1
|
Nusrat S, Davis H, MacDougall K, George JN, Nakamura R, Borogovac A. Thrombotic Microangiopathy After Hematopoietic Stem Cell and Solid Organ Transplantation: A Review for Intensive Care Physicians. J Intensive Care Med 2024; 39:406-419. [PMID: 37990516 DOI: 10.1177/08850666231200193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Intensive care physicians may assume the primary care of patients with transplant-associated thrombotic microangiopathy (TA-TMA), an uncommon but potentially critical complication of hematopoietic stem cell transplants (HSCTs) and solid organ transplants. TA-TMA can have a dramatic presentation with multiple organ dysfunction syndrome (MODS) associated with high morbidity and mortality. The typical presenting clinical features are hemolytic anemia, thrombocytopenia, refractory hypertension, proteinuria and worsening renal failure. Intestinal involvement, with abdominal pain, nausea and vomiting, gastrointestinal bleeding, and ascites are also common. Cardiopulmonary involvement may develop from various causes including pulmonary arteriolar hypertension, pleural and pericardial effusions, and diffuse alveolar hemorrhage. Due to other often concurrent complications after HSCT, early diagnosis and effective management of TA-TMA may be challenging. Close collaboration between ICU and transplant physicians, along with other relevant specialists, is needed to best manage these patients. There are currently no approved therapies for the treatment of TA-TMA. Plasma exchange and rituximab are not recommended unless circulating factor H (CFH) antibodies or thrombotic thrombocytopenic purpura (TTP; ADAMTS activity < 10%) are diagnosed or highly suspected. The role of the complement pathway activation in the pathophysiology of TA-TMA has led to the successful use of targeted complement inhibitors, such as eculizumab. However, the relatively larger studies using eculizumab have been mostly conducted in the pediatric population with limited data on the adult population. This review is focused on the role of intensive care physicians to emphasize the clinical approach to patients with suspected TA-TMA and to discuss diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Sanober Nusrat
- Department of Medicine, Division of Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hugh Davis
- Division of Pulmonary and Critical Care Medicine, City of Hope, Duarte, CA, USA
| | - Kira MacDougall
- Department of Medicine, Division of Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - James N George
- Department of Medicine, Division of Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ryotaro Nakamura
- Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Azra Borogovac
- Department of Hematology and Hematopoietic Cell Transplantation, Lennar Foundation Cancer Center, City of Hope, Irvine, CA, USA
| |
Collapse
|
2
|
Qi J, Pan T, You T, Tang Y, Chu T, Chen J, Fan Y, Hu S, Yang F, Ruan C, Wu D, Han Y. Upregulation of HIF-1α contributes to complement activation in transplantation-associated thrombotic microangiopathy. Br J Haematol 2022; 199:603-615. [PMID: 35864790 DOI: 10.1111/bjh.18377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 01/01/2023]
Abstract
Transplantation-associated thrombotic microangiopathy (TA-TMA) is a severe complication of haematopoietic stem cell transplantation (HSCT). Complement activation is involved in the development of TA-TMA. However, the underlying mechanism is unclear. Therefore, 21 samples of TA-TMA and 1:1 matched controls were measured for hypoxia-inducible factor-1α (HIF-1α) and complement protein. The mechanism was investigated both in vitro and in vivo. In this study, we found that levels of HIF-1α were significantly higher in TA-TMA patients than that in non-TA-TMA controls. Upregulation of HIF-1α induced an increase in membrane-bound complement C3 and dysfunction of human umbilical vein endothelial cells (HUVECs) in vitro. Increasing HIF-1α in vivo led to C3 and C5b-9 deposition in the glomerular endothelial capillary complex, thrombocytopenia, anaemia, and increased serum lactate dehydrogenase (LDH) levels in wild-type (WT) but not in C3-/- mice subjected to HSCT. High platelet aggregation in peripheral blood and CD41-positive microthrombi in the kidney were also found in dimethyloxallyl glycine (DMOG)-treated mice, recapitulating the TA-TMA phenotype seen in patients. Comprehensive analysis, including DNA array, luciferase reporter assay, chromatin immunoprecipitation (ChIP)-seq, and quantitative polymerase chain reaction (PCR), revealed that HIF-1α interacted with the promoter of complement factor H (CFH) to inhibit its transcription. Decreased CFH led to complement activation in endothelial cells.
Collapse
Affiliation(s)
- Jiaqian Qi
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Tingting Pan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Tao You
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Yaqiong Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Tiantian Chu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jia Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Yi Fan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Shuhong Hu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Fei Yang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Changgeng Ruan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| |
Collapse
|
3
|
Hiroshima Y, Sato K, Ueki T, Sumi M, Ueno M, Ichikawa N, Satomi H, Kobayashi H. Rapid Improvement in Jaundice Using Transdermal Isosorbide Tape as a Nitric Oxide Donor in Two Adult Patients with Transplantation-associated Microangiopathy Related to Graft-versus-host Disease. Intern Med 2022; 61:1225-1230. [PMID: 34565772 PMCID: PMC9107996 DOI: 10.2169/internalmedicine.7789-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two adult patients with acute leukemia developed transplantation-associated microangiopathy (TAM) related to graft-versus-host disease (GVHD). Both patients were resistant to standard therapy for TAM and GVHD, which led to markedly elevated serum total bilirubin levels of 47.5 and 10.6 mg/dL, respectively. Transdermal isosorbide tape as a nitric oxide donor was applied to Patients 1 and 2 on post-transplantation days 60 and 66, respectively, which rapidly improved their jaundice after 1 day. This is the first report to describe the efficacy of transdermal isosorbide tape for adult patients with jaundice associated with TAM related to GVHD.
Collapse
Affiliation(s)
- Yuki Hiroshima
- The Department of Hematology, Nagano Red Cross Hospital, Japan
| | - Keijiro Sato
- The Department of Hematology, Nagano Red Cross Hospital, Japan
| | - Toshimitsu Ueki
- The Department of Hematology, Nagano Red Cross Hospital, Japan
| | - Masahiko Sumi
- The Department of Hematology, Nagano Red Cross Hospital, Japan
| | - Mayumi Ueno
- The Department of Hematology, Nagano Red Cross Hospital, Japan
| | - Naoaki Ichikawa
- The Department of Hematology, Nagano Red Cross Hospital, Japan
| | | | | |
Collapse
|
4
|
Milone G, Bellofiore C, Leotta S, Milone GA, Cupri A, Duminuco A, Garibaldi B, Palumbo G. Endothelial Dysfunction after Hematopoietic Stem Cell Transplantation: A Review Based on Physiopathology. J Clin Med 2022; 11:jcm11030623. [PMID: 35160072 PMCID: PMC8837122 DOI: 10.3390/jcm11030623] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 12/12/2022] Open
Abstract
Endothelial dysfunction (ED) is frequently encountered in transplant medicine. ED is an argument of high complexity, and its understanding requires a wide spectrum of knowledge based on many fields of basic sciences such as molecular biology, immunology, and pathology. After hematopoietic stem cell transplantation (HSCT), ED participates in the pathogenesis of various complications such as sinusoidal obstruction syndrome/veno-occlusive disease (SOS/VOD), graft-versus-host disease (GVHD), transplant-associated thrombotic microangiopathy (TA-TMA), idiopathic pneumonia syndrome (IPS), capillary leak syndrome (CLS), and engraftment syndrome (ES). In the first part of the present manuscript, we briefly review some biological aspects of factors involved in ED: adhesion molecules, cytokines, Toll-like receptors, complement, angiopoietin-1, angiopoietin-2, thrombomodulin, high-mobility group B-1 protein, nitric oxide, glycocalyx, coagulation cascade. In the second part, we review the abnormalities of these factors found in the ED complications associated with HSCT. In the third part, a review of agents used in the treatment of ED after HSCT is presented.
Collapse
|
5
|
Kaya AH, Tekgunduz E. Management of thrombotic microangiopathy after hematopoietic cell transplantation: A position statement of ThREG (Turkish Hematology Research and Education Group). Transfus Apher Sci 2021; 60:103313. [PMID: 34785151 DOI: 10.1016/j.transci.2021.103313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hematopoietic stem cell transplantation associated-thrombotic microangiopathy (TA-HCT) is one of the early complications of endothelial origin in the course of HCT. Endothelial damage to the microvascular structure and the platelet-rich microthrombi, which are formed as a result of accompanying complement activation, constitute the main pathological conditions resulting TA-TMA. Early diagnosis and management are of utmost importance to prevent multi-organ failure and death. This review summarizes the current understanding of TA-TMA regarding pathogenesis, definition, differential diagnosis, risk factors, surveillance for early diagnosis and management.
Collapse
Affiliation(s)
- Ali Hakan Kaya
- Maltepe University Faculty of Medicine, Department of Internal Medicine, Division of Hematology, Istanbul, Turkey.
| | - Emre Tekgunduz
- Maltepe University Faculty of Medicine, Department of Internal Medicine, Division of Hematology, Istanbul, Turkey; Memorial Bahcelievler Hospital, Adult Hematology and BMT Clinic, Istanbul, Turkey
| |
Collapse
|
6
|
Transplant-associated thrombotic microangiopathy: theoretical considerations and a practical approach to an unrefined diagnosis. Bone Marrow Transplant 2021; 56:1805-1817. [PMID: 33875812 PMCID: PMC8338557 DOI: 10.1038/s41409-021-01283-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/08/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023]
Abstract
Transplant-associated thrombotic microangiopathy (TA-TMA) is an increasingly recognized complication of hematopoietic stem cell transplant (HSCT) with high morbidity and mortality. The triad of endothelial cell activation, complement dysregulation, and microvascular hemolytic anemia has the potential to cause end organ dysfunction, multiple organ dysfunction syndrome and death, but clinical features mimic other disorders following HSCT, delaying diagnosis. Recent advances have implicated complement as a major contributor and the therapeutic potential of complement inhibition has been explored. Eculizumab has emerged as an effective therapy and narsoplimab (OMS721) has been granted priority review by the FDA. Large studies performed mostly in pediatric patients suggest that earlier recognition and treatment may lead to improved outcomes. Here we present a clinically focused summary of recently published literature and propose a diagnostic and treatment algorithm.
Collapse
|
7
|
Punatar S, Kalantri SA, Chichra A, Agrawal AK, Nayak L, Bonda A, Gokarn A, Bagal B, Mathew L, Kannan S, Khattry N. Pre-transplant use of tyrosine kinase inhibitors and transplant associated thrombotic microangiopathy - a single centre analysis of incidence, risk factors and outcomes. Bone Marrow Transplant 2021; 56:1558-1562. [PMID: 33514924 DOI: 10.1038/s41409-021-01213-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/18/2020] [Accepted: 01/07/2021] [Indexed: 11/10/2022]
Abstract
Transplant associated thrombotic microangiopathy (TA-TMA) is life-threatening complication post allogeneic stem cell transplant (ASCT). Risk factors and prognosis of TA-TMA are not well defined. We retrospectively studied consecutive ASCT patients with AML, ALL, and CML from January 2008 to March 2019 to study the incidence, risk factors, and outcomes of TMA. Definitive and probable TA-TMA was defined using Blood and Marrow Transplant Clinical Trials Network (BMT-CTN) and Cho criteria, respectively. Risk factors explored were age, gender, diagnosis, type of transplant, use of tyrosine kinase inhibitors (TKI) pre transplant, conditioning regimen, and acute GVHD. Standard statistical methods were used. Total 241 patients, 179 (74.2 %) males, median age of 29 years were studied. Diagnoses were AML in 104, ALL in 85 (Ph+ve 23) and CML 52. Total 26 (10.7%) patients (22 males) developed TA-TMA at median of day+102. On multivariate analysis, pre-HSCT TKI (OR 2.7, p = 0.028), haplo-HSCT (OR 3.16, p = 0.018) and presence of acute GVHD (OR 4.17, p = 0.003) were significant risk factors. With a median follow up of 60 months, median OS with and without TA-TMA was 18 and 97 months respectively (p = 0.021). The association of pre-HSCT with TKI with TA-TMA merits further exploration in prospective studies.
Collapse
Affiliation(s)
- Sachin Punatar
- HSCT unit, Department of Medical Oncology Tata Memorial Centre, HSCT unit, ACTREC, Kharghar, Navi Mumbai, 410210, India.,Homi Bhabha National Institute (HBNI), Anushakti Nagar, Mumbai, India
| | - Siddhesh A Kalantri
- HSCT unit, Department of Medical Oncology Tata Memorial Centre, HSCT unit, ACTREC, Kharghar, Navi Mumbai, 410210, India.,Homi Bhabha National Institute (HBNI), Anushakti Nagar, Mumbai, India
| | - Akanksha Chichra
- HSCT unit, Department of Medical Oncology Tata Memorial Centre, HSCT unit, ACTREC, Kharghar, Navi Mumbai, 410210, India.,Homi Bhabha National Institute (HBNI), Anushakti Nagar, Mumbai, India
| | - Amit Kumar Agrawal
- HSCT unit, Department of Medical Oncology Tata Memorial Centre, HSCT unit, ACTREC, Kharghar, Navi Mumbai, 410210, India
| | - Lingaraj Nayak
- HSCT unit, Department of Medical Oncology Tata Memorial Centre, HSCT unit, ACTREC, Kharghar, Navi Mumbai, 410210, India.,Homi Bhabha National Institute (HBNI), Anushakti Nagar, Mumbai, India
| | - Avinash Bonda
- HSCT unit, Department of Medical Oncology Tata Memorial Centre, HSCT unit, ACTREC, Kharghar, Navi Mumbai, 410210, India.,Homi Bhabha National Institute (HBNI), Anushakti Nagar, Mumbai, India
| | - Anant Gokarn
- HSCT unit, Department of Medical Oncology Tata Memorial Centre, HSCT unit, ACTREC, Kharghar, Navi Mumbai, 410210, India.,Homi Bhabha National Institute (HBNI), Anushakti Nagar, Mumbai, India
| | - Bhausaheb Bagal
- HSCT unit, Department of Medical Oncology Tata Memorial Centre, HSCT unit, ACTREC, Kharghar, Navi Mumbai, 410210, India.,Homi Bhabha National Institute (HBNI), Anushakti Nagar, Mumbai, India
| | - Libin Mathew
- HSCT unit, Department of Medical Oncology Tata Memorial Centre, HSCT unit, ACTREC, Kharghar, Navi Mumbai, 410210, India
| | - Sadhana Kannan
- Department of Biostatistics, Tata Memorial Centre, Paymaster Shodhika, ACTREC, Kharghar, Navi Mumbai, 410210, India
| | - Navin Khattry
- HSCT unit, Department of Medical Oncology Tata Memorial Centre, HSCT unit, ACTREC, Kharghar, Navi Mumbai, 410210, India. .,Homi Bhabha National Institute (HBNI), Anushakti Nagar, Mumbai, India.
| |
Collapse
|
8
|
Elemary M, Sabry W, Seghatchian J, Goubran H. Transplant-associated thrombotic microangiopathy: Diagnostic challenges and management strategies. Transfus Apher Sci 2019; 58:347-350. [DOI: 10.1016/j.transci.2019.04.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Qi J, Wang J, Chen J, Su J, Tang Y, Wu X, Ma X, Chen F, Ruan C, Zheng XL, Wu D, Han Y. Plasma levels of complement activation fragments C3b and sC5b-9 significantly increased in patients with thrombotic microangiopathy after allogeneic stem cell transplantation. Ann Hematol 2017; 96:1849-1855. [PMID: 28801815 PMCID: PMC6225065 DOI: 10.1007/s00277-017-3092-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 08/04/2017] [Indexed: 12/30/2022]
Abstract
Transplantation-associated thrombotic microangiopathy (TA-TMA) is an uncommon but severe complication in patients undergoing allogeneic stem cell transplantation (allo-SCT). However, the mechanism is unclear. From 2011 to 2014, 20 patients with TA-TMA, 20 patients without, and 54 patients with various other complications, including veno occlusive disease (VOD), graft-versus-host disease (GVHD), and infection, were recruited in the study. Plasma vWF antigen (vWFAg), vWF activity (vWFAc), and ADAMTS13 activity were determined in these patients by ELISAs and FRETS-vWF73 assay, respectively. Plasma C3b, sC5b-9, and CH50 were also determined by ELISAs. Plasma levels of C3b were significantly increased in patients with either TA-TMA (p < 0.0001) or GVHD (p < 0.01). Plasma sC5b-9 and CH50 levels in patients with TA-TMA were also significantly increased (p < 0.001). Plasma ADAMTS13 activity was lower in patients with VOD, but normal with other complications. Both plasma vWFAg and vWFAc levels were not elevated in patients with TA-TMA or VOD compared with those of other groups. Complement activation likely via an alternative pathway (increased C3b, sC5b-9, and CH50) may play a role in the pathogenesis of TA-TMA. ADAMTS13 activity is reduced in VOD, but the ADAMTS13/vWF axis appears to be unaffected in patients with TA-TMA.
Collapse
Affiliation(s)
- Jiaqian Qi
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Haematology, Suzhou, China
- Soochow University, Collaborative Innovation Centre of Haematology, Suzhou, China
- Key Laboratory of Thrombosis and Haemostasis of Ministry of Health, Suzhou, China
| | - Jie Wang
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Haematology, Suzhou, China
- Soochow University, Collaborative Innovation Centre of Haematology, Suzhou, China
- Key Laboratory of Thrombosis and Haemostasis of Ministry of Health, Suzhou, China
| | - Jia Chen
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Haematology, Suzhou, China
- Soochow University, Collaborative Innovation Centre of Haematology, Suzhou, China
- Key Laboratory of Thrombosis and Haemostasis of Ministry of Health, Suzhou, China
| | - Jian Su
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Haematology, Suzhou, China
- Soochow University, Collaborative Innovation Centre of Haematology, Suzhou, China
- Key Laboratory of Thrombosis and Haemostasis of Ministry of Health, Suzhou, China
| | - Yaqiong Tang
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Haematology, Suzhou, China
- Soochow University, Collaborative Innovation Centre of Haematology, Suzhou, China
- Key Laboratory of Thrombosis and Haemostasis of Ministry of Health, Suzhou, China
| | - Xiaojin Wu
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Haematology, Suzhou, China
- Soochow University, Collaborative Innovation Centre of Haematology, Suzhou, China
- Key Laboratory of Thrombosis and Haemostasis of Ministry of Health, Suzhou, China
| | - Xiao Ma
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Haematology, Suzhou, China
- Soochow University, Collaborative Innovation Centre of Haematology, Suzhou, China
- Key Laboratory of Thrombosis and Haemostasis of Ministry of Health, Suzhou, China
| | - Feng Chen
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Haematology, Suzhou, China
- Soochow University, Collaborative Innovation Centre of Haematology, Suzhou, China
- Key Laboratory of Thrombosis and Haemostasis of Ministry of Health, Suzhou, China
| | - Changgeng Ruan
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Haematology, Suzhou, China
- Soochow University, Collaborative Innovation Centre of Haematology, Suzhou, China
- Key Laboratory of Thrombosis and Haemostasis of Ministry of Health, Suzhou, China
| | - X Long Zheng
- Divsion of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, 35243, USA
| | - Depei Wu
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Haematology, Suzhou, China.
- Soochow University, Collaborative Innovation Centre of Haematology, Suzhou, China.
- Key Laboratory of Thrombosis and Haemostasis of Ministry of Health, Suzhou, China.
| | - Yue Han
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Haematology, Suzhou, China.
- Soochow University, Collaborative Innovation Centre of Haematology, Suzhou, China.
- Key Laboratory of Thrombosis and Haemostasis of Ministry of Health, Suzhou, China.
| |
Collapse
|
10
|
Khosla J, Yeh AC, Spitzer TR, Dey BR. Hematopoietic stem cell transplant-associated thrombotic microangiopathy: current paradigm and novel therapies. Bone Marrow Transplant 2017; 53:129-137. [DOI: 10.1038/bmt.2017.207] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/20/2017] [Accepted: 07/28/2017] [Indexed: 02/08/2023]
|
11
|
Lopes JA, Jorge S, Neves M. Acute kidney injury in HCT: an update. Bone Marrow Transplant 2016; 51:755-62. [DOI: 10.1038/bmt.2015.357] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/24/2015] [Accepted: 12/11/2015] [Indexed: 01/02/2023]
|
12
|
Small vessels, big trouble in the kidneys and beyond: hematopoietic stem cell transplantation–associated thrombotic microangiopathy. Blood 2011; 118:1452-62. [DOI: 10.1182/blood-2011-02-321315] [Citation(s) in RCA: 235] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Abstract
Transplantation-associated thrombotic microangiopathy (TA-TMA) is a challenging diagnosis after hematopoietic stem cell transplantation. Although endothelial injury represents the final common pathway of disease, the exact pathophysiology of TA-TMA remains unclear. Potential causes include infections, chemotherapy, radiation, and calcineurin inhibitors. Recent literature addresses the roles of cytokines, graft-versus-host disease, the coagulation cascade, and complement in the pathogenesis of TA-TMA. Current diagnostic criteria are unsatisfactory, because patients who have received a transplant can have multiple other reasons for the laboratory abnormalities currently used to diagnose TA-TMA. Moreover, our lack of understanding of the exact mechanism of disease limits the development and evaluation of potential treatments. Short- and long-term renal complications contribute to TA-TMA's overall poor prognosis. In light of these challenges, future research must validate novel markers of disease to aid in early diagnosis, guide current and future treatments, prevent long-term morbidity, and improve outcomes. We focus on TA-TMA as a distinct complication of hematopoietic stem cell transplantation, emphasizing the central role of the kidney in this disease.
Collapse
|