1
|
Ikegame K, Fukunaga K, Osugi Y, Kaida K, Teramoto M, Inoue T, Okada M, Yoshihara K, Tamaki H, Yoshihara S, Fujiwara H. Donor-derived cytomegalovirus-specific CD8 + T cells restricted to shared, donor-specific, or host-specific HLA after HLA mismatched hematopoietic stem cell transplantation. Transpl Immunol 2024; 87:102099. [PMID: 39111366 DOI: 10.1016/j.trim.2024.102099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/17/2024] [Accepted: 07/24/2024] [Indexed: 09/14/2024]
Abstract
Immune reconstitution after human leukocyte antigen (HLA)-mismatched (haploidentical) hematopoietic stem cell transplantation (haplo-HCT) can significantly influence long-term outcomes. The three possible HLA haplotypes after transplantation are: one carried by both the patient and the donor (shared HLA), one by donor only (donor-specific HLA), and one by patient only (host-specific HLA), and the donor T cells remain restricted to one of these three haplotypes. Understanding the presence of donor T cells restricted to each haplotype may provide more detailed insights into post-transplant immune response and potentially provide valuable information for the development of chimeric antigen receptor T cell or T cell receptor T cell constructs. In this study, patients or donors with HLA-A24 or HLA-A2 were tested with HLA-A*24:02- and A*02:01-restricted cytomegalovirus (CMV)-specific tetramers for detecting the respective HLA-restricted T cells. Sixty-four samples from 40 patients were assayed. More than half of the patients at day 90 and all patients by day 900 had shared HLA-restricted T cells. After day 90, half of the patients had donor-specific HLA-restricted T cells, but no host-specific HLA-restricted T cells were found. In the comparative analysis of the transplant types, shared HLA-restricted T cells were positive in all three categories: haplo-HCT (50%), 2-haplo-mis-HCT (75%), and spousal HCT (67%). Furthermore, donor-specific HLA-restricted T cells demonstrated positivity in haplo-HCT at 57% and in 2-haplo-mis-HCT at 60%, with a threshold of 0.01%. Donor-specific HLA-restricted T cells for spousal HCT were not examined due to the lack of an appropriate HLA combination for the tetramers. The presence of shared HLA-restricted T cells explains the host defense after HLA-haploidentical transplantation, while the presence of donor-specific HLA-restricted T cells may account for host defense against hematotropic viruses, such as CMV. However, this study failed to detect host-specific HLA-restricted T cells, leaving the host defense against epitheliotropic viruses unresolved, thus requiring further investigation.
Collapse
Affiliation(s)
- Kazuhiro Ikegame
- Department of Hematology, Hyogo Medical University, Hyogo, Japan; Hematopoietic Cell Transplantation Center, Aichi Medical University of School of Medicine, Aichi, Japan.
| | - Keiko Fukunaga
- Department of Hematology, Hyogo Medical University, Hyogo, Japan; Department of Hematology, Nippon Medical school, Tokyo, Japan.
| | - Yuko Osugi
- Department of Hematology, Hyogo Medical University, Hyogo, Japan.
| | - Katsuji Kaida
- Department of Hematology, Hyogo Medical University, Hyogo, Japan.
| | | | - Takayuki Inoue
- Department of Hematology, Hyogo Medical University, Hyogo, Japan.
| | - Masaya Okada
- Department of Hematology, Hyogo Medical University, Hyogo, Japan; First Department of Internal Medicine, Kansai Medical University Medical Center, Osaka, Japan.
| | - Kyoko Yoshihara
- Department of Hematology, Hyogo Medical University, Hyogo, Japan.
| | - Hiroya Tamaki
- Department of Hematology, Hyogo Medical University, Hyogo, Japan.
| | | | - Hiroshi Fujiwara
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Mie, Japan.
| |
Collapse
|
2
|
Xia J, Xiao Y, Gui G, Gong S, Wang H, Li X, Yan R, Fan J. Insights into cytomegalovirus-associated T cell receptors in recipients following allogeneic hematopoietic stem cell transplantation. Virol J 2024; 21:236. [PMID: 39350155 PMCID: PMC11443867 DOI: 10.1186/s12985-024-02511-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Cytomegalovirus (CMV) reactivation is a serious problem in recipients of allogeneic hematopoietic stem cell transplantation. Long-term latency depends on specific T cell immune reconstitution, which identifies various pathogens by T cell receptors (TCRs). However, the mechanisms underlying the selection of CMV-specific TCRs in recipients after transplantation remain unclear. METHODS Using high-throughput sequencing and bioinformatics analysis, the T cell immune repertoire of seven CMV reactivated recipients (CRRs) were analyzed and compared to those of seven CMV non-activated recipients (CNRs) at an early stage after transplant. RESULTS The counts of unique complementarity-determining region 3 (CDR3) were significantly higher in CNRs than in CRRs. The CDR3 clones in the CNRs exhibit higher homogeneity compared to the CRRs. With regard to T cell receptor β-chain variable region (TRBV) and joint region (TRBJ) genotypes, significant differences were observed in the frequencies of TRBV6, BV23, and BV7-8 between the two groups. In addition to TRBV29-1/BJ1-2, TRBV2/BJ2-2, and TRBV12-4/BJ1-5, 11 V-J combinations had significantly different expression levels between CRRs and CNRs. CONCLUSIONS The differences in TCR diversity, TRBV segments, and TRBV-BJ combinations observed between CNRs and CRRs might be associated with post-transplant CMV reactivation and could serve as a foundation for further research.
Collapse
Affiliation(s)
- Jintao Xia
- Department of Clinical Laboratory, Department of "A", Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310053, China
| | - Yingjun Xiao
- The Third Affiliated Hospital of Zhejiang, Chinese Medical University, Zhongshan Hospital of Zhejiang Province, Hangzhou, China
| | - Genyong Gui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 31006, China
| | - Shengnan Gong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 31006, China
| | - Huiqi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 31006, China
| | - Xuejie Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 31006, China
| | - Ren Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 31006, China
| | - Jun Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 31006, China.
| |
Collapse
|
3
|
Li X, Liang H, Fan J. Prospects of Cytomegalovirus-Specific T-Cell Receptors in Clinical Diagnosis and Therapy. Viruses 2023; 15:1334. [PMID: 37376633 DOI: 10.3390/v15061334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/03/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Human cytomegalovirus (HCMV) is responsible for widespread infections worldwide. In immunocompetent individuals it is typically latent, while infection or reactivation in immunocompromised individuals can result in severe clinical symptoms or even death. Although there has been significant progress in the treatment and diagnosis of HCMV infection in recent years, numerous shortcomings and developmental limitations persist. There is an urgent need to develop innovative, safe, and effective treatments, as well as to explore early and timely diagnostic strategies for HCMV infection. Cell-mediated immune responses are the primary factor controlling HCMV infection and replication, but the protective role of humoral immune responses remains controversial. T-cells, key effector cells of the cellular immune system, are critical for clearing and preventing HCMV infection. The T-cell receptor (TCR) lies at the heart of T-cell immune responses, and its diversity enables the immune system to differentiate between self and non-self. Given the significant influence of cellular immunity on human health and the indispensable role of the TCR in T-cell immune responses, we posit that the impact of TCR on the development of novel diagnostic and prognostic methods, as well as on patient monitoring and management of clinical HCMV infection, will be far-reaching and profound. High-throughput and single-cell sequencing technologies have facilitated unprecedented quantitative detection of TCR diversity. With these current sequencing technologies, researchers have already obtained a vast number of TCR sequences. It is plausible that in the near future studies on TCR repertoires will be instrumental in assessing vaccine efficacy, immunotherapeutic strategies, and the early diagnosis of HCMV infection.
Collapse
Affiliation(s)
- Xuejie Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hanying Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jun Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
4
|
Features of repertoire diversity and gene expression in human cytotoxic T cells following allogeneic hematopoietic cell transplantation. Commun Biol 2021; 4:1177. [PMID: 34635773 PMCID: PMC8505416 DOI: 10.1038/s42003-021-02709-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 09/21/2021] [Indexed: 11/09/2022] Open
Abstract
Cytomegalovirus reactivation is still a critical concern following allogeneic hematopoietic cell transplantation, and cellular immune reconstitution of cytomegalovirus-specific cytotoxic T-cells is necessary for the long-term control of cytomegalovirus reactivation after allogeneic hematopoietic cell transplantation. Here we show the features of repertoire diversity and the gene expression profile of HLA-A24 cytomegalovirus-specific cytotoxic T-cells in actual recipients according to the cytomegalovirus reactivation pattern. A skewed preference for BV7 genes and sequential “G” amino acids motif is observed in complementarity-determining region-3 of T cell receptor-β. Increased binding scores are observed in T-cell clones with complementarity-determining region-3 of T cell receptor-β with a “(G)GG” motif. Single-cell RNA-sequence analyses demonstrate the homogenous distribution of the gene expression profile in individual cytomegalovirus-specific cytotoxic T-cells within each recipient. On the other hand, bulk RNA-sequence analyses reveal that gene expression profiles among patients are different according to the cytomegalovirus reactivation pattern, and are associated with cytokine production or cell division. These methods and results can help us to better understand immune reconstitution following hematopoietic cell transplantation, leading to future studies on the clinical application of adoptive T-cell therapies. Cytomegalovirus reactivation is an important concern after allogeneic stem cell transplantation (allo-HCT) or organ transplantation. Here, Hideki Nakasone et al. investigate changes in repertoire diversity and gene expression among clinically-transferred T cells to improve our understanding of immune reconstitution following allo-HCT.
Collapse
|
5
|
Tickotsky-Moskovitz N, Louzoun Y, Dvorkin S, Rotkopf A, Kuperman AA, Efroni S. CDR3 and V genes show distinct reconstitution patterns in T cell repertoire post-allogeneic bone marrow transplantation. Immunogenetics 2021; 73:163-173. [PMID: 33475766 DOI: 10.1007/s00251-020-01200-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
Restoration of T cell repertoire diversity after allogeneic bone marrow transplantation (allo-BMT) is crucial for immune recovery. T cell diversity is produced by rearrangements of germline gene segments (V (D) and J) of the T cell receptor (TCR) α and β chains, and selection induced by binding of TCRs to MHC-peptide complexes. Multiple measures were proposed for this diversity. We here focus on the V-gene usage and the CDR3 sequences of the beta chain. We compared multiple T cell repertoires to follow T cell repertoire changes post-allo-BMT in HLA-matched related donor and recipient pairs. Our analyses of the differences between donor and recipient complementarity determining region 3 (CDR3) beta composition and V-gene profile show that the CDR3 sequence composition does not change during restoration, implying its dependence on the HLA typing. In contrast, V-gene usage followed a time-dependent pattern, initially following the donor profile and then shifting back to the recipients' profile. The final long-term repertoire was more similar to that of the recipient's original one than the donor's; some recipients converged within months, while others took multiple years. Based on the results of our analyses, we propose that donor-recipient V-gene distribution differences may serve as clinical biomarkers for monitoring immune recovery.
Collapse
Affiliation(s)
| | - Yoram Louzoun
- Department of Mathematics, Bar Ilan University, Ramat Gan, Israel.
| | - Shirit Dvorkin
- Department of Mathematics, Bar Ilan University, Ramat Gan, Israel
| | - Adi Rotkopf
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Amir Asher Kuperman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Blood Coagulation Service and Pediatric Hematology Clinic, Galilee Medical Center, Nahariya, Israel
| | - Sol Efroni
- The Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
6
|
Alonso L, Méndez-Echevarría A, Rudilla F, Mozo Y, Soler-Palacin P, Sisinni L, Bueno D, Riviere J, de Paz R, Sánchez-Zapardiel E, Querol S, Rodriguez-Pena R, López-Granados E, Gimeno R, Díaz de Heredia C, Pérez-Martínez A. Failure of Viral-Specific T Cells Administered in Pre-transplant Settings in Children with Inborn Errors of Immunity. J Clin Immunol 2021; 41:748-755. [PMID: 33462728 DOI: 10.1007/s10875-020-00961-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 12/29/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE Use of adoptive immunotherapy with virus-specific T cells (VST) in patients with inborn errors of immunity prior to hematopoietic stem cell transplantation (HSCT) has been reported in few patients. We report our experience, reviewing all the cases previously reported. METHODS We report four children with inborn errors of immunity who received VST infusion in a pre-HSCT setting in two reference centers in Spain and review all inborn errors of immunity cases previously reported. RESULTS Taking into account our four cases, nine children have been reported to receive VST prior to HSCT to date: 3 severe combined immunodeficiency, 2 CTPS1 deficiency, 1 dyskeratosis congenital, 1 ORAI1 deficiency, 1 Rothmund-Thomson syndrome, and 1 combined immunodeficiency without confirmed genetic defect. In four patients, immunotherapy resulted in clinical improvement, allowing to proceed to HSCT. In these cases, the infusion was started closely to viral diagnosis [mean time 28 days (IQR; 17-52 days)], and the VST was followed shortly thereafter by HSCT [mean time 28 days (IQR; 10-99 days)]. Viremia was controlled after HSCT in two cases (performed 7 and 36 days after the infusion). Multiple infusions were required in many cases. Five out of nine patients died before receiving HSCT. These patients presented with a prolonged and uncontrolled infection before VST administration [mean time from viral diagnosis to VST infusion was 176 days (IQR; 54-1687)]. CONCLUSIONS In patients with inborn errors of immunity, the efficacy of VST for treating disseminated viral infections in pre-transplant settings seems to have a limited efficacy. However, this therapy could be used in a pre-emptive setting before severe viral disease occurs or closely to HSCT.
Collapse
Affiliation(s)
- Laura Alonso
- HSCT Department, Hospital Vall d'Hebron, Barcelona, Spain
| | - Ana Méndez-Echevarría
- Paediatric Infectious Diseases Department, La Paz University Hospital, Madrid, Spain. .,Translational Research Network in Pediatric Infectious Diseases (RITIP), Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - Francesc Rudilla
- Immunogenetics and Histocompatibility Laboratory, Banc de Sang i Teixits, Barcelona, Spain
| | - Yasmina Mozo
- Paediatric Hemato-Oncology Department, La Paz University Hospital, Madrid, Spain.,Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Pere Soler-Palacin
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Research Institute, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Jeffrey Model Foundation Excellence Center, Barcelona, Spain
| | - Luisa Sisinni
- Paediatric Hemato-Oncology Department, La Paz University Hospital, Madrid, Spain.,Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - David Bueno
- Paediatric Hemato-Oncology Department, La Paz University Hospital, Madrid, Spain.,Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Jacques Riviere
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Research Institute, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Jeffrey Model Foundation Excellence Center, Barcelona, Spain
| | - Raquel de Paz
- Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Elena Sánchez-Zapardiel
- Immunology Department, La Paz University Hospital, Madrid, Spain.,IdiPAZ Institute for Health Research, Madrid, Spain
| | - Sergi Querol
- Cellular Therapy Unit, Cord Blood Bank, Centre Frederic Duran i Jordà, Barcelona, Spain
| | - Rebeca Rodriguez-Pena
- Immunology Department, La Paz University Hospital, Madrid, Spain.,IdiPAZ Institute for Health Research, Madrid, Spain
| | - Eduardo López-Granados
- Immunology Department, La Paz University Hospital, Madrid, Spain.,IdiPAZ Institute for Health Research, Madrid, Spain
| | - Ramón Gimeno
- Laboratory of Immunology, Department of Pathology, Hospital del Mar, Barcelona, Spain
| | | | - Antonio Pérez-Martínez
- Paediatric Hemato-Oncology Department, La Paz University Hospital, Madrid, Spain.,Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| |
Collapse
|
7
|
T-cell receptor repertoire of cytomegalovirus-specific cytotoxic T-cells after allogeneic stem cell transplantation. Sci Rep 2020; 10:22218. [PMID: 33335252 PMCID: PMC7747720 DOI: 10.1038/s41598-020-79363-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Cytomegalovirus (CMV) infection is a major complication during allogeneic stem cell transplantation (allo-SCT). However, mechanisms of adaptive immunity that drive this remain unclear. To define early immunological responses to CMV after transplantation, we using next-generation sequencing to examine the repertoire of T-cell receptors in CD8+/CMV pp65 tetramer+ cells (CMV-CTLs) in peripheral blood samples obtained from 16 allo-SCT recipients with HLA-A*24:02 at the time of CMV reactivation. In most patients, TCR beta repertoire of CMV-CTLs was highly skewed (median Inverse Simpson's index: 1.595) and, 15 of 16 patients shared at least one TCR-beta clonotype with ≥ 2 patients. The shared TCRs were dominant in 12 patients and, two clonotypes were shared by about half of the patients. Similarity analysis showed that CDR3 sequences of shared TCRs were more similar than unshared TCRs. TCR beta repertoires of CMV-CTLs in 12 patients were also analyzed after 2-4 weeks to characterize the short-term dynamics of TCR repertoires. In ten patients, we observed persistence of prevailing clones. In the other two patients, TCR repertoires became more diverse, major clones declined, and new private clones subsequently emerged. These results provided the substantive clue to understand the immunological behavior against CMV reactivation after allo-SCT.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW The genetic susceptibility and dominant protection for type 1 diabetes (T1D) associated with human leukocyte antigen (HLA) haplotypes, along with minor risk variants, have long been thought to shape the T cell receptor (TCR) repertoire and eventual phenotype of autoreactive T cells that mediate β-cell destruction. While autoantibodies provide robust markers of disease progression, early studies tracking autoreactive T cells largely failed to achieve clinical utility. RECENT FINDINGS Advances in acquisition of pancreata and islets from T1D organ donors have facilitated studies of T cells isolated from the target tissues. Immunosequencing of TCR α/β-chain complementarity determining regions, along with transcriptional profiling, offers the potential to transform biomarker discovery. Herein, we review recent studies characterizing the autoreactive TCR signature in T1D, emerging technologies, and the challenges and opportunities associated with tracking TCR molecular profiles during the natural history of T1D.
Collapse
Affiliation(s)
- Laura M Jacobsen
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Amanda Posgai
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Howard R Seay
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Michael J Haller
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA.
| |
Collapse
|
9
|
Soluble HLA-associated peptide from PSF1 has a cancer vaccine potency. Sci Rep 2017; 7:11137. [PMID: 28894200 PMCID: PMC5593935 DOI: 10.1038/s41598-017-11605-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/25/2017] [Indexed: 12/29/2022] Open
Abstract
Partner of sld five 1 (PSF1) is an evolutionary conserved DNA replication factor involved in DNA replication in lower species, which is strongly expressed in normal stem cell populations and progenitor cell populations. Recently, we have investigated PSF1 functions in cancer cells and found that PSF1 plays a significant role in tumour growth. These findings provide initial evidence for the potential of PSF1 as a therapeutic target. Here, we reveal that PSF1 contains an immunogenic epitope suitable for an antitumour vaccine. We analysed PSF1 peptides eluted from affinity-purified human leukocyte antigen (HLA) by mass spectrometry and identified PSF179-87 peptide (YLYDRLLRI) that has the highest prediction score using an in silico algorithm. PSF179-87 peptide induced PSF1-specific cytotoxic T lymphocyte responses such as the production of interferon-γ and cytotoxicity. Because PSF1 is expressed in cancer cell populations and highly expressed in cancer stem cell populations, these data suggest that vaccination with PSF179-87 peptide may be a novel therapeutic strategy for cancer treatment.
Collapse
|
10
|
Wu Z, Zhang H, Jin M, Liang H, Huang Y, Yang R, Gui G, Wang H, Gong S, Wang J, Fan J. Relationship between T-cell receptor beta chain sequences and human cytomegalovirus infection in allogeneic hematopoietic stem cell transplant recipients. Mol Med Rep 2017; 15:3898-3904. [PMID: 28440401 DOI: 10.3892/mmr.2017.6453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/10/2017] [Indexed: 11/05/2022] Open
Abstract
In the present study, clonal amplifications of T-cell receptor β variable (TCR BV) linked to human cytomegalovirus (HCMV) infection were detected in recipients of allogeneic hematopoietic stem cell transplants (HSCT), and certain relationships between them were identified. Furthermore, the relationship between TCR BV sequences and HCMV infections was investigated. The results indicated that the 3 recipients of HSCT had monoclonal expansion of specific TCR BV clones following HSCT. Among these recipients, 2 suffered from pp65 and immediate early (IE) antigenemia. These patients demonstrated preferential expansion of TCR BV9 (QVRGGTDTQ) and TCR BV11 (VATDFQ). The remaining recipient did not express TCR BV9 and TCR BV11, nor did this individual have pp65 and IE antigenemia. These results suggest that expression of TCR BV9 and TCR BV11 may be associated with HCMV antigenemia, and may be involved in the immune response. The amino acid sequences 'QVRGGTDTQ' and 'VATDFQ' may be involved in HCMV reactivation in patients who have undergone HSCT. Assessment of the TCR BV families may provide valuable insight into HCMV pathogenesis and may aid in the diagnosis and therapy for HSCT recipients infected with HCMV.
Collapse
Affiliation(s)
- Zhihua Wu
- Virology Department, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Huiping Zhang
- Department of Clinical Laboratory, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, P.R. China
| | - Min Jin
- Virology Department, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Hanying Liang
- Virology Department, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yaping Huang
- Virology Department, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Rong Yang
- Virology Department, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Genyong Gui
- Virology Department, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Huiqi Wang
- Virology Department, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Shengnan Gong
- Virology Department, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jindong Wang
- Virology Department, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jun Fan
- Virology Department, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
11
|
Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire. Nat Genet 2017; 49:659-665. [DOI: 10.1038/ng.3822] [Citation(s) in RCA: 302] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/28/2017] [Indexed: 12/16/2022]
|
12
|
Link CS, Eugster A, Heidenreich F, Rücker-Braun E, Schmiedgen M, Oelschlägel U, Kühn D, Dietz S, Fuchs Y, Dahl A, Domingues AMJ, Klesse C, Schmitz M, Ehninger G, Bornhäuser M, Schetelig J, Bonifacio E. Abundant cytomegalovirus (CMV) reactive clonotypes in the CD8(+) T cell receptor alpha repertoire following allogeneic transplantation. Clin Exp Immunol 2016; 184:389-402. [PMID: 26800118 DOI: 10.1111/cei.12770] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Indexed: 12/15/2022] Open
Abstract
Allogeneic stem cell transplantation is potentially curative, but associated with post-transplantation complications, including cytomegalovirus (CMV) infections. An effective immune response requires T cells recognizing CMV epitopes via their T cell receptors (TCRs). Little is known about the TCR repertoire, in particular the TCR-α repertoire and its clinical relevance in patients following stem cell transplantation. Using next-generation sequencing we examined the TCR-α repertoire of CD8(+) T cells and CMV-specific CD8(+) T cells in four patients. Additionally, we performed single-cell TCR-αβ sequencing of CMV-specific CD8(+) T cells. The TCR-α composition of human leucocyte antigen (HLA)-A*0201 CMVpp65- and CMVIE -specific T cells was oligoclonal and defined by few dominant clonotypes. Frequencies of single clonotypes reached up to 11% of all CD8(+) T cells and half of the total CD8(+) T cell repertoire was dominated by few CMV-reactive clonotypes. Some TCR-α clonotypes were shared between patients. Gene expression of the circulating CMV-specific CD8(+) T cells was consistent with chronically activated effector memory T cells. The CD8(+) T cell response to CMV reactivation resulted in an expansion of a few TCR-α clonotypes to dominate the CD8(+) repertoires. These results warrant further larger studies to define the ability of oligoclonally expanded T cell clones to achieve an effective anti-viral T cell response in this setting.
Collapse
Affiliation(s)
- C S Link
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus.,DFG Research Center for Regenerative Therapies Dresden, Dresden, Germany
| | - A Eugster
- DFG Research Center for Regenerative Therapies Dresden, Dresden, Germany
| | - F Heidenreich
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus
| | - E Rücker-Braun
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus
| | - M Schmiedgen
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus
| | - U Oelschlägel
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus
| | - D Kühn
- DFG Research Center for Regenerative Therapies Dresden, Dresden, Germany
| | - S Dietz
- DFG Research Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Y Fuchs
- DFG Research Center for Regenerative Therapies Dresden, Dresden, Germany
| | - A Dahl
- DFG Research Center for Regenerative Therapies Dresden, Dresden, Germany.,BIOTEChnology Center, TU Dresden, Dresden, Germany
| | - A M J Domingues
- DFG Research Center for Regenerative Therapies Dresden, Dresden, Germany
| | - C Klesse
- DKMS Clinical Trials Unit, Dresden, Germany
| | - M Schmitz
- DFG Research Center for Regenerative Therapies Dresden, Dresden, Germany.,Institut Für Immunologie, Medizinische Fakultät, TU Dresden, Dresden, Germany
| | - G Ehninger
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus.,DFG Research Center for Regenerative Therapies Dresden, Dresden, Germany
| | - M Bornhäuser
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus.,DFG Research Center for Regenerative Therapies Dresden, Dresden, Germany
| | - J Schetelig
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus.,DKMS Clinical Trials Unit, Dresden, Germany
| | - E Bonifacio
- DFG Research Center for Regenerative Therapies Dresden, Dresden, Germany
| |
Collapse
|
13
|
Miyai M, Eikawa S, Hosoi A, Iino T, Matsushita H, Isobe M, Uenaka A, Udono H, Nakajima J, Nakayama E, Kakimi K. Detection and Tracking of NY-ESO-1-Specific CD8+ T Cells by High-Throughput T Cell Receptor β (TCRB) Gene Rearrangements Sequencing in a Peptide-Vaccinated Patient. PLoS One 2015; 10:e0136086. [PMID: 26291626 PMCID: PMC4546392 DOI: 10.1371/journal.pone.0136086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 07/29/2015] [Indexed: 12/28/2022] Open
Abstract
Comprehensive immunological evaluation is crucial for monitoring patients undergoing antigen-specific cancer immunotherapy. The identification and quantification of T cell responses is most important for the further development of such therapies. Using well-characterized clinical samples from a high responder patient (TK-f01) in an NY-ESO-1f peptide vaccine study, we performed high-throughput T cell receptor β-chain (TCRB) gene next generation sequencing (NGS) to monitor the frequency of NY-ESO-1-specific CD8+ T cells. We compared these results with those of conventional immunological assays, such as IFN-γ capture, tetramer binding and limiting dilution clonality assays. We sequenced human TCRB complementarity-determining region 3 (CDR3) rearrangements of two NY-ESO-1f-specific CD8+ T cell clones, 6-8L and 2F6, as well as PBMCs over the course of peptide vaccination. Clone 6-8L possessed the TCRB CDR3 gene TCRBV11-03*01 and BJ02-01*01 with amino acid sequence CASSLRGNEQFF, whereas 2F6 possessed TCRBV05-08*01 and BJ02-04*01 (CASSLVGTNIQYF). Using these two sequences as models, we evaluated the frequency of NY-ESO-1-specific CD8+ T cells in PBMCs ex vivo. The 6-8L CDR3 sequence was the second most frequent in PBMC and was present at high frequency (0.7133%) even prior to vaccination, and sustained over the course of vaccination. Despite a marked expansion of NY-ESO-1-specific CD8+ T cells detected from the first through 6th vaccination by tetramer staining and IFN-γ capture assays, as evaluated by CDR3 sequencing the frequency did not increase with increasing rounds of peptide vaccination. By clonal analysis using 12 day in vitro stimulation, the frequency of B*52:01-restricted NY-ESO-1f peptide-specific CD8+ T cells in PBMCs was estimated as only 0.0023%, far below the 0.7133% by NGS sequencing. Thus, assays requiring in vitro stimulation might be underestimating the frequency of clones with lower proliferation potential. High-throughput TCRB sequencing using NGS can potentially better estimate the actual frequency of antigen-specific T cells and thus provide more accurate patient monitoring.
Collapse
Affiliation(s)
- Manami Miyai
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Shingo Eikawa
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Akihiro Hosoi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Tamaki Iino
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Hirokazu Matsushita
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Midori Isobe
- Faculty of Health and Welfare, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| | - Akiko Uenaka
- Faculty of Health and Welfare, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| | - Heiichiro Udono
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Jun Nakajima
- Department of Thoracic Surgery, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Eiichi Nakayama
- Faculty of Health and Welfare, Kawasaki University of Medical Welfare, Kurashiki, Okayama, Japan
| | - Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
14
|
Terasako-Saito K, Nakasone H, Tanaka Y, Yamazaki R, Sato M, Sakamoto K, Ishihara Y, Kawamura K, Akahoshi Y, Hayakawa J, Wada H, Harada N, Nakano H, Kameda K, Ugai T, Yamasaki R, Ashizawa M, Kimura SI, Kikuchi M, Tanihara A, Kanda J, Kako S, Nishida J, Kanda Y. Persistence of recipient-derived as well as donor-derived clones of cytomegalovirus pp65-specific cytotoxic T cells long after allogeneic hematopoietic stem cell transplantation. Transpl Infect Dis 2014; 16:930-40. [DOI: 10.1111/tid.12318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/14/2014] [Indexed: 11/27/2022]
Affiliation(s)
- K. Terasako-Saito
- Division of Hematology; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - H. Nakasone
- Division of Hematology; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - Y. Tanaka
- Division of Hematology; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - R. Yamazaki
- Division of Hematology; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - M. Sato
- Division of Hematology; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - K. Sakamoto
- Division of Hematology; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - Y. Ishihara
- Division of Hematology; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - K. Kawamura
- Division of Hematology; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - Y. Akahoshi
- Division of Hematology; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - J. Hayakawa
- Division of Hematology; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - H. Wada
- Division of Hematology; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - N. Harada
- Division of Hematology; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - H. Nakano
- Division of Hematology; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - K. Kameda
- Division of Hematology; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - T. Ugai
- Division of Hematology; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - R. Yamasaki
- Division of Hematology; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - M. Ashizawa
- Division of Hematology; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - S.-I. Kimura
- Division of Hematology; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - M. Kikuchi
- Division of Hematology; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - A. Tanihara
- Division of Hematology; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - J. Kanda
- Division of Hematology; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - S. Kako
- Division of Hematology; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - J. Nishida
- Division of Hematology; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - Y. Kanda
- Division of Hematology; Saitama Medical Center; Jichi Medical University; Saitama Japan
| |
Collapse
|
15
|
Yamazaki R, Tanaka Y, Nakasone H, Sato M, Terasako-Saito K, Sakamoto K, Akahoshi Y, Nakano H, Ugai T, Yamasaki R, Wada H, Ishihara Y, Kawamura K, Ashizawa M, Kimura SI, Kikuchi M, Kako S, Kanda J, Tanihara A, Nishida J, Kanda Y. Allotype analysis to determine the origin of cytomegalovirus immunoglobulin-G after allogeneic stem cell transplantation. Transpl Infect Dis 2014; 16:904-13. [DOI: 10.1111/tid.12304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/17/2014] [Accepted: 08/07/2014] [Indexed: 11/26/2022]
Affiliation(s)
- R. Yamazaki
- Division of Hematology; Department of Internal Medicine; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - Y. Tanaka
- Division of Hematology; Department of Internal Medicine; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - H. Nakasone
- Division of Hematology; Department of Internal Medicine; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - M. Sato
- Division of Hematology; Department of Internal Medicine; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - K. Terasako-Saito
- Division of Hematology; Department of Internal Medicine; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - K. Sakamoto
- Division of Hematology; Department of Internal Medicine; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - Y. Akahoshi
- Division of Hematology; Department of Internal Medicine; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - H. Nakano
- Division of Hematology; Department of Internal Medicine; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - T. Ugai
- Division of Hematology; Department of Internal Medicine; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - R. Yamasaki
- Division of Hematology; Department of Internal Medicine; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - H. Wada
- Division of Hematology; Department of Internal Medicine; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - Y. Ishihara
- Division of Hematology; Department of Internal Medicine; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - K. Kawamura
- Division of Hematology; Department of Internal Medicine; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - M. Ashizawa
- Division of Hematology; Department of Internal Medicine; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - S.-I. Kimura
- Division of Hematology; Department of Internal Medicine; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - M. Kikuchi
- Division of Hematology; Department of Internal Medicine; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - S. Kako
- Division of Hematology; Department of Internal Medicine; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - J. Kanda
- Division of Hematology; Department of Internal Medicine; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - A. Tanihara
- Division of Hematology; Department of Internal Medicine; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - J. Nishida
- Division of Hematology; Department of Internal Medicine; Saitama Medical Center; Jichi Medical University; Saitama Japan
| | - Y. Kanda
- Division of Hematology; Department of Internal Medicine; Saitama Medical Center; Jichi Medical University; Saitama Japan
| |
Collapse
|