1
|
Allen UD, L'Huillier AG, Bollard CM, Gross TG, Hayashi RJ, Höcker B, Maecker-Kolhoff B, Marks SD, Mazariegos GV, Smets F, Trappe RU, Visner G, Chinnock RE, Comoli P, Danziger-Isakov L, Dulek DE, Dipchand AI, Ferry JA, Martinez OM, Metes DM, Michaels MG, Preiksaitis J, Squires JE, Swerdlow SH, Wilkinson JD, Dharnidharka VR, Green M, Webber SA, Esquivel CO. The IPTA Nashville consensus conference on post-transplant lymphoproliferative disorders after solid organ transplantation in children: IV-consensus guidelines for the management of post-transplant lymphoproliferative disorders in children and adolescents. Pediatr Transplant 2024; 28:e14781. [PMID: 38808744 DOI: 10.1111/petr.14781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
The International Pediatric Transplant Association convened an expert consensus conference to assess current evidence and develop recommendations for various aspects of care relating to post-transplant lymphoproliferative disorders (PTLD) after pediatric solid organ transplantation. This report addresses the outcomes of deliberations by the PTLD Management Working Group. A strong recommendation was made for reduction in immunosuppression as the first step in management. Similarly, strong recommendations were made for the use of the anti-CD20 monoclonal antibody (rituximab) as was the case for chemotherapy in selected scenarios. In some scenarios, there is uncoupling of the strength of the recommendations from the available evidence in situations where such evidence is lacking but collective clinical experiences drive decision-making. Of note, there are no large, randomized phase III trials of any treatment for PTLD in the pediatric age group. Current gaps and future research priorities are highlighted.
Collapse
Affiliation(s)
- Upton D Allen
- Division of Infectious Diseases, Department of Paediatrics, Transplant and Regenerative Medicine Center, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Arnaud G L'Huillier
- Pediatric Infectious Diseases Unit and Laboratory of Virology, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital, The George Washington University, Washington, District of Columbia, USA
| | - Thomas G Gross
- Center for Cancer and Blood Diseases, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Robert J Hayashi
- Division of Pediatric Hematology/Oncology, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Britta Höcker
- Department of Pediatrics I, Medical Faculty, University Children's Hospital, Heidelberg University, Heidelberg, Germany
| | | | - Stephen D Marks
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - George Vincent Mazariegos
- Hillman Center for Pediatric Transplantation, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Francoise Smets
- Pediatric Gastroenterology and Hepatology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Ralf U Trappe
- Department of Hematology and Oncology, DIAKO Ev. Diakonie-Krankenhaus Bremen, Bremen, Germany
- Department of Internal Medicine II: Hematology and Oncology, University Medical Centre Schleswig-Holstein, Kiel, Germany
| | - Gary Visner
- Division of Pulmonary Medicine, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | | | - Patrizia Comoli
- Cell Factory & Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Lara Danziger-Isakov
- Division of Infectious Disease, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Daniel E Dulek
- Division of Pediatric Infectious Diseases, Monroe Carell Junior Children's Hospital at Vanderbilt and Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anne I Dipchand
- Department of Paediatrics, Labatt Family Heart Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Judith A Ferry
- Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Olivia M Martinez
- Department of Surgery and Program in Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Diana M Metes
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Marian G Michaels
- Division of Pediatric Infectious Diseases, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jutta Preiksaitis
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - James E Squires
- Division of Gastroenterology, Hepatology and Nutrition, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Steven H Swerdlow
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - James D Wilkinson
- Department of Pediatrics, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - Vikas R Dharnidharka
- Division of Pediatric Nephrology, Hypertension & Apheresis, Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Michael Green
- Division of Pediatric Infectious Diseases, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Steven A Webber
- Department of Pediatrics, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | | |
Collapse
|
2
|
He Y, Ma R, Wang HF, Mo XD, Zhang YY, Lyu M, Yan CH, Wang Y, Zhang XH, Xu LP, Liu KY, Sun XJ, Huang YQ. [Clinical significance of Epstein-Barr Virus detection in the cerebrospinal fluid of patients who underwent hematopoietic stem cell transplantation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:737-741. [PMID: 38049317 PMCID: PMC10630578 DOI: 10.3760/cma.j.issn.0253-2727.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Indexed: 12/06/2023]
Abstract
Objective: To analyze the detection rate, clinical significance, and prognosis of Epstein-Barr virus (EBV) in the cerebrospinal fluid (CSF) of patients following allogeneic hematopoietic stem cell transplantation. Methods: A retrospective analysis was performed on 1100 patients who underwent the CSF virus test after allogeneic hematopoietic stem cell transplantation in Peking University People's Hospital between January 2017 and June 2022. Among them, 19 patients were screened positive for EBV in their CSF, and their clinical characteristics, treatment, and prognosis were analyzed. Results: Among 19 patients with EBV-positive cerebrospinal fluid, 12 were male and 7 were female, with 5 patients aged <18 years and 12 aged ≥18 years, with a median age of 27 (5-58) years old. There were 7 cases of acute myeloid leukemia, 8 of acute lymphocytic leukemia, 2 of aplastic anemia, 1 of Hodgkin's lymphoma, and 1 of hemophagocytic syndrome. All 19 patients underwent haploid hematopoietic stem cell transplantation, including 1 secondary transplant. Nineteen patients had neurological symptoms (headache, dizziness, convulsions, or seizures), of which 13 had fever. Ten cases showed no abnormalities in cranial imaging examination. Among the 19 patients, 6 were diagnosed with EB virus-related central nervous system diseases, with a median diagnosis time of 50 (22-363) days after transplantation. In 9 (47.3%) patients, EBV was detected in their peripheral blood, and they were treated with intravenous infusion of rituximab (including two patients who underwent lumbar puncture and intrathecal injection of rituximab). After treatment, EBV was not detected in seven patients. Among the 19 patients, 2 died from EBV infection and 2 from other causes. Conclusion: In patients who exhibited central nervous system symptoms after allogeneic hematopoietic stem cell transplantation, EBV should be screened as a potential pathogen. EBV detected in the CSF may indicate an infection; however, it does not confirm the diagnosis.
Collapse
Affiliation(s)
- Y He
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - R Ma
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - H F Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - X D Mo
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y Y Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - M Lyu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - C H Yan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - X H Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - L P Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - K Y Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - X J Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Y Q Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| |
Collapse
|
3
|
Markouli M, Ullah F, Omar N, Apostolopoulou A, Dhillon P, Diamantopoulos P, Dower J, Gurnari C, Ahmed S, Dima D. Recent Advances in Adult Post-Transplant Lymphoproliferative Disorder. Cancers (Basel) 2022; 14:cancers14235949. [PMID: 36497432 PMCID: PMC9740763 DOI: 10.3390/cancers14235949] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
PTLD is a rare but severe complication of hematopoietic or solid organ transplant recipients, with variable incidence and timing of occurrence depending on different patient-, therapy-, and transplant-related factors. The pathogenesis of PTLD is complex, with most cases of early PLTD having a strong association with Epstein-Barr virus (EBV) infection and the iatrogenic, immunosuppression-related decrease in T-cell immune surveillance. Without appropriate T-cell response, EBV-infected B cells persist and proliferate, resulting in malignant transformation. Classification is based on the histologic subtype and ranges from nondestructive hyperplasias to monoclonal aggressive lymphomas, with the most common subtype being diffuse large B-cell lymphoma-like PTLD. Management focuses on prevention of PTLD development, as well as therapy for active disease. Treatment is largely based on the histologic subtype. However, given lack of clinical trials providing evidence-based data on PLTD therapy-related outcomes, there are no specific management guidelines. In this review, we discuss the pathogenesis, histologic classification, and risk factors of PTLD. We further focus on common preventive and frontline treatment modalities, as well as describe the application of novel therapies for PLTD and elaborate on potential challenges in therapy.
Collapse
Affiliation(s)
- Mariam Markouli
- Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Fauzia Ullah
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Najiullah Omar
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Anna Apostolopoulou
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Puneet Dhillon
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Panagiotis Diamantopoulos
- Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Joshua Dower
- Department of Hematology and Medical Oncology, Tufts Medical Center, Boston, MA 02111, USA
| | - Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Sairah Ahmed
- Department of Lymphoma-Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Danai Dima
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland Clinic, Cleveland, OH 44195, USA
- Correspondence:
| |
Collapse
|
4
|
[Chinese consensus on the diagnosis and management of Epstein-Barr virus-related post-transplant lymphoproliferative disorders after hematopoietic stem cell transplantation (2022)]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:716-725. [PMID: 36709164 PMCID: PMC9613495 DOI: 10.3760/cma.j.issn.0253-2727.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Indexed: 01/24/2023]
|
5
|
Abstract
Advancements in donor management, organ preservation and operative techniques, as well as immunosuppressive therapies, have provided children with intestinal failure and its complications a chance not only for enteral autonomy but also long-term survival through intestinal transplantation (ITx). First described in the 1960's, experience has grown in managing these complex patients both pre- and post-transplant. The goals of this review are to provide a brief history of intestinal transplantation and intestinal rehabilitation in pediatric patients, followed by focused discussions of the indications for ITx, induction and maintenance immunosuppression therapies, common post-operative complications, and outcomes/quality of life post-transplant.
Collapse
|
6
|
Zhu H, Li Q, Liu Y, Feng X, Deng Q. A Case of Central Nervous System Post-Transplant Lymphoproliferative Disorder Following Haploidentical Stem Cell Transplantation in a Patient With Acute Lymphoblastic Leukemia. Cell Transplant 2022; 31:9636897221117532. [PMID: 35979928 PMCID: PMC9393674 DOI: 10.1177/09636897221117532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We present a differential diagnosis of an intracranial lesion following
haploidentical stem cell transplantation (haplo-SCT) in a female
patient with acute lymphoblastic leukemia (ALL). This patient received
an anti-CD19-chimeric antigen receptor (CAR) T-cell therapy for
refractory B-cell ALL and obtained minimal residual disease
(MRD)-positive (0.03%) complete remission (CR). Then the patient
received a bridging therapy of haplo-SCT. After bridging therapy, the
patient maintained MRD-negative and full donor chimerism in bone
marrow (BM) and was negative for Epstein–Barr virus (EBV)-DNA copy in
peripheral blood. At 91 days after haplo-SCT, the patient presented
with dizziness and fatigue and magnetic resonance imaging (MRI)
demonstrated an intracranial lesion. The diagnosis of isolated
extramedullary relapse (IEMR) was temporarily considered. Then
next-generation sequencing (NGS) identified positive EBV-DNA in the
cerebrospinal fluid, although EBV-DNA in the peripheral blood was
negative. Furthermore, the positive EBV-DNA by NGS and complete donor
chimerism in the brain tissue confirmed the diagnosis of central
nervous system post-transplant lymphoproliferative disorder
(CNS-PTLD). However, the EBV-encoded small RNAs (EBERs) in
situ hybridization was sparsely positive. The patient
was subsequently treated with anti-CD22-CAR T cells in combination
with Zanubrutinib, but the disease progressed quickly and died. Donor
chimerism examination of focal biopsy provides important evidence for
diagnosing PTLD. Furthermore, NGS detection of EBV-DNA in local
lesions is more valuable for diagnosing PTLD than detection of EBV-DNA
in the peripheral blood. Trial registration: The patient was enrolled in a clinical
trial of ChiCTR1800019622 and
ChiCTR1800019298.
Collapse
Affiliation(s)
- Haibo Zhu
- Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Qing Li
- Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Yunyang Liu
- Department of Neurosurgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Xuequan Feng
- Department of Neurosurgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Qi Deng
- Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
7
|
Anastasiou M, Mamez AC, Masouridi S, Vargas MI, Hadaya K, Egervari K, Chalandon Y. Successful treatment of central nervous system lymphoproliferative disorder in a kidney-pancreas and stem cell transplanted patient using intrathecal rituximab. BMJ Case Rep 2021; 14:14/8/e238236. [PMID: 34353823 PMCID: PMC8344276 DOI: 10.1136/bcr-2020-238236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Central nervous system lymphoproliferative disorder (CNS-PTLD) after organ transplant is a unique clinicopathological entity and is associated with poor survival rates. When the CNS is involved, intravenous rituximab might not be the treatment of choice, due to its poor CNS penetration. However, intrathecal (IT) administration of rituximab has shown to be safe and efficient in small studies and in case series. We report here the case of a patient with late development of CNS-PTLD after kidney-pancreas transplantation who achieved complete remission after surgical resection and four cycles of IT rituximab and we provide a review of the literature for this treatment option.
Collapse
Affiliation(s)
- Maria Anastasiou
- Oncology, Division Hematology, Hopitaux Universitaires de Geneve, Geneva, Switzerland
| | - Anne-Claire Mamez
- Oncology, Division Hematology, Hopitaux Universitaires de Geneve, Geneva, Switzerland
| | - Stavroula Masouridi
- Oncology, Division Hematology, Hopitaux Universitaires de Geneve, Geneva, Switzerland
| | | | - Karine Hadaya
- Nephrology, Hopitaux Universitaires de Geneve, Geneva, Switzerland
| | - Kristof Egervari
- Service of Clinical Pathology, Department of Genetic Medicine, Laboratory and Pathology, Hopitaux Universitaires de Geneve, Geneva, Switzerland
| | - Yves Chalandon
- Oncology, Division Hematology, Hopitaux Universitaires de Geneve, Geneva, Switzerland
| |
Collapse
|
8
|
Liu L, Liu Q, Feng S. Management of Epstein-Barr virus-related post-transplant lymphoproliferative disorder after allogeneic hematopoietic stem cell transplantation. Ther Adv Hematol 2020; 11:2040620720910964. [PMID: 32523657 PMCID: PMC7236397 DOI: 10.1177/2040620720910964] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/21/2020] [Indexed: 12/16/2022] Open
Abstract
Epstein–Barr virus-related post-transplant lymphoproliferative disorder (EBV-PTLD) is a rare but life-threatening complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). T-cell immunodeficiency after transplantation and EBV primary infection/reactivation play major roles in the pathogenesis. Unspecific clinical manifestations make the diagnosis difficult and time consuming. Moreover, this fatal disease usually progresses rapidly, and leads to multiple organ dysfunction or death if not treated promptly. Early diagnosis of EBV-DNAemia or EBV-PTLD generally increases the chances of successful treatment by focusing on regular monitoring of EBV-DNA and detection of symptomatic patients as early as possible. Rituximab ± reduction of immunosuppression (RI) is currently the first-line choice in preemptive intervention and targeted treatment. Unless patients are suffering from severe graft versus host disease (GvHD), it is better to combine rituximab with RI. Once a probable diagnosis is made, the first-line treatment should be initiated rapidly, along with, or ahead of, biopsy, although histopathologic confirmation is requisite. In addition, EBV-specific cytotoxic T lymphocytes (EBV-CTLs) or donor lymphocyte infusion (DLI) has shown promise in cases of suboptimal response. Chemotherapy ± rituximab might lend more opportunities to refractory/relapsed patients, who might also benefit from ongoing clinical trials. Herein, we discuss our clinical experience in detail based on the current literature and our five cases.
Collapse
Affiliation(s)
- Li Liu
- Hematopoietic Stem Cell Transplantation Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sizhou Feng
- Hematopoietic Stem Cell Transplantation Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Via No. 288 Nanjing Road, Tianjin, China
| |
Collapse
|
9
|
Central nervous system post-transplant lymphoproliferative disorder after allogeneic hematopoietic stem cell transplantation: The Nagasaki transplant group experience. Leuk Res Rep 2019; 11:27-30. [PMID: 31049285 PMCID: PMC6484211 DOI: 10.1016/j.lrr.2019.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/21/2019] [Indexed: 11/21/2022] Open
Abstract
A 17-year-old male received allogeneic transplantation for acute lymphoblastic leukemia, and presented with generalized seizures due to a solitary brain lesion with massive necrosis on day +621. Epstein-Barr virus (EBV) DNA copies were below the cut-off value in plasma. Stereotactic biopsy of the cerebral lesion confirmed the diagnosis of post-transplant lymphoproliferative disorder (PTLD) with large atypical cells positive for CD20 and EBER. In order to diagnose primary central nervous system PTLD, the biopsy should be applied as early as possible when brain lesion with necrosis develops in post-transplant patients regardless of EBV-DNA in plasma.
Collapse
|
10
|
Treatment of Epstein-Barr virus associated central nervous system diseases after allogeneic hematopoietic stem cell transplantation with intrathecal donor lymphocyte infusion. Bone Marrow Transplant 2018; 54:821-827. [PMID: 30518982 DOI: 10.1038/s41409-018-0409-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 11/08/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective measure for the treatment of hematological disease. With the progress and widespread use of allo-HSCT, Epstein-Barr virus (EBV) related central nervous system (CNS) diseases have gotten more and more attention because of its poor prognosis and overall survival. Since currently there is no standard treatment for patients with EBV-associated CNS diseases and reported therapies are heterogeneous with mixed results, we attempted to develop a novel therapeutic method. We applied a regimen of intrathecal donor lymphocyte infusion (IDLI) in three patients with EBV-associated CNS diseases after allo-HSCT in addition to immunosuppressants reduction and combined antiviral therapy. All of three patients were responsive to this therapy: all clinical symptoms and EBV load in CSF were resolved 10, 17, and 12 days after initial IDLI, respectively, and magnetic resonance imaging (MRI) showed that lesions of case 1 and 2 disappeared 15 and 19 days after initial IDLI, respectively. Even more appealing, there were no acute or chronic adverse reactions during the infusion and up to 23 months of follow-up. In conclusion, IDLI seems to be an effective and safe method for EBV-associated CNS diseases in allo-HSCT recipients. We recommend this treatment modality for further investigation.
Collapse
|
11
|
Kassa C, Reményi P, Sinkó J, Kállay K, Kertész G, Kriván G. Successful nivolumab therapy in an allogeneic stem cell transplant child with post-transplant lymphoproliferative disorder. Pediatr Transplant 2018; 22:e13302. [PMID: 30345623 DOI: 10.1111/petr.13302] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 10/28/2022]
Abstract
Primary CNS PTLD is an extremely rare complication after allogeneic HSCT. At our centre, an 11-year-old patient developed nausea, vomiting, and diplopy on day +82 following HSCT. On brain MRI, multiple white matter lesions were seen. Histology showed a diffuse large B-cell lymphoma with high load of EBV in tissue. Despite stopping immunosuppression, treatment with EBV-specific cytotoxic T cells, systemic rituximab, HD-MTX, and intrathecal chemotherapy, progression was observed. With a combination of HD-MTX and cytarabine, only a partial response could be achieved. Having all conventional modalities not only failed but resulted in significant toxicity, a salvage monotherapy with biweekly nivolumab has been instituted. The starting dose was 1.1 mg/kg, later escalated to 2.2 mg/kg. After 8 months of nivolumab therapy, PET-CT showed complete metabolic remission. Subsequently, the patient has been switched to a maintenance dosage of 1.1 mg/kg. No cytopenias, graft failure, GvHD, or any other alloimmune complications were seen during nivolumab therapy. In conclusion, nivolumab may be considered as an effective and safe option for CNS PTLD therapy when all other modalities have failed.
Collapse
Affiliation(s)
- Csaba Kassa
- Department of Pediatric Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Péter Reményi
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - János Sinkó
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Krisztián Kállay
- Department of Pediatric Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Gabriella Kertész
- Department of Pediatric Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Gergely Kriván
- Department of Pediatric Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| |
Collapse
|
12
|
Management of Non-Diffuse Large B Cell Lymphoma Post-Transplant Lymphoproliferative Disorder. Curr Treat Options Oncol 2018; 19:33. [DOI: 10.1007/s11864-018-0549-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Rubenstein JL. Biology of CNS lymphoma and the potential of novel agents. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:556-564. [PMID: 29222305 PMCID: PMC6053314 DOI: 10.1182/asheducation-2017.1.556] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Primary and secondary CNS lymphomas are aggressive brain tumors that pose an immense challenge to define in terms of molecular pathogenesis, as well as to effectively treat. During the past 10 years improvements in survival have been achieved with the implementation of anti-CD20 immunotherapy and optimization of dose-intensive consolidation strategies. The applications of whole-exome sequencing, comparative genomic hybridization, transcriptional profiling, and examination of the tumor microenvironment, particularly in the context of clinical investigation, provide insights that create a roadmap for the development and implementation of novel targeted agents for this disease. A body of genetic evidence strongly suggested that primary CNS lymphomas (PCNSLs) are likely largely dependent on NF-κB prosurvival signals, with enrichment of mutations involving the B-cell receptor pathway, in particular myeloid differentiation primary response 88 and cluster of differentiation 79B. The first set of early-phase investigations that target NF-κB in PCNSL have now been completed and support the NF-κB hypothesis but at the same time reveal that much work needs to be done to translate these results into meaningful advances in survival for a large fraction of patients. Insights into secondary prosurvival pathways that mediate drug resistance is a priority for investigation. Similarly, further evaluation of the immune-suppressive mechanisms in the CNS lymphoma tumor microenvironment is requisite for progress. Combinatorial interventions that promote the antitumor immune response have significant potential. With increasing availability of targeted agents, there is also a need to develop more sensitive imaging tools, not only to detect this highly invasive brain neoplasm but also potentially to define an evolving molecular phenotype to facilitate precision medicine.
Collapse
Affiliation(s)
- James L Rubenstein
- Division of Hematology/Oncology, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
14
|
Xu LP. [How I diagnose and treat post-transplant lymphoproliferative disorders after allogeneic hematopoietic stem cell transplantation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2017; 38:923-929. [PMID: 29224312 PMCID: PMC7342797 DOI: 10.3760/cma.j.issn.0253-2727.2017.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Indexed: 11/05/2022]
Affiliation(s)
- L P Xu
- Peking University, People' s Hospital, Peking University Institute of Hematology, Beijing 100044, China
| |
Collapse
|
15
|
Ke P, Ma X, Bao XB, Liu YJ, Wu XJ, Xue SL, Hu XH, He XF, Wu DP. [Clinical analysis of 7 patients with Epstein-Barr virus encephalitis after allogeneic hematopoietic stem cell transplantation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2017; 38:685-689. [PMID: 28954347 PMCID: PMC7348247 DOI: 10.3760/cma.j.issn.0253-2727.2017.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Indexed: 11/05/2022]
Abstract
Objective: To summarize the clinical features, treatment and prognosis of patients with Epstein Barr virus (EBV) encephalitis after allogeneic hematopoietic stem cell transplantation (allo-HSCT) . Methods: The clinical data of 7 patients with EBV encephalitis who had undergone allo-HSCT in the First Affiliated Hospital of Soochow University from January 2012 to December 2015 were reviewed. Results: The incidence of EBV encephalitis was 0.70% (7/998) , and the median time was 63 (10-136) d after allo-HSCT. Seven patients had fever and mental disorder, of whom 4 cases of brain MRI were positive. Two patients received HLA-matched unrelated transplantation, while other 5 ones received haploidentical allo-HSCT. In conditioning regimen process, 7 patients were combined with anti-thymocyte globulin (ATG) to prevent graft versus host disease (GVHD) , of whom 6 patients had grade Ⅱ-Ⅳ acute GVHD. All patients of EBV-DNA were negative in CSF after taking anti-virus agent Rituximab. Until the last follow-up, a total of 3 patients died, 2 died of leukemia recurrence, 1 EBV encephalitis progression. Conclusion: Once suspected EBV encephalitis after allo-HSCT, brain MRI and EBV-DNA in CSF should be detected, which could improve early diagnosis of EBV encephalitis. The usage of Rituximab was effective and well tolerated.
Collapse
Affiliation(s)
- P Ke
- First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis under Ministry of Health, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou 215006, China
| | | | | | | | | | | | | | | | | |
Collapse
|