary electrophoresis (CE) may be quick and cost-effective tools for cfDNA assessment in a clinical setting. The greatest future challenge is the elaboration of common guidelines and standardized procedures for diagnostic laboratories performing cfDNA analysis. A multiparametric approach combining the analysis of total cfDNA (both ssDNA and dsDNA), cfDNA fragment length, and specific genetic mutations (ctDNA assessment) is required for optimal future applications of liquid biopsy.
Collapse
Affiliation(s)
- Giovanni Ponti
- Division of Clinical Pathology, Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Monia Maccaferri
- Dermatology Unit, Azienda Ospedaliero-Universitaria of Modena, Modena, Italy
| | - Antonio Percesepe
- Medical Genetics Unit, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Aldo Tomasi
- Division of Clinical Pathology, Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Tomris Ozben
- Faculty of Medicine, Department of Clinical Biochemistry, Akdeniz University, Antalya, Turkey
| |
Collapse
|
29
|
Foroni C, Zarovni N, Bianciardi L, Bernardi S, Triggiani L, Zocco D, Venturella M, Chiesi A, Valcamonico F, Berruti A. When Less Is More: Specific Capture and Analysis of Tumor Exosomes in Plasma Increases the Sensitivity of Liquid Biopsy for Comprehensive Detection of Multiple Androgen Receptor Phenotypes in Advanced Prostate Cancer Patients. Biomedicines 2020; 8:biomedicines8050131. [PMID: 32455948 PMCID: PMC7277361 DOI: 10.3390/biomedicines8050131] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 01/28/2023] Open
Abstract
We evaluated the advantages and the reliability of novel protocols for the enrichment of tumor extracellular vesicles (EVs), enabling a blood-based test for the noninvasive parallel profiling of multiple androgen receptor (AR) gene alterations. Three clinically relevant AR variants related to response/resistance to standard-of-care treatments (AR-V7 transcript, AR T878A point mutation and AR gene amplification) were evaluated by digital PCR in 15 samples from patients affected by Castration-Resistant Prostate Cancer (CRPC). Plasma was processed to obtain circulating RNA and DNA using protocols based on tumor EVs enrichment through immuno-affinity and peptide-affinity compared to generic extraction kits. Our results showed that immuno-affinity enrichment prior to RNA extraction clearly outperforms the generic isolation method in the detection of AR-V7, also allowing for a distinction between responder (R) and non-responder (NR) patients. The T878A mutation was detected, overall, in nine out of 15 samples and no approach alone was able to reveal mutations in all harboring samples, showing that the employed methods complement each other. AR amplification was detected in the majority of CRPC samples analysed using either cell-free DNA (cfDNA) or exosome isolation kits (80%). We demonstrated that selective isolation of a subset of circulating exosomes enriched for tumor origin, rather than analysis of total plasma exosomes, or total plasma nucleic acids, increases sensitivity and specificity for the detection of specific alterations.
Collapse
Affiliation(s)
- Chiara Foroni
- CREA Laboratory (Centro di Ricerca Emato-Oncologica AIL), ASST Spedali Civili of Brescia, 25123 Brescia, Italy;
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, ASST Spedali Civili of Brescia, 25123 Brescia, Italy; (F.V.); (A.B.)
- Correspondence: (C.F.); (N.Z.)
| | - Natasa Zarovni
- Exosomics S.p.A Siena, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy; (L.B.); (D.Z.); (M.V.); (A.C.)
- Correspondence: (C.F.); (N.Z.)
| | - Laura Bianciardi
- Exosomics S.p.A Siena, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy; (L.B.); (D.Z.); (M.V.); (A.C.)
| | - Simona Bernardi
- CREA Laboratory (Centro di Ricerca Emato-Oncologica AIL), ASST Spedali Civili of Brescia, 25123 Brescia, Italy;
- Unit of Blood Diseases and Stem Cell Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Luca Triggiani
- Radiation Oncology Department, University of Brescia, ASST Spedali Civili, 25123 Brescia, Italy;
| | - Davide Zocco
- Exosomics S.p.A Siena, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy; (L.B.); (D.Z.); (M.V.); (A.C.)
| | - Marta Venturella
- Exosomics S.p.A Siena, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy; (L.B.); (D.Z.); (M.V.); (A.C.)
| | - Antonio Chiesi
- Exosomics S.p.A Siena, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy; (L.B.); (D.Z.); (M.V.); (A.C.)
| | - Francesca Valcamonico
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, ASST Spedali Civili of Brescia, 25123 Brescia, Italy; (F.V.); (A.B.)
| | - Alfredo Berruti
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, ASST Spedali Civili of Brescia, 25123 Brescia, Italy; (F.V.); (A.B.)
| |
Collapse
|
30
|
Merging new-age biomarkers and nanodiagnostics for precision prostate cancer management. Nat Rev Urol 2020; 16:302-317. [PMID: 30962568 DOI: 10.1038/s41585-019-0178-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The accurate identification and stratified treatment of clinically significant early-stage prostate cancer have been ongoing concerns since the outcomes of large international prostate cancer screening trials were reported. The controversy surrounding clinical and cost benefits of prostate cancer screening has highlighted the lack of strategies for discriminating high-risk disease (that requires early treatment) from low-risk disease (that could be managed using watchful waiting or active surveillance). Advances in molecular subtyping and multiomics nanotechnology-based prostate cancer risk delineation can enable refinement of prostate cancer molecular taxonomy into clinically meaningful and treatable subtypes. Furthermore, the presence of intertumoural and intratumoural heterogeneity in prostate cancer warrants the development of novel nanodiagnostic technologies to identify clinically significant prostate cancer in a rapid, cost-effective and accurate manner. Circulating and urinary next-generation prostate cancer biomarkers for disease molecular subtyping and the newest complementary nanodiagnostic platforms for enhanced biomarker detection are promising tools for precision prostate cancer management. However, challenges in merging both aspects and clinical translation still need to be overcome.
Collapse
|
31
|
The Genomic and Molecular Pathology of Prostate Cancer: Clinical Implications for Diagnosis, Prognosis, and Therapy. Adv Anat Pathol 2020; 27:11-19. [PMID: 31503032 DOI: 10.1097/pap.0000000000000245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Prostate cancer (PCa) is the most common noncutaneous malignancy affecting American men and the second most common cause of cancer death. The traditional risk classification schemes for PCa are limited due to the vast clinical and molecular heterogeneity of the disease. Fortunately, recent advancements in sequencing technologies have provided us with valuable insight into the genomics of PCa. To date, a wide array of recurrent genomic alterations in PCa have been identified. Incorporating these distinct molecular subtypes of PCa into prediction models provides opportunities for improved risk stratification and ultimately better patient outcomes. In this review, we summarize the key molecular subtypes of PCa and focus on those genomic alterations that have clinical implications for diagnosis, prognosis, and therapeutic response.
Collapse
|
32
|
Conteduca V, Scarpi E, Matteucci F, Caroli P, Ravaglia G, Fantini L, Gurioli G, Schepisi G, Wetterskog D, Menna C, Burgio SL, Lolli C, Paganelli G, Attard G, De Giorgi U. Multimodal Approach to Outcome Prediction in Metastatic Castration-Resistant Prostate Cancer by Integrating Functional Imaging and Plasma DNA Analysis. JCO Precis Oncol 2019; 3:1-13. [DOI: 10.1200/po.18.00302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
PURPOSE Biomarkers for treatment personalization in metastatic castration-resistant prostate cancer (mCRPC) could help improve patient outcomes. Multiple tests on blood have reported associations with poorer outcome, including serum lactate dehydrogenase (LDH), chromogranin A (CGA), neutrophil:lymphocyte ratio (NLR), and, recently, copy number (CN) of androgen receptor (AR) in plasma DNA. Biologic data suggest an association between choline uptake and AR signaling. We aimed to integrate 18F-fluorocholine (FCH) uptake on positron emission tomography/computed tomography (PET/CT) scanning with plasma AR CN and other routinely obtained circulating biomarkers to evaluate their association with outcome. MATERIALS AND METHODS We determined plasma AR CN by digital droplet polymerase chain reaction from 105 mCRPC samples collected before abiraterone (n = 65) or enzalutamide (n = 40) therapy in the before (n = 26) and after (n = 79) chemotherapy settings. Pretreatment serum LDH, CGA, and NLR were also measured. FCH-PET/CT scan was performed at baseline, and maximum standardized uptake value (SUVmax), total lesion activity (TLA), and metabolic tumor volume (MTV) were calculated. Main end points were the correlation of FCH-PET/CT parameters with circulating biomarkers and their impact on outcome. RESULTS Plasma AR CN gain was observed in 27 patients (25.7%), and it correlated significantly with higher median SUVmax, TLA, and MTV values ( P < .001). Kaplan-Meier curves showed significantly worse progression-free survival and overall survival in patients with plasma AR gain and higher SUVmax, TLA, and MTV values ( P < .001 in each prognostic group). Conversely, no association was reported for prostate-specific antigen response. On multivariable analysis of overall survival, we showed as independent factors AR gain (hazard ratio [HR], 1.92; 95% CI, 1.07 to 3.47; P = .029), presence of visceral metastasis (HR, 3.04; 95% CI, 1.66 to 5.58; P = < .001), LDH (HR, 2.95; 95% CI, 1.72 to 5.05; P < .001), NLR (HR, 3.51; 95% CI, 2.14 to 5.74; P < .001), serum CGA (HR, 3.36; 95% CI, 1.99 to 5.67; P < .001), and MTV (HR, 2.09; 95% CI, 1.25 to 3.50; P = .005). CONCLUSION Our results indicate the potential usefulness of integrating functional imaging with plasma DNA analysis and other noninvasive biomarkers as a tool to improve treatment selection for CRPC. A larger prospective evaluation is warranted.
Collapse
Affiliation(s)
- Vincenza Conteduca
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Emanuela Scarpi
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Federica Matteucci
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Paola Caroli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giorgia Ravaglia
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Lorenzo Fantini
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giorgia Gurioli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giuseppe Schepisi
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | | | - Cecilia Menna
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Salvatore Luca Burgio
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Cristian Lolli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giovanni Paganelli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | | | - Ugo De Giorgi
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
33
|
VanderWeele DJ. AR Gain: Resistance Mechanism or Measure of Tumor Burden? JCO Precis Oncol 2019; 3:1-2. [DOI: 10.1200/po.19.00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
34
|
Conteduca V, Gurioli G, Brighi N, Lolli C, Schepisi G, Casadei C, Burgio SL, Gargiulo S, Ravaglia G, Rossi L, Altavilla A, Farolfi A, Menna C, Colangione SP, Pulvirenti M, Romeo A, De Giorgi U. Plasma Androgen Receptor in Prostate Cancer. Cancers (Basel) 2019; 11:E1719. [PMID: 31689899 PMCID: PMC6896184 DOI: 10.3390/cancers11111719] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/24/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
The therapeutic landscape of prostate cancer has expanded rapidly over the past 10 years, and there is now an even greater need to understand the biological mechanisms of resistance and to develop noninvasive biomarkers to guide treatment. The androgen receptor (AR) is known to be involved in the pathogenesis and progression of prostate cancer. Recently, highly sensitive next-generation sequencing and PCR-based methods for analyzing androgen receptor gene (AR) copy numbers (CN) and mutations in plasma were established in cell-free DNA (cfDNA) of patients with castration-resistant prostate cancer (CRPC) treated with different drugs. The study of cfDNA holds great promise for improving treatment in CRPC, especially in the advanced stage of the disease. Recent findings showed the significant association of plasma AR aberrations with clinical outcome in CRPC patients treated with AR-directed therapies, whereas no association was observed in patients treated with taxanes. This suggests the potential for using plasma AR as a biomarker for selecting treatment, i.e., hormone therapy or chemotherapy, and the possibility of modulating taxane dose. In recent years, plasma AR status has also been investigated in association with novel agents, such as 177Lu-PSMA radioligand therapy and PARP inhibitors. This review will focus on AR testing in plasma that may have clinical utility for treatment selection in advanced prostate cancer.
Collapse
Affiliation(s)
- Vincenza Conteduca
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Giorgia Gurioli
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Nicole Brighi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Cristian Lolli
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Giuseppe Schepisi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Chiara Casadei
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Salvatore Luca Burgio
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Stefania Gargiulo
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Giorgia Ravaglia
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Lorena Rossi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Amelia Altavilla
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Alberto Farolfi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Cecilia Menna
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Sarah Pia Colangione
- Radiotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Mario Pulvirenti
- Department of Urology, Morgagni Pierantoni Hospital, 47121 Forli, Italy.
| | - Antonino Romeo
- Radiotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Ugo De Giorgi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| |
Collapse
|
35
|
Tuaeva NO, Falzone L, Porozov YB, Nosyrev AE, Trukhan VM, Kovatsi L, Spandidos DA, Drakoulis N, Kalogeraki A, Mamoulakis C, Tzanakakis G, Libra M, Tsatsakis A. Translational Application of Circulating DNA in Oncology: Review of the Last Decades Achievements. Cells 2019; 8:E1251. [PMID: 31615102 PMCID: PMC6829588 DOI: 10.3390/cells8101251] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/30/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023] Open
Abstract
In recent years, the introduction of new molecular techniques in experimental and clinical settings has allowed researchers and clinicians to propose circulating-tumor DNA (ctDNA) analysis and liquid biopsy as novel promising strategies for the early diagnosis of cancer and for the definition of patients' prognosis. It was widely demonstrated that through the non-invasive analysis of ctDNA, it is possible to identify and characterize the mutational status of tumors while avoiding invasive diagnostic strategies. Although a number of studies on ctDNA in patients' samples significantly contributed to the improvement of oncology practice, some investigations generated conflicting data about the diagnostic and prognostic significance of ctDNA. Hence, to highlight the relevant achievements obtained so far in this field, a clearer description of the current methodologies used, as well as the obtained results, are strongly needed. On these bases, this review discusses the most relevant studies on ctDNA analysis in cancer, as well as the future directions and applications of liquid biopsy. In particular, special attention was paid to the early diagnosis of primary cancer, to the diagnosis of tumors with an unknown primary location, and finally to the prognosis of cancer patients. Furthermore, the current limitations of ctDNA-based approaches and possible strategies to overcome these limitations are presented.
Collapse
Affiliation(s)
- Natalia O Tuaeva
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
| | - Luca Falzone
- Department of Biomedical and Biotechnlogical Sciences, University of Catania, 95123 Catania, Italy.
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Naples, Italy.
| | - Yuri B Porozov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
- ITMO University, Saint Petersburg 197101, Russia.
| | - Alexander E Nosyrev
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
| | - Vladimir M Trukhan
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54248 Thessaloniki, Greece.
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Zografou, Greece.
| | - Alexandra Kalogeraki
- Department of Pathology-Cytopathology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, University of Crete, Medical School, Heraklion, 70013 Crete, Greece.
| | - George Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Massimo Libra
- Department of Biomedical and Biotechnlogical Sciences, University of Catania, 95123 Catania, Italy.
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy.
| | - Aristides Tsatsakis
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia.
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion, 71003 Crete, Greece.
| |
Collapse
|
36
|
Boerrigter E, Groen LN, Van Erp NP, Verhaegh GW, Schalken JA. Clinical utility of emerging biomarkers in prostate cancer liquid biopsies. Expert Rev Mol Diagn 2019; 20:219-230. [DOI: 10.1080/14737159.2019.1675515] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Emmy Boerrigter
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Levi N. Groen
- Department of Experimental Urology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Nielka P. Van Erp
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Gerald W. Verhaegh
- Department of Experimental Urology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Jack A. Schalken
- Department of Experimental Urology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
37
|
Cattrini C, Rubagotti A, Zinoli L, Cerbone L, Zanardi E, Capaia M, Barboro P, Boccardo F. Role of Circulating Tumor Cells (CTC), Androgen Receptor Full Length (AR-FL) and Androgen Receptor Splice Variant 7 (AR-V7) in a Prospective Cohort of Castration-Resistant Metastatic Prostate Cancer Patients. Cancers (Basel) 2019; 11:E1365. [PMID: 31540293 PMCID: PMC6770005 DOI: 10.3390/cancers11091365] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Circulating tumor cells (CTC), androgen receptor full-length (AR-FL), and androgen receptor splice variant 7 (AR-V7) are prognostic in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC). AR-V7 seems to predict resistance to androgen-receptor signaling inhibitors (ARSi). METHODS We assessed the association of CTC, AR-FL, and AR-V7 with prostate-specific antigen (PSA) response and overall survival (OS). We used a modified AdnaTest CTC-based AR-FL and AR-V7 mRNA assay. Chi-square test, Fisher Exact test, Kaplan-Meier method, log-rank test, Cox proportional hazards models were used as appropriate. RESULTS We enrolled 39 mCRPC pts, of those 24 started a first-line treatment for mCRPC (1L subgroup) and 15 had received at least two lines for mCRPC (>2L subgroup). CTC, AR-FL, and AR-V7 were enriched in >2L compared to 1L subgroup. Detection of these biomarkers was associated with a lower percentage of biochemical responses. Only 1/7 AR-V7+ pts had a PSA response and received cabazitaxel. Median OS was 4.7 months (95% CI 0.6-8.9) in AR-V7+ pts and not reached in AR-V7- pts. AR-V7 was the only variable with prognostic significance in the Cox model. CONCLUSION AR-V7, CTC, and AR-FL are associated with advanced mCRPC and AR-V7+ predicts for shorter OS.
Collapse
Affiliation(s)
- Carlo Cattrini
- Academic Unit of Medical Oncology, IRCCS San Martino Polyclinic Hospital, 16132 Genoa, Italy.
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy.
| | - Alessandra Rubagotti
- Academic Unit of Medical Oncology, IRCCS San Martino Polyclinic Hospital, 16132 Genoa, Italy.
- Department of Health Sciences (DISSAL), School of Medicine, University of Genoa, 16132 Genoa, Italy.
| | - Linda Zinoli
- Academic Unit of Medical Oncology, IRCCS San Martino Polyclinic Hospital, 16132 Genoa, Italy.
| | - Luigi Cerbone
- Academic Unit of Medical Oncology, IRCCS San Martino Polyclinic Hospital, 16132 Genoa, Italy.
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy.
| | - Elisa Zanardi
- Academic Unit of Medical Oncology, IRCCS San Martino Polyclinic Hospital, 16132 Genoa, Italy.
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy.
| | - Matteo Capaia
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy.
| | - Paola Barboro
- Academic Unit of Medical Oncology, IRCCS San Martino Polyclinic Hospital, 16132 Genoa, Italy.
| | - Francesco Boccardo
- Academic Unit of Medical Oncology, IRCCS San Martino Polyclinic Hospital, 16132 Genoa, Italy.
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy.
| |
Collapse
|
38
|
Lolli C, De Lisi D, Conteduca V, Gurioli G, Scarpi E, Schepisi G, Ravaglia G, Menna C, Farolfi A, Altavilla A, Burgio SL, Tonini G, Santini D, De Giorgi U. Testosterone levels and androgen receptor copy number variations in castration-resistant prostate cancer treated with abiraterone or enzalutamide. Prostate 2019; 79:1211-1220. [PMID: 31251826 DOI: 10.1002/pros.23804] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 01/02/2023]
Abstract
PURPOSE Our study aims to investigate the association between copy number of the androgen receptor (AR) and testosterone levels in metastatic castration-resistant prostate cancer (mCRPC) treated with second-generation antiandrogen therapies. MATERIALS AND METHODS We retrospectively collected data from mCRPC treated with abiraterone acetate and enzalutamide. Serum testosterone levels were collected at baseline, at 3 months since the start of therapy and at disease progression. A cohort of cases treated with docetaxel was also used to evaluate the impact of testosterone levels. RESULTS Patients treated with abiraterone with AR copy number aberrations and basal testosterone levels below 0.09 nmol/L had worse progression-free survival (PFS) compared to patients with no AR copy number abnormalities (8.5 vs 2.9 months, P = 0.005). No relevant differences were observed in the enzalutamide group with a PFS of 3.9 months (no AR gain) vs 2.7 months ( AR gain, P = 0.004) for patients with below 0.09 nmol/L testosterone levels. Similar results are obtained for univariate analysis for overall survival (OS). The negative prognostic role of AR copy number gain in OS for both treatment groups (25.5 vs 10.6 months, P = 0.0002 for abiraterone and 14.1 vs 8.3 months, P = 0.031 for enzalutamide) was confirmed, and it was recognized the negative prognostic impact of testosteronemia below 0.09 only for patients treated with enzalutamide (8.8 vs 42.8 months, P = 0.016). On multivariate analysis for patients treated with abiraterone, low testosterone levels below 0.09 and plasma AR gain were significantly associated with worse PFS and OS. These data are confirmed in the enzalutamide group for PFS. CONCLUSIONS Testosterone levels and the AR copy number alterations were considered as independent prognostic factors. The results of this study show that serum testosteronemia associated with changes in copy number of AR gene could represent a noninvasive biomarker useful to identify a subgroup of patients with worse prognosis that can benefit less from second-generation antiandrogen therapies in the mCRPC setting.
Collapse
Affiliation(s)
- Cristian Lolli
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Delia De Lisi
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Rome, Italy
| | - Vincenza Conteduca
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giorgia Gurioli
- Biosciences Laboratory Division, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Emanuela Scarpi
- Biostatistics and Clinical Trials Division, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giuseppe Schepisi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giorgia Ravaglia
- Biostatistics and Clinical Trials Division, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Cecilia Menna
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Alberto Farolfi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Amelia Altavilla
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Salvatore Luca Burgio
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giuseppe Tonini
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Rome, Italy
| | - Daniele Santini
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Rome, Italy
| | - Ugo De Giorgi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
39
|
Conteduca V, Castro E, Wetterskog D, Scarpi E, Jayaram A, Romero-Laorden N, Olmos D, Gurioli G, Lolli C, Sáez MI, Puente J, Schepisi G, Salvi S, Wingate A, Medina A, Querol-Niñerola R, Marin-Aguilera M, Arranz JA, Fornarini G, Basso U, Mellado B, Gonzalez-Billalabeitia E, Attard G, De Giorgi U. Plasma AR status and cabazitaxel in heavily treated metastatic castration-resistant prostate cancer. Eur J Cancer 2019; 116:158-168. [PMID: 31200322 DOI: 10.1016/j.ejca.2019.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/26/2019] [Accepted: 05/07/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Plasma androgen receptor (AR) copy number status has been identified as a potential biomarker of response in patients with metastatic castration-resistant prostate cancer (mCRPC) receiving docetaxel or the AR-targeted therapies abiraterone or enzalutamide. However, the relevance of plasma AR status in the context of cabazitaxel therapy is unknown. PATIENTS AND METHODS Between September 2011 and January 2018, pretherapy plasma samples were collected from 155 patients treated with second- or third-line cabazitaxel at standard or reduced dose in different biomarker protocols. Droplet digital polymerase chain reaction was used to identify plasma AR gain and normal samples. The primary objective was to evaluate associations of plasma AR status with treatment outcome. In an exploratory analysis, a comparison between plasma AR and treatment type was investigated by incorporating updated data from our prior study of 85 post-docetaxel patients receiving abiraterone or enzalutamide. RESULTS We observed a shorter median overall survival (OS) and progression-free survival (PFS) in AR-gained compared to AR-normal patients (OS 10.5 versus 14.1 months, hazard ratio (HR) = 1.44, 95% confidence interval [CI] 0.98-2.13, P = 0.064 and PFS 4.0 versus 5.0 months, HR = 1.47, 95% CI 1.05-2.07, P = 0.024). In patients with mCRPC receiving second-line therapies, a significant treatment interaction was observed between plasma AR and cabazitaxel versus AR-directed therapies for OS (P = 0.041) but not PFS (P = 0.244). In an exploratory analysis, AR-gained patients treated with initial reduced dose of cabazitaxel had a significantly shorter median OS (7.3 versus 11.5 months, HR = 1.95, 95% CI 1.13-3.38, P = 0.016) and PFS (2.7 versus 5.0 months, HR = 2.27, 95% CI 1.39-3.71, P = 0.001). CONCLUSION Plasma AR status has a potential clinical utility in patients being considered for cabazitaxel. Validation of these findings in prospective trials is warranted.
Collapse
Affiliation(s)
- Vincenza Conteduca
- Istituto Scientifico Romagnolo per Io Studio e La Cura dei Tumori (IRST) IRCCS, Meldola, Italy; University College London Cancer Institute, London, UK.
| | - Elena Castro
- Prostate Cancer Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain; Hospital Universitario Quirón, Madrid, Spain
| | | | - Emanuela Scarpi
- Istituto Scientifico Romagnolo per Io Studio e La Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | | | - Nuria Romero-Laorden
- Prostate Cancer Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain; Medical Oncology Department, Hospital Universitario La Princesa, Madrid, Spain
| | - David Olmos
- Prostate Cancer Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain; CNIO-IBIMA Genitourinary Cancer Unit, Hospitales Universitarios Virgen de Ia Victoria y Regional de Málaga, Instituto de Investigación Biomédica de Málaga, Spain
| | - Giorgia Gurioli
- Istituto Scientifico Romagnolo per Io Studio e La Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Cristian Lolli
- Istituto Scientifico Romagnolo per Io Studio e La Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Maria Isabel Sáez
- CNIO-IBIMA Genitourinary Cancer Unit, Hospitales Universitarios Virgen de Ia Victoria y Regional de Málaga, Instituto de Investigación Biomédica de Málaga, Spain
| | - Javier Puente
- Medical Oncology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), CIBERONC, Madrid, Spain
| | - Giuseppe Schepisi
- Istituto Scientifico Romagnolo per Io Studio e La Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Samanta Salvi
- Istituto Scientifico Romagnolo per Io Studio e La Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Anna Wingate
- University College London Cancer Institute, London, UK
| | - Ana Medina
- Medical Oncology Department, Centro Oncológico de Galicia, A Coruña, Spain
| | | | | | - Jose Angel Arranz
- Medical Oncology Department, Gregorio Marañón University Hospital, Madrid, Spain
| | | | - Umberto Basso
- Medical Oncology Unit 1, Istituto Oncologico Veneto IOV IRCCS, Padua, Italy
| | - Begoña Mellado
- Medical Oncology Department, IDIBAPS, Hospital Clínico y Provincial, Barcelona, Spain
| | - Enrique Gonzalez-Billalabeitia
- Department of Hematology & Medical Oncology, Hospital Universitario Morales Meseguer, IMIB-Universidad de Murcia, Murcia, Spain; Universidad Católica San Antonio de Murcia-UCAM, Murcia, Spain
| | | | - Ugo De Giorgi
- Istituto Scientifico Romagnolo per Io Studio e La Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
40
|
Campos-Fernández E, Barcelos LS, de Souza AG, Goulart LR, Alonso-Goulart V. Research landscape of liquid biopsies in prostate cancer. Am J Cancer Res 2019; 9:1309-1328. [PMID: 31392072 PMCID: PMC6682718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/08/2019] [Indexed: 06/10/2023] Open
Abstract
Studies show that liquid biopsies are efficient in the detection of circulating cancer products. However, scientific community has not yet implemented this technology in routine clinical practice. Liquid biopsies are less invasive than traditional surgical ones because they rely on the detection of specific biomarkers in readily accessible body fluid samples. The clinical management of prostate cancer depends on the controversial blood serum biomarker PSA (prostate specific antigen). PSA tests have a low accuracy. In addition, a positive PSA result for prostate cancer needs a confirmation through a tissue biopsy. Thus, liquid biopsies are considered tools to find a surrogate biomarker. This review aimed to show the landscape of liquid biopsies in prostate cancer research to understand its challenges and foresee the trends in this area. We performed an exhaustive Pubmed search of articles reporting the study of liquid biopsies in prostate cancer with circulating tumor cells, cell-free nucleic acids and extracellular vesicles as targets. After a thorough analysis, we retrieved sixty-two relevant articles. Among the identified articles, the most used target and body fluid were circulating tumor cells and blood, respectively. Enumeration of circulating tumor cells was the most reported parameter, but it was often combined with other biomarkers. The most used methods for biomarker detection were those based on transcriptome analysis. Despite the vast literature about liquid biopsy in prostate cancer, most studies seem to be stuck on improving the yield of technologies. Consequently, they seem to test a limited number of samples. Larger cohorts could provide robust evidence to translate liquid biopsies of prostate cancer to the clinics.
Collapse
Affiliation(s)
- Esther Campos-Fernández
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of UberlândiaUberlândia, MG, Brazil
| | - Letícia S Barcelos
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of UberlândiaUberlândia, MG, Brazil
| | - Aline Gomes de Souza
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of UberlândiaUberlândia, MG, Brazil
| | - Luiz R Goulart
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of UberlândiaUberlândia, MG, Brazil
- Department of Medical Microbiology and Immunology, University of California-DavisDavis, CA, USA
| | - Vivian Alonso-Goulart
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of UberlândiaUberlândia, MG, Brazil
| |
Collapse
|
41
|
Reis H, Szarvas T, Grünwald V. [Predictive biomarkers in oncologic uropathology]. DER PATHOLOGE 2019; 40:264-275. [PMID: 31073639 DOI: 10.1007/s00292-019-0606-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Tumors of the genitourinary system are common. In recent years, our understanding of their molecular background and therefore the number of potential predictive biomarkers has massively increased. OBJECTIVES The aim of the current work is to give an overview of recent (molecular) developments and predictive biomarkers in urologic oncology and to give a perspective of what might become relevant in the future of the field. MATERIAL AND METHODS We considered the recent literature and study data and combined it with our own expertise in tumors of the urinary system, kidneys, and prostate. RESULTS AND CONCLUSIONS The molecular subtypes of muscle-invasive urothelial bladder cancer (MIBC) hold a predictive and prognostic significance and correlate with clinicopathological features. Immune therapy with checkpoint inhibitors (CPI) has a major role in urothelial carcinoma (UC), but also in renal cell carcinoma and a subgroup of prostate cancers. The first-line use in UC is restricted to PD-L1-"positive" cases (≥IC2/3, CPS ≥ 10). Further predictive markers are currently under evaluation, while the predictive significance of tumor mutational burden (TMB) is under debate. In addition to a subgroup of renal cell carcinomas, a subgroup of prostate carcinomas with alterations in the DNA repair system might benefit from a customized therapy approach (PARP inhibitors, platin-containing chemotherapy). The multitude of potentially therapy-relevant molecular alterations and related predictive biomarkers calls for the implementation of sophisticated molecular analyses in daily routine. This will lead to an even more rapid dynamic in the field of genitourinary pathology.
Collapse
Affiliation(s)
- H Reis
- Institut für Pathologie, Westdeutsches Tumorzentrum Essen, Universitätsmedizin Essen, Universität Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Deutschland.
| | - T Szarvas
- Klinik für Urologie, Westdeutsches Tumorzentrum Essen, Universitätsmedizin Essen, Universität Duisburg-Essen, Essen, Deutschland.,Klinik für Urologie, Semmelweis-Universität, Budapest, Ungarn
| | - V Grünwald
- Interdisziplinäre Uroonkologie des Westdeutschen Tumorzentrums Essen, Klinik für Urologie, Innere Medizin (Tumorforschung), Universitätsmedizin Essen, Universität Duisburg-Essen, Essen, Deutschland
| |
Collapse
|
42
|
González-Billalabeitia E, Conteduca V, Wetterskog D, Jayaram A, Attard G. Circulating tumor DNA in advanced prostate cancer: transitioning from discovery to a clinically implemented test. Prostate Cancer Prostatic Dis 2019; 22:195-205. [PMID: 30413805 PMCID: PMC6398580 DOI: 10.1038/s41391-018-0098-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/21/2018] [Accepted: 09/08/2018] [Indexed: 12/13/2022]
Abstract
The genomic landscape of metastatic castration-resistant prostate cancer (mCRPC) differs from that of the primary tumor and is dynamic during tumor progression. The real-time and repeated characterization of this process via conventional solid tumor biopsies is challenging. Alternatively, circulating cell-free DNA (cfDNA) containing circulating tumor DNA (ctDNA) can be obtained from patient plasma using minimally disruptive blood draws and is amenable to sequential analysis. ctDNA has high overlap with the genomic sequences of biopsies from metastases and has the advantage of being representative of multiple metastases. The availability of techniques with high sensitivity and specificity, such as next-generation sequencing (NGS) and digital PCR, has greatly contributed to the development of the cfDNA field and enabled the detection of genomic alterations at low ctDNA fractions. In mCRPC, a number of clinically relevant genomic alterations have been tracked in ctDNA, including androgen receptor (AR) aberrations, which have been shown to be associated with an adverse outcome to novel antiandrogen therapies, and alterations in homologous recombination repair (HRR) genes, which have been associated with a response to PARP inhibitors. Several clinical applications have been proposed for cfDNA analysis, including its use as a prognostic tool, as a predictive biomarker, to monitor tumor response and to identify novel mechanisms of resistance. To date, the cfDNA analysis has provided interesting results, but there is an urgent need for these findings to be confirmed in prospective clinical trials.
Collapse
Affiliation(s)
- Enrique González-Billalabeitia
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, IMIB-Universidad de Murcia, Murcia, 30008, Spain.
- Universidad Católica San Antonio de Murcia (UCAM), Murcia, 30107, Spain.
| | - Vincenza Conteduca
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Meldola, 47014, Italy
- Research Department of Oncology, University College London Cancer Institute, London, UK
| | - Daniel Wetterskog
- Research Department of Oncology, University College London Cancer Institute, London, UK
| | - Anuradha Jayaram
- Research Department of Oncology, University College London Cancer Institute, London, UK
| | - Gerhardt Attard
- Research Department of Oncology, University College London Cancer Institute, London, UK.
| |
Collapse
|
43
|
Torquato S, Pallavajjala A, Goldstein A, Valda Toro P, Silberstein JL, Lee J, Nakazawa M, Waters I, Chu D, Shinn D, Groginski T, Hughes RM, Simons BW, Khan H, Feng Z, Carducci MA, Paller CJ, Denmeade SR, Kressel B, Eisenberger MA, Antonarakis ES, Trock BJ, Park BH, Hurley PJ. Genetic Alterations Detected in Cell-Free DNA Are Associated With Enzalutamide and Abiraterone Resistance in Castration-Resistant Prostate Cancer. JCO Precis Oncol 2019; 3:PO.18.00227. [PMID: 31131348 PMCID: PMC6532665 DOI: 10.1200/po.18.00227] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2019] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Androgen receptor (AR) gene alterations, including ligand-binding domain mutations and copy number (CN) gain, have yet to be fully established as predictive markers of resistance to enzalutamide and abiraterone in men with metastatic castration-resistant prostate cancer (mCRPC). The goal of this study was to validate AR gene alterations detected in cell-free DNA (cfDNA) as markers of enzalutamide and abiraterone resistance in patients with mCRPC. METHODS Patients with mCRPC (N = 62) were prospectively enrolled between 2014 and 2018. Blood was collected before therapies-enzalutamide (n = 25), abiraterone (n = 35), or enzalutamide and abiraterone (n = 2)-and at disease progression. We used deep next-generation sequencing to analyze cfDNA for sequence variants and CN status in AR and 45 additional cancer-associated genes. Primary end points were prostate-specific antigen response, progression-free survival (PFS), and overall survival (OS). RESULTS Elevated tumor-specific cfDNA (circulating tumor DNA) was associated with a worse prostate-specific antigen response (hazard ratio [HR], 3.17; 95% CI, 1.11 to 9.05; P = .031), PFS (HR, 1.76; 95% CI, 1.03 to 3.01; P = .039), and OS (HR, 2.92; 95% CI, 1.40 to 6.11; P = .004). AR ligand-binding domain missense mutations (HR, 2.51; 95% CI, 1.15 to 5.72; P = .020) were associated with a shorter PFS in multivariable models. AR CN gain was associated with a shorter PFS; however, significance was lost in multivariable modeling. Genetic alterations in tumor protein p53 (HR, 2.70; 95% CI, 1.27 to 5.72; P = .009) and phosphoinositide 3-kinase pathway defects (HR, 2.62; 95% CI, 1.12 to 6.10; P = .026) were associated with a worse OS in multivariable models. CONCLUSION These findings support the conclusion that high circulating tumor DNA burden is associated with worse outcomes to enzalutamide and abiraterone in men with mCRPC. Tumor protein p53 loss and phosphoinositide 3-kinase pathway defects were associated with worse OS in men with mCRPC. AR status associations with outcomes were not robust, and additional validation is needed.
Collapse
Affiliation(s)
| | | | | | | | | | - Justin Lee
- Johns Hopkins School of Medicine, Baltimore, MD
| | | | - Ian Waters
- Johns Hopkins School of Medicine, Baltimore, MD
| | - David Chu
- Johns Hopkins School of Medicine, Baltimore, MD
| | | | | | | | | | - Hamda Khan
- Johns Hopkins School of Medicine, Baltimore, MD
| | | | | | | | | | | | | | | | | | - Ben H. Park
- Johns Hopkins School of Medicine, Baltimore, MD
- Johns Hopkins University, Baltimore, MD
| | | |
Collapse
|
44
|
Clinical utility of androgen receptor gene aberrations in circulating cell-free DNA as a biomarker for treatment of castration-resistant prostate cancer. Sci Rep 2019; 9:4030. [PMID: 30858508 PMCID: PMC6411952 DOI: 10.1038/s41598-019-40719-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/22/2019] [Indexed: 11/08/2022] Open
Abstract
The therapeutic landscape of castration-resistant prostate cancer (CRPC) has rapidly expanded. There is a need to develop noninvasive biomarkers to guide treatment. We established a highly sensitive method for analyzing androgen receptor gene (AR) copy numbers (CN) and mutations in plasma circulating cell-free DNA (cfDNA) and evaluated the AR statuses of patients with CRPC. AR amplification was detectable in VCaP cell line (AR amplified) genomic DNA (gDNA) diluted to 1.0% by digital PCR (dPCR). AR mutation were detectable in LNCaP cell line (AR T878A mutated) gDNA diluted to 0.1% and 1.0% by dPCR and target sequencing, respectively. Next, we analyzed AR status in cfDNA from 102 patients. AR amplification and mutations were detected in 47 and 25 patients, respectively. As a biomarker, AR aberrations in pretreatment cfDNA were associated with poor response to abiraterone, but not enzalutamide. In serial cfDNA analysis from 41 patients, most AR aberrations at baseline diminished with effective treatments, whereas in some patients with disease progression, AR amplification or mutations emerged. The analysis of AR in cfDNA is feasible and informative procedure for treating patients with CRPC. cfDNA may become a useful biomarker for precision medicine in CRPC.
Collapse
|
45
|
Conteduca V, Jayaram A, Romero-Laorden N, Wetterskog D, Salvi S, Gurioli G, Scarpi E, Castro E, Marin-Aguilera M, Lolli C, Schepisi G, Maugeri A, Wingate A, Farolfi A, Casadio V, Medina A, Puente J, Vidal MJM, Morales-Barrera R, Villa-Guzmán JC, Hernando S, Rodriguez-Vida A, González-Del-Alba A, Mellado B, Gonzalez-Billalabeitia E, Olmos D, Attard G, De Giorgi U. Plasma Androgen Receptor and Docetaxel for Metastatic Castration-resistant Prostate Cancer. Eur Urol 2019; 75:368-373. [PMID: 30773204 PMCID: PMC6377278 DOI: 10.1016/j.eururo.2018.09.049] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/27/2018] [Indexed: 12/23/2022]
Abstract
Plasma androgen receptor (AR) gain identifies metastatic castration-resistant prostate cancer (mCRPC) patients with worse outcome on abiraterone/enzalutamide, but its relevance in the context of taxane chemotherapy is unknown. We aimed to evaluate whether docetaxel is active regardless of plasma AR and to perform an exploratory analysis to compare docetaxel with abiraterone/enzalutamide. This multi-institutional study was a pooled analysis of AR status, determined by droplet digital polymerase chain reaction, on pretreatment plasma samples. We evaluated associations between plasma AR and overall/progression-free survival (OS/PFS) and prostate-specific antigen (PSA) response rate in 163 docetaxel-treated patients. OS was significantly shorter in case of AR gain (hazard ratio [HR]=1.61, 95% confidence interval [CI]=1.08-2.39, p=0.018), but not PFS (HR=1.04, 95% CI 0.74-1.46, p=0.8) or PSA response (odds ratio=1.14, 95% CI=0.65-1.99, p=0.7). We investigated the interaction between plasma AR and treatment type after incorporating updated data from our prior study of 73 chemotherapy-naïve, abiraterone/enzalutamide-treated patients, with data from 115 first-line docetaxel patients. In an exploratory analysis of mCRPC patients receiving first-line therapies, a significant interaction was observed between plasma AR and docetaxel versus abiraterone/enzalutamide for OS (HR=0.16, 95% CI=0.06-0.46, p<0.001) and PFS (HR=0.31, 95% CI=0.12-0.80, p=0.02). Specifically, we reported a significant difference for OS favoring abiraterone/enzalutamide for AR-normal patients (HR=1.93, 95% CI=1.19-3.12, p=0.008) and a suggestion favoring docetaxel for AR-gained patients (HR=0.53, 95% CI=0.24-1.16, p=0.11). These data suggest that AR-normal patients should receive abiraterone/enzalutamide and AR-gained could benefit from docetaxel. This treatment selection merits prospective evaluation in a randomized trial. PATIENT SUMMARY: We investigated whether plasma androgen receptor (AR) predicted outcome in metastatic castration-resistant prostate cancer (mCRPC) patients treated with docetaxel, and we performed an exploratory analysis in patients treated with docetaxel or AR-directed drugs as first-line mCRPC therapy. We showed that plasma AR normal favored hormonal treatment, whilst plasma AR-gained patients may have had a longer response to docetaxel, suggesting that plasma AR status could be a useful treatment selection biomarker.
Collapse
Affiliation(s)
- Vincenza Conteduca
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy; Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| | - Anuradha Jayaram
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK; University College London Cancer Institute, London, UK
| | - Nuria Romero-Laorden
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain; Hospital Universitario La Princesa, Madrid, Spain
| | - Daniel Wetterskog
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK; University College London Cancer Institute, London, UK
| | - Samanta Salvi
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giorgia Gurioli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Emanuela Scarpi
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Elena Castro
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain; Hospital Universitario Quirón, Madrid, Spain
| | | | - Cristian Lolli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giuseppe Schepisi
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Antonio Maugeri
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Anna Wingate
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK; University College London Cancer Institute, London, UK
| | - Alberto Farolfi
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Valentina Casadio
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Ana Medina
- Centro Oncológico de Galicia, A Coruña, Spain
| | - Javier Puente
- Medical Oncology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), CIBERONC, Madrid, Spain
| | | | - Rafael Morales-Barrera
- Vall d'Hebron Institute of Oncology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | | - Begoña Mellado
- Department of Medical Oncology, IDIBAPS, Hospital Clínico y Provincial, Barcelona, Spain
| | - Enrique Gonzalez-Billalabeitia
- Department of Hematology & Medical Oncology, Hospital Universitario Morales Meseguer, IMIB-Universidad de Murcia, Murcia, Spain; Universidad Católica San Antonio de Murcia-UCAM, Murcia, Spain
| | - David Olmos
- Prostate Cancer Clinical Research Unit, Spanish National Cancer Research Centre, Madrid, Spain; CNIO-IBIMA Genitourinary Cancer Research Unit, Hospitales Universitario, virgen de la Victoria y regional de Málaga, Spain
| | - Gerhardt Attard
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK; University College London Cancer Institute, London, UK.
| | - Ugo De Giorgi
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
46
|
Studying Copy Number Variations in Cell-Free DNA: The Example of AR in Prostate Cancer. Methods Mol Biol 2018. [PMID: 30580425 DOI: 10.1007/978-1-4939-8973-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Serum and plasma cell-free DNA (cfDNA) has been shown as an informative noninvasive source of biomarkers for different diseases, including cancer. Starting from the hypothesis that the gain of androgen receptor (AR) gene is a frequent aberration in advanced prostate cancer patients, we analyzed it in cfDNA as a potential predictive biomarker of specific treatments. Here we report a general protocol that may be considered to analyze gene copy number variations in serum or plasma fluids.
Collapse
|
47
|
Jenkinson TS, Rodriguez D, Clemons RA, Michelotti LA, Zamudio KR, Toledo LF, Longcore JE, James TY. Globally invasive genotypes of the amphibian chytrid outcompete an enzootic lineage in coinfections. Proc Biol Sci 2018; 285:20181894. [PMID: 30963903 PMCID: PMC6304064 DOI: 10.1098/rspb.2018.1894] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/19/2018] [Indexed: 01/22/2023] Open
Abstract
Competition between genotypes is likely to be a key driver of pathogen evolution, particularly following a geographical invasion by distant strains. Theory predicts that competition between disease strains will result in the most virulent strain persisting. Despite its evolutionary implications, the role of strain competition in shaping populations remains untested for most pathogens. We experimentally investigated the in vivo competitive differences between two divergent lineages of the amphibian-killing chytrid fungus ( Batrachochytrium dendrobatidis, Bd). These Bd lineages are hypothesized to have diverged in allopatry but been recently brought back into secondary contact by human introduction. Prior studies indicate that a panzootically-distributed, global lineage of Bd was recently introduced into southern Brazil, and is competitively excluding enzootic lineages in the southern Atlantic Forest. To test for differences in competitive ability between invasive and enzootic Brazilian Bd isolates, we coinfected a model host frog system which we developed for this study ( Hymenochirus curtipes). We tracked isolate-specific zoospore production over the course of the coinfection experiment with chip-based digital PCR (dPCR). The globally invasive panzootic lineage had a competitive advantage in spore production especially during the first one to four weeks of infection, and on frogs that eventually succumbed to Bd infection. Our study provides new evidence that competitive pressure resulting from the human movement of pathogen strains can rapidly alter the genetics, community dynamics and spatial epidemiology of pathogens in the wild.
Collapse
Affiliation(s)
- Thomas S. Jenkinson
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - David Rodriguez
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| | - Rebecca A. Clemons
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lucas A. Michelotti
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kelly R. Zamudio
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - L. Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP 13083-862, Brazil
| | - Joyce E. Longcore
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Timothy Y. James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
48
|
Centenera MM, Selth LA, Ebrahimie E, Butler LM, Tilley WD. New Opportunities for Targeting the Androgen Receptor in Prostate Cancer. Cold Spring Harb Perspect Med 2018; 8:a030478. [PMID: 29530945 PMCID: PMC6280715 DOI: 10.1101/cshperspect.a030478] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent genomic analyses of metastatic prostate cancer have provided important insight into adaptive changes in androgen receptor (AR) signaling that underpin resistance to androgen deprivation therapies. Novel strategies are required to circumvent these AR-mediated resistance mechanisms and thereby improve prostate cancer survival. In this review, we present a summary of AR structure and function and discuss mechanisms of AR-mediated therapy resistance that represent important areas of focus for the development of new therapies.
Collapse
Affiliation(s)
- Margaret M Centenera
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide SA 5001, Australia
| | - Luke A Selth
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Esmaeil Ebrahimie
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide SA 5001, Australia
| | - Wayne D Tilley
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide SA 5005, Australia
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|
49
|
Lee KH, Hong S, Kang M, Jeong CW, Ku JH, Kim HH, Kwak C. Histone demethylase KDM7A controls androgen receptor activity and tumor growth in prostate cancer. Int J Cancer 2018; 143:2849-2861. [PMID: 30183076 DOI: 10.1002/ijc.31843] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/24/2018] [Accepted: 08/13/2018] [Indexed: 01/05/2023]
Abstract
Prostate cancer can be controlled by androgen-hormone treatment until the cancer becomes refractory. It is believed that hormone sensitivity is largely dependent on androgen receptor (AR) activity. Here, we found the histone demethylase KDM7A which demethylates histone H3K27 to be overexpressed in enzalutamide resistant castration-resistant prostate cancer cell line C4-2b, and investigated the molecular mechanism whereby androgen receptor activity is regulated by KDM7A. We engineered AR-positive LNCaP cells to stably express a short-hairpin RNA against KDM7A mRNA from a lentiviral vector. By measuring AR downstream gene expression after androgen stimulation, we found that a KDM7A-deficient cell line showed lower AR downstream gene expression compared to a control cell. KDM7A knock-down in LNCaP cell line caused decreased cell proliferation. Western blot analysis with modified-histone antibody revealed that the KDM7A-knock-down LNCaP cell line had increased H3K27 di-methylation. We confirmed KDM7A binding on AR target-gene promoters after hormone stimulation in chromatin-immunoprecipitation experiments. And increased H3K27 di-methylation was observed in KDM7A knock-down LNCaP stable cell. Treatment with KDM7A inhibitor, TC-E 5002, reduced proliferation and induced apoptosis of prostate cancer cells. Finally, we observed that the KDM7A protein was significantly upregulated in prostate cancer tissue, and that this difference correlated with the Gleason score. These data suggested that KDM7A is potentially a good therapeutic target for prostate cancer drugs and can be used as potentially a good prognostic indicator for prostate cancer and related treatment strategies.
Collapse
Affiliation(s)
- Kyoung-Hwa Lee
- Department of Urology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seokbong Hong
- Department of Urology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Minyong Kang
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Chang Wook Jeong
- Department of Urology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ja Hyeon Ku
- Department of Urology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyeon-Hoe Kim
- Department of Urology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Cheol Kwak
- Department of Urology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Urology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
50
|
Conteduca V, Scarpi E, Salvi S, Casadio V, Lolli C, Gurioli G, Schepisi G, Wetterskog D, Farolfi A, Menna C, De Lisi D, Burgio SL, Beltran H, Attard G, De Giorgi U. Plasma androgen receptor and serum chromogranin A in advanced prostate cancer. Sci Rep 2018; 8:15442. [PMID: 30337589 PMCID: PMC6194135 DOI: 10.1038/s41598-018-33774-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 10/04/2018] [Indexed: 12/19/2022] Open
Abstract
Recently, mixed forms between adenocarcinoma and neuroendocrine prostate cancer (NEPC) have emerged that are characterized by persistent androgen receptor (AR)-signalling and elevated chromogranin A (CgA) levels. The main aim of this study was to analyze castration-resistant prostate cancer (CRPC) patients treated with abiraterone or enzalutamide, assessing progression-free/overall survival (PFS/OS) in association with circulating AR and CgA. AR aberrations were analyzed by droplet digital PCR in pre-treatment plasma samples collected from two biomarker protocols [197 patients from a retrospective study (REC 2192/2013) and 59 from a prospective trial (REC 6798/2015)]. We subdivided patients into three groups according to CgA by receiver-operating characteristic (ROC) curves. In the primary cohort, plasma AR gain and mutations (p.L702H/p.T878A) were detected in 78 (39.6%) and 16 (8.1%) patients, respectively. We observed a significantly worse PFS/OS in patients with higher-CgA than in patients with normal-CgA, especially those with no AR-aberrations. Multivariable analysis showed AR gain, higher-CgA and LDH levels as independent predictors of PFS [hazard ratio (HR) = 2.16, 95% confidence interval (95% CI) 1.50-3.12, p < 0.0001, HR = 1.73, 95% CI 1.06-2.84, p = 0.026, and HR = 2.13, 95% CI 1.45-3.13, p = 0.0001, respectively) and OS (HR = 1.72, 95% CI 1.15-2.57, p = 0.008, HR = 3.63, 95% CI 2.13-6.20, p < 0.0001, and HR = 2.31, 95% CI 1.54-3.48, p < 0.0001, respectively). These data were confirmed in the secondary cohort. Pre-treatment CgA detection could be useful to identify these mixed tumors and would seem to have a prognostic role, especially in AR-normal patients. This association needs further evaluation in larger prospective cohorts.
Collapse
Affiliation(s)
- Vincenza Conteduca
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli 40, 47014, Meldola, Italy.
- The Institute of Cancer Research and the Royal Marsden, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK.
| | - Emanuela Scarpi
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli 40, 47014, Meldola, Italy
| | - Samanta Salvi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli 40, 47014, Meldola, Italy
| | - Valentina Casadio
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli 40, 47014, Meldola, Italy
| | - Cristian Lolli
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli 40, 47014, Meldola, Italy
| | - Giorgia Gurioli
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli 40, 47014, Meldola, Italy
| | - Giuseppe Schepisi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli 40, 47014, Meldola, Italy
| | - Daniel Wetterskog
- The Institute of Cancer Research and the Royal Marsden, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Alberto Farolfi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli 40, 47014, Meldola, Italy
| | - Cecilia Menna
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli 40, 47014, Meldola, Italy
| | - Delia De Lisi
- Medical Oncology Department, Campus Bio-Medico University, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Salvatore Luca Burgio
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli 40, 47014, Meldola, Italy
| | - Himisha Beltran
- Division of Medical Oncology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Gerhardt Attard
- The Institute of Cancer Research and the Royal Marsden, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
- Academic Urology Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | - Ugo De Giorgi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli 40, 47014, Meldola, Italy
| |
Collapse
|