1
|
Reyila A, Gao X, Yu J, Nie Y. Insight into the role of DNA methylation in prognosis and treatment response prediction of gastrointestinal cancers. Epigenomics 2025; 17:475-488. [PMID: 40084815 PMCID: PMC12026041 DOI: 10.1080/17501911.2025.2476380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/04/2025] [Indexed: 03/16/2025] Open
Abstract
Gastrointestinal (GI) cancers impose a significant disease burden, underscoring the critical importance of accurate prognosis prediction and treatment response evaluation. DNA methylation, one of the most extensively studied epigenetic modifications, has gained prominence due to its reliable measurement across various sample types. Numerous studies have reported that DNA methylation was linked to the diagnosis, prognosis and treatment response in malignancies, including GI cancers. While its diagnostic role in GI cancers has been comprehensively reviewed. Recent research has increasingly highlighted its potential in prognosis prediction and treatment response evaluation. However, no existing reviews have exclusively focused on these two aspects. In this review, we retrieved relevant studies and included 230 of them in our discussion, thereby providing an overview of the clinical applicability of aberrant DNA methylation in these two fields among patients with esophageal, gastric, colorectal, pancreatic cancers, and hepatocellular carcinomas. Additionally, we discuss the limitations of the current literature and propose directions for future research. Specifically, we emphasize the need for standardized DNA methylation methodologies and advocate for the integration of gene panels, rather than single genes, to address tumor heterogeneity more effectively.
Collapse
Affiliation(s)
- Abudurousuli Reyila
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi’an, Shaanxi, China
- National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xianchun Gao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi’an, Shaanxi, China
- National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jun Yu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi’an, Shaanxi, China
- National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi’an, Shaanxi, China
- National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Chikaishi Y, Matsuoka H, Sugihara E, Takeda M, Sumitomo M, Yamada S, Inaguma G, Omura Y, Cheong Y, Kobayashi Y, Nakauchi M, Hiro J, Masumori K, Otsuka K, Nishihara H, Suda K, Saya H, Takimoto T. Mutation Analysis of TMB-High Colorectal Cancer: Insights Into Molecular Pathways and Clinical Implications. Cancer Sci 2025; 116:1082-1093. [PMID: 39822019 PMCID: PMC11967252 DOI: 10.1111/cas.16455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/19/2025] Open
Abstract
Colorectal cancer (CRC) is well characterized in terms of genetic mutations and the mechanisms by which they contribute to carcinogenesis. Mutations in APC, TP53, and KRAS are common in CRC, indicating key roles for these genes in tumor development and progression. However, for certain tumors with low frequencies of these mutations that are defined by tumor location and molecular phenotypes, a carcinogenic mechanism dependent on BRAF mutations has been proposed. We here analyzed targeted sequence data linked to clinical information for CRC, focusing on tumors with a high tumor mutation burden (TMB) in order to identify the characteristics of associated mutations, their relations to clinical features, and the mechanisms of carcinogenesis in tumors lacking the major driver oncogenes. Analysis of overall mutation frequencies confirmed that APC, TP53, and KRAS mutations were the most prevalent in our cohort. Compared with other tumors, TMB-high tumors were more frequent on the right side of the colon, had lower KRAS and higher BRAF mutation frequencies as well as a higher microsatellite instability (MSI) score, and showed a greater contribution of a mutational signature associated with MSI. Ranking of variant allele frequencies to identify genes that play a role early in carcinogenesis suggested that mutations in genes related to the DNA damage response (such as ATM and POLE) and to MSI (such as MSH2 and MSH6) may precede BRAF mutations associated with activation of the serrated pathway in TMB-high tumors. Our results thus indicate that TMB-high tumors suggest that mutations of genes related to mismatch repair and the DNA damage response may contribute to activation of the serrated pathway in CRC.
Collapse
Affiliation(s)
- Yuko Chikaishi
- Department of SurgeryFujita Health UniversityToyoakeAichiJapan
| | | | - Eiji Sugihara
- Research Promotion Headquarters, Open Facility CenterFujita Health UniversityToyoakeJapan
- Oncology Innovation CenterFujita Health UniversityToyoakeAichiJapan
| | - Mayu Takeda
- Faculty of Health and Medical SciencesAichi Syukutoku UniversityNagakuteAichiJapan
| | - Makoto Sumitomo
- Oncology Innovation CenterFujita Health UniversityToyoakeAichiJapan
| | - Seiji Yamada
- Oncology Innovation CenterFujita Health UniversityToyoakeAichiJapan
| | - Gaku Inaguma
- Department of SurgeryFujita Health UniversityToyoakeAichiJapan
| | - Yusuke Omura
- Department of SurgeryFujita Health UniversityToyoakeAichiJapan
| | | | | | - Masaya Nakauchi
- Department of Advanced Robotic and Endoscopic SurgeryFujita Health UniversityToyoakeAichiJapan
| | - Junichiro Hiro
- Department of SurgeryFujita Health UniversityToyoakeAichiJapan
| | - Koji Masumori
- Department of SurgeryFujita Health UniversityToyoakeAichiJapan
| | - Koki Otsuka
- Department of Advanced Robotic and Endoscopic SurgeryFujita Health UniversityToyoakeAichiJapan
| | - Hiroshi Nishihara
- Center for Cancer GenomicsKeio University School of MedicineTokyoJapan
| | - Koichi Suda
- Department of SurgeryFujita Health UniversityToyoakeAichiJapan
- Collaborative Laboratory for Research and Development in Advanced Surgical IntelligenceFujita Health UniversityToyoakeAichiJapan
| | - Hideyuki Saya
- Oncology Innovation CenterFujita Health UniversityToyoakeAichiJapan
| | - Tetsuya Takimoto
- Oncology Innovation CenterFujita Health UniversityToyoakeAichiJapan
| |
Collapse
|
3
|
Jin L, Jin HY, Kim Y, Cho NY, Bae JM, Kim JH, Han SW, Kim TY, Kang GH. Clinicopathological and molecular features of genome-stable colorectal cancers. Histol Histopathol 2025; 40:381-388. [PMID: 38993017 DOI: 10.14670/hh-18-785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Colorectal cancers (CRCs) are traditionally divided into those with either chromosomal instability (CIN) or microsatellite instability (MSI). By utilizing TCGA data, the Laird team found a subset of CRCs, namely, genome-stable CRCs (GS CRCs), which lack both CIN and MSI. Although the molecular features of GS CRCs have been described in detail, the clinicopathological features are not well defined. A total of 437 CRCs were analyzed for copy number variation (CNV) statuses in eight genes (ARID1A, EGFR, FGFR1, KDM5B, MYBL2, MYC, SALL4, and SETDB1) using droplet-digital PCR. CRCs that showed CNV in ≤ one gene and no MSI were defined as GS-like CRCs. Clinicopathological and molecular features of GS-like CRCs were compared with those of CIN-like CRCs. GS-like CRCs comprised 4.6% of CRCs and showed a predilection toward the proximal colon, lower nuclear optical density, KRAS mutation, PIK3CA mutation, and aberrant expression of KRT7. Survival analysis showed no significant difference between the three subgroups. Through our study, the GS-like subtype was found to comprise a minor proportion of CRCs and have proclivity toward a proximal bowel location, hypochromatic tumor nuclei, aberrant KRT7 expression, and a high frequency of KRAS and PIK3CA mutations.
Collapse
Affiliation(s)
- Lingyan Jin
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hye-Yeong Jin
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Younghoon Kim
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Nam-Yun Cho
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Sae-Won Han
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Tae-You Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Gyeong Hoon Kang
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
4
|
Mancuso FM, Higareda-Almaraz JC, Canal-Noguer P, Bertossi A, Perera-Lluna A, Roehrl MHA, Kruusmaa K. Colorectal Adenoma Subtypes Exhibit Signature Molecular Profiles: Unique Insights into the Microenvironment of Advanced Precancerous Lesions for Early Detection Applications. Cancers (Basel) 2025; 17:654. [PMID: 40002249 PMCID: PMC11852906 DOI: 10.3390/cancers17040654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/24/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Colorectal cancer (CRC) is characterized by the uncontrolled growth of malignant colonic or rectal crypt epithelium. About 85% of CRCs evolve through a stepwise progression from advanced precancerous adenoma lesions. A better understanding of the evolution from adenoma to carcinoma can provide a window of opportunity not only for early detection and therapeutic intervention but potentially also for cancer prevention strategies. Methods: This study investigates the heterogeneous methylation, copy-number alteration (CNA), and mutation signals of histological adenoma subtypes in the context of progression from normal colon to advanced precancerous lesions (APLs) and early-stage CRC. Results: Differential methylation analysis revealed 2321 significantly altered regions among APLs: 137 hypermethylated regions in serrated vs. tubular, 2093 in serrated vs. tubulovillous, and 91 in tubular vs. tubulovillous adenoma subtypes. The most differentiating pathways for serrated adenomas belonged to cAMP signaling and the regulation of pluripotency of stem cells, while regions separating tubular and tubulovillous subtypes were enriched for WNT signaling. CNA events were mostly present in tubular or tubulovillous adenomas, with the most frequent signals being seen in chromosomes 7, 12, 19, and 20. In contrast, early-stage CRC exhibited signals in chromosomes 7, 8, and 20, indicating different processes between APL and early-stage CRC. Mutations reinforce subtype-level differences, showing specific alterations in each subtype. Conclusions: These findings are especially important for developing early detection or cancer prevention tests trying to capture adenoma signatures.
Collapse
Affiliation(s)
| | | | - Pol Canal-Noguer
- Universal Diagnostics S.A., 41013 Seville, Spain; (F.M.M.); (J.C.H.-A.); (P.C.-N.)
| | - Arianna Bertossi
- Research & Development, Universal Diagnostics d.o.o., 1000 Ljubljana, Slovenia;
| | - Alexandre Perera-Lluna
- B2SLab, Institute for Research and Innovation in Health (IRIS), Universitat Politècnica de Catalunya—BarcelonaTech, 08028 Barcelona, Spain;
- Networking Biomedical Research Centre in the Subject Area of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | | | - Kristi Kruusmaa
- Research & Development, Universal Diagnostics d.o.o., 1000 Ljubljana, Slovenia;
| |
Collapse
|
5
|
Lee JA, Park HE, Jin HY, Jin L, Yoo SY, Cho NY, Bae JM, Kim JH, Kang GH. The combination of CDX2 expression status and tumor-infiltrating lymphocyte density as a prognostic factor in adjuvant FOLFOX-treated patients with stage III colorectal cancers. J Pathol Transl Med 2025; 59:50-59. [PMID: 39440351 PMCID: PMC11736276 DOI: 10.4132/jptm.2024.09.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/22/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Colorectal carcinomas (CRCs) with caudal-type homeobox 2 (CDX2) loss are recognized to pursue an aggressive behavior but tend to be accompanied by a high density of tumor-infiltrating lymphocytes (TILs). However, little is known about whether there is an interplay between CDX2 loss and TIL density in the survival of patients with CRC. METHODS Stage III CRC tissues were assessed for CDX2 loss using immunohistochemistry and analyzed for their densities of CD8 TILs in both intraepithelial (iTILs) and stromal areas using a machine learning-based analytic method. RESULTS CDX2 loss was significantly associated with a higher density of CD8 TILs in both intraepithelial and stromal areas. Both CDX2 loss and a high CD8 iTIL density were found to be prognostic parameters and showed hazard ratios of 2.314 (1.050-5.100) and 0.378 (0.175-0.817), respectively, for cancer-specific survival. A subset of CRCs with retained CDX2 expression and a high density of CD8 iTILs showed the best clinical outcome (hazard ratio of 0.138 [0.023-0.826]), whereas a subset with CDX2 loss and a high density of CD8 iTILs exhibited the worst clinical outcome (15.781 [3.939-63.230]). CONCLUSIONS Altogether, a high density of CD8 iTILs did not make a difference in the survival of patients with CRC with CDX2 loss. The combination of CDX2 expression and intraepithelial CD8 TIL density was an independent prognostic marker in adjuvant chemotherapy-treated patients with stage III CRC.
Collapse
Affiliation(s)
- Ji-Ae Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hye Eun Park
- Department of Pathology, Seoul National University Boramae Hospital, Seoul, Korea
| | - Hye-Yeong Jin
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Lingyan Jin
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Yeon Yoo
- Pathology Center, Seegene Medical Foundation, Seoul, Korea
| | - Nam-Yun Cho
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Yan L, Shi J, Zhu J. Cellular and molecular events in colorectal cancer: biological mechanisms, cell death pathways, drug resistance and signalling network interactions. Discov Oncol 2024; 15:294. [PMID: 39031216 PMCID: PMC11265098 DOI: 10.1007/s12672-024-01163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/15/2024] [Indexed: 07/22/2024] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide, affecting millions each year. It emerges from the colon or rectum, parts of the digestive system, and is closely linked to both genetic and environmental factors. In CRC, genetic mutations such as APC, KRAS, and TP53, along with epigenetic changes like DNA methylation and histone modifications, play crucial roles in tumor development and treatment responses. This paper delves into the complex biological underpinnings of CRC, highlighting the pivotal roles of genetic alterations, cell death pathways, and the intricate network of signaling interactions that contribute to the disease's progression. It explores the dysregulation of apoptosis, autophagy, and other cell death mechanisms, underscoring the aberrant activation of these pathways in CRC. Additionally, the paper examines how mutations in key molecular pathways, including Wnt, EGFR/MAPK, and PI3K, fuel CRC development, and how these alterations can serve as both diagnostic and prognostic markers. The dual function of autophagy in CRC, acting as a tumor suppressor or promoter depending on the context, is also scrutinized. Through a comprehensive analysis of cellular and molecular events, this research aims to deepen our understanding of CRC and pave the way for more effective diagnostics, prognostics, and therapeutic strategies.
Collapse
Affiliation(s)
- Lei Yan
- Medical Department, The Central Hospital of Shaoyang Affiliated to University of South China, Shaoyang, China
| | - Jia Shi
- Department of Obstetrics and Gynecology, The Central Hospital of Shaoyang Affiliated to University of South China, Shaoyang, China
| | - Jiazuo Zhu
- Department of Oncology, Xuancheng City Central Hospital, No. 117 Tong Road, Xuancheng, Anhui, China.
| |
Collapse
|
7
|
Bhandari YR, Krishna V, Powers R, Parmar S, Thursby SJ, Gupta E, Kulak O, Gokare P, Reumers J, Van Wesenbeeck L, Bachman KE, Baylin SB, Easwaran H. Transcription factor expression repertoire basis for epigenetic and transcriptional subtypes of colorectal cancers. Proc Natl Acad Sci U S A 2023; 120:e2301536120. [PMID: 37487069 PMCID: PMC10401032 DOI: 10.1073/pnas.2301536120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/15/2023] [Indexed: 07/26/2023] Open
Abstract
Colorectal cancers (CRCs) form a heterogenous group classified into epigenetic and transcriptional subtypes. The basis for the epigenetic subtypes, exemplified by varying degrees of promoter DNA hypermethylation, and its relation to the transcriptional subtypes is not well understood. We link cancer-specific transcription factor (TF) expression alterations to methylation alterations near TF-binding sites at promoter and enhancer regions in CRCs and their premalignant precursor lesions to provide mechanistic insights into the origins and evolution of the CRC molecular subtypes. A gradient of TF expression changes forms a basis for the subtypes of abnormal DNA methylation, termed CpG-island promoter DNA methylation phenotypes (CIMPs), in CRCs and other cancers. CIMP is tightly correlated with cancer-specific hypermethylation at enhancers, which we term CpG-enhancer methylation phenotype (CEMP). Coordinated promoter and enhancer methylation appears to be driven by downregulation of TFs with common binding sites at the hypermethylated enhancers and promoters. The altered expression of TFs related to hypermethylator subtypes occurs early during CRC development, detectable in premalignant adenomas. TF-based profiling further identifies patients with worse overall survival. Importantly, altered expression of these TFs discriminates the transcriptome-based consensus molecular subtypes (CMS), thus providing a common basis for CIMP and CMS subtypes.
Collapse
Affiliation(s)
- Yuba R. Bhandari
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Vinod Krishna
- Infectious Diseases and Vaccines Therapeutic Area, Janssen Research and Development, Spring House, PA19477
| | - Rachael Powers
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Sehej Parmar
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Sara-Jayne Thursby
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Ekta Gupta
- Division of Gastroenterology and Hepatology, The Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Ozlem Kulak
- Division of Gastrointestinal and Liver Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Prashanth Gokare
- Oncology Therapeutic Area, Janssen Research and Development, Spring House, PA19477
| | - Joke Reumers
- Discovery Technologies and Molecular Pharmacology, Therapeutics Discovery, Janssen Research and Development, Turnhoutseweg 30, 2340Beerse, Belgiumg
| | - Liesbeth Van Wesenbeeck
- Infectious Diseases and Vaccines Therapeutic Area, Janssen Research and Development, Turnhoutseweg 30, 2340Beerse, Belgium
| | - Kurtis E. Bachman
- Oncology Therapeutic Area, Janssen Research and Development, Spring House, PA19477
| | - Stephen B. Baylin
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Hariharan Easwaran
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD21287
| |
Collapse
|
8
|
Salas Campos DA, Weihs D, Rosenkranz M, Langner C, Geigl JB, Tschmelitsch J, Eberl T. Pre- and Postoperative Levels of Carcinoembryonic Antigen in Microsatellite Stable Versus Instable Colon Cancer: a Retrospective Analysis. J Gastrointest Cancer 2023; 54:600-605. [PMID: 35716336 DOI: 10.1007/s12029-022-00841-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE The prognosis of microsatellite stable (MSS) versus instable (MSI) tumors is an ongoing matter of debate, with differences in expression of carcinoembryonic antigen (CEA) in these two tumor subsets being inconsistently reported to date. The aim of this study was to investigate CEA expression in the context of clinical parameters in MSS and MSI tumors. METHODS Clinical, pathological, and biochemical parameters of colon cancer patients who underwent curative surgery were documented in a database and compared between MSS and MSI cases. The pre- to postoperative trend of CEA was analyzed. Survival was assessed using the Kaplan-Meier (log rank) test. RESULTS One hundred sixty-nine patients were included in the study. Compared to those with MSS tumors, there was a higher proportion of preoperatively elevated CEA among those with MSI tumors (p = 0.067). Median CEA values decreased over the pre- to postoperative course with MSS (p = 0.01) but not MSI (p = 0.093) tumors. The distribution of N classification differed between MSS and MSI tumors (p = 0.014). Patients with MSI tumors had superior survival. CONCLUSION Despite the better prognosis, MSI tumors are associated with increases in CEA. Our findings shed light on discrepancies related to the prognostic evaluation of MSI tumors. Furthermore, in follow-up of colorectal cancers, CEA measurements should be interpreted differently for MSI and MSS tumors.
Collapse
Affiliation(s)
| | - Dominik Weihs
- Department of Surgery, Barmherzige Brüder Hospital, Spitalgasse 26, 9300, Veit/Glan, Austria
| | | | - Cord Langner
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Jochen Bernd Geigl
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Human Genetics, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Jörg Tschmelitsch
- Department of Surgery, Barmherzige Brüder Hospital, Spitalgasse 26, 9300, Veit/Glan, Austria
| | - Thomas Eberl
- Department of Surgery, Barmherzige Brüder Hospital, Spitalgasse 26, 9300, Veit/Glan, Austria.
| |
Collapse
|
9
|
Meng H, Nan M, Li Y, Ding Y, Yin Y, Zhang M. Application of CRISPR-Cas9 gene editing technology in basic research, diagnosis and treatment of colon cancer. Front Endocrinol (Lausanne) 2023; 14:1148412. [PMID: 37020597 PMCID: PMC10067930 DOI: 10.3389/fendo.2023.1148412] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Colon cancer is the fourth leading cause of cancer death worldwide, and its progression is accompanied by a complex array of genetic variations. CRISPR/Cas9 can identify new drug-resistant or sensitive mutations in colon cancer, and can use gene editing technology to develop new therapeutic targets and provide personalized treatments, thereby significantly improving the treatment of colon cancer patients. CRISPR/Cas9 systems are driving advances in biotechnology. RNA-directed Cas enzymes have accelerated the pace of basic research and led to clinical breakthroughs. This article reviews the rapid development of CRISPR/Cas in colon cancer, from gene editing to transcription regulation, gene knockout, genome-wide CRISPR tools, therapeutic targets, stem cell genomics, immunotherapy, metabolism-related genes and inflammatory bowel disease. In addition, the limitations and future development of CRISPR/Cas9 in colon cancer studies are reviewed. In conclusion, this article reviews the application of CRISPR-Cas9 gene editing technology in basic research, diagnosis and treatment of colon cancer.
Collapse
Affiliation(s)
- Hui Meng
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Mingzhi Zhang, ; Hui Meng,
| | - Manman Nan
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yizhen Li
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Ding
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuhui Yin
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingzhi Zhang
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Mingzhi Zhang, ; Hui Meng,
| |
Collapse
|
10
|
Meta-Analysis of the Prognostic and Predictive Role of the CpG Island Methylator Phenotype in Colorectal Cancer. DISEASE MARKERS 2022; 2022:4254862. [PMID: 36157209 PMCID: PMC9499813 DOI: 10.1155/2022/4254862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022]
Abstract
Background Various studies have produced contradictory results on the prognostic role of the CpG island methylator phenotype (CIMP) among colorectal cancer (CRC) patients. Although a meta-analysis published in 2014 reported a worse prognosis of CIMP among CIMP-high (CIMP-H) CRC patients, the sample sizes of the major included studies were small. In this study, we included the most recent studies with large sample sizes and performed an updated meta-analysis on the relationship between CIMP and CRC prognosis. Methods A search of MEDLINE, Web of Science, and Cochrane for studies related to CIMP and CRC published until July 2021 was conducted based on the PICO (participant, intervention, control, outcome) framework. Data extraction and literature analyses were performed according to PRISMA standards. Results In the present update, 36 eligible studies (20 recently published) reported survival data in 15315 CRC patients, 18.3% of whom were characterized as CIMP-H. Pooled analysis suggested that CIMP-H was associated with poorer overall survival (OS) (hazard ratio [HR] = 1.37, 95% CI: 1.26–1.48) and disease-free survival/progression-free survival/recurrence-free survival (DFS/PFS/RFS) (HR = 1.51, 95% CI: 1.19–1.91) among CRC patients. Subgroup analysis based on tumor stage and DNA mismatch repair (MMR) status showed that only patients with stages III-IV and proficient MMR (pMMR) tumors showed a significant association between CIMP-H and shorter OS, with HRs of 1.52 and 1.37, respectively. Three studies were pooled to explore the predictive value of CIMP on CRC patient DFS after receiving postoperative chemotherapy, and no significant correlation was found. Conclusion CIMP-H is associated with a significantly poor prognosis in CRC patients, especially those with stage III-IV and pMMR tumors. However, the predictive value of CIMP needs to be confirmed by more prospective randomized studies.
Collapse
|
11
|
Luo HY, Shen HY, Perkins RS, Wang YX. Adenosine Kinase on Deoxyribonucleic Acid Methylation: Adenosine Receptor-Independent Pathway in Cancer Therapy. Front Pharmacol 2022; 13:908882. [PMID: 35721189 PMCID: PMC9200284 DOI: 10.3389/fphar.2022.908882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Methylation is an important mechanism contributing to cancer pathology. Methylation of tumor suppressor genes and oncogenes has been closely associated with tumor occurrence and development. New insights regarding the potential role of the adenosine receptor-independent pathway in the epigenetic modulation of DNA methylation offer the possibility of new interventional strategies for cancer therapy. Targeting DNA methylation of cancer-related genes is a promising therapeutic strategy; drugs like 5-Aza-2′-deoxycytidine (5-AZA-CdR, decitabine) effectively reverse DNA methylation and cancer cell growth. However, current anti-methylation (or methylation modifiers) are associated with severe side effects; thus, there is an urgent need for safer and more specific inhibitors of DNA methylation (or DNA methylation modifiers). The adenosine signaling pathway is reported to be involved in cancer pathology and participates in the development of tumors by altering DNA methylation. Most recently, an adenosine metabolic clearance enzyme, adenosine kinase (ADK), has been shown to influence methylation on tumor suppressor genes and tumor development and progression. This review article focuses on recent updates on ADK and its two isoforms, and its actions in adenosine receptor-independent pathways, including methylation modification and epigenetic changes in cancer pathology.
Collapse
Affiliation(s)
- Hao-Yun Luo
- Chongqing Medical University, Chongqing, China.,Department of Gastrointestinal and Anorectal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Hai-Ying Shen
- Department of Neuroscience, Legacy Research Institute, Portland, OR, United States.,Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, United States
| | - R Serene Perkins
- Legacy Tumor Bank, Legacy Research Institute, Portland, OR, United States.,Mid-Columbia Medical Center, The Dalles, OR, United States
| | - Ya-Xu Wang
- Chongqing Medical University, Chongqing, China.,Department of Gastrointestinal and Anorectal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Jin HY, Yoo SY, Lee JA, Wen X, Kim Y, Park HE, Kwak Y, Cho NY, Bae JM, Kim JH, Lee HS, Kang GH. Combinatory statuses of tumor stromal percentage and tumor infiltrating lymphocytes as prognostic factors in stage III colorectal cancers. J Gastroenterol Hepatol 2022; 37:551-557. [PMID: 35018665 DOI: 10.1111/jgh.15774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/12/2021] [Accepted: 01/03/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM Tumor stroma and tumor-infiltrating lymphocytes (TILs) are major constituents of the tumor microenvironment, although they have different effects on the prognosis of patients with colorectal cancer (CRC). Combinatory statuses of tumor-stromal percentage (TSP) and TILs are expected to provide more powerful prognostic information but have never been studied in CRCs. METHODS Stage III CRCs from patients (n = 487) treated with adjuvant chemotherapy were assessed for their TSP and CD3-TIL or CD8-TIL densities using computer-aided methodology. With cut-off values set at median values for intraepithelial TIL (iTIL) and stromal TIL (sTIL) densities, CRCs were sorted into low and high iTIL or sTIL groups. CRCs were classified into five quintile (Q1-Q5) groups according to their TSP and divided into high TSP (Q5) and low TSP (Q1-4) groups. RESULTS The combination of CD8 iTIL density and TSP was found to be an independent prognostic parameter in multivariate survival analysis in terms of cancer-specific survival and recurrence-free survival. CRCs with low CD8 iTIL density and high TSP showed the worst survival. The combinatory status showed more prognostic power than CD8 iTIL density or TSP alone. Multivariate survival analysis in an independent cohort of stage III CRC validated the prognostic power of the combinatory statuses. CONCLUSIONS The findings suggest that the combinatory status might serve as a prognostic parameter in stage III CRCs. Further research in a large-scale cohort of patients with stage III CRC is needed to validate the prognostic power of the combinatory status.
Collapse
Affiliation(s)
- Hye-Yeong Jin
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Seung-Yeon Yoo
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji-Ae Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Xianyu Wen
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Younghoon Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Hye Eun Park
- Department of Pathology, Seoul National University Boramae Hospital, Seoul, South Korea
| | - Yoonjin Kwak
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Nam-Yun Cho
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
13
|
Tumor microenvironment-adjusted prognostic implications of the KRAS mutation subtype in patients with stage III colorectal cancer treated with adjuvant FOLFOX. Sci Rep 2021; 11:14609. [PMID: 34272423 PMCID: PMC8285533 DOI: 10.1038/s41598-021-94044-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/06/2021] [Indexed: 12/30/2022] Open
Abstract
Several studies have reported that the prognostic effect of KRAS mutations on colorectal cancers (CRCs) varies depending on the type of mutation. Considering the effect of KRAS mutations on tumor microenvironment, we analyzed the prognostic significance of KRAS mutation types after adjusting for the tumor-infiltrating lymphocytes (TIL) and tumor-stromal percentage (TSP) statuses. In two independent cohorts, KRAS mutations were analyzed by Sanger sequencing and/or next-generation sequencing. TIL density and the TSP were quantified from whole-slide immunohistochemical images. KRAS-mutant CRCs were divided into three subgroups (G12D/V, other codon 12 mutations and codon 13 mutations) to examine their differential effect on TIL density, the TSP and recurrence-free survival (RFS). Among the KRAS mutations, only the G12D/V subgroups showed significantly less TIL infiltration than the wild-type CRCs. According to survival analysis, G12D/V mutations were associated with short RFS; codon 13 mutations showed discordant trends in the two cohorts, and other codon 12 mutations showed no significant association. Multivariate analysis further supported the prognostic value of G12D/V mutations. This result is not only consistent with a recent study suggesting the immunosuppressive effect of mutant KRAS but also provides insight into the type-specific prognostic effect of KRAS mutations.
Collapse
|
14
|
Cerrito MG, Grassilli E. Identifying Novel Actionable Targets in Colon Cancer. Biomedicines 2021; 9:biomedicines9050579. [PMID: 34065438 PMCID: PMC8160963 DOI: 10.3390/biomedicines9050579] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is the fourth cause of death from cancer worldwide, mainly due to the high incidence of drug-resistance toward classic chemotherapeutic and newly targeted drugs. In the last decade or so, the development of novel high-throughput approaches, both genome-wide and chemical, allowed the identification of novel actionable targets and the development of the relative specific inhibitors to be used either to re-sensitize drug-resistant tumors (in combination with chemotherapy) or to be synthetic lethal for tumors with specific oncogenic mutations. Finally, high-throughput screening using FDA-approved libraries of “known” drugs uncovered new therapeutic applications of drugs (used alone or in combination) that have been in the clinic for decades for treating non-cancerous diseases (re-positioning or re-purposing approach). Thus, several novel actionable targets have been identified and some of them are already being tested in clinical trials, indicating that high-throughput approaches, especially those involving drug re-positioning, may lead in a near future to significant improvement of the therapy for colon cancer patients, especially in the context of a personalized approach, i.e., in defined subgroups of patients whose tumors carry certain mutations.
Collapse
|
15
|
Improving the Prognosis of Colon Cancer through Knowledge-Based Clinical-Molecular Integrated Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9987819. [PMID: 33928165 PMCID: PMC8051523 DOI: 10.1155/2021/9987819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/25/2022]
Abstract
Background Colon cancer has high morbidity and mortality rates among cancers. Existing clinical staging systems cannot accurately assess the prognostic risk of colon cancer patients. This study was aimed at improving the prognostic performance of the colon cancer clinical staging system through knowledge-based clinical-molecular integrated analysis. Methods 374 samples from The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) dataset were used as the discovery set. 98 samples from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) dataset were used as the validation set. After converting gene expression data into pathway dysregulation scores (PDSs), the random survival forest and Cox model were used to identify the best prognostic supplementary factors. The corresponding clinical-molecular integrated prognostic model was built, and the improvement of prognostic performance was assessed by comparing with the clinical prognostic model. Results The PDS of 14 pathways played important roles in prognostic prediction together with clinical prognostic factors through the random survival forest. Further screening with the Cox model revealed that the PDS of the pathway hsa00532 was the best clinical prognostic supplementary factor. The integrated prognostic model constructed with clinical factors and the identified molecular factor was superior to the clinical prognostic model in discriminative performance. Kaplan-Meier (KM) curves of patients grouped by PDS suggested that patients with a higher PDS had a poorer prognosis, and stage II patients could be distinctly distinguished. Conclusions Based on the knowledge-based clinical-molecular integrated analysis, a clinical-molecular integrated prognostic model and corresponding nomogram for colon cancer overall survival prognosis was built, which showed better prognostic performance than the clinical prognostic model. The PDS of the pathway hsa00532 is a considerable clinical prognostic supplementary factor for colon cancer and may represent a potential prognostic marker for stage II colon cancer. The PDS calculation involves only 16 genes, which supports its potential for clinical application.
Collapse
|
16
|
Zhang X, Zhang W, Cao P. Advances in CpG Island Methylator Phenotype Colorectal Cancer Therapies. Front Oncol 2021; 11:629390. [PMID: 33718206 PMCID: PMC7952756 DOI: 10.3389/fonc.2021.629390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/18/2021] [Indexed: 01/05/2023] Open
Abstract
With the aging of the population, the incidence of colorectal cancer in China is increasing. One of the epigenetic alterations: CpG island methylator phenotype (CIMP) plays an important role in the incidence of colorectal cancer. Recent studies have shown that CIMP is closely related to some specific clinicopathological phenotypes and multiple molecular phenotypes in colorectal cancer. In this paper, the newest progress of CIMP colorectal cancer in chemotherapeutic drugs, targeted agents and small molecular methylation inhibitors are going to be introduced. We hope to provide potential clinical treatment strategies for personalized and precise treatment of colorectal cancer patients.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Department of Medical Oncology, Dalian University Affiliated Xinhua Hospital, Dalian, China
| | - Wenjun Zhang
- Department of Colorectal Surgery, Dalian University Affiliated Xinhua Hospital, Dalian, China
| | - Pingan Cao
- Department of Medical Oncology, Dalian University Affiliated Xinhua Hospital, Dalian, China
| |
Collapse
|
17
|
Satorres C, García-Campos M, Bustamante-Balén M. Molecular Features of the Serrated Pathway to Colorectal Cancer: Current Knowledge and Future Directions. Gut Liver 2021; 15:31-43. [PMID: 32340435 PMCID: PMC7817929 DOI: 10.5009/gnl19402] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/18/2020] [Accepted: 03/04/2020] [Indexed: 02/05/2023] Open
Abstract
Serrated lesions are the precursor lesions of a new model of colorectal carcinogenesis. From a molecular standpoint, the serrated pathway is thought to be responsible for up to 30% of all colorectal cancer cases. The three major processes of this molecular mechanism are alterations in the mitogen-activated protein kinase pathway, production of the CpG island methylation phenotype, and generation of microsatellite instability. Other contributing processes are activation of WNT, alterations in the regulation of tumor suppressor genes, and alterations in microRNAs or in MUC5AC hypomethylation. Although alterations in the serrated pathway also contribute, their precise roles remain obscure because of the various methodologies and definitions used by different research groups. This knowledge gap affects clinical assessment of precursor lesions for their carcinogenic risk. The present review describes the current literature reporting the molecular mechanisms underlying each type of serrated lesion and each phenotype of serrated pathway colorectal cancer, identifying those areas that merit additional research. We also propose a unified serrated carcinogenesis pathway combining molecular alterations and types of serrated lesions, which ends in different serrated pathway colorectal cancer phenotypes depending on the route followed. Finally, we describe some key issues that need to be addressed in order to incorporate the newest technologies in serrated pathway research and to improve overall knowledge for developing specific prevention strategies and new therapeutic targets.
Collapse
Affiliation(s)
- Carla Satorres
- Gastrointestinal Endoscopy Research Group, La Fe Health Research Institute, Valencia, Spain
- Gastrointestinal Endoscopy Unit, Digestive Diseases Department, La Fe Polytechnic University Hospital, Valencia, Spain
| | - María García-Campos
- Gastrointestinal Endoscopy Unit, Digestive Diseases Department, La Fe Polytechnic University Hospital, Valencia, Spain
| | - Marco Bustamante-Balén
- Gastrointestinal Endoscopy Research Group, La Fe Health Research Institute, Valencia, Spain
- Gastrointestinal Endoscopy Unit, Digestive Diseases Department, La Fe Polytechnic University Hospital, Valencia, Spain
| |
Collapse
|
18
|
You T, Song K, Guo W, Fu Y, Wang K, Zheng H, Yang J, Jin L, Qi L, Guo Z, Zhao W. A Qualitative Transcriptional Signature for Predicting CpG Island Methylator Phenotype Status of the Right-Sided Colon Cancer. Front Genet 2020; 11:971. [PMID: 33193579 PMCID: PMC7658404 DOI: 10.3389/fgene.2020.00971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/31/2020] [Indexed: 12/24/2022] Open
Abstract
A part of colorectal cancer which is characterized by simultaneous numerous hypermethylation CpG islands sites is defined as CpG island methylator phenotype (CIMP) status. Stage II and III CIMP−positive (CIMP+) right-sided colon cancer (RCC) patients have a better prognosis than CIMP−negative (CIMP−) RCC treated with surgery alone. However, there is no gold standard available in defining CIMP status. In this work, we selected the gene pairs whose relative expression orderings (REOs) were associated with the CIMP status, to develop a qualitative transcriptional signature to individually predict CIMP status for stage II and III RCC. Based on the REOs of gene pairs, a signature composed of 19 gene pairs was developed to predict the CIMP status of RCC through a feature selection process. A sample is predicted as CIMP+ when the gene expression orderings of at least 12 gene pairs vote for CIMP+; otherwise the CIMP−. The difference of prognosis between the predicted CIMP+ and CIMP− groups was more significantly different than the original CIMP status groups. There were more differential methylation and expression characteristics between the two predicted groups. The hierarchical clustering analysis showed that the signature could perform better for predicting CIMP status of RCC than current methods. In conclusion, the qualitative transcriptional signature for classifying CIMP status at the individualized level can predict outcome and guide therapy for RCC patients.
Collapse
Affiliation(s)
- Tianyi You
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Kai Song
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wenbing Guo
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yelin Fu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Kai Wang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hailong Zheng
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jing Yang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Liangliang Jin
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Lishuang Qi
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zheng Guo
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Provincial Key Laboratory on Hematology, Fujian Medical University, Fuzhou, China
| | - Wenyuan Zhao
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
19
|
Bae JM, Yoo SY, Kim JH, Kang GH. Immune landscape and biomarkers for immuno-oncology in colorectal cancers. J Pathol Transl Med 2020; 54:351-360. [PMID: 32580539 PMCID: PMC7483026 DOI: 10.4132/jptm.2020.05.15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022] Open
Abstract
Recent advances in immuno-oncology have increased understanding of the tumor immune microenvironment (TIME), and clinical trials for immune checkpoint inhibitor treatment have shown remission and/or durable response in certain proportions of patients stratified by predictive biomarkers. The TIME in colorectal cancer (CRC) was initially evaluated several decades ago. The prognostic value of the immune response to tumors, including tumor-infiltrating lymphocytes, peritumoral lymphoid reaction, and Crohn's-like lymphoid reaction, has been well demonstrated. In this review, we describe the chronology of TIME research and review the up-to-date high-dimensional TIME landscape of CRC. We also summarize the clinical relevance of several biomarkers associated with immunotherapy in CRC, such as microsatellite instability, tumor mutational burden, POLE/POLD mutation, consensus molecular subtype, and programmed death-ligand 1 expression.
Collapse
Affiliation(s)
- Jeong Mo Bae
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Yeon Yoo
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
20
|
Wielandt AM, Hurtado C, Moreno C M, Villarroel C, Castro M, Estay M, Simian D, Martinez M, Vial MT, Kronberg U, López-Köstner F. Characterization of Chilean patients with sporadic colorectal cancer according to the three main carcinogenic pathways: Microsatellite instability, CpG island methylator phenotype and Chromosomal instability. Tumour Biol 2020; 42:1010428320938492. [PMID: 32635826 DOI: 10.1177/1010428320938492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Molecular classification of colorectal cancer is difficult to implement in clinical settings where hundreds of genes are involved, and resources are limited. This study aims to characterize the molecular subtypes of patients with sporadic colorectal cancer based on the three main carcinogenic pathways microsatellite instability (MSI), CpG island methylator phenotype (CIMP), and chromosomal instability (CIN) in a Chilean population. Although several reports have characterized colorectal cancer, most do not represent Latin-American populations. Our study includes 103 colorectal cancer patients who underwent surgery, without neoadjuvant treatment, in a private hospital between 2008 and 2017. MSI, CIN, and CIMP status were assessed. Frequent mutations in KRAS, BRAF, and PIK3CA genes were analyzed by Sanger sequencing, and statistical analysis was performed by Fisher's exact and/or chi-square test. Survival curves were estimated with Kaplan-Meier and log-rank test. Based on our observations, we can classify the tumors in four subgroups, Group 1: MSI-high tumors (15%) are located in the right colon, occur at older age, and 60% show a BRAF mutation; Group 2: CIN-high tumors (38%) are in the left colon, and 26% have KRAS mutations. Group 3: [MSI/CIN/CIMP]-low/negative tumors (30%) are left-sided, and 39% have KRAS mutations; Group 4: CIMP-high tumors (15%) were more frequent in men and left side colon, with 27% KRAS and 7% presented BRAF mutations. Three percent of patients could not be classified. We found that CIMP-high was associated with a worse prognosis, both in MSI-high and MSI stable patients (p = 0.0452). Group 3 (Low/negative tumors) tend to have better overall survival compared with MSI-high, CIMP-high, and CIN-high tumors. This study contributes to understanding the heterogeneity of tumors in the Chilean population being one of the few characterizations performed in Latin-America. Given the limited resources of these countries, these results allow to improve molecular characterization in Latin-American colorectal cancer populations and confirm the possibility of using the three main carcinogenic pathways to define therapeutic strategies.
Collapse
Affiliation(s)
- Ana María Wielandt
- Oncology and Molecular Genetics Laboratory, Coloproctology Unit, Clínica Las Condes, Santiago, Chile.,Coloproctology Unit, Clínica Las Condes, Santiago, Chile
| | - Claudia Hurtado
- Oncology and Molecular Genetics Laboratory, Coloproctology Unit, Clínica Las Condes, Santiago, Chile.,Coloproctology Unit, Clínica Las Condes, Santiago, Chile
| | - Mauricio Moreno C
- Oncology and Molecular Genetics Laboratory, Coloproctology Unit, Clínica Las Condes, Santiago, Chile.,Coloproctology Unit, Clínica Las Condes, Santiago, Chile
| | - Cynthia Villarroel
- Oncology and Molecular Genetics Laboratory, Coloproctology Unit, Clínica Las Condes, Santiago, Chile
| | - Magdalena Castro
- Academic Department Research Unit, Clínica Las Condes, Santiago, Chile
| | - Marlene Estay
- Coloproctology Unit, Clínica Las Condes, Santiago, Chile
| | - Daniela Simian
- Academic Department Research Unit, Clínica Las Condes, Santiago, Chile
| | - Maripaz Martinez
- Academic Department Research Unit, Clínica Las Condes, Santiago, Chile
| | | | - Udo Kronberg
- Coloproctology Unit, Clínica Las Condes, Santiago, Chile
| | | |
Collapse
|
21
|
Gao H, He X, Li Q, Wang Y, Tian Y, Chen X, Wang J, Guo Y, Wang W, Li X. Genome-wide DNA methylome analysis reveals methylation subtypes with different clinical outcomes for acute myeloid leukemia patients. Cancer Med 2020; 9:6296-6305. [PMID: 32628355 PMCID: PMC7476826 DOI: 10.1002/cam4.3291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 03/11/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022] Open
Abstract
Leukemia is the second common blood cancer after lymphoma, and its incidence rate has an increasing trend in recent years. Acute myeloid leukemia (AML) is one of the prevalent forms of leukemia. Although previous studies have investigated the methylation profile for AML patients, the AML methylation subtypes based on the genome‐wide methylome are still unclear. In the present study, we identified three methylation subtypes for AML samples based on the methylation profiles at CGI, CGI shore, CGI shelf, and opensea genomic contexts. Analyzing the molecular characteristics and clinical factors of the three subtypes revealed different methylation patterns and clinical outcomes between them. Further analysis revealed subtype dependent marker genes and their promoter CpG sites with regulatory function. Finally, we found that combining the AML patient age and methylation pattern brought better clinical outcome classification. In conclusion, we identified AML methylation subtypes and their marker genes, these results may help to excavate potential targets for clinical therapy and the development of precision medicine for AML patients.
Collapse
Affiliation(s)
- Haiyan Gao
- Department of Hematology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xin He
- Department of Hematology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Qiang Li
- Department of Paediatrics, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ying Wang
- Department of Hematology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yaoyao Tian
- Department of Hematology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xi Chen
- Department of Hematology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jinghua Wang
- Department of Hematology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yan Guo
- Assessment Admittance Section, Heilongjiang Hospital Service Management Evaluation Center, Harbin, China
| | - Wei Wang
- Department of Hematology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiaoyun Li
- Department of Hematology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
22
|
Abrha A, Shukla ND, Hodan R, Longacre T, Raghavan S, Pritchard CC, Fisher G, Ford J, Haraldsdottir S. Universal Screening of Gastrointestinal Malignancies for Mismatch Repair Deficiency at Stanford. JNCI Cancer Spectr 2020; 4:pkaa054. [PMID: 33225206 PMCID: PMC7667994 DOI: 10.1093/jncics/pkaa054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/19/2020] [Accepted: 06/12/2020] [Indexed: 01/05/2023] Open
Abstract
Background In light of recent Food and Drug Administration (FDA) approval of immune checkpoint inhibitors for mismatch repair deficient (dMMR) malignancies, identifying patients with dMMR malignancies has become increasingly important. Although screening for dMMR in colorectal cancer (CRC) is recommended, it is less common for extracolonic gastrointestinal (GI) malignancies. At Stanford Comprehensive Cancer Institute (SCCI), all GI malignancies have been screened for dMMR via immunohistochemistry since January 2016. Methods In this study, we conducted a retrospective review of all patients with GI malignancies screened for dMMR between January 2016 and December 2017. Tumor sequencing was performed on cases negative for germline pathogenic variants where tumor material was available. Results A total of 1425 consecutive GI malignancies were screened for dMMR at SCCI during the study period, and 1374 were included for analysis. dMMR was detected in 7.2% of all GI malignancies. We detected the highest prevalence of dMMR in gastric (15 of 150, 10.0%) followed by colorectal (63 of 694, 9.1%), pancreatic (13 of 244, 5.3%), and gastroesophageal malignancy (6 of 132, 4.5%) patients. Lynch syndrome was the most common etiology for dMMR in colorectal cancer (41.5%), double somatic (confirmed or possible) pathogenic variants the most common etiology in pancreatic cancer (44.4%), and somatic MLH1 hypermethylation the most common etiology in gastric (73.3%) and gastroesophageal cancer (83.3%). Conclusions Given the relatively high incidence of dMMR in GI malignancies, we recommend screening all GI malignancies. Our results suggest that although a rare occurrence, double somatic pathogenic variants may be a biologically significant pathway causing dMMR in pancreatic cancer.
Collapse
Affiliation(s)
- Aser Abrha
- Division of Medical Oncology, Department of Internal Medicine, Stanford University, Stanford, CA, USA
| | | | - Rachel Hodan
- Cancer Genetics and Genomics, Stanford University, Stanford, CA, USA
| | - Teri Longacre
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Shyam Raghavan
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Colin C Pritchard
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - George Fisher
- Division of Medical Oncology, Department of Internal Medicine, Stanford University, Stanford, CA, USA
| | - James Ford
- Division of Medical Oncology, Department of Internal Medicine, Stanford University, Stanford, CA, USA
| | - Sigurdis Haraldsdottir
- Division of Medical Oncology, Department of Internal Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
23
|
Galon J, Bruni D. The Role of the Immune Infiltrate in Distinct Cancer Types and Its Clinical Implications : Lymphocytic Infiltration in Colorectal Cancer. Cancer Treat Res 2020; 180:197-211. [PMID: 32215871 DOI: 10.1007/978-3-030-38862-1_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) represents a major public health challenges, with one of the highest incidences worldwide. The two affected anatomical sites in CRC, i.e. the colon and the rectum, share important underlying features, but often differ in terms of therapeutic management. Current guidelines for CRC define its clinical stratification according to classical, tumor cell-based and pathological parameters. Novel ground-breaking findings in the recent years revealed the prominent role of the immune system in shaping CRC development. This chapter provides a detailed overview of the main genomic and immune features driving (or hampering) CRC progression, with a focus on the main immune cells and factors shaping its evolution. Furthermore, we discuss how tumor-infiltrating immunity could be leveraged both for therapeutic and stratification purposes.
Collapse
Affiliation(s)
- Jérôme Galon
- INSERM Laboratory of Integrative Cancer Immunology, Equipe Labellisée Ligue Contre le Cancer, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Centre de Recherche des Cordeliers, 75006, Paris, France.
| | - Daniela Bruni
- INSERM Laboratory of Integrative Cancer Immunology, Equipe Labellisée Ligue Contre le Cancer, Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Centre de Recherche des Cordeliers, 75006, Paris, France
| |
Collapse
|
24
|
Bae JM, Wen X, Kim TS, Kwak Y, Cho NY, Lee HS, Kang GH. Fibroblast Growth Factor Receptor 1 (FGFR1) Amplification Detected by Droplet Digital Polymerase Chain Reaction (ddPCR) Is a Prognostic Factor in Colorectal Cancers. Cancer Res Treat 2020; 52:74-84. [PMID: 31096734 PMCID: PMC6962468 DOI: 10.4143/crt.2019.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/07/2019] [Indexed: 01/06/2023] Open
Abstract
PURPOSE The purpose of this study was to reveal the clinicopathological characteristics and prognostic implications associated with fibroblast growth factor receptor 1 (FGFR1) amplification in colorectal cancers (CRCs). MATERIALS AND METHODS We measured the copy number of FGFR1 by droplet digital polymerase chain reaction (ddPCR), and analyzed the FGFR1 expression by immunohistochemistry, in 764 surgically resected CRCs (SNUH2007 dataset, 384 CRCs; SNUH Folfox dataset, 380 CRCs). RESULTS CRCs with ≥ 3.3 copies of the FGFR1 gene were classified as FGFR1 amplified. FGFR1 amplification was found in 10 of the 384 CRCs (2.6%) in the SNUH2007 dataset, and in 28 of the 380 CRCs (7.4%) in the SNUH Folfox dataset. In the SNUH2007 dataset, there was no association between the FGFR1 copy number status and sex, gross appearance, stage, or differentiation. High FGFR1 expression was associated with female sex and KRAS mutation. At the molecular level, FGFR1 amplification was mutually exclusive with BRAF mutation, microsatellite instability, and MLH1 methylation, in both SNUH2007 and SNUH Folfox datasets. Survival analysis revealed that FGFR1 amplification was associated with significantly worse clinical outcome compared with no FGFR1 amplification, in both SNUH2007 and SNUH Folfox datasets. Within the SNUH2007 dataset, CRC patients with high FGFR1 expression had an inferior progression-free survival compared with those with low FGFR1 expression. The FGFR inhibitor, PD173074, repressed the proliferation of a CRC cell line overexpressing FGFR1, but not of cells with FGFR1 amplification. CONCLUSION FGFR1 amplification measured by ddPCR can be a prognostic indicator of poor clinical outcome in patients with CRCs.
Collapse
Affiliation(s)
- Jeong Mo Bae
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Xianyu Wen
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Tae-Shin Kim
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yoonjin Kwak
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Nam-Yun Cho
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
25
|
Yoo SY, Park HE, Kim JH, Wen X, Jeong S, Cho NY, Gwon HG, Kim K, Lee HS, Jeong SY, Park KJ, Han SW, Kim TY, Bae JM, Kang GH. Whole-Slide Image Analysis Reveals Quantitative Landscape of Tumor-Immune Microenvironment in Colorectal Cancers. Clin Cancer Res 2019; 26:870-881. [PMID: 31757879 DOI: 10.1158/1078-0432.ccr-19-1159] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 09/05/2019] [Accepted: 11/15/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Despite the well-known prognostic value of the tumor-immune microenvironment (TIME) in colorectal cancers, objective and readily applicable methods for quantifying tumor-infiltrating lymphocytes (TIL) and the tumor-stroma ratio (TSR) are not yet available. EXPERIMENTAL DESIGN We established an open-source software-based analytic pipeline for quantifying TILs and the TSR from whole-slide images obtained after CD3 and CD8 IHC staining. Using a random forest classifier, the method separately quantified intraepithelial TILs (iTIL) and stromal TILs (sTIL). We applied this method to discovery and validation cohorts of 578 and 283 stage III or high-risk stage II colorectal cancers patients, respectively, who were subjected to curative surgical resection and oxlaliplatin-based adjuvant chemotherapy. RESULTS Automatic quantification of iTILs and sTILs showed a moderate concordance with that obtained after visual inspection by a pathologist. The K-means-based consensus clustering of 197 TIME parameters that showed robustness against interobserver variations caused colorectal cancers to be grouped into five distinctive subgroups, reminiscent of those for consensus molecular subtypes (CMS1-4 and mixed/intermediate group). In accordance with the original CMS report, the CMS4-like subgroup (cluster 4) was significantly associated with a worse 5-year relapse-free survival and proved to be an independent prognostic factor. The clinicopathologic and prognostic features of the TIME subgroups have been validated in an independent validation cohort. CONCLUSIONS Machine-learning-based image analysis can be useful for extracting quantitative information about the TIME, using whole-slide histopathologic images. This information can classify colorectal cancers into clinicopathologically relevant subgroups without performing a molecular analysis of the tumors.
Collapse
Affiliation(s)
- Seung-Yeon Yoo
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Hye Eun Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Xianyu Wen
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Seorin Jeong
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Nam-Yun Cho
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Hwang Gwan Gwon
- Department of Statistics, Korea University, Seoul, South Korea.,Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Kwangsoo Kim
- Division of Clinical Bioinformatics, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Pathology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Seung-Yong Jeong
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyu Joo Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Sae-Won Han
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Tae-You Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea. .,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea. .,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
26
|
Liu J, Tang L, Yi J, Li G, Lu Y, Xu Y, Zhao S, Mao R, Li X, Ren L, Wang K. Unique characteristics of CpG island methylator phenotype (CIMP) in a Chinese population with colorectal cancer. BMC Gastroenterol 2019; 19:173. [PMID: 31690257 PMCID: PMC6833289 DOI: 10.1186/s12876-019-1086-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/02/2019] [Indexed: 12/21/2022] Open
Abstract
Background Molecular characteristics of CpG island methylator phenotype (CIMP) in colorectal cancer (CRC) have been well documented in Western, but not in Chinese, populations. Methods We investigated the incidence of CIMP, BRAF/KRAS mutation, and microsatellite instability (MSI) in a Chinese population with CRC (n = 401) and analysed associations between CIMP status and clinicopathological and molecular features. Results A total of 41 cases, 310 cases, and 40 cases were classified as CIMP-high, CIMP-low, and CIMP-negative, respectively. We detected a significantly low incidence of BRAF mutation in adenomas (2%) and CRC (0.7%), and a relatively low incidence of KRAS mutation (24.9%) compared with that in other populations. We also detected a relatively low incidence of CIMP-high (10.2%), which was significantly associated with younger age (≤49 years of age), female sex, and proximal tumour location. Conclusions This study revealed unique characteristics of CIMP in a Chinese population with colorectal cancer. Developing specific CIMP markers based on unique populations or ethnic groups will further help to fully elucidate CIMP pathogenesis.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China.,Yunnan Engineering Technology Center of Digestive Disease, Kunming, 650032, Yunnan, China.,Kunming Engineering Technology Center of Digestive Disease, Kunming, 650032, Yunnan, China
| | - Li Tang
- Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Jinhua Yi
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, 650032, Yunnan, China.,Yunnan Engineering Technology Center of Digestive Disease, Kunming, 650032, Yunnan, China.,Kunming Engineering Technology Center of Digestive Disease, Kunming, 650032, Yunnan, China
| | - Guimei Li
- Public Technical Service Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650032, Yunnan, China.,Kunming Biological Diversity Regional Center of Large Apparatus and Equipments, Chinese Academy of Sciences, Kunming, 650032, Yunnan, China
| | - Youwang Lu
- Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China.,Yunnan Engineering Technology Center of Digestive Disease, Kunming, 650032, Yunnan, China.,Kunming Engineering Technology Center of Digestive Disease, Kunming, 650032, Yunnan, China
| | - Yu Xu
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, 650032, Yunnan, China.,Yunnan Engineering Technology Center of Digestive Disease, Kunming, 650032, Yunnan, China.,Kunming Engineering Technology Center of Digestive Disease, Kunming, 650032, Yunnan, China
| | - Shuhua Zhao
- Department of Reproduction and Genetics, the First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Rui Mao
- School of Stomatology, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Xiaolu Li
- Public Technical Service Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650032, Yunnan, China.,Kunming Biological Diversity Regional Center of Large Apparatus and Equipments, Chinese Academy of Sciences, Kunming, 650032, Yunnan, China
| | - Li Ren
- Department of Reproductive Gynecology, the First People's Hospital of Yunnan Province, Kunming, 650031, Yunnan, China
| | - Kunhua Wang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, 650032, Yunnan, China. .,Yunnan Engineering Technology Center of Digestive Disease, Kunming, 650032, Yunnan, China. .,Kunming Engineering Technology Center of Digestive Disease, Kunming, 650032, Yunnan, China.
| |
Collapse
|
27
|
Zhang H, Wang R, Wang M. miR-331-3p suppresses cell invasion and migration in colorectal carcinoma by directly targeting NRP2. Oncol Lett 2019; 18:6501-6508. [PMID: 31807170 PMCID: PMC6876315 DOI: 10.3892/ol.2019.11029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
Colorectal carcinoma (CRC) is a common tumor of the digestive system with poor prognosis. Studies have shown that aberrant microRNA (miRNA) expression can affect CRC progression by regulating target genes. In the present study, we investigated the functional roles and potential mechanisms of miR-331-3p in CRC. The expression of miR-331-3p and neuropilin-2 (NRP2) in CRC was detected by RT-qPCR. Then, Transwell assays were conducted to investigate the influence of miR-331-3p on CRC cell invasion and migration abilities. Luciferase reporter assays were performed to determine the target gene of miR-331-3p. It was found that miR-331-3p expression was notably declined in CRC and inversely correlated with the NRP2 expression. miR-331-3p upregulation significantly inhibited CRC cell invasion and migration. Additionally, western blot analysis demonstrated that miR-331-3p restoration evidently suppressed CRC cell EMT. Moreover, NRP2 was conformed to be a novel target of miR-331-3p and knockdown of NRP2 partially inversed the effects of the miR-331-3p inhibitor on cell invasion and migration. These results suggested that miR-331-3p exerted tumor suppressive roles in CRC by targeting NRP2 and miR-331-3p/NRP2 may serve as a potential therapy for CRC.
Collapse
Affiliation(s)
- Hongye Zhang
- Department of Oncology, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Ruiyu Wang
- Department of Oncology, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Mingxia Wang
- Department of Oncology, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| |
Collapse
|
28
|
Barchitta M, Maugeri A, Li Destri G, Basile G, Agodi A. Epigenetic Biomarkers in Colorectal Cancer Patients Receiving Adjuvant or Neoadjuvant Therapy: A Systematic Review of Epidemiological Studies. Int J Mol Sci 2019; 20:ijms20153842. [PMID: 31390840 PMCID: PMC6696286 DOI: 10.3390/ijms20153842] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) represents the third-most common cancer worldwide and one of the main challenges for public health. Despite great strides in the application of neoadjuvant and adjuvant therapies for rectal and colon cancer patients, each of these treatments is still associated with certain adverse effects and different response rates. Thus, there is an urgent need for identifying novel potential biomarkers that might guide personalized treatments for specific subgroups of patients. However, until now, there are no biomarkers to predict the manifestation of adverse effects and the response to treatment in CRC patients. Herein, we provide a systematic review of epidemiological studies investigating epigenetic biomarkers in CRC patients receiving neoadjuvant or adjuvant therapy, and their potential role for the prediction of outcomes and response to treatment. With this aim in mind, we identified several epigenetic markers in CRC patients who received surgery with adjuvant or neoadjuvant therapy. However, none of them currently has the robustness to be translated into the clinical setting. Thus, more efforts and further large-size prospective studies and/or trials should be encouraged to develop epigenetic biomarker panels for personalized prevention and medicine in CRC cancer.
Collapse
Affiliation(s)
- Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95123 Catania, Italy
| | - Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95123 Catania, Italy
| | - Giovanni Li Destri
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95123 Catania, Italy
| | - Guido Basile
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, via S. Sofia, 78, 95123 Catania, Italy
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95123 Catania, Italy.
| |
Collapse
|
29
|
The Molecular Hallmarks of the Serrated Pathway in Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11071017. [PMID: 31330830 PMCID: PMC6678087 DOI: 10.3390/cancers11071017] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death worldwide. It includes different subtypes that differ in their clinical and prognostic features. In the past decade, in addition to the conventional adenoma-carcinoma model, an alternative multistep mechanism of carcinogenesis, namely the “serrated pathway”, has been described. Approximately, 15 to 30% of all CRCs arise from neoplastic serrated polyps, a heterogeneous group of lesions that are histologically classified into three morphologic categories: hyperplastic polyps, sessile serrated adenomas/polyps, and the traditional serrated adenomas/polyps. Serrated polyps are characterized by genetic (BRAF or KRAS mutations) and epigenetic (CpG island methylator phenotype (CIMP)) alterations that cooperate to initiate and drive malignant transformation from normal colon mucosa to polyps, and then to CRC. The high heterogeneity of the serrated lesions renders their diagnostic and pathological interpretation difficult. Hence, novel genetic and epigenetic biomarkers are required for better classification and management of CRCs. To date, several molecular alterations have been associated with the serrated polyp-CRC sequence. In addition, the gut microbiota is emerging as a contributor to/modulator of the serrated pathway. This review summarizes the state of the art of the genetic, epigenetic and microbiota signatures associated with serrated CRCs, together with their clinical implications.
Collapse
|
30
|
Yoo SY, Lee JA, Shin Y, Cho NY, Bae JM, Kang GH. Clinicopathological Characterization and Prognostic Implication of SMAD4 Expression in Colorectal Carcinoma. J Pathol Transl Med 2019; 53:289-297. [PMID: 31237997 PMCID: PMC6755646 DOI: 10.4132/jptm.2019.06.07] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/07/2019] [Indexed: 12/24/2022] Open
Abstract
Background SMAD family member 4 (SMAD4) has gained attention as a promising prognostic factor of colorectal cancer (CRC) as well as a key molecule to understand the tumorigenesis and progression of CRC. Methods We retrospectively analyzed 1,281 CRC cases immunohistochemically for their expression status of SMAD4, and correlated this status with clinicopathologic and molecular features of CRCs. Results A loss of nuclear SMAD4 was significantly associated with frequent lymphovascular and perineural invasion, tumor budding, fewer tumor-infiltrating lymphocytes, higher pT and pN category, and frequent distant metastasis. In contrast, tumors overexpressing SMAD4 showed a significant association with sporadic microsatellite instability. After adjustment for TNM stage, tumor differentiation, adjuvant chemotherapy, and lymphovascular invasion, the loss of SMAD4 was found to be an independent prognostic factor for worse 5-year progression-free survival (hazard ratio [HR], 1.27; 95% confidence interval [CI], 1.01 to 1.60; p=.042) and 7-year cancer-specific survival (HR, 1.45; 95% CI, 1.06 to 1.99; p=.022). Conclusions We confirmed the value of determining the loss of SMAD4 immunohistochemically as an independent prognostic factor for CRC in general. In addition, we identified some histologic and molecular features that might be clues to elucidate the role of SMAD4 in colorectal tumorigenesis and progression.
Collapse
Affiliation(s)
- Seung-Yeon Yoo
- Department of Pathology, Seoul National University Hospital, Seoul, Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ji-Ae Lee
- Department of Pathology, Seoul National University Hospital, Seoul, Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yunjoo Shin
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Nam-Yun Cho
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul National University Hospital, Seoul, Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University Hospital, Seoul, Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
31
|
Patnaik S, Anupriya. Drugs Targeting Epigenetic Modifications and Plausible Therapeutic Strategies Against Colorectal Cancer. Front Pharmacol 2019; 10:588. [PMID: 31244652 PMCID: PMC6563763 DOI: 10.3389/fphar.2019.00588] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/08/2019] [Indexed: 12/14/2022] Open
Abstract
Genetic variations along with epigenetic modifications of DNA are involved in colorectal cancer (CRC) development and progression. CRC is the fourth leading cause of cancer-related deaths worldwide. Initiation and progression of CRC is the cumulation of a variety of genetic and epigenetic changes in colonic epithelial cells. Colorectal carcinogenesis is associated with epigenetic aberrations including DNA methylation, histone modifications, chromatin remodeling, and non-coding RNAs. Recently, epigenetic modifications have been identified like association of hypermethylated gene Claudin11 (CLDN11) with metastasis and prognosis of poor survival of CRC. DNA methylation of genes CMTM3, SSTR2, MDF1, NDRG4 and TGFB2 are potential epigenetic biomarkers for the early detection of CRC. Tumor suppressor candidate 3 (TUSC3) mRNA expression is silenced by promoter methylation, which promotes epidermal growth factor receptor (EGFR) signaling and rescues the CRC cells from apoptosis and hence leading to poor survival rate. Previous scientific evidences strongly suggest epigenetic modifications that contribute to anticancer drug resistance. Recent research studies emphasize development of drugs targeting histone deacetylases (HDACs) and DNA methyltransferase inhibitors as an emerging anticancer strategy. This review covers potential epigenetic modification targeting chemotherapeutic drugs and probable implementation for the treatment of CRC, which offers a strong rationale to explore therapeutic strategies and provides a basis to develop potent antitumor drugs.
Collapse
|
32
|
Sun J, Fei F, Zhang M, Li Y, Zhang X, Zhu S, Zhang S. The role of mSEPT9 in screening, diagnosis, and recurrence monitoring of colorectal cancer. BMC Cancer 2019; 19:450. [PMID: 31088406 PMCID: PMC6518628 DOI: 10.1186/s12885-019-5663-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The application of circulating, cell-free, methylated Septin9 (mSEPT9) DNA in screening and recurrence monitoring is highly promising. CpG island methylator phenotype (CIMP) is associated with microsatellite instability (MSI). The present study was performed to determine the diagnostic accuracy of mSEPT9 for colorectal cancer (CRC) and to evaluate its utility in CRC screening and recurrence monitoring. METHODS For screening and diagnosis of CRC, peripheral mSEPT9 detection and fecal occult blood test (FOBT) were performed in 650 subjects, then the level of CEA, CA19-9 and CA724 was quantified in 173 subjects. Clinicopathological parameters and mismatch repair protein were detected among subjects with CRC. For recurrence monitoring of CRC, the sensitivity of mSEPT9 of 70 subjects was compared with tumor markers and contrast enhanced computed tomography (CECT). RESULTS Seventy-three percent of CRC patients were mSEPT9-positive at 94.5% specificity, and 17.1% of patients with intestinal polyps and adenoma were mSEPT9-positive at 94.5% specificity, which were higher than FOBT for the screening of CRC. The sensitivity and specificity of mSEPT9 for diagnosis and recurrence monitoring were higher than that of CEA, CA19-9 and CA724. The combined detection of mSEPT9 and CECT enhanced the sensitivity for recurrence monitoring. Pre-therapeutic levels of mSEPT9 were strongly associated with TNM stage, Dukes stages and mismatch repair deficiency (dMMR). CONCLUSIONS mSEPT9 analysis might be popularized as a routine biomarker for CRC screening. The combined detection of mSEPT9 and CECT can play an important role for recurrence monitoring. CIMP was highly associated with the pathological stage of CRC and dMMR.
Collapse
Affiliation(s)
- Jie Sun
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People’s Republic of China
| | - Fei Fei
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People’s Republic of China
- Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Mingqing Zhang
- Department of colorectal surgery, Tianjin Union Medical Center, Tianjin, 300121 People’s Republic of China
| | - Yuwei Li
- Department of colorectal surgery, Tianjin Union Medical Center, Tianjin, 300121 People’s Republic of China
| | - Xipeng Zhang
- Department of colorectal surgery, Tianjin Union Medical Center, Tianjin, 300121 People’s Republic of China
| | - Siwei Zhu
- Tianjin Union Medical Center, Tianjin, 300121 People’s Republic of China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People’s Republic of China
- Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| |
Collapse
|
33
|
p53 expression status is associated with cancer-specific survival in stage III and high-risk stage II colorectal cancer patients treated with oxaliplatin-based adjuvant chemotherapy. Br J Cancer 2019; 120:797-805. [PMID: 30894685 PMCID: PMC6474280 DOI: 10.1038/s41416-019-0429-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND We attempted to elucidate whether p53 expression or TP53 mutation status was associated with cancer-specific survival in adjuvant FOLFOX-treated patients with stage III or high-risk stage II colorectal cancer (CRC). METHODS We analysed CRCs (N = 621) for the presence of TP53 alterations and for p53 expression, using targeted resequencing and immunohistochemistry. CRCs were grouped into four subsets according to the p53 expression status, which included p53-no, mild, moderate and strong expression. RESULTS The distributions of CRCs were 19.85, 11.05, 17.7% and 51.5% in the p53-no, mild, moderate and strong expression groups, respectively. Cases in the p53-mild to moderate expression group were associated with a more frequent proximal location, undifferentiated histology, lower N category, extraglandular mucin production, microsatellite instability, CIMP-P1, CK7 expression and decreased CDX2 expression compared with those of cases of the p53-no expression and p53-strong expression groups. According to survival analysis, the p53-mild expression group showed a poor 5-year relapse-free survival (hazard ratio (HR): 2.71, 95% confidence interval (CI) = 1.60-4.60, P < 0.001) and poor 5-year cancer-specific survival (HR: 2.90, 95% CI = 1.28-6.57, P = 0.011). CONCLUSIONS p53-mild expression status was found to be an independent prognostic marker in adjuvant FOLFOX-treated patients with stage III and high-risk stage II CRC.
Collapse
|
34
|
Tao Y, Kang B, Petkovich DA, Bhandari YR, In J, Stein-O'Brien G, Kong X, Xie W, Zachos N, Maegawa S, Vaidya H, Brown S, Chiu Yen RW, Shao X, Thakor J, Lu Z, Cai Y, Zhang Y, Mallona I, Peinado MA, Zahnow CA, Ahuja N, Fertig E, Issa JP, Baylin SB, Easwaran H. Aging-like Spontaneous Epigenetic Silencing Facilitates Wnt Activation, Stemness, and Braf V600E-Induced Tumorigenesis. Cancer Cell 2019; 35:315-328.e6. [PMID: 30753828 PMCID: PMC6636642 DOI: 10.1016/j.ccell.2019.01.005] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/25/2018] [Accepted: 01/07/2019] [Indexed: 11/22/2022]
Abstract
We addressed the precursor role of aging-like spontaneous promoter DNA hypermethylation in initiating tumorigenesis. Using mouse colon-derived organoids, we show that promoter hypermethylation spontaneously arises in cells mimicking the human aging-like phenotype. The silenced genes activate the Wnt pathway, causing a stem-like state and differentiation defects. These changes render aged organoids profoundly more sensitive than young ones to transformation by BrafV600E, producing the typical human proximal BRAFV600E-driven colon adenocarcinomas characterized by extensive, abnormal gene-promoter CpG-island methylation, or the methylator phenotype (CIMP). Conversely, CRISPR-mediated simultaneous inactivation of a panel of the silenced genes markedly sensitizes to BrafV600E-induced transformation. Our studies tightly link aging-like epigenetic abnormalities to intestinal cell fate changes and predisposition to oncogene-driven colon tumorigenesis.
Collapse
Affiliation(s)
- Yong Tao
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD 21287, USA
| | - Byunghak Kang
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD 21287, USA
| | - Daniel A Petkovich
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD 21287, USA
| | - Yuba R Bhandari
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD 21287, USA
| | - Julie In
- Hopkins Conte Digestive Disease, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Genevieve Stein-O'Brien
- Division of Biostatistics & Bioinformatics, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xiangqian Kong
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD 21287, USA
| | - Wenbing Xie
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD 21287, USA
| | - Nicholas Zachos
- Hopkins Conte Digestive Disease, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Shinji Maegawa
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Unit 853, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Himani Vaidya
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Stephen Brown
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD 21287, USA
| | - Ray-Whay Chiu Yen
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD 21287, USA
| | - Xiaojian Shao
- Department of Human Genetics, Canadian Centre for Computational Genomics, McGill University, Montreal, QC, Canada
| | - Jai Thakor
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD 21287, USA
| | - Zhihao Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yi Cai
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD 21287, USA
| | - Yuezheng Zhang
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Izaskun Mallona
- Germans Trias i Pujol Health Science Research Institute (IGTP), Program for Personalized Medicine of Cancer, Badalona, 08916 Catalonia, Spain
| | - Miguel Angel Peinado
- Germans Trias i Pujol Health Science Research Institute (IGTP), Program for Personalized Medicine of Cancer, Badalona, 08916 Catalonia, Spain
| | - Cynthia A Zahnow
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD 21287, USA
| | - Nita Ahuja
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD 21287, USA
| | - Elana Fertig
- Division of Biostatistics & Bioinformatics, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jean-Pierre Issa
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Stephen B Baylin
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD 21287, USA.
| | - Hariharan Easwaran
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD 21287, USA.
| |
Collapse
|
35
|
Graule J, Uth K, Fischer E, Centeno I, Galván JA, Eichmann M, Rau TT, Langer R, Dawson H, Nitsche U, Traeger P, Berger MD, Schnüriger B, Hädrich M, Studer P, Inderbitzin D, Lugli A, Tschan MP, Zlobec I. CDX2 in colorectal cancer is an independent prognostic factor and regulated by promoter methylation and histone deacetylation in tumors of the serrated pathway. Clin Epigenetics 2018; 10:120. [PMID: 30257705 PMCID: PMC6158822 DOI: 10.1186/s13148-018-0548-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 08/27/2018] [Indexed: 01/01/2023] Open
Abstract
Background In colorectal cancer, CDX2 expression is lost in approximately 20% of cases and associated with poor outcome. Here, we aim to validate the clinical impact of CDX2 and investigate the role of promoter methylation and histone deacetylation in CDX2 repression and restoration. Methods CDX2 immunohistochemistry was performed on multi-punch tissue microarrays (n = 637 patients). Promoter methylation and protein expression investigated on 11 colorectal cancer cell lines identified two CDX2 low expressors (SW620, COLO205) for treatment with decitabine (DNA methyltransferase inhibitor), trichostatin A (TSA) (general HDAC inhibitor), and LMK-235 (specific HDAC4 and HDAC5 inhibitor). RNA and protein levels were assessed. HDAC5 recruitment to the CDX2 gene promoter region was tested by chromatin immunoprecipitation. Results Sixty percent of tumors showed focal CDX2 loss; 5% were negative. Reduced CDX2 was associated with lymph node metastasis (p = 0.0167), distant metastasis (p = 0.0123), and unfavorable survival (multivariate analysis: p = 0.0008; HR (95%CI) 0.922 (0.988–0.997)) as well as BRAFV600E, mismatch repair deficiency, and CpG island methylator phenotype. Decitabine treatment alone induced CDX2 RNA and protein with values from 2- to 25-fold. TSA treatment ± decitabine also led to successful restoration of RNA and/or protein. Treatment with LMK-235 alone had marked effects on RNA and protein levels, mainly in COLO205 cells that responded less to decitabine. Lastly, decitabine co-treatment was more effective than LMK-235 alone at restoring CDX2. Conclusion CDX2 loss is an adverse prognostic factor and linked to molecular features of the serrated pathway. RNA/protein expression is restored in CDX2 low-expressing CRC cell lines by demethylation and HDAC inhibition. Importantly, our data underline HDAC4 and HDAC5 as new epigenetic CDX2 regulators that warrant further investigation. Electronic supplementary material The online version of this article (10.1186/s13148-018-0548-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janina Graule
- Institute of Pathology, University of Bern, Murtenstrasse 31, Room L310, 3008, Bern, Switzerland
| | - Kristin Uth
- Institute of Pathology, University of Bern, Murtenstrasse 31, Room L310, 3008, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, 3012, Bern, Switzerland
| | - Elia Fischer
- Institute of Pathology, University of Bern, Murtenstrasse 31, Room L310, 3008, Bern, Switzerland
| | - Irene Centeno
- Institute of Pathology, University of Bern, Murtenstrasse 31, Room L310, 3008, Bern, Switzerland
| | - José A Galván
- Institute of Pathology, University of Bern, Murtenstrasse 31, Room L310, 3008, Bern, Switzerland
| | - Micha Eichmann
- Institute of Pathology, University of Bern, Murtenstrasse 31, Room L310, 3008, Bern, Switzerland
| | - Tilman T Rau
- Institute of Pathology, University of Bern, Murtenstrasse 31, Room L310, 3008, Bern, Switzerland
| | - Rupert Langer
- Institute of Pathology, University of Bern, Murtenstrasse 31, Room L310, 3008, Bern, Switzerland
| | - Heather Dawson
- Institute of Pathology, University of Bern, Murtenstrasse 31, Room L310, 3008, Bern, Switzerland
| | - Ulrich Nitsche
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, Munich, 81675, Germany
| | - Peter Traeger
- Careanesth AG, Nelkenstrasse 15, Zürich, 8006, Switzerland
| | - Martin D Berger
- Department of Medical Oncology, University Hospital of Bern, 3010, Bern, Switzerland.,Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, 90033, CA, USA
| | - Beat Schnüriger
- Department of Visceral and Internal Medicine, University Hospital of Bern, 3008, Bern, Switzerland
| | - Marion Hädrich
- Department of Visceral and Internal Medicine, University Hospital of Bern, 3008, Bern, Switzerland
| | - Peter Studer
- Department of Visceral and Internal Medicine, University Hospital of Bern, 3008, Bern, Switzerland
| | - Daniel Inderbitzin
- University of Bern and Bürgerspital Solothurn, Schöngrünstrasse 42, 4500, Solothurn, Switzerland
| | - Alessandro Lugli
- Institute of Pathology, University of Bern, Murtenstrasse 31, Room L310, 3008, Bern, Switzerland
| | - Mario P Tschan
- Institute of Pathology, University of Bern, Murtenstrasse 31, Room L310, 3008, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, 3012, Bern, Switzerland
| | - Inti Zlobec
- Institute of Pathology, University of Bern, Murtenstrasse 31, Room L310, 3008, Bern, Switzerland.
| |
Collapse
|
36
|
Wong CC, Li W, Chan B, Yu J. Epigenomic biomarkers for prognostication and diagnosis of gastrointestinal cancers. Semin Cancer Biol 2018; 55:90-105. [PMID: 29665409 DOI: 10.1016/j.semcancer.2018.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
Abstract
Altered epigenetic regulation is central to many human diseases, including cancer. Over the past two decade, major advances have been made in our understanding of the role of epigenetic alterations in carcinogenesis, particularly for DNA methylation, histone modifications and non-coding RNAs. Aberrant hypermethylation of DNA at CpG islands is a well-established phenomenon that mediates transcriptional silencing of tumor suppressor genes, and it is an early event integral to gastrointestinal cancer development. As such, detection of aberrant DNA methylation is being developed as biomarkers for prognostic and diagnostic purposes in gastrointestinal cancers. Diverse tissue types are suitable for the analyses of methylated DNA, such as tumor tissues, blood, plasma, and stool, and some of these markers are already utilized in the clinical setting. Recent advances in the genome-wide epigenomic approaches are enabling the comprehensive mapping of the cancer methylome, thus providing new avenues for mining novel biomarkers for disease prognosis and diagnosis. Here, we review the current knowledge on DNA methylation biomarkers for the prognostication and non-invasive diagnosis of gastrointestinal cancers and highlight their clinical application.
Collapse
Affiliation(s)
- Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong.
| | - Weilin Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong; Department of Surgery, The Chinese University of Hong Kong, Hong Kong
| | - Bertina Chan
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
37
|
Tapial S, Rueda D, Arriba M, Luis García J, Brandáriz L, Pérez J, Rodríguez Y, García-Olmo D, González-Sarmiento R, Urioste M, Perea J. Comment on 'Distinct clinical outcomes of two CIMP-positive colorectal cancer subtypes based on a revised CIMP classification system'. Br J Cancer 2018; 118:e3. [PMID: 29384528 PMCID: PMC5808020 DOI: 10.1038/bjc.2017.343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Sandra Tapial
- Digestive Cancer Research Group, 12 de Octubre Research Institute, Madrid 28041, Spain
| | - Daniel Rueda
- Digestive Cancer Research Group, 12 de Octubre Research Institute, Madrid 28041, Spain
- Molecular Biology Laboratory, Department of Biochemistry, 12 de Octubre University Hospital, Madrid 28041, Spain
| | - María Arriba
- Department of Biochemistry, Gregorio Marañón University Hospital, Madrid 28009, Spain
| | - Juan Luis García
- Molecular Medicine Unit, Biomedical Research Institute of Salamanca (IBSAL), Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-USAL-CSIC, Salamanca 37007, Spain
| | - Lorena Brandáriz
- Department of Surgery, Fundación Jiménez Díaz University Hospital, Madrid 28040, Spain
| | - Jessica Pérez
- Molecular Medicine Unit, Biomedical Research Institute of Salamanca (IBSAL), Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-USAL-CSIC, Salamanca 37007, Spain
| | - Yolanda Rodríguez
- Department of Pathology, 12 de Octubre University Hospital, Madrid 28041, Spain
| | - Damián García-Olmo
- Department of Surgery, Fundación Jiménez Díaz University Hospital, Madrid 28040, Spain
| | - Rogelio González-Sarmiento
- Molecular Medicine Unit, Biomedical Research Institute of Salamanca (IBSAL), Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-USAL-CSIC, Salamanca 37007, Spain
| | - Miguel Urioste
- Familial Cancer Clinical Unit, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid 28029, Spain
| | - José Perea
- Department of Surgery, Fundación Jiménez Díaz University Hospital, Madrid 28040, Spain
| |
Collapse
|
38
|
El Bairi K, Tariq K, Himri I, Jaafari A, Smaili W, Kandhro AH, Gouri A, Ghazi B. Decoding colorectal cancer epigenomics. Cancer Genet 2018; 220:49-76. [PMID: 29310839 DOI: 10.1016/j.cancergen.2017.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is very heterogeneous and presents different types of epigenetic alterations including DNA methylation, histone modifications and microRNAs. These changes are considered as characteristics of various observed clinical phenotypes. Undoubtedly, the discovery of epigenetic pathways with novel epigenetic-related mechanisms constitutes a promising advance in cancer biomarker discovery. In this review, we provide an evidence-based discussing of the current understanding of CRC epigenomics and its role in initiation, epithelial-to-mesenchymal transition and metastasis. We also discuss the recent findings regarding the potential clinical perspectives of these alterations as potent biomarkers for CRC diagnosis, prognosis, and therapy in the era of liquid biopsy.
Collapse
Affiliation(s)
- Khalid El Bairi
- Independent Research Team in Cancer Biology and Bioactive Compounds, Mohamed 1(st) University, Oujda, Morocco.
| | - Kanwal Tariq
- B-10 Jumani Center, Garden East, Karachi 74400, Pakistan
| | - Imane Himri
- Laboratory of Biochemistry, Faculty of Sciences, Mohamed I(st) Universiy, Oujda, Morocco; Delegation of the Ministry of Health, Oujda, Morocco
| | - Abdeslam Jaafari
- Laboratoire de Génie Biologique, Equipe d'Immunopharmacologie, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, Beni Mellal, Maroc
| | - Wiam Smaili
- Centre de Génomique Humaine, Faculté de Médecine et de Pharmacie, Université Mohamed V, Rabat, Maroc; Département de Génétique Médicale, Institut National d'Hygiène, Rabat, Maroc
| | - Abdul Hafeez Kandhro
- Department of Biochemistry, Healthcare Molecular and Diagnostic Laboratory, Hyderabad, Pakistan
| | - Adel Gouri
- Laboratory of Medical Biochemistry, Ibn Rochd University Hospital, Annaba, Algeria
| | - Bouchra Ghazi
- National Laboratory of Reference, Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| |
Collapse
|
39
|
Bae JM, Kim JH, Park JH, Park HE, Cho NY, Kang GH. Clinicopathological and molecular implications of aberrant thyroid transcription factor-1 expression in colorectal carcinomas: an immunohistochemical analysis of 1319 cases using three different antibody clones. Histopathology 2017; 72:423-432. [DOI: 10.1111/his.13398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/12/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Jeong Mo Bae
- Department of Pathology; Seoul National University Hospital; Seoul National University College of Medicine; Seoul Korea
| | - Jung Ho Kim
- Department of Pathology; Seoul National University Hospital; Seoul National University College of Medicine; Seoul Korea
| | - Jeong Hwan Park
- Department of Pathology; SMG-SNU Boramae Medical Centre; Seoul Korea
| | - Hye Eun Park
- Department of Pathology; Seoul National University Hospital; Seoul National University College of Medicine; Seoul Korea
| | - Nam-Yun Cho
- Laboratory of Epigenetics; Cancer Research Institute; Seoul National University College of Medicine; Seoul Korea
| | - Gyeong Hoon Kang
- Department of Pathology; Seoul National University Hospital; Seoul National University College of Medicine; Seoul Korea
- Laboratory of Epigenetics; Cancer Research Institute; Seoul National University College of Medicine; Seoul Korea
| |
Collapse
|