1
|
Wen H, Deng H, Li B, Chen J, Zhu J, Zhang X, Yoshida S, Zhou Y. Mitochondrial diseases: from molecular mechanisms to therapeutic advances. Signal Transduct Target Ther 2025; 10:9. [PMID: 39788934 PMCID: PMC11724432 DOI: 10.1038/s41392-024-02044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/31/2024] [Indexed: 01/12/2025] Open
Abstract
Mitochondria are essential for cellular function and viability, serving as central hubs of metabolism and signaling. They possess various metabolic and quality control mechanisms crucial for maintaining normal cellular activities. Mitochondrial genetic disorders can arise from a wide range of mutations in either mitochondrial or nuclear DNA, which encode mitochondrial proteins or other contents. These genetic defects can lead to a breakdown of mitochondrial function and metabolism, such as the collapse of oxidative phosphorylation, one of the mitochondria's most critical functions. Mitochondrial diseases, a common group of genetic disorders, are characterized by significant phenotypic and genetic heterogeneity. Clinical symptoms can manifest in various systems and organs throughout the body, with differing degrees and forms of severity. The complexity of the relationship between mitochondria and mitochondrial diseases results in an inadequate understanding of the genotype-phenotype correlation of these diseases, historically making diagnosis and treatment challenging and often leading to unsatisfactory clinical outcomes. However, recent advancements in research and technology have significantly improved our understanding and management of these conditions. Clinical translations of mitochondria-related therapies are actively progressing. This review focuses on the physiological mechanisms of mitochondria, the pathogenesis of mitochondrial diseases, and potential diagnostic and therapeutic applications. Additionally, this review discusses future perspectives on mitochondrial genetic diseases.
Collapse
Affiliation(s)
- Haipeng Wen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Hui Deng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junyu Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junye Zhu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Xian Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
2
|
Baglioni V, Bozza F, Lentini G, Beatrice A, Cameli N, Colacino Cinnante EM, Terrinoni A, Nardecchia F, Pisani F. Psychiatric Manifestations in Children and Adolescents with Inherited Metabolic Diseases. J Clin Med 2024; 13:2190. [PMID: 38673463 PMCID: PMC11051134 DOI: 10.3390/jcm13082190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/24/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Background: Inherited metabolic disorders (IEMs) can be represented in children and adolescents by psychiatric disorders. The early diagnosis of IEMs is crucial for clinical outcome and treatment. The aim of this review is to analyze the most recurrent and specific psychiatric features related to IEMs in pediatrics, based on the onset type and psychiatric phenotypes. Methods: Following the PRISMA Statement, a systematic literature review was performed using a predefined algorithm to find suitable publications in scientific databases of interest. After removing duplicates and screening titles and abstracts, suitable papers were analyzed and screened for inclusion and exclusion criteria. Finally, the data of interest were retrieved from the remaining articles. Results: The results of this study are reported by type of symptoms onset (acute and chronic) and by possible psychiatric features related to IEMs. Psychiatric phenomenology has been grouped into five main clinical manifestations: mood and anxiety disorders; schizophrenia-spectrum disorders; catatonia; eating disorders; and self-injurious behaviors. Conclusions: The inclusion of a variety of psychiatric manifestations in children and adolescents with different IEMs is a key strength of this study, which allowed us to explore the facets of seemingly different disorders in depth, avoiding possible misdiagnoses, with the related delay of early and appropriate treatments.
Collapse
Affiliation(s)
| | - Fabiola Bozza
- Child Neurology and Psychiatry Unit, Department of Human Neuroscience, Sapienza University, Via dei Sabelli 108, 00185 Rome, Italy; (V.B.); (G.L.); (A.B.); (N.C.); (E.M.C.C.); (A.T.); (F.N.); (F.P.)
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Ozek G, Aksoylar S, Uçar SK, Canda E, Akcan M, Cartı O, Siviş ZO, Oymak Y, Yazıcı H, Bax B, Bulut FD, Yoldaş Çelik M, Erdem F, Çoker M, Kansoy S. Hematopoietic stem cell transplantation with reduced toxicity conditioning regimen in mitochondrial neurogastrointestinal encephalopathy syndrome. Pediatr Blood Cancer 2023; 70:e30334. [PMID: 37046411 DOI: 10.1002/pbc.30334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/05/2023] [Accepted: 03/13/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare autosomal recessive disorder due to mutations in the TYMP gene. Clinical findings are characterized by neurologic manifestations and severe gastrointestinal dysfunction. The syndrome is usually fatal, the most effective treatment appears to be hematopoietic stem cell transplantation (HSCT). PROCEDURE In this retrospective study, we evaluated HSCT that was performed using a reduced toxicity myeloablative conditioning regimen in patients with MNGIE at our center. RESULTS A total of six allogeneic transplant procedures were performed in four patients. Three patients had fully matched donors, and one patient had a haploidentical donor. Treosulfan-based myeloablative conditioning regimen was applied in five of six transplants. Bone marrow was used as a stem cell source. One patient is being followed up in the 4th year of posttransplant with full chimeric and without graft versus host disease (GVHD). One patient died of acute stage IV gastrointestinal system GVHD. Two patients underwent second transplantation due to engraftment failure, one of which was the patient who had a haploidentical transplant. CONCLUSIONS Treosulfan-based regimen is well tolerated, although engraftment failure with this conditioning regimen can be a significant problem. We share our haploidentical transplant experience, which will be the first reported case in the literature.
Collapse
Affiliation(s)
- Gülcihan Ozek
- Department of Pediatrics, Division of Pediatric Hemathology and Oncology, Ege University Medical Faculty, Izmir, Turkey
| | - Serap Aksoylar
- Department of Pediatrics, Division of Pediatric Hemathology and Oncology, Ege University Medical Faculty, Izmir, Turkey
| | - Sema Kalkan Uçar
- Department of Pediatrics, Division of Metabolism and Nutrition, Ege University Medical Faculty, Izmir, Turkey
| | - Ebru Canda
- Department of Pediatrics, Division of Metabolism and Nutrition, Ege University Medical Faculty, Izmir, Turkey
| | - Mediha Akcan
- Department of Pediatrics, Division of Pediatric Hemathology and Oncology, Ege University Medical Faculty, Izmir, Turkey
| | - Ozgür Cartı
- Department of Pediatrics, Division of Pediatric Hemathology and Oncology, Ege University Medical Faculty, Izmir, Turkey
| | - Zuhal Onder Siviş
- Department of Pediatrics, Division of Pediatric Hemathology and Oncology, Ege University Medical Faculty, Izmir, Turkey
| | - Yeşim Oymak
- Department of Pediatrics, Division of Pediatric Hemathology and Oncology, Ege University Medical Faculty, Izmir, Turkey
| | - Havva Yazıcı
- Department of Pediatrics, Division of Metabolism and Nutrition, Ege University Medical Faculty, Izmir, Turkey
| | - Bridget Bax
- Department of Cell Biology, Institute of Molecular and Clinical Sciences, St George's University of London, London, UK
| | - Fatma Derya Bulut
- Department of Pediatrics, Division of Metabolism and Nutrition, Çukurova University Medical Faculty, Adana, Turkey
| | - Merve Yoldaş Çelik
- Department of Pediatrics, Division of Metabolism and Nutrition, Ege University Medical Faculty, Izmir, Turkey
| | - Fehime Erdem
- Department of Pediatrics, Division of Metabolism and Nutrition, Ege University Medical Faculty, Izmir, Turkey
| | - Mahmut Çoker
- Department of Pediatrics, Division of Metabolism and Nutrition, Ege University Medical Faculty, Izmir, Turkey
| | - Savaş Kansoy
- Department of Pediatrics, Division of Pediatric Hemathology and Oncology, Ege University Medical Faculty, Izmir, Turkey
| |
Collapse
|
4
|
Abstract
Progressive external ophthalmoplegia (PEO), characterized by ptosis and impaired eye movements, is a clinical syndrome with an expanding number of etiologically distinct subtypes. Advances in molecular genetics have revealed numerous pathogenic causes of PEO, originally heralded in 1988 by the detection of single large-scale deletions of mitochondrial DNA (mtDNA) in skeletal muscle of people with PEO and Kearns-Sayre syndrome. Since then, multiple point variants of mtDNA and nuclear genes have been identified to cause mitochondrial PEO and PEO-plus syndromes, including mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) and sensory ataxic neuropathy dysarthria ophthalmoplegia (SANDO). Intriguingly, many of those nuclear DNA pathogenic variants impair maintenance of the mitochondrial genome causing downstream mtDNA multiple deletions and depletion. In addition, numerous genetic causes of nonmitochondrial PEO have been identified.
Collapse
Affiliation(s)
- Michio Hirano
- H. Houston Merritt Neuromuscular Research Center, Neuromuscular Medicine Division, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States.
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| |
Collapse
|
5
|
Badv RS, Ghahvechi Akbari M, Heidari M, Safavi M. Mitochondrial Neurogastrointestinal Encephalopathy (MNGIE) Disease. ARCHIVES OF IRANIAN MEDICINE 2022; 25:847-848. [PMID: 37543914 PMCID: PMC10685842 DOI: 10.34172/aim.2022.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/27/2022] [Indexed: 08/08/2023]
Affiliation(s)
- Reza Shervin Badv
- Pediatrics Neurology Department, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masood Ghahvechi Akbari
- Physical Medicine and Rehabilitation Department, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Heidari
- Pediatrics Neurology Department, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Moeinadin Safavi
- Molecular Pathology and Cytogenetics Division, Pathology Department, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Barisic A, Ljubas Kelecic D, Vranesic Bender D, Karas I, Brinar M, Miletic V, Krznaric Z. Case report: A patient with mitochondrial neurogastrointestinal encephalomyopathy and chronic intestinal failure. Front Nutr 2022; 9:983873. [PMID: 36419558 PMCID: PMC9676446 DOI: 10.3389/fnut.2022.983873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/20/2022] [Indexed: 11/04/2023] Open
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare disorder commonly diagnosed in later disease stages when it prominently manifests as malnutrition. We report on a female patient diagnosed with MNGIE at the age of 36. She was severely malnourished due to loss of resorptive surface after several surgical procedures, gastrointestinal dysmotility, and small intestinal bacterial overgrowth. Therefore, early and aggressive total parenteral nutrition was introduced. Although no reports have shown that nutritional support can modify the clinical outcome, this case suggests that adequate nutritional support, particularly parenteral nutrition, supervised by an experienced nutritional team, may prolong the lifespan of patients with MNGIE.
Collapse
Affiliation(s)
- Ana Barisic
- Clinical Unit of Clinical Nutrition, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dina Ljubas Kelecic
- Clinical Unit of Clinical Nutrition, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Darija Vranesic Bender
- Clinical Unit of Clinical Nutrition, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Irena Karas
- Clinical Unit of Clinical Nutrition, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Marko Brinar
- School of Medicine, University of Zagreb, Zagreb, Croatia
- Division of Gastroenterology, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Vladimir Miletic
- Department of Neurology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Zeljko Krznaric
- Clinical Unit of Clinical Nutrition, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
- Division of Gastroenterology, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| |
Collapse
|
7
|
Lopez-Gomez C, Sanchez-Quintero MJ, Lee EJ, Kleiner G, Tadesse S, Xie J, Akman HO, Gao G, Hirano M. Synergistic Deoxynucleoside and Gene Therapies for Thymidine Kinase 2 Deficiency. Ann Neurol 2021; 90:640-652. [PMID: 34338329 PMCID: PMC9307066 DOI: 10.1002/ana.26185] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Autosomal recessive human thymidine kinase 2 (TK2) mutations cause TK2 deficiency, which typically manifests as a progressive and fatal mitochondrial myopathy in infants and children. Treatment with pyrimidine deoxynucleosides deoxycytidine and thymidine ameliorates mitochondrial defects and extends the lifespan of Tk2 knock-in mouse (Tk2KI ) and compassionate use deoxynucleoside therapy in TK2 deficient patients have shown promising indications of efficacy. To augment therapy for Tk2 deficiency, we assessed gene therapy alone and in combination with deoxynucleoside therapy in Tk2KI mice. METHODS We generated pAAVsc CB6 PI vectors containing human TK2 cDNA (TK2). Adeno-associated virus (AAV)-TK2 was administered to Tk2KI , which were serially assessed for weight, motor functions, and survival as well as biochemical functions in tissues. AAV-TK2 treated mice were further treated with deoxynucleosides. RESULTS AAV9 delivery of human TK2 cDNA to Tk2KI mice efficiently rescued Tk2 activity in all the tissues tested except the kidneys, delayed disease onset, and increased lifespan. Sequential treatment of Tk2KI mice with AAV9 first followed by AAV2 at different ages allowed us to reduce the viral dose while further prolonging the lifespan. Furthermore, addition of deoxycytidine and deoxythymidine supplementation to AAV9 + AAV2 treated Tk2KI mice dramatically improved mtDNA copy numbers in the liver and kidneys, animal growth, and lifespan. INTERPRETATION Our data indicate that AAV-TK2 gene therapy as well as combination deoxynucleoside and gene therapies is more effective in Tk2KI mice than pharmacological alone. Thus, combination of gene therapy with substrate enhancement is a promising therapeutic approach for TK2 deficiency and potentially other metabolic disorders. ANN NEUROL 2021.
Collapse
Affiliation(s)
- Carlos Lopez-Gomez
- H. Houston Merritt Neuromuscular Research Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY.,Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria/Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Maria J Sanchez-Quintero
- H. Houston Merritt Neuromuscular Research Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY.,Area del Corazón. Hospital Clínico Universitario Virgen de la Victoria, CIBERCV. Instituto de Investigación Biomédica de Málaga-IBIMA. UMA, Málaga, Spain
| | - Eung Jeon Lee
- H. Houston Merritt Neuromuscular Research Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY
| | - Gulio Kleiner
- H. Houston Merritt Neuromuscular Research Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY
| | - Saba Tadesse
- H. Houston Merritt Neuromuscular Research Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY
| | - Jun Xie
- Microbiology and Physiological Systems, University of Massachusetts Medical Center, Worcester, MA.,Horae Gene Therapy Center, University of Massachusetts Medical Center, Worcester, MA
| | - Hasan Orhan Akman
- H. Houston Merritt Neuromuscular Research Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY
| | - Guangping Gao
- Microbiology and Physiological Systems, University of Massachusetts Medical Center, Worcester, MA.,Horae Gene Therapy Center, University of Massachusetts Medical Center, Worcester, MA
| | - Michio Hirano
- H. Houston Merritt Neuromuscular Research Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
8
|
Ramón J, Vila-Julià F, Molina-Granada D, Molina-Berenguer M, Melià MJ, García-Arumí E, Torres-Torronteras J, Cámara Y, Martí R. Therapy Prospects for Mitochondrial DNA Maintenance Disorders. Int J Mol Sci 2021; 22:6447. [PMID: 34208592 PMCID: PMC8234938 DOI: 10.3390/ijms22126447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial DNA depletion and multiple deletions syndromes (MDDS) constitute a group of mitochondrial diseases defined by dysfunctional mitochondrial DNA (mtDNA) replication and maintenance. As is the case for many other mitochondrial diseases, the options for the treatment of these disorders are rather limited today. Some aggressive treatments such as liver transplantation or allogeneic stem cell transplantation are among the few available options for patients with some forms of MDDS. However, in recent years, significant advances in our knowledge of the biochemical pathomechanisms accounting for dysfunctional mtDNA replication have been achieved, which has opened new prospects for the treatment of these often fatal diseases. Current strategies under investigation to treat MDDS range from small molecule substrate enhancement approaches to more complex treatments, such as lentiviral or adenoassociated vector-mediated gene therapy. Some of these experimental therapies have already reached the clinical phase with very promising results, however, they are hampered by the fact that these are all rare disorders and so the patient recruitment potential for clinical trials is very limited.
Collapse
Affiliation(s)
- Javier Ramón
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ferran Vila-Julià
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - David Molina-Granada
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miguel Molina-Berenguer
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria Jesús Melià
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elena García-Arumí
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Yolanda Cámara
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ramon Martí
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.R.); (F.V.-J.); (D.M.-G.); (M.M.-B.); (M.J.M.); (E.G.-A.); (J.T.-T.); (Y.C.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
9
|
Zaidman I, Elhasid R, Gefen A, Yahav Dovrat A, Mutaz S, Shaoul R, Eshach Adiv O, Mandel H, Tal G. Hematopoietic stem cell transplantation for mitochondrial neurogastrointestinal encephalopathy: A single-center experience underscoring the multiple factors involved in the prognosis. Pediatr Blood Cancer 2021; 68:e28926. [PMID: 33533561 DOI: 10.1002/pbc.28926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/21/2020] [Accepted: 01/12/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a progressive autosomal recessive disorder characterized by cachexia, gastrointestinal (GI) dysmotility, ptosis, peripheral neuropathy, and brain magnetic resonance imaging (MRI) white matter changes. Bi-allelic TYMP mutations lead to deficient thymidine phosphorylase (TP) activity, toxic accumulation of plasma nucleosides (thymidine and deoxyuridine), nucleotide pool imbalances, and mitochondrial DNA (mtDNA) instability. Death is mainly due to GI complications: intestinal perforation, peritonitis, and/or liver failure. Based on our previous observations in three patients with MNGIE that platelet infusions resulted in a transient 40% reduction of plasma nucleoside levels, in 2005 we performed the first hematopoietic stem cell transplantation (HSCT) worldwide as a life-long source of TP in a patient with MNGIE. PROCEDURE HSCT was performed in a total of six patients with MNGIE. The multiple factors involved in the prognosis of this cohort were analyzed and compared to the literature experience. RESULTS Cell source was bone marrow in five patients and peripheral stem cells in one, all from fully human leukocyte antigen (HLA)-matched related donors, including four who were TYMP mutation carriers. Four of six (66%) survived compared to the 37% survival rate in the literature. Reduced intensity conditioning regimen contributed to secondary graft failure in two patients. Fifteen years post HSCT, the first transplanted patient is seemingly cured. Severe GI symptoms before transplantation were mostly irreversible and were poor prognostic factors. CONCLUSIONS Allogenic HSCT could constitute a curative therapeutic option for carefully selected, young, presymptomatic, or mildly affected patients. Timing, donor selection, and optimal conditioning protocol are major determinants of outcome. HSCT is inadvisable in patients with advanced MNGIE disease.
Collapse
Affiliation(s)
- Irina Zaidman
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ronit Elhasid
- Department of Hematology-Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Aharon Gefen
- Division of Pediatric Hematology Oncology and Bone Marrow Transplantation, Ruth Rappaport Children's Hospital, Rambam Medical Center, Haifa, Israel
| | | | - Sultan Mutaz
- Department of Pediatrics, Makassed Hospital, Faculty of Medicine, Al-Quds University, Jerusalem, Israel
| | - Ron Shaoul
- Gastroenterology institute, Ruth Rappaport Children's Hospital, Rambam Medical Center, Haifa, Israel.,Technion Faculty of Medicine, Haifa, Israel
| | - Orly Eshach Adiv
- Technion Faculty of Medicine, Haifa, Israel.,Pediatric Gastroenterology and Nutrition Unit, "HyllelYaffe" Medical Center, Hadera, Israel
| | - Hanna Mandel
- Technion Faculty of Medicine, Haifa, Israel.,Metabolic Clinic, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Galit Tal
- Metabolic Clinic, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel.,Pediatric B Department, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
10
|
Mencias M, Levene M, Blighe K, Bax BE. Circulating miRNAs as Biomarkers for Mitochondrial Neuro-Gastrointestinal Encephalomyopathy. Int J Mol Sci 2021; 22:3681. [PMID: 33916195 PMCID: PMC8037498 DOI: 10.3390/ijms22073681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an ultra-rare disease for which there are currently no validated outcome measures for assessing therapeutic intervention efficacy. The aim of this study was to identify a plasma and/or serum microRNA (miRNA) biomarker panel for MNGIE. Sixty-five patients and 65 age and sex matched healthy controls were recruited and assigned to one of four study phases: (i) discovery for sample size determination; (ii) candidate screening; (iii) candidate validation; and (iv) verifying the performance of the validated miRNA panel in four patients treated with erythrocyte-encapsulated thymidine phosphorylase (EE-TP), an enzyme replacement under development for MNGIE. Quantitative PCR (qPCR) was used to profile miRNAs in serum and/or plasma samples collected for the discovery, validation and performance phases, and next generation sequencing (NGS) analysis was applied to serum samples assigned to the candidate screening phase. Forty-one differentially expressed candidate miRNAs were identified in the sera of patients (p < 0.05, log2 fold change > 1). The validation cohort revealed that of those, 27 miRNAs were upregulated in plasma and three miRNAs were upregulated in sera (p < 0.05). Through binary logistic regression analyses, five plasma miRNAs (miR-192-5p, miR-193a-5p, miR-194-5p, miR-215-5p and miR-34a-5p) and three serum miRNAs (miR-192-5p, miR-194-5p and miR-34a-5p) were shown to robustly distinguish MNGIE from healthy controls. Reduced longitudinal miRNA expression of miR-34a-5p was observed in all four patients treated with EE-TP and coincided with biochemical and clinical improvements. We recommend the inclusion of the plasma exploratory miRNA biomarker panel in future clinical trials of investigational therapies for MNGIE; it may have prognostic value for assessing clinical status.
Collapse
Affiliation(s)
- Mark Mencias
- Molecular and Clinical Sciences, St. George’s, University of London, London SW17 0RE, UK; (M.M.); (M.L.)
| | - Michelle Levene
- Molecular and Clinical Sciences, St. George’s, University of London, London SW17 0RE, UK; (M.M.); (M.L.)
| | - Kevin Blighe
- Clinical Bioinformatics Research Ltd., London W1B 3HH, UK;
| | - Bridget E. Bax
- Molecular and Clinical Sciences, St. George’s, University of London, London SW17 0RE, UK; (M.M.); (M.L.)
| | | |
Collapse
|
11
|
Tinker RJ, Lim AZ, Stefanetti RJ, McFarland R. Current and Emerging Clinical Treatment in Mitochondrial Disease. Mol Diagn Ther 2021; 25:181-206. [PMID: 33646563 PMCID: PMC7919238 DOI: 10.1007/s40291-020-00510-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2020] [Indexed: 12/11/2022]
Abstract
Primary mitochondrial disease (PMD) is a group of complex genetic disorders that arise due to pathogenic variants in nuclear or mitochondrial genomes. Although PMD is one of the most prevalent inborn errors of metabolism, it often exhibits marked phenotypic variation and can therefore be difficult to recognise. Current treatment for PMD revolves around supportive and preventive approaches, with few disease-specific therapies available. However, over the last decade there has been considerable progress in our understanding of both the genetics and pathophysiology of PMD. This has resulted in the development of a plethora of new pharmacological and non-pharmacological therapies at varying stages of development. Many of these therapies are currently undergoing clinical trials. This review summarises the latest emerging therapies that may become mainstream treatment in the coming years. It is distinct from other recent reviews in the field by comprehensively addressing both pharmacological non-pharmacological therapy from both a bench and a bedside perspective. We highlight the current and developing therapeutic landscape in novel pharmacological treatment, dietary supplementation, exercise training, device use, mitochondrial donation, tissue replacement gene therapy, hypoxic therapy and mitochondrial base editing.
Collapse
Affiliation(s)
- Rory J Tinker
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Albert Z Lim
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Renae J Stefanetti
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- NHS Highly Specialised Service for Rare Mitochondrial Disorders for Adults and Children, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
12
|
Liu K, Zhou Z, Pan M, Zhang L. Stem cell-derived mitochondria transplantation: A promising therapy for mitochondrial encephalomyopathy. CNS Neurosci Ther 2021; 27:733-742. [PMID: 33538116 PMCID: PMC8193690 DOI: 10.1111/cns.13618] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial encephalomyopathies are disorders caused by mitochondrial and nuclear DNA mutations which affect the nervous and muscular systems. Current therapies for mitochondrial encephalomyopathies are inadequate and mostly palliative. However, stem cell‐derived mitochondria transplantation has been demonstrated to play an key part in metabolic rescue, which offers great promise for mitochondrial encephalomyopathies. Here, we summarize the present status of stem cell therapy for mitochondrial encephalomyopathy and discuss mitochondrial transfer routes and the protection mechanisms of stem cells. We also identify and summarize future perspectives and challenges for the treatment of these intractable disorders based on the concept of mitochondrial transfer from stem cells.
Collapse
Affiliation(s)
- Kaiming Liu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijian Zhou
- Department of Neurology, Shaoxing Hospital of Traditional Chinese Medicine, Affiliated with Zhejiang Chinese Medical University, Shaoxing, China
| | - Mengxiong Pan
- Department of Neurology, First People's Hospital of Huzhou, Huzhou, China
| | - Lining Zhang
- Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Vila-Julià F, Cabrera-Pérez R, Cámara Y, Molina-Berenguer M, Lope-Piedrafita S, Hirano M, Mingozzi F, Torres-Torronteras J, Martí R. Efficacy of adeno-associated virus gene therapy in a MNGIE murine model enhanced by chronic exposure to nucleosides. EBioMedicine 2020; 62:103133. [PMID: 33232869 PMCID: PMC7689515 DOI: 10.1016/j.ebiom.2020.103133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Preclinical studies have shown that gene therapy is a feasible approach to treat mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). However, the genetic murine model of the disease (Tymp/Upp1 double knockout, dKO) has a limited functional phenotype beyond the metabolic imbalances, and so the studies showing efficacy of gene therapy have relied almost exclusively on demonstrating correction of the biochemical phenotype. Chronic oral administration of thymidine (dThd) and deoxyuridine (dUrd) to dKO mice deteriorates the phenotype of the animals, providing a better model to test therapy approaches. METHODS dKO mice were treated with both dThd and dUrd in drinking water from weaning until the end of the study. At 8 - 11 weeks of age, mice were treated with several doses of adeno-associated virus (AAV) serotype 8 vector carrying the human TYMP coding sequence under the control of different liver-specific promoters (TBG, AAT, or HLP). The biochemical profile and functional phenotype were studied over the life of the animals. FINDINGS Nucleoside exposure resulted in 30-fold higher plasma nucleoside levels in dKO mice compared with non-exposed wild type mice. AAV-treatment provided elevated TP activity in liver and lowered systemic nucleoside levels in exposed dKO mice. Exposed dKO mice had enlarged brain ventricles (assessed by magnetic resonance imaging) and motor impairment (rotarod test); both were prevented by AAV treatment. Among all promoters tested, AAT showed the best efficacy. INTERPRETATION Our results show that AAV-mediated gene therapy restores the biochemical homeostasis in the murine model of MNGIE and, for the first time, demonstrate that this treatment improves the functional phenotype. FUNDING This work was funded in part by the Spanish Instituto de Salud Carlos III, and the Generalitat de Catalunya. The disclosed funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Collapse
Affiliation(s)
- Ferran Vila-Julià
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Catalonia, Spain
| | - Raquel Cabrera-Pérez
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Catalonia, Spain
| | - Yolanda Cámara
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Catalonia, Spain
| | - Miguel Molina-Berenguer
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Catalonia, Spain
| | - Silvia Lope-Piedrafita
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Catalonia, Spain
| | - Michio Hirano
- Department of Neurology, H. Houston Merritt Neuromuscular Research Center, Columbia University Irving Medical Center, New York, NY, United States
| | | | - Javier Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Catalonia, Spain.
| | - Ramon Martí
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Catalonia, Spain.
| |
Collapse
|
14
|
Kipper K, Hecht M, Antunes NJ, Fairbanks LD, Levene M, Kalkan Uçar S, Schaefer A, Blakely EL, Bax BE. Quantification of Plasma and Urine Thymidine and 2'-Deoxyuridine by LC-MS/MS for the Pharmacodynamic Evaluation of Erythrocyte Encapsulated Thymidine Phosphorylase in Patients with Mitochondrial Neurogastrointestinal Encephalomyopathy. J Clin Med 2020; 9:788. [PMID: 32183169 PMCID: PMC7141342 DOI: 10.3390/jcm9030788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an ultra-rare disorder caused by mutations in TYMP, leading to a deficiency in thymidine phosphorylase and a subsequent systemic accumulation of thymidine and 2'-deoxyuridine. Erythrocyte-encapsulated thymidine phosphorylase (EE-TP) is under clinical development as an enzyme replacement therapy for MNGIE. Bioanalytical methods were developed according to regulatory guidelines for the quantification of thymidine and 2'-deoxyuridine in plasma and urine using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for supporting the pharmacodynamic evaluation of EE-TP. Samples were deproteinized with 5% perchloric acid (v/v) and the supernatants analyzed using a Hypercarb column (30 × 2.1 mm, 3 µm), with mobile phases of 0.1% formic acid in methanol and 0.1% formic acid in deionized water. Detection was conducted using an ion-spray interface running in positive mode. Isotopically labelled thymidine and 2'-deoxyuridine were used as internal standards. Calibration curves for both metabolites showed linearity (r > 0.99) in the concentration ranges of 10-10,000 ng/mL for plasma, and 1-50 µg/mL for urine, with method analytical performances within the acceptable criteria for quality control samples. The plasma method was successfully applied to the diagnosis of two patients with MNGIE and the quantification of plasma metabolites in three patients treated with EE-TP.
Collapse
Affiliation(s)
- Karin Kipper
- Analytical Services International Ltd., St George’s University of London, Cranmer Terrace, London SW17 0RE, UK; (K.K.); (M.H.); (N.J.A.)
- University of Tartu, Institute of Chemistry, 14a Ravila Street, 50411 Tartu, Estonia
| | - Max Hecht
- Analytical Services International Ltd., St George’s University of London, Cranmer Terrace, London SW17 0RE, UK; (K.K.); (M.H.); (N.J.A.)
- University of Tartu, Institute of Chemistry, 14a Ravila Street, 50411 Tartu, Estonia
| | - Natalicia J. Antunes
- Analytical Services International Ltd., St George’s University of London, Cranmer Terrace, London SW17 0RE, UK; (K.K.); (M.H.); (N.J.A.)
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP 13083-881, Brazil
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | | | - Michelle Levene
- Molecular and Clinical Sciences, St George’s University of London, London SW17 0RE, UK;
| | - Sema Kalkan Uçar
- Division of Inborn Error of Metabolism, Ege University Medical Faculty, 35100 Izmir, Turkey;
| | - Andrew Schaefer
- The NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne NE2 4HH, UK; (A.S.); (E.L.B.)
| | - Emma L. Blakely
- The NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne NE2 4HH, UK; (A.S.); (E.L.B.)
| | - Bridget E. Bax
- Molecular and Clinical Sciences, St George’s University of London, London SW17 0RE, UK;
| |
Collapse
|
15
|
Bax BE, Levene M, Bain MD, Fairbanks LD, Filosto M, Kalkan Uçar S, Klopstock T, Kornblum C, Mandel H, Rahman S, Roubertie A, Scarpelli M, Sedgwick PM, Baru M, Sellos-Moura M, Price J, Horn P, Nirmalananthan N. Erythrocyte Encapsulated Thymidine Phosphorylase for the Treatment of Patients with Mitochondrial Neurogastrointestinal Encephalomyopathy: Study Protocol for a Multi-Centre, Multiple Dose, Open Label Trial. J Clin Med 2019; 8:1096. [PMID: 31344955 PMCID: PMC6722784 DOI: 10.3390/jcm8081096] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder which primarily affects the gastrointestinal and nervous systems. This disease is caused by mutations in the nuclear TYMP gene, which encodes for thymidine phosphorylase, an enzyme required for the normal metabolism of deoxynucleosides, thymidine, and deoxyuridine. The subsequent elevated systemic concentrations of deoxynucleosides lead to increased intracellular concentrations of their corresponding triphosphates, and ultimately mitochondrial failure due to progressive accumulation of mitochondrial DNA (mtDNA) defects and mtDNA depletion. Currently, there are no treatments for MNGIE where effectiveness has been evidenced in clinical trials. This Phase 2, multi-centre, multiple dose, open label trial without a control will investigate the application of erythrocyte-encapsulated thymidine phosphorylase (EE-TP) as an enzyme replacement therapy for MNGIE. Three EE-TP dose levels are planned with patients receiving the dose level that achieves metabolic correction. The study duration is 31 months, comprising 28 days of screening, 90 days of run-in, 24 months of treatment and 90 days of post-dose follow-up. The primary objectives are to determine the safety, tolerability, pharmacodynamics, and efficacy of multiple doses of EE-TP. The secondary objectives are to assess EE-TP immunogenicity after multiple dose administrations and changes in clinical assessments, and the pharmacodynamics effect of EE-TP on clinical assessments.
Collapse
Affiliation(s)
- Bridget E Bax
- Molecular and Clinical Sciences, St. George's, University of London, London SW17 0RE, UK.
| | - Michelle Levene
- Molecular and Clinical Sciences, St. George's, University of London, London SW17 0RE, UK
| | - Murray D Bain
- Molecular and Clinical Sciences, St. George's, University of London, London SW17 0RE, UK
| | | | - Massimiliano Filosto
- Centre for Neuromuscular Diseases, ASST Spedali Civili and University of Brescia, 25100 Brescia, Italy
| | - Sema Kalkan Uçar
- Division of Inborn Error of Metabolism, Ege University Medical Faculty, 35100 Izmir, Turkey
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, University of Munich, Ziemssenstr. 1, 80336 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Ludwig Maximilians University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Cornelia Kornblum
- Department of Neurology, University Hospital Bonn, 53127 Bonn, Germany
| | | | - Shamima Rahman
- Mitochondrial Research Group, UCL London Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
- Metabolic Unit, Great Ormond Street Hospital NHS Foundation Trust, London WC1N 3JH, UK
| | - Agathe Roubertie
- Department of Pediatric Neurology, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
| | - Mauro Scarpelli
- Institute of Neurology, University of Verona, 37126 Verona, Italy
| | - Philip M Sedgwick
- Institute for Medical and Biomedical Education, St George's, University of London, London SW17 0RE, UK
| | - Moshe Baru
- Orphan Technologies, Zürcherstrasse 19, 8640 Rapperswil, Switzerland
| | | | - Jeanie Price
- Orphan Technologies, Zürcherstrasse 19, 8640 Rapperswil, Switzerland
| | | | - Niranjanan Nirmalananthan
- Molecular and Clinical Sciences, St. George's, University of London, London SW17 0RE, UK
- Department of Neurology, St George's University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| |
Collapse
|
16
|
Orsucci D, Ienco EC, Siciliano G, Mancuso M. Mitochondrial disorders and drugs: what every physician should know. Drugs Context 2019; 8:212588. [PMID: 31391854 PMCID: PMC6668504 DOI: 10.7573/dic.212588] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial disorders are a group of metabolic conditions caused by impairment of the oxidative phosphorylation system. There is currently no clear evidence supporting any pharmacological interventions for most mitochondrial disorders, except for coenzyme Q10 deficiencies, Leber hereditary optic neuropathy, and mitochondrial neurogastrointestinal encephalomyopathy. Furthermore, some drugs may potentially have detrimental effects on mitochondrial dysfunction. Drugs known to be toxic for mitochondrial functions should be avoided whenever possible. Mitochondrial patients needing one of these treatments should be carefully monitored, clinically and by laboratory exams, including creatine kinase and lactate. In the era of molecular and ‘personalized’ medicine, many different physicians (not only neurologists) should be aware of the basic principles of mitochondrial medicine and its therapeutic implications. Multicenter collaboration is essential for the advancement of therapy for mitochondrial disorders. Whenever possible, randomized clinical trials are necessary to establish efficacy and safety of drugs. In this review we discuss in an accessible way the therapeutic approaches and perspectives in mitochondrial disorders. We will also provide an overview of the drugs that should be used with caution in these patients.
Collapse
|
17
|
Cardiovascular Manifestations of Mitochondrial Disease. BIOLOGY 2019; 8:biology8020034. [PMID: 31083569 PMCID: PMC6628328 DOI: 10.3390/biology8020034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/13/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
Genetic mitochondrial cardiomyopathies are uncommon causes of heart failure that may not be seen by most physicians. However, the prevalence of mitochondrial DNA mutations and somatic mutations affecting mitochondrial function are more common than previously thought. In this review, the pathogenesis of genetic mitochondrial disorders causing cardiovascular disease is reviewed. Treatment options are presently limited to mostly symptomatic support, but preclinical research is starting to reveal novel approaches that may lead to better and more targeted therapies in the future. With better understanding and clinician education, we hope to improve clinician recognition and diagnosis of these rare disorders in order to improve ongoing care of patients with these diseases and advance research towards discovering new therapeutic strategies to help treat these diseases.
Collapse
|
18
|
Cabrera-Pérez R, Vila-Julià F, Hirano M, Mingozzi F, Torres-Torronteras J, Martí R. Alpha-1-Antitrypsin Promoter Improves the Efficacy of an Adeno-Associated Virus Vector for the Treatment of Mitochondrial Neurogastrointestinal Encephalomyopathy. Hum Gene Ther 2019; 30:985-998. [PMID: 30900470 DOI: 10.1089/hum.2018.217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a devastating disease caused by mutations in TYMP, which encodes thymidine phosphorylase (TP). In MNGIE patients, TP dysfunction results in systemic thymidine and deoxyuridine overload, which interferes with mitochondrial DNA replication. Preclinical studies have shown that gene therapy using a lentiviral vector targeted to hematopoietic stem cells or an adeno-associated virus (AAV) vector transcriptionally targeted to liver are feasible approaches to treat MNGIE. Here, we studied the effect of various promoters (thyroxine-binding globulin [TBG], phosphoglycerate kinase [PGK], hybrid liver-specific promoter [HLP], and alpha-1-antitrypsin [AAT]) and DNA configuration (single stranded or self complementary) on expression of the TYMP transgene in the AAV8 serotype in a murine model of MNGIE. All vectors restored liver TP activity and normalized nucleoside homeostasis in mice. However, the liver-specific promoters TBG, HLP, and AAT were more effective than the constitutive PGK promoter, and the self-complementary DNA configuration did not provide any therapeutic advantage over the single-stranded configuration. Among all constructs, only AAV-AAT was effective in all mice treated at the lowest dose (5 × 1010 vector genomes/kg). As use of the AAT promoter will likely minimize the dose needed to achieve clinical efficacy as compared to the other promoters tested, we propose using the AAT promoter in the vector eventually designed for clinical use.
Collapse
Affiliation(s)
- Raquel Cabrera-Pérez
- 1Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain; Paris, France.,2Biomedical Network Research Centre on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain; Paris, France
| | - Ferran Vila-Julià
- 1Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain; Paris, France.,2Biomedical Network Research Centre on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain; Paris, France
| | - Michio Hirano
- 3Department of Neurology, H. Houston Merritt Neuromuscular Research Center, Columbia University Medical Center, New York, New York; Paris, France
| | - Federico Mingozzi
- 4Genethon and INSERM U951, Evry, France; Paris, France.,5University Pierre and Marie Curie, Paris, France
| | - Javier Torres-Torronteras
- 1Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain; Paris, France.,2Biomedical Network Research Centre on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain; Paris, France
| | - Ramon Martí
- 1Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain; Paris, France.,2Biomedical Network Research Centre on Rare Diseases, Instituto de Salud Carlos III, Madrid, Spain; Paris, France
| |
Collapse
|
19
|
Levene M, Bain MD, Moran NF, Nirmalananthan N, Poulton J, Scarpelli M, Filosto M, Mandel H, MacKinnon AD, Fairbanks L, Pacitti D, Bax BE. Safety and Efficacy of Erythrocyte Encapsulated Thymidine Phosphorylase in Mitochondrial Neurogastrointestinal Encephalomyopathy. J Clin Med 2019; 8:457. [PMID: 30959750 PMCID: PMC6517976 DOI: 10.3390/jcm8040457] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/20/2019] [Accepted: 04/03/2019] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an ultra-rare autosomal recessive disorder of nucleoside metabolism that is caused by mutations in the nuclear thymidine phosphorylase gene (TYMP) gene, encoding for the enzyme thymidine phosphorylase. There are currently no approved treatments for MNGIE. The aim of this study was to investigate the safety, tolerability, and efficacy of an enzyme replacement therapy for the treatment of MNGIE. In this single centre study, three adult patients with MNGIE received intravenous escalating doses of erythrocyte encapsulated thymidine phosphorylase (EE-TP; dose range: 4 to 108 U/kg/4 weeks). EE-TP was well tolerated and reductions in the disease-associated plasma metabolites, thymidine, and deoxyuridine were observed in all three patients. Clinical improvements, including weight gain and improved disease scores, were observed in two patients, suggesting that EE-TP is able to reverse some aspects of the disease pathology. Transient, non-serious adverse events were observed in two of the three patients; these did not lead to therapy discontinuation and they were managed with pre-medication prior to infusion of EE-TP. To conclude, enzyme replacement therapy with EE-TP demonstrated biochemical and clinical therapeutic efficacy with an acceptable clinical safety profile.
Collapse
Affiliation(s)
- Michelle Levene
- Molecular and Clinical Sciences, St. George's, University of London, London, SW17 ORE, UK.
| | - Murray D Bain
- Molecular and Clinical Sciences, St. George's, University of London, London, SW17 ORE, UK.
| | - Nicholas F Moran
- Department of Neuroscience, East Kent Hospitals Foundation Trust, Canterbury, CT1 3NG, UK.
| | - Niranjanan Nirmalananthan
- Departments of Neurology and Neuroradiology, Atkinson Morley Regional Neurosciences Centre, St George's Hospital, London, SW17 0QT, UK.
| | - Joanna Poulton
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, OX3 9DU, UK.
| | - Mauro Scarpelli
- Neurology Unit, Azienda Ospedaliera Universitaria Integrata Verona, Piazzale Aristide Stefani, 1, 37126 Verona, Italy.
| | - Massimiliano Filosto
- Center for Neuromuscular Diseases, Unit of Neurology, ASST Spedali Civili and University of Brescia, 25100 Brescia, Italy.
| | | | - Andrew D MacKinnon
- Departments of Neurology and Neuroradiology, Atkinson Morley Regional Neurosciences Centre, St George's Hospital, London, SW17 0QT, UK.
| | - Lynette Fairbanks
- The Purine Research Laboratory, St Thomas' Hospital, London SE1 7EH, UK.
| | - Dario Pacitti
- College of Medicine and Health, St Luke's Campus, University of Exeter, EX1 2LU, UK.
| | - Bridget E Bax
- Molecular and Clinical Sciences, St. George's, University of London, London, SW17 ORE, UK.
| |
Collapse
|
20
|
Durrani S, Chen BC, Yakob Y, Hian LS, Afroze B. Mitochondrial Neurogastrointestinal Encephalomyopathy Disease in Three Siblings from Pakistan with a Novel Mutation. J Pediatr Genet 2019; 8:15-19. [PMID: 30775048 DOI: 10.1055/s-0038-1661411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 05/24/2018] [Indexed: 01/21/2023]
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare multisystem autosomal recessive disorder. The disease is clinically heterogeneous with gastrointestinal symptoms of intestinal dysmotility and cachexia as well as neurological symptoms of ophthalmoplegia, neuropathy, sensorineural hearing impairment, and diffuse leukoencephalopathy being most prominent. MNGIE is caused by mutations in TYMP , a gene that encodes thymidine phosphorylase (TP)-a cytosolic enzyme. Mutations in TYMP lead to very low TP catalytic activity, resulting in dramatically increased thymidine and deoxyuridine in plasma. We describe the clinical, biochemical, and neuroimaging findings of three boys with MNGIE from a Pakistani family with a novel homozygous mutation, c.798_801dupCGCG p. (Ala268Argfs*?), in exon 7 of TYMP .
Collapse
Affiliation(s)
| | - Bee Chin Chen
- Unit of Biochemical Genetics, Department of Genetics, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| | - Yusnita Yakob
- Unit of Molecular Diagnostics and Protein, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Lua Seok Hian
- Unit of Molecular Diagnostics and Protein, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Bushra Afroze
- Department of Paediatrics and Child Health, Aga Khan University Hospital, Karachi, Pakistan
| |
Collapse
|
21
|
Tan EY, Boelens JJ, Jones SA, Wynn RF. Hematopoietic Stem Cell Transplantation in Inborn Errors of Metabolism. Front Pediatr 2019; 7:433. [PMID: 31709204 PMCID: PMC6824291 DOI: 10.3389/fped.2019.00433] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/07/2019] [Indexed: 01/26/2023] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) has been established as an effective therapy for selected inborn errors of metabolism. The success of HSCT in metabolic disease is best exemplified through the treatment of Hurler's syndrome, a lysosomal storage disease. Through the collaborative effort of several international centers, factors that predict successful patient and transplant outcomes have been identified. In this review, we discuss the principles that underlie the use of HSCT in metabolic diseases. We consider the clinical indications, conditioning regimens, and disease-specific follow-up for HSCT in different metabolic diseases. We highlight persisting challenges in HSCT to delay progression of certain organ systems that remain refractory to HSCT and the relatively high rates of aplastic graft failure. Finally, we evaluate the variable applicability of these principles to other inherited metabolic disorders including peroxisomal, mitochondrial, and other lysosomal storage diseases.
Collapse
Affiliation(s)
- Emily Y Tan
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jaap Jan Boelens
- Stem Cell Transplant and Cellular Therapies, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Simon A Jones
- Metabolic and Blood and Marrow Transplant Units, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Robert F Wynn
- Metabolic and Blood and Marrow Transplant Units, Royal Manchester Children's Hospital, Manchester, United Kingdom
| |
Collapse
|
22
|
Bax BE. Mitochondrial neurogastrointestinal encephalomyopathy: approaches to diagnosis and treatment. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2019; 4:1-16. [PMID: 32914088 PMCID: PMC7116056 DOI: 10.20517/jtgg.2020.08] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an ultra-rare disease caused by mutations in TYMP, the gene encoding for the enzyme thymidine phosphorylase. The resulting enzyme deficiency leads to a systemic accumulation of thymidine and 2’-deoxyuridine and ultimately mitochondrial failure due to a progressive acquisition of secondary mitochondrial DNA (mtDNA) mutations and mtDNA depletion. MNGIE is characterised by gastrointestinal dysmotility, cachexia, peripheral neuropathy, ophthalmoplegia, ptosis and leukoencephalopathy. The disease is progressively degenerative and leads to death at an average age of 37.6 years. Patients invariably encounter misdiagnoses, diagnostic delays, and non-specific clinical management. Despite its rarity, MNGIE has invoked much interest in the development of therapeutic strategies, mainly because it is one of the few mitochondrial disorders where the molecular abnormality is metabolically and physically accessible to manipulation. This review provides a resume of the current diagnosis and treatment approaches and aims to increase the clinical awareness of MNGIE and thereby facilitate early diagnosis and timely access to treatments, before the development of untreatable and irreversible organ damage.
Collapse
Affiliation(s)
- Bridget E Bax
- Institute of Molecular and Clinical Sciences, St. George's University of London, London, SW17 ORE, UK
| |
Collapse
|
23
|
Pacitti D, Levene M, Garone C, Nirmalananthan N, Bax BE. Mitochondrial Neurogastrointestinal Encephalomyopathy: Into the Fourth Decade, What We Have Learned So Far. Front Genet 2018; 9:669. [PMID: 30627136 PMCID: PMC6309918 DOI: 10.3389/fgene.2018.00669] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/04/2018] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an ultra-rare metabolic autosomal recessive disease, caused by mutations in the nuclear gene TYMP which encodes the enzyme thymidine phosphorylase. The resulting enzyme deficiency leads to a systemic accumulation of the deoxyribonucleosides thymidine and deoxyuridine, and ultimately mitochondrial failure due to a progressive acquisition of secondary mitochondrial DNA (mtDNA) mutations and mtDNA depletion. Clinically, MNGIE is characterized by gastrointestinal and neurological manifestations, including cachexia, gastrointestinal dysmotility, peripheral neuropathy, leukoencephalopathy, ophthalmoplegia and ptosis. The disease is progressively degenerative and leads to death at an average age of 37.6 years. As with the vast majority of rare diseases, patients with MNGIE face a number of unmet needs related to diagnostic delays, a lack of approved therapies, and non-specific clinical management. We provide here a comprehensive collation of the available knowledge of MNGIE since the disease was first described 42 years ago. This review includes symptomatology, diagnostic procedures and hurdles, in vitro and in vivo disease models that have enhanced our understanding of the disease pathology, and finally experimental therapeutic approaches under development. The ultimate aim of this review is to increase clinical awareness of MNGIE, thereby reducing diagnostic delay and improving patient access to putative treatments under investigation.
Collapse
Affiliation(s)
- Dario Pacitti
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom
| | - Michelle Levene
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom
| | - Caterina Garone
- MRC Mitochondrial Biology Unit, Cambridge Biomedical, Cambridge, United Kingdom
| | | | - Bridget E. Bax
- Molecular and Clinical Sciences Research Institute, St George's, University of London, London, United Kingdom
| |
Collapse
|
24
|
Filosto M, Cotti Piccinelli S, Caria F, Gallo Cassarino S, Baldelli E, Galvagni A, Volonghi I, Scarpelli M, Padovani A. Mitochondrial Neurogastrointestinal Encephalomyopathy (MNGIE-MTDPS1). J Clin Med 2018; 7:jcm7110389. [PMID: 30373120 PMCID: PMC6262582 DOI: 10.3390/jcm7110389] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/14/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE-MTDPS1) is a devastating autosomal recessive disorder due to mutations in TYMP, which cause a loss of function of thymidine phosphorylase (TP), nucleoside accumulation in plasma and tissues, and mitochondrial dysfunction. The clinical picture includes progressive gastrointestinal dysmotility, cachexia, ptosis and ophthalmoparesis, peripheral neuropathy, and diffuse leukoencephalopathy, which usually lead to death in early adulthood. Other two MNGIE-type phenotypes have been described so far, which are linked to mutations in POLG and RRM2B genes. Therapeutic options are currently available in clinical practice (allogeneic hematopoietic stem cell transplantation and carrier erythrocyte entrapped thymidine phosphorylase therapy) and newer, promising therapies are expected in the near future. Since successful treatment is strictly related to early diagnosis, it is essential that clinicians be warned about the clinical features and diagnostic procedures useful to suspect diagnosis of MNGIE-MTDPS1. The aim of this review is to promote the knowledge of the disease as well as the involved mechanisms and the diagnostic processes in order to reach an early diagnosis.
Collapse
Affiliation(s)
- Massimiliano Filosto
- Center for Neuromuscular Diseases, Unit of Neurology, ASST Spedali Civili and University of Brescia, 25100 Brescia, Italy.
| | - Stefano Cotti Piccinelli
- Center for Neuromuscular Diseases, Unit of Neurology, ASST Spedali Civili and University of Brescia, 25100 Brescia, Italy.
| | - Filomena Caria
- Center for Neuromuscular Diseases, Unit of Neurology, ASST Spedali Civili and University of Brescia, 25100 Brescia, Italy.
| | - Serena Gallo Cassarino
- Center for Neuromuscular Diseases, Unit of Neurology, ASST Spedali Civili and University of Brescia, 25100 Brescia, Italy.
| | - Enrico Baldelli
- Center for Neuromuscular Diseases, Unit of Neurology, ASST Spedali Civili and University of Brescia, 25100 Brescia, Italy.
| | - Anna Galvagni
- Center for Neuromuscular Diseases, Unit of Neurology, ASST Spedali Civili and University of Brescia, 25100 Brescia, Italy.
| | - Irene Volonghi
- Center for Neuromuscular Diseases, Unit of Neurology, ASST Spedali Civili and University of Brescia, 25100 Brescia, Italy.
| | - Mauro Scarpelli
- Department of Neuroscience, Unit of Neurology, Azienda Ospedaliera Universitaria Integrata Verona, 37100 Verona, Italy.
| | - Alessandro Padovani
- Center for Neuromuscular Diseases, Unit of Neurology, ASST Spedali Civili and University of Brescia, 25100 Brescia, Italy.
| |
Collapse
|
25
|
Torres-Torronteras J, Cabrera-Pérez R, Vila-Julià F, Viscomi C, Cámara Y, Hirano M, Zeviani M, Martí R. Long-Term Sustained Effect of Liver-Targeted Adeno-Associated Virus Gene Therapy for Mitochondrial Neurogastrointestinal Encephalomyopathy. Hum Gene Ther 2018; 29:708-718. [PMID: 29284302 DOI: 10.1089/hum.2017.133] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is caused by mutations in TYMP, the gene encoding the enzyme thymidine phosphorylase (TP). TP dysfunction results in systemic accumulation of the noxious TP substrates thymidine and deoxyuridine. Gene therapy using either a lentiviral vector or adeno-associated vector (AAV) has proven to be a feasible strategy, as both vectors restore biochemical homeostasis in a murine model of the disease. This study shows that the effect of an AAV containing the TYMP coding sequence transcriptionally targeted to the liver persists long term in mice. Although the vector copy number was diluted and AAV-mediated liver TP activity eventually reduced or lost after 21 months at the lowest vector doses, the effect was sustained (with a negligible decrease in TP activity) and fully effective on nucleoside homeostasis for at least 21 months at a dose of 2 × 1012 vg/kg. Macroscopic visual inspection of the animals' organs at completion of the study showed no adverse effects associated with the treatment. These results further support the feasibility of gene therapy for MNGIE.
Collapse
Affiliation(s)
- Javier Torres-Torronteras
- 1 Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona, Spain .,2 Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III , Madrid, Spain
| | - Raquel Cabrera-Pérez
- 1 Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona, Spain .,2 Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III , Madrid, Spain
| | - Ferran Vila-Julià
- 1 Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona, Spain .,2 Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III , Madrid, Spain
| | - Carlo Viscomi
- 3 MRC-Mitochondrial Biology Unit, MRC MBU, Wellcome Trust/MRC Building, Hills Road, Cambridge, United Kingdom
| | - Yolanda Cámara
- 1 Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona, Spain .,2 Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III , Madrid, Spain
| | - Michio Hirano
- 4 H. Houston Merritt Center, Department of Neurology, Columbia University Medical Center , New York, New York
| | - Massimo Zeviani
- 3 MRC-Mitochondrial Biology Unit, MRC MBU, Wellcome Trust/MRC Building, Hills Road, Cambridge, United Kingdom
| | - Ramon Martí
- 1 Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona, Spain .,2 Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III , Madrid, Spain
| |
Collapse
|
26
|
Chandra VS, Lakshmi BS, Padmavathi Devi SVV, Praveen N, Sameera NS, Reddy AS, Ram R, Kumar VS. Mitochondrial Neurogastrointestinal Encephalomyopathy: A Nonrenal Indication for Peritoneal Dialysis. Indian J Nephrol 2018; 28:310-313. [PMID: 30158752 PMCID: PMC6094836 DOI: 10.4103/ijn.ijn_404_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy is a rare autosomal recessive disorder characterized by severe muscle wasting, gastrointestinal dysmotility, leukoencephalopathy, peripheral neuropathy, and ophthalmoplegia. The pathogenesis involves the accumulation of very high concentrations of nucleosides dThd and dUrd along with depletion of nucleotide dCTP. One of the treatment measures is the removal of nucleosides dThd and dUrd by hemodialysis and peritoneal dialysis. Only a few patient reports of dialysis as a measure to remove nucleosides had been reported.
Collapse
Affiliation(s)
- V S Chandra
- Department of Nephrology, SVIMS, Tirupati, Andhra Pradesh, India
| | | | - S V V Padmavathi Devi
- Department of Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bengaluru, Karnataka, India
| | - N Praveen
- Department of Nephrology, SVIMS, Tirupati, Andhra Pradesh, India
| | - N S Sameera
- Department of Nephrology, SVIMS, Tirupati, Andhra Pradesh, India
| | - A S Reddy
- Department of Nephrology, SVIMS, Tirupati, Andhra Pradesh, India
| | - R Ram
- Department of Nephrology, SVIMS, Tirupati, Andhra Pradesh, India
| | - V S Kumar
- Department of Nephrology, SVIMS, Tirupati, Andhra Pradesh, India
| |
Collapse
|
27
|
Baker MK, Schutte CM, Ranchhod N, Brittain D, van Rensburg JE. Transient clinical improvement of a mitochondrial neurogastrointestinal encephalomyopathy-like syndrome after allogeneic haematopoietic stem cell transplantation. BMJ Case Rep 2017; 2017:bcr-2016-218276. [PMID: 28765176 DOI: 10.1136/bcr-2016-218276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Mitochondrial neurogastrointestinal encephalopathy (MNGIE), usually an autosomal-recessive inherited condition, causes gastrointestinal dysmotility, ophthalmoplegia, ptosis, leukoencephalopathy and neuropathy. The chromosome 22 disorder, due to mutations in the nuclear gene TYMP encoding thymidine phosphorylase (TP), leads to the accumulation of thymidine and deoxyuridine, with mitochondrial dysfunction.This report describes a patient with an MNGIE-like syndrome with a heterozygous TYMP mutation who showed marked, but transient improvement postallogeneic haematopoietic stem cell transplantation (HSCT).The patient, showing ptosis and ophthalmoplegia, was initially managed for myasthenia gravis. She developed gastrointestinal symptoms, dysarthria, dysphagia and weakness, and MNGIE was considered due to its low TP levels and improvement after platelet transfusions. She underwent HSCT, with dramatic improvement, but regressed 18 months later despite normal TP levels, platelet counts and full chimerism.MNGIE may encompass a spectrum of disorders. TP deficiency alone is unlikely to explain all clinical signs, and other factors, including the possible development of anti-TP antibodies, which may play a role in the pathophysiology.
Collapse
Affiliation(s)
- Malcolm Kevin Baker
- Department of Neurology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Clara Maria Schutte
- Department of Neurology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Neelay Ranchhod
- Department of Neurology, University of Pretoria, Pretoria, Gauteng, South Africa
| | | | - J E van Rensburg
- Department of Genetics, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
28
|
Hanbali A, Rasheed W, Peedikayil MC, Boholega S, Alzahrani HA. Mitochondrial Neurogastrointestinal Encephalomyopathy Syndrome Treated with Stem Cell Transplant: A Case Series and Literature Review. EXP CLIN TRANSPLANT 2017; 16:773-778. [PMID: 28411356 DOI: 10.6002/ect.2016.0109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy syndrome is a rare autosomal recessive multisystem disorder caused by nuclear TYMP gene mutations, which leads to deficiency in thymidine phosphorylase enzyme. This deficiency then leads to mitochondrial dysfunction, which causes the features characteristic of this syndrome, including severe muscle wasting, gastrointestinal dysmotility, leukoencephalopathy, peripheral neuropathy, and ophthalmoplegia. Here, we present a case series of 3 patients with mitochondrial neurogastrointestinal encephalomyopathy from Saudi Arabia who underwent allogeneic stem cell transplant at King Faisal Specialist Hospital (Riyadh, Saudi Arabia). Two patients died within the first year of transplant, and the third is still alive but without improvement in clinical features. Allogeneic hematopoietic stem cell transplant-related mortality appears to be high; this may at least be partially related to established end-organ effects with decreased performance status. Although allogeneic hematopoietic stem cell transplant clearly affects correction of genetic and biochemical defects in mitochondrial neurogastrointestinal encephalomyopathy, its ability to reverse or improve established clinical manifestations has not been proven.
Collapse
Affiliation(s)
- Amr Hanbali
- King Faisal Specialist Hospital, Riyadh, Saudi Arabia
| | | | | | | | | |
Collapse
|
29
|
Mitochondrial matters: Mitochondrial bottlenecks, self-assembling structures, and entrapment in the female germline. Stem Cell Res 2017; 21:178-186. [PMID: 28336253 DOI: 10.1016/j.scr.2017.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/22/2016] [Accepted: 03/10/2017] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial replacement therapy, a procedure to generate embryos with the nuclear genome of a donor mother and the healthy mitochondria of a recipient egg, has recently emerged as a promising strategy to prevent transmission of devastating mitochondrial DNA diseases and infertility. The procedure may produce an embryo that is free of diseased mitochondria. A recent study addresses important fundamental questions about the mechanisms underlying maternal inheritance and translational questions regarding the transgenerational effectiveness of this promising therapeutic strategy. This review considers recent advances in our understanding of maternal inheritance of mitochondria, implications for fertility and mitochondrial disease, and potential roles for the Balbiani body, an ancient oocyte structure, in mitochondrial selection in oocytes, with emphasis on therapies to remedy mitochondrial disorders.
Collapse
|
30
|
Yadak R, Sillevis Smitt P, van Gisbergen MW, van Til NP, de Coo IFM. Mitochondrial Neurogastrointestinal Encephalomyopathy Caused by Thymidine Phosphorylase Enzyme Deficiency: From Pathogenesis to Emerging Therapeutic Options. Front Cell Neurosci 2017; 11:31. [PMID: 28261062 PMCID: PMC5309216 DOI: 10.3389/fncel.2017.00031] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/01/2017] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a progressive metabolic disorder caused by thymidine phosphorylase (TP) enzyme deficiency. The lack of TP results in systemic accumulation of deoxyribonucleosides thymidine (dThd) and deoxyuridine (dUrd). In these patients, clinical features include mental regression, ophthalmoplegia, and fatal gastrointestinal complications. The accumulation of nucleosides also causes imbalances in mitochondrial DNA (mtDNA) deoxyribonucleoside triphosphates (dNTPs), which may play a direct or indirect role in the mtDNA depletion/deletion abnormalities, although the exact underlying mechanism remains unknown. The available therapeutic approaches include dialysis and enzyme replacement therapy, both can only transiently reverse the biochemical imbalance. Allogeneic hematopoietic stem cell transplantation is shown to be able to restore normal enzyme activity and improve clinical manifestations in MNGIE patients. However, transplant related complications and disease progression result in a high mortality rate. New therapeutic approaches, such as adeno-associated viral vector and hematopoietic stem cell gene therapy have been tested in Tymp-/-Upp1-/- mice, a murine model for MNGIE. This review provides background information on disease manifestations of MNGIE with a focus on current management and treatment options. It also outlines the pre-clinical approaches toward future treatment of the disease.
Collapse
Affiliation(s)
- Rana Yadak
- Department of Neurology, Erasmus University Medical Center Rotterdam, Netherlands
| | - Peter Sillevis Smitt
- Department of Neurology, Erasmus University Medical Center Rotterdam, Netherlands
| | - Marike W van Gisbergen
- Department of Radiation Oncology (MaastRO-Lab), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre Maastricht, Netherlands
| | - Niek P van Til
- Laboratory of Translational Immunology, University Medical Center Utrecht Utrecht, Netherlands
| | - Irenaeus F M de Coo
- Department of Neurology, Erasmus University Medical Center Rotterdam, Netherlands
| |
Collapse
|
31
|
Sivadasan A, Muthusamy K, Patil AK, Mathew V, Alexander M. Pearls & Oy-sters: Mitochondrial neurogastrointestinal encephalomyopathy: Diagnosis and response to peritoneal dialysis. Neurology 2016; 86:e147-e150. [PMID: 27044617 DOI: 10.1212/wnl.0000000000002536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Ajith Sivadasan
- From the Department of Neurological Sciences, Christian Medical College, Vellore, India
| | - Karthik Muthusamy
- From the Department of Neurological Sciences, Christian Medical College, Vellore, India
| | - Anil Kumar Patil
- From the Department of Neurological Sciences, Christian Medical College, Vellore, India
| | - Vivek Mathew
- From the Department of Neurological Sciences, Christian Medical College, Vellore, India
| | - Mathew Alexander
- From the Department of Neurological Sciences, Christian Medical College, Vellore, India.
| |
Collapse
|
32
|
De Giorgio R, Pironi L, Rinaldi R, Boschetti E, Caporali L, Capristo M, Casali C, Cenacchi G, Contin M, D'Angelo R, D'Errico A, Gramegna LL, Lodi R, Maresca A, Mohamed S, Morelli MC, Papa V, Tonon C, Tugnoli V, Carelli V, D'Alessandro R, Pinna AD. Liver transplantation for mitochondrial neurogastrointestinal encephalomyopathy. Ann Neurol 2016; 80:448-455. [DOI: 10.1002/ana.24724] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Roberto De Giorgio
- Department of Surgical and Medical SciencesUniversity of BolognaBologna Italy
| | - Loris Pironi
- Department of Surgical and Medical SciencesUniversity of BolognaBologna Italy
| | - Rita Rinaldi
- Neurology UnitSt. Orsola‐Malpighi HospitalBologna Italy
| | - Elisa Boschetti
- Department of Surgical and Medical SciencesUniversity of BolognaBologna Italy
| | | | | | - Carlo Casali
- Department of Medico‐Surgical Sciences and BiotechnologiesUniversity ‘La Sapienza’Rome Italy
| | - Giovanna Cenacchi
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBologna Italy
| | - Manuela Contin
- IRCCS Institute of Neurological Sciences of BolognaBologna Italy
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBologna Italy
| | - Roberto D'Angelo
- Department of Surgical and Medical SciencesUniversity of BolognaBologna Italy
- Neurology UnitSt. Orsola‐Malpighi HospitalBologna Italy
| | | | | | - Raffaele Lodi
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBologna Italy
| | | | - Susan Mohamed
- IRCCS Institute of Neurological Sciences of BolognaBologna Italy
| | | | - Valentina Papa
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBologna Italy
| | - Caterina Tonon
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBologna Italy
| | - Vitaliano Tugnoli
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBologna Italy
| | - Valerio Carelli
- IRCCS Institute of Neurological Sciences of BolognaBologna Italy
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBologna Italy
| | | | | |
Collapse
|
33
|
Di Meo I, Lamperti C, Tiranti V. Mitochondrial diseases caused by toxic compound accumulation: from etiopathology to therapeutic approaches. EMBO Mol Med 2016. [PMID: 26194912 PMCID: PMC4604682 DOI: 10.15252/emmm.201505040] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial disorders are a group of highly invalidating human conditions for which effective treatment is currently unavailable and characterized by faulty energy supply due to defective oxidative phosphorylation (OXPHOS). Given the complexity of mitochondrial genetics and biochemistry, mitochondrial inherited diseases may present with a vast range of symptoms, organ involvement, severity, age of onset, and outcome. Despite the wide spectrum of clinical signs and biochemical underpinnings of this group of dis-orders, some common traits can be identified, based on both pathogenic mechanisms and potential therapeutic approaches. Here, we will review two peculiar mitochondrial disorders, ethylmalonic encephalopathy (EE) and mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), caused by mutations in the ETHE1 and TYMP nuclear genes, respectively. ETHE1 encodes for a mitochondrial enzyme involved in sulfide detoxification and TYMP for a cytosolic enzyme involved in the thymidine/deoxyuridine catabolic pathway. We will discuss these two clinical entities as a paradigm of mitochondrial diseases caused by the accumulation of compounds normally present in traces, which exerts a toxic and inhibitory effect on the OXPHOS system.
Collapse
Affiliation(s)
- Ivano Di Meo
- Unit of Molecular Neurogenetics, Foundation IRCCS Neurological Institute C. Besta, Milan, Italy
| | - Costanza Lamperti
- Unit of Molecular Neurogenetics, Foundation IRCCS Neurological Institute C. Besta, Milan, Italy
| | - Valeria Tiranti
- Unit of Molecular Neurogenetics, Foundation IRCCS Neurological Institute C. Besta, Milan, Italy
| |
Collapse
|
34
|
Leuzzi V, Rossi L, Gabucci C, Nardecchia F, Magnani M. Erythrocyte-mediated delivery of recombinant enzymes. J Inherit Metab Dis 2016; 39:519-30. [PMID: 27026098 DOI: 10.1007/s10545-016-9926-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/29/2016] [Accepted: 03/03/2016] [Indexed: 10/22/2022]
Abstract
The possibility to clone, express and purify recombinant enzymes have originated the opportunity to dispose of a virtually infinite array of proteins that could be used in the clinics to treat several inherited and acquired pathological conditions. However, the direct administration of these recombinant proteins faces some intrinsic difficulties, such as degradation by circulating proteases and/or inactivation by the patient immune system. The use of drug delivery systems may overcome these limitations. Concerning recombinant enzyme therapy, the present review will mainly focus on the exploitation of erythrocytes as a carrier system for enzymes removing potentially noxious metabolites from the circulation, either as limiting treatment strategy for auxotrophic tumours or as a detoxing approach for some intoxication type inherited metabolic disorders. Moreover, the possibility of using RBCs as a potential delivering system addressing the enzymes to the monocyte-macrophages of reticular endothelial system for the treatment of diseases associated with this cell lineage, e.g. lysosome storage diseases, will be briefly discussed.
Collapse
Affiliation(s)
- Vincenzo Leuzzi
- Department of Child and Adolescent Neuropsychiatry, SAPIENZA University of Rome, Via deiSabelli 108, 00185, Rome, Italy.
| | - Luigia Rossi
- Department of Biomolecular Science, University of Urbino, Via Saffi 2, 61029, Urbino, PU, Italy
| | - Claudia Gabucci
- Department of Biomolecular Science, University of Urbino, Via Saffi 2, 61029, Urbino, PU, Italy
| | - Francesca Nardecchia
- Department of Child and Adolescent Neuropsychiatry, SAPIENZA University of Rome, Via deiSabelli 108, 00185, Rome, Italy
- Department of Physiology and Pharmacology, SAPIENZA University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Mauro Magnani
- Department of Biomolecular Science, University of Urbino, Via Saffi 2, 61029, Urbino, PU, Italy
| |
Collapse
|
35
|
Novel sequence variations in the thymidine phosphorylase gene causing mitochondrial neurogastrointestinal encephalopathy. Clin Dysmorphol 2016; 25:156-62. [PMID: 27261974 DOI: 10.1097/mcd.0000000000000137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Torres-Torronteras J, Cabrera-Pérez R, Barba I, Costa C, de Luna N, Andreu AL, Barquinero J, Hirano M, Cámara Y, Martí R. Long-Term Restoration of Thymidine Phosphorylase Function and Nucleoside Homeostasis Using Hematopoietic Gene Therapy in a Murine Model of Mitochondrial Neurogastrointestinal Encephalomyopathy. Hum Gene Ther 2016; 27:656-67. [PMID: 27004974 DOI: 10.1089/hum.2015.160] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a metabolic disorder caused by mutations in TYMP, encoding thymidine phosphorylase (TP). In MNGIE patients, TP dysfunction produces systemic thymidine and deoxyuridine accumulation, which ultimately impairs mitochondrial DNA replication and results in mitochondrial dysfunction. To date, only allogeneic hematopoietic stem cell transplantation has demonstrated long-term clinical efficacy, but high morbidity and mortality associated with this procedure necessitate the search for safer alternatives. In a previous study, we demonstrated that hematopoietic stem cell gene therapy using a lentiviral vector containing the coding sequence of TYMP restored the biochemical homeostasis in an animal model of MNGIE. In the present follow-up study, we show that ectopic expression of TP in the hematopoietic system restores normal nucleoside levels in plasma, as well as in tissues affected in MNGIE such as small intestine, skeletal muscle, brain, and liver. Mitochondrial dNTP pool imbalances observed in liver of the animal model were also corrected by the treatment. The biochemical effects were maintained at least 20 months even with low levels of chimerism. No alterations in the blood cell counts or other toxic effects were observed in association with the lentiviral transduction or TP overexpression. These results further support the notion that gene therapy is a feasible treatment option for MNGIE.
Collapse
Affiliation(s)
- Javier Torres-Torronteras
- 1 Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona, Spain
- 2 Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel Cabrera-Pérez
- 1 Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona, Spain
- 2 Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Ignasi Barba
- 3 Research Group on Cardiocirculatory Pathology, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona, Spain
| | - Carme Costa
- 4 Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona, Spain
| | - Noemí de Luna
- 1 Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona, Spain
- 2 Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni L Andreu
- 1 Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona, Spain
- 2 Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Barquinero
- 5 Gene and Cell Therapy Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona, Spain
| | - Michio Hirano
- 6 Department of Neurology, H. Houston Merritt Center, Columbia University Medical Center , New York, New York
| | - Yolanda Cámara
- 1 Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona, Spain
- 2 Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Ramon Martí
- 1 Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona, Spain
- 2 Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
37
|
Nightingale H, Pfeffer G, Bargiela D, Horvath R, Chinnery PF. Emerging therapies for mitochondrial disorders. Brain 2016; 139:1633-48. [PMID: 27190030 PMCID: PMC4892756 DOI: 10.1093/brain/aww081] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/26/2016] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial disorders are a diverse group of debilitating conditions resulting from nuclear and mitochondrial DNA mutations that affect multiple organs, often including the central and peripheral nervous system. Despite major advances in our understanding of the molecular mechanisms, effective treatments have not been forthcoming. For over five decades patients have been treated with different vitamins, co-factors and nutritional supplements, but with no proven benefit. There is therefore a clear need for a new approach. Several new strategies have been proposed acting at the molecular or cellular level. Whilst many show promise in vitro, the clinical potential of some is questionable. Here we critically appraise the most promising preclinical developments, placing the greatest emphasis on diseases caused by mitochondrial DNA mutations. With new animal and cellular models, longitudinal deep phenotyping in large patient cohorts, and growing interest from the pharmaceutical industry, the field is poised to make a breakthrough.
Collapse
Affiliation(s)
- Helen Nightingale
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Gerald Pfeffer
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK Department of Clinical Neurosciences, University of Calgary, Calgary, Canada Hotchkiss Brain Institute, at the University of Calgary, Calgary, Canada
| | - David Bargiela
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Rita Horvath
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Patrick F Chinnery
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK MRC-Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
38
|
Zhang J, Guo J, Fang W, Jun Q, Shi K. Clinical features of MELAS and its relation with A3243G gene point mutation. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:13411-13415. [PMID: 26722549 PMCID: PMC4680494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 07/29/2015] [Indexed: 06/05/2023]
Abstract
Mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS) mostly occur in children. The point mutation A3243G of mitochondrial DNA (mtDNA) may work as a specific bio-marker for mitochondrial disorders. The related clinical features, however, may vary among individuals. This study therefore investigated the relation between MELAS clinical features and point mutation A3243G of mtDNA, in an attempt to provide further evidences for genetic diagnosis of MELAS. Children with MELAS-like syndromes were tested for both blood lactate level and point mutation A3243G of mtDNA. Further family study was performed by mtDNA mutation screening at the same loci for those who had positive gene mutation at A3243G loci. Those who were negative for A3243G point mutation were examined by muscle biopsy and genetic screening. Both clinical and genetic features were analyzed. In all 40 cases with positive A3243G mutation, 36 children fitted clinical diagnosis of MELAS. In other 484 cases with negative mutation, only 8 children were clinically diagnosed with MELAS. Blood lactate levels in both groups were all elevated (P>0.05). In a further genetic screening of 28 families, 10 biological mothers and 8 siblings of MELAS children had positive A3243G point mutations but without any clinical symptoms. Certain difference existed in the clinical manifestations between children who were positive and negative for A3243G mutation of mtDNA but without statistical significance. MELAS showed maternal inheritance under most circumstances.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Internal Medicine-Neurology, The First Hospital of Shanxi Medical UniversityTaiyuan 030001, Shanxi, China
| | - Junhong Guo
- Department of Internal Medicine-Neurology, The First Hospital of Shanxi Medical UniversityTaiyuan 030001, Shanxi, China
| | - Wanghui Fang
- Department of Internal Medicine-Neurology, The First Hospital of Shanxi Medical UniversityTaiyuan 030001, Shanxi, China
| | - Qili Jun
- Department of Internal Medicine-Neurology, The First Hospital of Shanxi Medical UniversityTaiyuan 030001, Shanxi, China
| | - Kaili Shi
- Department of Neurology, Shanxi Province Children’s HospitalTaiyuan 030001, Shanxi, China
| |
Collapse
|
39
|
Cabrera-Pérez R, Torres-Torronteras J, Vila-Julià F, Ortega FJ, Cámara Y, Barquinero J, Martí R. Prospective therapeutic approaches in mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1090307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Tischner C, Wenz T. Keep the fire burning: Current avenues in the quest of treating mitochondrial disorders. Mitochondrion 2015; 24:32-49. [DOI: 10.1016/j.mito.2015.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 12/18/2022]
|
41
|
Halter JP, Michael W, Schüpbach M, Mandel H, Casali C, Orchard K, Collin M, Valcarcel D, Rovelli A, Filosto M, Dotti MT, Marotta G, Pintos G, Barba P, Accarino A, Ferra C, Illa I, Beguin Y, Bakker JA, Boelens JJ, de Coo IFM, Fay K, Sue CM, Nachbaur D, Zoller H, Sobreira C, Pinto Simoes B, Hammans SR, Savage D, Martí R, Chinnery PF, Elhasid R, Gratwohl A, Hirano M. Allogeneic haematopoietic stem cell transplantation for mitochondrial neurogastrointestinal encephalomyopathy. Brain 2015; 138:2847-58. [PMID: 26264513 DOI: 10.1093/brain/awv226] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 06/19/2015] [Indexed: 12/18/2022] Open
Abstract
Haematopoietic stem cell transplantation has been proposed as treatment for mitochondrial neurogastrointestinal encephalomyopathy, a rare fatal autosomal recessive disease due to TYMP mutations that result in thymidine phosphorylase deficiency. We conducted a retrospective analysis of all known patients suffering from mitochondrial neurogastrointestinal encephalomyopathy who underwent allogeneic haematopoietic stem cell transplantation between 2005 and 2011. Twenty-four patients, 11 males and 13 females, median age 25 years (range 10-41 years) treated with haematopoietic stem cell transplantation from related (n = 9) or unrelated donors (n = 15) in 15 institutions worldwide were analysed for outcome and its associated factors. Overall, 9 of 24 patients (37.5%) were alive at last follow-up with a median follow-up of these surviving patients of 1430 days. Deaths were attributed to transplant in nine (including two after a second transplant due to graft failure), and to mitochondrial neurogastrointestinal encephalomyopathy in six patients. Thymidine phosphorylase activity rose from undetectable to normal levels (median 697 nmol/h/mg protein, range 262-1285) in all survivors. Seven patients (29%) who were engrafted and living more than 2 years after transplantation, showed improvement of body mass index, gastrointestinal manifestations, and peripheral neuropathy. Univariate statistical analysis demonstrated that survival was associated with two defined pre-transplant characteristics: human leukocyte antigen match (10/10 versus <10/10) and disease characteristics (liver disease, history of gastrointestinal pseudo-obstruction or both). Allogeneic haematopoietic stem cell transplantation can restore thymidine phosphorylase enzyme function in patients with mitochondrial neurogastrointestinal encephalomyopathy and improve clinical manifestations of mitochondrial neurogastrointestinal encephalomyopathy in the long term. Allogeneic haematopoietic stem cell transplantation should be considered for selected patients with an optimal donor.
Collapse
Affiliation(s)
- Joerg P Halter
- 1 Haematology, University Hospital Basel, Basel, Switzerland
| | - W Michael
- 1 Haematology, University Hospital Basel, Basel, Switzerland2 Department of Neurology, Inselspital, Berne University Hospital, and University of Bern, Switzerland3 Centre d'Investigation Clinique 9503, Institut du Cerveau et de la Moelle Épinière, Département de Neurologie, Université Pierre et Marie Curie-Paris 6 and INSERM, Centre Hospitalier Universitaire Pitié-Salpêtrière, Paris, France4 Rambam Medical Centre Haifa, Israel5 Dep. SBMC - Sapienza University Roma, Italy6 University Hospital Southampton, UK7 Newcastle University, Newcastle upon Tyne, UK8 University Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain9 BMT Unit, MBBM Foundation, Paediatric Dept., University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy10 Clinical Neurology, Section for Neuromuscular Diseases and Neuropathies, University Hospital "Spedali Civili", Brescia, Italy11 Department of Neurological, Neurosurgical and Behavioural Sciences, University of Siena, Italy12 Stem Cell Transplant and Cellular Therapy Unit, University Hospital, Siena, Italy13 Department of Paediatrics, University Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain14 Department of Haematology - Catalan Institute of Oncology, University Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain15 Hospital de la Santa Creu i Sant Pau Universitat Autònoma Barcelona, Spain16 CHU Sart-Tilman Liege, Belgium17 Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Centre, Leiden, The Netherlands18 University Medical Centre Utrecht; Paediatric Blood and Marrow Transplantation Program, Utrecht, The Netherlands19 Department of Neurology and Child Neurology SKZ, Erasmus MC - University Medical Centre Rotterdam, The Netherlands20 Department of Haematology, Royal North Shore and St. Vincent Hospitals Sydney, Australia21 Department of Neurology, Royal North Shore Hospital, University of Sydney, Australia22 Medical University of Innsbruck, Departments of Medic
| | - M Schüpbach
- 2 Department of Neurology, Inselspital, Berne University Hospital, and University of Bern, Switzerland 3 Centre d'Investigation Clinique 9503, Institut du Cerveau et de la Moelle Épinière, Département de Neurologie, Université Pierre et Marie Curie-Paris 6 and INSERM, Centre Hospitalier Universitaire Pitié-Salpêtrière, Paris, France
| | | | | | | | | | - David Valcarcel
- 8 University Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Attilio Rovelli
- 9 BMT Unit, MBBM Foundation, Paediatric Dept., University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | - Massimiliano Filosto
- 10 Clinical Neurology, Section for Neuromuscular Diseases and Neuropathies, University Hospital "Spedali Civili", Brescia, Italy
| | - Maria T Dotti
- 11 Department of Neurological, Neurosurgical and Behavioural Sciences, University of Siena, Italy
| | - Giuseppe Marotta
- 12 Stem Cell Transplant and Cellular Therapy Unit, University Hospital, Siena, Italy
| | - Guillem Pintos
- 13 Department of Paediatrics, University Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Pere Barba
- 8 University Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Accarino
- 8 University Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Christelle Ferra
- 14 Department of Haematology - Catalan Institute of Oncology, University Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Isabel Illa
- 15 Hospital de la Santa Creu i Sant Pau Universitat Autònoma Barcelona, Spain
| | | | - Jaap A Bakker
- 17 Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jaap J Boelens
- 18 University Medical Centre Utrecht; Paediatric Blood and Marrow Transplantation Program, Utrecht, The Netherlands
| | - Irenaeus F M de Coo
- 19 Department of Neurology and Child Neurology SKZ, Erasmus MC - University Medical Centre Rotterdam, The Netherlands
| | - Keith Fay
- 20 Department of Haematology, Royal North Shore and St. Vincent Hospitals Sydney, Australia
| | - Carolyn M Sue
- 21 Department of Neurology, Royal North Shore Hospital, University of Sydney, Australia
| | - David Nachbaur
- 22 Medical University of Innsbruck, Departments of Medicine II and V, Austria
| | - Heinz Zoller
- 22 Medical University of Innsbruck, Departments of Medicine II and V, Austria
| | - Claudia Sobreira
- 23 Department of Neuroscience, Division of Neurology, Ribeirao Preto School of Medicine, Sao Paulo University, Brazil
| | - Belinda Pinto Simoes
- 24 Stem Cell Transplantation Unit, Internal Medicine Department, Ribeirao Preto School of Medicine, Sao Paulo University, Brazil
| | | | | | - Ramon Martí
- 8 University Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain 27 Biomedical Network Research Centre on Rare Diseases (CIBERER) ISCIII, Barcelona, Spain
| | | | - Ronit Elhasid
- 28 Dana Children's Hospital, Sourasky Medical Centre, Tel Aviv, Israel
| | - Alois Gratwohl
- 1 Haematology, University Hospital Basel, Basel, Switzerland
| | - Michio Hirano
- 29 Department of Neurology, Columbia University Medical Centre, New York, NY, USA
| |
Collapse
|
42
|
Rahman S. Emerging aspects of treatment in mitochondrial disorders. J Inherit Metab Dis 2015; 38:641-53. [PMID: 25962587 DOI: 10.1007/s10545-015-9855-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 11/26/2022]
Abstract
Mitochondrial diseases are clinically, biochemically and genetically heterogeneous disorders of two genomes, for which effective curative therapies are currently lacking. With the exception of a few rare vitamin/cofactor responsive conditions (including ACAD9 deficiency, disorders of coenzyme Q(10) biosynthesis, and Leigh syndrome caused by mutations in the SLC19A3 transporter), the mainstay of treatment for the vast majority of patients involves supportive measures. The search for a cure for mitochondrial disease is the subject of intensive research efforts by many investigators across the globe, but the goal remains elusive. The clinical and genetic heterogeneity, multisystemic nature of many of these disorders, unpredictable natural course, relative inaccessibility of the mitochondrion and lack of validated, clinically meaningful outcome measures, have all presented great challenges to the design of rigorous clinical trials. This review discusses barriers to developing effective therapies for mitochondrial disease, models for evaluating the efficacy of novel treatments and summarises the most promising emerging therapies in six key areas: 1) antioxidant approaches; 2) stimulating mitochondrial biogenesis; 3) targeting mitochondrial membrane lipids, dynamics and mitophagy; 4) replacement therapy; 5) cell-based therapies; and 6) gene therapy approaches for both mtDNA and nuclear-encoded defects of mitochondrial metabolism.
Collapse
Affiliation(s)
- Shamima Rahman
- Mitochondrial Research Group, Genetics and Genomic Medicine, Institute of Child Health, University College London and Metabolic Unit, Great Ormond Street Hospital, 30 Guilford Street, London, WC1N 1EH, UK,
| |
Collapse
|
43
|
Anesthetic Management of a Child with Mitochondrial Neurogastrointestinal Encephalopathy. Case Rep Anesthesiol 2015; 2015:453714. [PMID: 26124966 PMCID: PMC4466356 DOI: 10.1155/2015/453714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/21/2015] [Indexed: 01/21/2023] Open
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder associated with deficiency of thymidine phosphorylase (TP). Associated manifestations include visual and hearing impairments, peripheral neuropathies, leukoencephalopathy, and malnutrition from concomitant gastrointestinal dysmotility and pseudoobstruction. Given the altered metabolic state in these patients, specific consideration of medication selection is advised. This case report will describe the anesthetic management used in a 10-year-old girl with MNGIE. She had multiple anesthetics while undergoing allogeneic hematopoietic stem cell transplantation. This case report will discuss the successful repeated use of the same anesthetic in this pediatric patient, with the avoidance of volatile anesthetic agents, propofol, and muscle relaxant.
Collapse
|
44
|
Lauro A, De Giorgio R, Pinna AD. Advancement in the clinical management of intestinal pseudo-obstruction. Expert Rev Gastroenterol Hepatol 2015; 9:197-208. [PMID: 25020006 DOI: 10.1586/17474124.2014.940317] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intestinal pseudo-obstruction is more commonly known in its chronic form (CIPO), a cluster of rare diseases characterized by gastrointestinal muscle and nerve impairment, so severe to result in a markedly compromised peristalsis mimicking an intestinal occlusion. The management of CIPO requires the cooperation of a group of specialists: the disease has to be confirmed by a number of tests to avoid mistakes in the differential diagnosis. The treatment should be aimed at relieving symptoms arising from gut dysmotility (ideally using prokinetic agents), controlling abdominal pain (possibly with non-opioid antinociceptive drugs) and optimizing nutritional support. Furthermore, a thorough diagnostic work-up is mandatory to avoid unnecessary (potentially harmful) surgery and to select patients with clear indication to intestinal or multivisceral transplantation.
Collapse
Affiliation(s)
- Augusto Lauro
- General Surgery and Transplant Unit, St. Orsola-Malpighi University Hospital, University of Bologna, Bologna, Italy
| | | | | |
Collapse
|
45
|
Peedikayil MC, Kagevi EI, Abufarhaneh E, Alsayed MD, Alzahrani HA. Mitochondrial Neurogastrointestinal Encephalomyopathy Treated with Stem Cell Transplantation: A Case Report and Review of Literature. Hematol Oncol Stem Cell Ther 2015; 8:85-90. [PMID: 25585305 DOI: 10.1016/j.hemonc.2014.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/09/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022] Open
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare autosomal recessive disorder. The mutation in the ECGF1 gene causes severe deficiency of thymidine phosphorylase (TP), which in turn increases thymidine and deoxyuridine in the blood, serum, and tissue. The toxic levels of these products cause malfunction of the mitochondrial respiratory chain and mitochondrial DNA. Commonly, patients become symptomatic between 15 and 20 years of age (range 5 months to 35 years). The most commonly affected systems are gastrointestinal, followed by ocular, and nervous system. The disease is often fatal; high mortality rate is reported between 20 and 40 years of age. Treatment modalities that can increase thymidine phosphorylase activity and decrease thymidine and deoxy-uridine have shown symptomatic improvements in patients with MNGIE. Platelet transfusion, hemodialysis, peritoneal dialysis or allogeneic hematopoietic stem cell transplantation (HSCT) have been tried. The survival and long-term benefits of these measures are still not clear. Engrafted patients after stem cell transplantation have showed improvements in serum thymidine and deoxyuridine. We are reporting a case of MNGIE from Saudi Arabia, who underwent allogeneic hematopoietic stem cell transplantation. No MNGIE case has been previously reported from Saudi Arabia or the Gulf Arab countries. From the available literature, so far only 11 patients with MNGIE have undergone stem cell transplantation.
Collapse
Affiliation(s)
| | - Eje Ingvar Kagevi
- King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia.
| | - Ehab Abufarhaneh
- King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia.
| | | | | |
Collapse
|
46
|
Kanabus M, Heales SJ, Rahman S. Development of pharmacological strategies for mitochondrial disorders. Br J Pharmacol 2014; 171:1798-817. [PMID: 24116962 PMCID: PMC3976606 DOI: 10.1111/bph.12456] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/21/2013] [Accepted: 09/26/2013] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial diseases are an unusually genetically and phenotypically heterogeneous group of disorders, which are extremely challenging to treat. Currently, apart from supportive therapy, there are no effective treatments for the vast majority of mitochondrial diseases. Huge scientific effort, however, is being put into understanding the mechanisms underlying mitochondrial disease pathology and developing potential treatments. To date, a variety of treatments have been evaluated by randomized clinical trials, but unfortunately, none of these has delivered breakthrough results. Increased understanding of mitochondrial pathways and the development of many animal models, some of which are accurate phenocopies of human diseases, are facilitating the discovery and evaluation of novel prospective treatments. Targeting reactive oxygen species has been a treatment of interest for many years; however, only in recent years has it been possible to direct antioxidant delivery specifically into the mitochondria. Increasing mitochondrial biogenesis, whether by pharmacological approaches, dietary manipulation or exercise therapy, is also currently an active area of research. Modulating mitochondrial dynamics and mitophagy and the mitochondrial membrane lipid milieu have also emerged as possible treatment strategies. Recent technological advances in gene therapy, including allotopic and transkingdom gene expression and mitochondrially targeted transcription activator-like nucleases, have led to promising results in cell and animal models of mitochondrial diseases, but most of these techniques are still far from clinical application.
Collapse
Affiliation(s)
- M Kanabus
- Clinical and Molecular Genetics Unit, UCL Institute of Child Health, London, UK
| | | | | |
Collapse
|
47
|
Scarpelli M, Todeschini A, Rinaldi F, Rota S, Padovani A, Filosto M. Strategies for treating mitochondrial disorders: an update. Mol Genet Metab 2014; 113:253-60. [PMID: 25458518 DOI: 10.1016/j.ymgme.2014.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 09/30/2014] [Accepted: 09/30/2014] [Indexed: 12/12/2022]
Abstract
Mitochondrial diseases are a heterogeneous group of disorders resulting from primary dysfunction of the respiratory chain due to both nuclear and mitochondrial DNA mutations. The wide heterogeneity of biochemical dysfunctions and pathogenic mechanisms typical of this group of diseases has hindered therapy trials; therefore, available treatment options remain limited. Therapeutic strategies aimed at increasing mitochondrial functions (by enhancing biogenesis and electron transport chain function), improving the removal of reactive oxygen species and noxious metabolites, modulating aberrant calcium homeostasis and repopulating mitochondrial DNA could potentially restore the respiratory chain dysfunction. The challenge that lies ahead is the translation of some promising laboratory results into safe and effective therapies for patients. In this review we briefly update and discuss the most feasible therapeutic approaches for mitochondrial diseases.
Collapse
Affiliation(s)
- Mauro Scarpelli
- Section of Neurology, Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Alice Todeschini
- Clinical Neurology, Section for Neuromuscular Diseases and Neuropathies, University Hospital "Spedali Civili", Brescia, Italy
| | - Fabrizio Rinaldi
- Clinical Neurology, Section for Neuromuscular Diseases and Neuropathies, University Hospital "Spedali Civili", Brescia, Italy
| | - Silvia Rota
- Clinical Neurology, Section for Neuromuscular Diseases and Neuropathies, University Hospital "Spedali Civili", Brescia, Italy
| | - Alessandro Padovani
- Clinical Neurology, Section for Neuromuscular Diseases and Neuropathies, University Hospital "Spedali Civili", Brescia, Italy
| | - Massimiliano Filosto
- Clinical Neurology, Section for Neuromuscular Diseases and Neuropathies, University Hospital "Spedali Civili", Brescia, Italy.
| |
Collapse
|
48
|
Dreznik Y, Gutman M, Weiss B, Nevler A. Mitochondrial neuro-gastrointestinal encephalomyopathy presenting with recurrent bowel perforations and intra-abdominal abscesses. J Gastrointest Surg 2014; 18:2054-6. [PMID: 25022257 DOI: 10.1007/s11605-014-2589-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/01/2014] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Mitochondrial neuro-gastrointestinal encephalomyopathy syndrome (MNGIE syndrome) is a rare genetic disorder that is defined clinically by severe gastrointestinal dysmotility, cachexia, peripheral neuropathy, ptosis and/or ophthalmoparesis, and leukoencephalopathy. CASE REPORT We report a case of a 26-year-old man with MNGIE syndrome with a unique clinical picture consisting of recurrent episodes of spontaneous bowel perforation and multiple intra-abdominal abscesses. The patient was admitted to our hospital several times in the past few years and underwent urgent laparotomies due to perforations in the small bowel. CONCLUSION Case reports regarding bowel perforations in MNGIE syndrome are scarce and mostly relate to a single perforation and attributed to chronic pseudo-obstruction of the small bowel. To the best of our knowledge, there are no case reports regarding recurrent perforations and abscesses. Surgical management of these cases is challenging as there is no curative option for this genetic disorder. Primary care physicians and treating gastroenterologists should be aware of the potential surgical emergencies associated with this disorder.
Collapse
Affiliation(s)
- Yael Dreznik
- Department of Surgery and Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Israel,
| | | | | | | |
Collapse
|
49
|
Benureau A, Meyer P, Maillet O, Leboucq N, Legras S, Jeziorski E, Fournier-Favre S, Jeandel C, Gaignard P, Slama A, Rivier F, Roubertie A, Carneiro M. [Mitochondrial neurogastrointestinal encephalopathy disease]. Arch Pediatr 2014; 21:1370-4. [PMID: 25282463 DOI: 10.1016/j.arcped.2014.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/09/2014] [Accepted: 08/13/2014] [Indexed: 11/18/2022]
Abstract
Mitochondrial neurogastrointestinal encephalopathy disease (MNGIE) is a rare autosomal-recessive syndrome, resulting from mutations in the TYMP gene, located at 22q13. The mutation induces a thymidine phosphorylase (TP) deficit, which leads to a nucleotide pool imbalance and to instability of the mitochondrial DNA. The clinical picture regroups gastrointestinal dysmotility, cachexia, ptosis, ophthalmoplegia, peripheral neuropathy, and asymptomatic leukoencephalopathy. The prognosis is unfavorable. We present the case of a 14-year-old Caucasian female whose symptoms started in early childhood. The diagnosis was suspected after magnetic resonance imaging (MRI), performed given the atypical features of mental anorexia, which revealed white matter abnormalities. She presented chronic vomiting, postprandial abdominal pain, and problems gaining weight accompanied by cachexia. This diagnosis led to establishing proper care, in particular an enteral and parenteral nutrition program. There is no known specific effective treatment, but numerous studies are in progress. In this article, after reviewing the existing studies, we discuss the main diagnostic and therapeutic aspects of the disease. We argue for the necessity of performing a cerebral MRI given the atypical features of a patient with suspected mental anorexia (or when the clinical pattern of a patient with mental anorexia seems atypical), so that MNGIE can be ruled out.
Collapse
Affiliation(s)
- A Benureau
- Service de neuropédiatrie, hôpital Gui-de-Chauliac, 80, avenue Augustin-Fliche, 34295 Montpellier cedex 5, France.
| | - P Meyer
- Service de neuropédiatrie, hôpital Gui-de-Chauliac, 80, avenue Augustin-Fliche, 34295 Montpellier cedex 5, France; Inserm U1046, université Montpellier 1, université Montpellier 2, 34000 Montpellier, France
| | - O Maillet
- Service de chirurgie viscérale infantile, hôpital Lapeyronie, 371, avenue du Doyen-Gaston-Giraud, 34295 Montpellier cedex 5, France
| | - N Leboucq
- Service de neuroradiologie, hôpital Gui-de-Chauliac, 80, avenue Augustin-Fliche, 34295 Montpellier cedex 5, France
| | - S Legras
- Médecine psychologique de l'enfant et de l'adolescent, hôpital Saint-Éloi, 80, avenue Augustin-Fliche, 34295 Montpellier cedex 5, France
| | - E Jeziorski
- Service de maladies infectieuses et immunologie clinique, hôpital Arnaud-de-Villeneuve, 371, avenue du Doyen-Gaston-Giraud, 34295 Montpellier cedex 5, France
| | - S Fournier-Favre
- Service de gastro-entérologie pédiatrique, hôpital Arnaud-de-Villeneuve, 371, avenue du Doyen-Gaston-Giraud, 34295 Montpellier cedex 5, France
| | - C Jeandel
- Service de néphrologie et endocrinologie pédiatrique, hôpital Arnaud-de-Villeneuve, 371, avenue du Doyen-Gaston-Giraud, 34295 Montpellier cedex 5, France
| | - P Gaignard
- Laboratoire de biochimie, hôpital Bicêtre, 78, rue du Général-Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - A Slama
- Laboratoire de biochimie, hôpital Bicêtre, 78, rue du Général-Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - F Rivier
- Service de neuropédiatrie, hôpital Gui-de-Chauliac, 80, avenue Augustin-Fliche, 34295 Montpellier cedex 5, France; Inserm U1046, université Montpellier 1, université Montpellier 2, 34000 Montpellier, France
| | - A Roubertie
- Service de neuropédiatrie, hôpital Gui-de-Chauliac, 80, avenue Augustin-Fliche, 34295 Montpellier cedex 5, France; Inserm U 1051, INM, 34000 Montpellier, France
| | - M Carneiro
- Service de neuropédiatrie, hôpital Gui-de-Chauliac, 80, avenue Augustin-Fliche, 34295 Montpellier cedex 5, France
| |
Collapse
|
50
|
Balasubramaniam S, Duley JA, Christodoulou J. Inborn errors of pyrimidine metabolism: clinical update and therapy. J Inherit Metab Dis 2014; 37:687-98. [PMID: 25030255 DOI: 10.1007/s10545-014-9742-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/05/2014] [Accepted: 06/24/2014] [Indexed: 10/25/2022]
Abstract
Inborn errors involving enzymes essential for pyrimidine nucleotide metabolism have provided new insights into their fundamental physiological roles as vital constituents of nucleic acids as well as substrates of lipid and carbohydrate metabolism and in oxidative phosphorylation. Genetic aberrations of pyrimidine pathways lead to diverse clinical manifestations including neurological, immunological, haematological, renal impairments, adverse reactions to analogue therapy and association with malignancies. Maintenance of cellular nucleotides depends on the three aspects of metabolism of pyrimidines: de novo synthesis, catabolism and recycling of these metabolites. Of the ten recognised disorders of pyrimidine metabolism treatment is currently restricted to only two disorders: hereditary orotic aciduria (oral uridine therapy) and mitochondrial neurogastrointestinal encephalomyopathy (MNGIE; allogeneic hematopoetic stem cell transplant and enzyme replacement). The ubiquitous role that pyrimidine metabolism plays in human life highlights the importance of improving diagnostic evaluation in suggestive clinical settings, which will contribute to the elucidation of new defects, future development of novel drugs and therapeutic strategies. Limited awareness of the expanding phenotypic spectrum, with relatively recent descriptions of newer disorders, compounded by considerable genetic heterogeneity has often contributed to the delays in the diagnosis of this group of disorders. The lack of an easily recognisable, easily measurable end product, akin to uric acid in purine metabolism, has contributed to the under-recognition of these disorders.This review describes the currently known inborn errors of pyrimidine metabolism, their variable phenotypic presentations, established diagnostic methodology and recognised treatment options.
Collapse
Affiliation(s)
- Shanti Balasubramaniam
- Metabolic Unit, Princess Margaret Hospital, Roberts Road, Subiaco, Perth, WA, 6008, Australia
| | | | | |
Collapse
|