1
|
Stadelmann VA, Gerossier E, Kettenberger U, Pioletti DP. Combining systemic and local osteoporosis treatments: A longitudinal in vivo microCT study in ovariectomized rats. Bone 2025; 192:117373. [PMID: 39675409 DOI: 10.1016/j.bone.2024.117373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
INTRODUCTION Managing osteoporotic patients at immediate fracture risk is challenging, in part due to the slow and localized effects of anti-osteoporotic drugs. Combining systemic anti-osteoporotic therapies with local bone augmentation techniques offers a promising strategy, but little is known about potential interactions. We hypothesized that integrating systemic treatments with local bone-strengthening biomaterials would have an additive effect on bone density and structure. This study investigated interactions and synergies between systemic therapies and injectable biomaterials, HA2 and HA2-ZOL, designed for local bone strengthening. HA2-ZOL incorporates Zoledronate, a bisphosphonate, to enhance anti-resorptive effects. These materials were tested in an in vivo rat model of osteoporosis using microCT and histology. METHODS Thirty-six ovariectomized Wistar rats were treated systemically with vehicle (VEH), alendronate (ALN), or parathyroid hormone (PTH). One week later, their tibiae were randomly assigned to local treatment groups: HA2, HA2-ZOL, or NaCl control. Bilateral injections targeted metaphyseal trabecular bone, with microCT scans tracking changes over 8 weeks. Regions of interest (ROIs) were identified and analyzed for bone volume fraction (BV/TV), tissue mineral density (TMD), and trabecular morphology. Histological analyses were performed at week 8 to assess bone structure and mineral inclusions. RESULTS VEH animals with NaCl injections experienced marked bone loss, partially mitigated by ALN and PTH. HA2 injections increased BV/TV by factors of 2.5 to 3.4 across treatments compared to baseline, with effects confined to the injected material. HA2-ZOL amplified this response, with BV/TV increases up to 4.8-fold, particularly in VEH and PTH animals. The effects peaked at 2-4 weeks post-injection, followed by remodeling and restoration. Both local treatments increased trabecular thickness, with HA2-ZOL showing slower post-peak resorption. DISCUSSION HA2 injections significantly densified bone, independent of systemic therapy. Zoledronate in HA2-ZOL enhanced bone formation and delayed resorption in control and PTH animals, but offered no additional benefit when combined with systemic bisphosphonate. These findings support the hypothesis of an additive effect, suggesting that injectable hydrogels with localized drug delivery can complement systemic therapies by rapidly increasing local bone density, thereby potentially preventing fractures in high-risk osteoporotic patients.
Collapse
Affiliation(s)
| | - Estelle Gerossier
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | | | - Dominique P Pioletti
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, EPFL, Lausanne, Switzerland
| |
Collapse
|
2
|
Bliven EK, Fung A, Baker A, Fleps I, Ferguson SJ, Guy P, Helgason B, Cripton PA. How accurately do finite element models predict the fall impact response of ex vivo specimens augmented by prophylactic intramedullary nailing? J Orthop Res 2025; 43:396-406. [PMID: 39354743 DOI: 10.1002/jor.25984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/07/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024]
Abstract
Hip fracture prevention approaches like prophylactic augmentation devices have been proposed to strengthen the femur and prevent hip fracture in a fall scenario. The aim of this study was to validate the finite element model (FEM) of specimens augmented by prophylactic intramedullary nailing in a simulated sideways fall impact against ex vivo experimental data. A dynamic inertia-driven sideways fall simulator was used to test six cadaveric specimens (3 females, 3 males, age 63-83 years) prophylactically implanted with an intramedullary nailing system used to augment the femur. Impact force measurements, pelvic deformation, effective pelvic stiffness, and fracture outcomes were compared between the ex vivo experiments and the FEMs. The FEMs over-predicted the effective pelvic stiffness for most specimens and showed variability in terms of under- and over-predicting peak impact force and pelvis compression depending on the specimen. A significant correlation was found for time to peak impact force when comparing ex vivo and FEM data. No femoral fractures were found in the ex vivo experiments, but two specimens sustained pelvic fractures. These two pelvis fractures were correctly identified by the FEMs, but the FEMs made three additional false-positive fracture identifications. These validation results highlight current limitations of these sideways fall impact models specific to the inclusion of an orthopaedic implant. These FEMs present a conservative strategy for fracture prediction in future applications. Further evaluation of the modelling approaches used for the bone-implant interface is recommended for modelling augmented specimens, alongside the importance of maintaining well-controlled experimental conditions.
Collapse
Affiliation(s)
- Emily K Bliven
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anita Fung
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | | | - Ingmar Fleps
- Skeletal Mechanobiology & Biomechanics Laboratory, Department of Mechanical Engineering, Boston University, Boston, Massachusetts, USA
| | | | - Pierre Guy
- Division of Orthopaedic Trauma, Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Aging SMART, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Peter A Cripton
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Aging SMART, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Vlachos C, Ampadiotaki MM, Papagrigorakis E, Galanis A, Patilas C, Sakellariou E, Rodis G, Vasiliadis E, Kontogeorgakos VA, Pneumaticos S, Vlamis J. Is Regional Bone Mineral Density the Differentiating Factor Between Femoral Neck and Femoral Trochanteric Fractures? Cureus 2024; 16:e53003. [PMID: 38406115 PMCID: PMC10894667 DOI: 10.7759/cureus.53003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 02/27/2024] Open
Abstract
Background Osteoporosis is globally recognized as a prevalent bone disease, and proximal femoral fractures constitute a serious complication associated with it. In recent years, the frequency of hip fractures has increased rapidly, with ramifications that extend into the social and economic aspects of both patients' lives and healthcare systems. The primary goal of this study is to discover whether bone mineral density (BMD) in specific regions of the hip could be related to femoral neck or trochanteric fractures. Methodology This prospective cohort study employed dual-energy X-ray absorptiometry (DEXA) measurements on 70 individuals with proximal femoral fractures. The participants sought treatment at the emergency department of our unit for hip fractures and adhered to our predefined eligibility criteria. These criteria primarily included (i) age exceeding 60 years and (ii) a diagnosis of either femoral neck or trochanteric fracture attributed to (iii) a low-energy lateral fall and (iv) a previously established state of complete ambulation before the occurrence of the fracture. In this context, we recorded the BMD of the hip, as well as the BMD values of the upper and lower halves of the neck, trochanteric region, and diaphysis. For the comparison of the categorical variables, Pearson's χ2 criterion was used, whereas Student's t-test was applied for the comparison of means of quantitative variables across fracture types. Results No statistical differences were identified when comparing regional BMDs and T-scores with the fracture type. This conclusion was also reconfirmed concerning age, gender, and Tonnis classification. Only a moderate correlation was observed, demonstrating lower values of regional BMDs in women compared to men. Conclusions The inability of our study to establish a direct correlation between BMD measurements across diverse areas of the proximal femur underlines the imperative need for subsequent investigations. These studies should not only integrate more precise techniques for measuring and mapping the BMD of different hip regions but should also encompass a comprehensive examination that would consider both intrinsic and extrinsic characteristics of the proximal femur.
Collapse
Affiliation(s)
- Christos Vlachos
- 3rd Orthopedic Department, National and Kapodistrian University of Athens, KAT General Hospital, Athens, GRC
| | | | - Eftychios Papagrigorakis
- 3rd Orthopedic Department, National and Kapodistrian University of Athens, KAT General Hospital, Athens, GRC
| | - Athanasios Galanis
- 3rd Orthopedic Department, National and Kapodistrian University of Athens, KAT General Hospital, Athens, GRC
| | - Christos Patilas
- 3rd Orthopedic Department, National and Kapodistrian University of Athens, KAT General Hospital, Athens, GRC
| | - Evangelos Sakellariou
- 3rd Orthopedic Department, National and Kapodistrian University of Athens, KAT General Hospital, Athens, GRC
| | | | - Elias Vasiliadis
- 3rd Orthopedic Department, National and Kapodistrian University of Athens, KAT General Hospital, Athens, GRC
- 3rd Orthopedic Department, National and Kapodistrian University of Athens, KAT Trauma Hospital, Athens, GRC
| | | | - Spiros Pneumaticos
- 3rd Orthopedic Department, National and Kapodistrian University of Athens, KAT General Hospital, Athens, GRC
| | - John Vlamis
- 3rd Orthopedic Department, National and Kapodistrian University of Athens, KAT General Hospital, Athens, GRC
| |
Collapse
|
4
|
Bliven EK, Fung A, Cripton PA, Helgason B, Guy P. Evaluating femoral augmentation to prevent geriatric hip fracture: A scoping review of experimental methods. J Orthop Res 2023; 41:1855-1862. [PMID: 37249119 DOI: 10.1002/jor.25636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/08/2023] [Accepted: 05/28/2023] [Indexed: 05/31/2023]
Abstract
Various femoral augmentation designs have been investigated over the past decade for the prevention of geriatric hip fracture. The experimental methods used to evaluate the efficacy of these augmentations have not been critically evaluated or compared in terms of biofidelity, robustness, or ease of application. Such parameters have significant relevance in characterizing future clinical success. In this study we aimed to use a scoping review to summarize the experimental studies that evaluate femoral augmentation approaches, and critically evaluate commonly applied protocols and identify areas for concordance with the clinical situation. We conducted a literature search targeting studies that used experimental test methods to evaluate femoral augmentation to prevent geriatric fragility fracture. A total of 25 studies met the eligibility criteria. The most commonly investigated augmentation to date is the injection of bone cement or another material that cured in situ, and a popular subsequent method for biomechanical evaluation was to load the augmented proximal femur until fracture in a sideways fall configuration. We noted limitations in the clinical relevance of sideways fall scenarios being modeled and large variance in the concordance of many of the studies identified. Our review brings about recommendations for enhancing the fidelity of experimental methods modeling clinical sideways falls, which include an improved representation of soft tissue effects, using outcome metrics beyond load-to-failure, and applying loads inertially. Effective augmentations are encouraging for their potential to reduce the burden of hip fracture; however, the likelihood of this success is only as strong as the methods used in their evaluation.
Collapse
Affiliation(s)
- Emily K Bliven
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anita Fung
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Peter A Cripton
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Pierre Guy
- Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Sas A, Tanck E, Wafa H, van der Linden Y, Sermon A, van Lenthe GH. Fracture risk assessment and evaluation of femoroplasty in metastatic proximal femurs. An in vivo CT-based finite element study. J Orthop Res 2023; 41:225-234. [PMID: 35368116 DOI: 10.1002/jor.25331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 03/05/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
The goal of this study was twofold. First, we aimed to evaluate the accuracy of a finite element (FE) model to predict bone fracture in cancer patients with proximal femoral bone metastases. Second, we evaluated whether femoroplasty could effectively reduce fracture risk. A total of 89 patients were included, with 101 proximal femurs affected with bone metastases. The accuracy of the model to predict fracture was evaluated by comparing the FE failure load, normalized for body weight, against the actual occurrence of fracture during a 6-month follow-up. Using a critical threshold, the model could identify whether femurs underwent fracture with a sensitivity of 92% and a specificity of 66%. A virtual treatment with femoroplasty was simulated in a subset of 34 out of the 101 femurs; only femurs with one or more well-defined lytic lesions were considered eligible for femoroplasty. We modeled their lesions, as well as the surrounding 4 mm of trabecular bone, to be augmented with bone cement. The simulation of femoroplasty increased the median failure load of the FE model by 57% for lesions located in the head/neck of the femur. At this lesion location, all high risk femurs that had fractured during follow-up effectively moved from a failure load below the critical threshold to a value above. For lesions located in the trochanteric region, no definite improvement in failure load was found. Although additional validation studies are required, our results suggest that femoroplasty can effectively reduce fracture risk for several osteolytic lesions in the femoral head/neck.
Collapse
Affiliation(s)
- Amelie Sas
- Biomechanics Section, KU Leuven, Leuven, Belgium
| | - Esther Tanck
- Orthopaedic Research Laboratory, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hazem Wafa
- Department of Orthopaedics, University Hospitals Gasthuisberg, Leuven, Belgium
| | - Yvette van der Linden
- Department of Radiotherapy, Leiden University Medical Center, Leiden, The Netherlands.,Netherlands Comprehensive Cancer Organisation (IKNL), The Netherlands
| | - An Sermon
- Department of Traumatology, University Hospitals Gasthuisberg, Leuven, Belgium.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
6
|
Roytman GR, Ramji AF, Beitler B, Yoo B, Leslie MP, Baumgaertner M, Tommasini SM, Wiznia DH. Simulating Prophylactic Fixation Methods for Osteoporotic Femoral Neck Fracture Prevention. Geriatr Orthop Surg Rehabil 2022; 13:21514593221141376. [PMID: 36533207 PMCID: PMC9747871 DOI: 10.1177/21514593221141376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 06/19/2024] Open
Abstract
INTRODUCTION Geriatric patients who suffer femoral neck fractures have high morbidity and mortality. Prophylactic fixation of the femoral neck is a potential avenue to reduce the incidence of femoral neck fractures. We studied 3 different implants traditionally used to stabilize the femoral neck: 6.5 mm cannulated screws (CANN), the femoral neck system (FNS) (Depuy Synthes), and the dynamic hip screw (DHS) (Depuy Synthes). MATERIALS AND METHODS Five osteoporotic Sawbone femurs were used for each model and a control group. Two scenarios were investigated: single leg stance to measure construct stiffness and lateral impact to measure construct stiffness, energy to fracture, and qualitative examination of fracture patterns. Stiffness for each femur and energy to fracture for the lateral impact scenario were calculated and compared between groups using one-way ANOVA. RESULTS DHS showed significantly higher stiffness than the other 2 implants and the control in single leg stance. In the lateral impact scenario, the DHS and CANN were significantly stiffer FNS and the control. Femurs implanted with CANN tended to fracture at the greater trochanter while FNS fractured in a transverse subtrochanteric pattern, and DHS fractured obliquely in the subtrochanteric region. DISCUSSION FNS and DHS experienced fracture patterns less amenable to surgical correction. CANN and DHS proved better able to resist external forces in the lateral fall scenario. CANN also proved better able to resist external forces in the single leg stance scenario and experienced a more amenable fracture pattern in the lateral fall scenario. CONCLUSIONS FNS was less able to resist external forces compared with the other implants. This work informs the potential implications between the choice of implants that, although historically have not been used prophylactically, may be considered in the future for prophylactic stabilization of the femoral neck. Cadaveric study and clinical trials are recommended for further study.
Collapse
Affiliation(s)
- Gregory R. Roytman
- Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
- Biomedical Engineering, Yale University School of Engineering & Applied Science, New Haven, CT, USA
| | - Alim F. Ramji
- Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Brian Beitler
- Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Brad Yoo
- Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Michael P. Leslie
- Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Michael Baumgaertner
- Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Steven M. Tommasini
- Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
- Biomedical Engineering, Yale University School of Engineering & Applied Science, New Haven, CT, USA
| | - Daniel H. Wiznia
- Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
- Mechanical Engineering and Materials Science, Yale University School of Engineering and Applied Science, New Haven, CT, USA
| |
Collapse
|
7
|
Peña JA, Shaul JL, Müller M, Damm T, Barkmann R, Kurz B, Campbell GM, Freitag-Wolf S, Glüer CC. Dual-Layer Spectral-Computed Tomography Enhances the Separability of Calcium-Based Implant Material from Bone: An Ex Vivo Quantitative Imaging Study. J Bone Miner Res 2022; 37:2472-2482. [PMID: 36125939 DOI: 10.1002/jbmr.4710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/22/2022] [Accepted: 09/17/2022] [Indexed: 11/10/2022]
Abstract
Local treatment of bone loss with an injection of a resorbable, calcium-based implant material to replace bone has a long history of clinical use. The in vivo discrimination of changes in bone versus implant is challenging with standard computed tomography (CT). However, spectral-CT techniques enable the separation between tissues of similar densities but different chemical compositions. Dual-layer spectral-CT imaging and postprocessing analysis methods were applied to investigate the separability of AGN1 (a triphasic calcium-based implant) and bone after AGN1 injection in n = 10 male cadaveric femurs ex vivo. Using the area under the curve (AUC) from receiver-operating characteristic (ROC) analyses, the separability of AGN1 from bone was assessed for AGN1 (postoperatively) versus compact and versus femoral neck cancellous bone (both preoperatively). CT techniques included conventional Hounsfield (HU) and density-equivalent units (BMD, mg hydroxyapatite [HA]/cm3 ) and spectral-CT measures of effective atomic number (Zeff) and electron density (ED). The samples had a wide range of femoral neck BMD (55.66 to 241.71 mg HA/cm3 ). At the injection site average BMD, HU, Zeff, and ED increased from 69.5 mg HA/cm3 , 109 HU, 104.38 EDW, and 8.30 Zeff in the preoperative to 1233 mg HA/cm3 , 1741 HU, 181.27 EDW, and 13.55 Zeff in the postoperative CT scan, respectively. For compact bone at the femoral shaft the preoperative values were 1124.15 mg HA/cm3 , 1648 HU, 177 EDW, and 13.06 Zeff and were maintained postoperatively. Zeff showed substantially sharper distributions and significantly greater separability compared to ED, BMD, and HU (all p < 0.002, for both regions) with average AUCs for BMD, HU, ED, and Zeff of 0.670, 0.640, 0.645, and 0.753 for AGN1 versus compact and 0.996, 0.995, 0.994, and 0.998 for AGN1 versus femoral neck cancellous sites, respectively. Spectral-CT permits better discrimination of calcium-based implants like AGN1 from bone ex vivo. Our results warrant application of spectral-CT in patients undergoing procedures with similar implants. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Jaime A Peña
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | | | - Michael Müller
- Clinic for Orthopedics and Trauma Surgery, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Timo Damm
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Reinhard Barkmann
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Bodo Kurz
- Department of Anatomy, Christian-Albrechts University (CAU), Kiel, Germany
| | | | - Sandra Freitag-Wolf
- Institute of Medical Informatics and Statistics, Christian-Albrechts University (CAU), Kiel, Germany
| | - Claus-C Glüer
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| |
Collapse
|
8
|
Tarantino U, Cariati I, Greggi C, Iundusi R, Gasbarra E, Iolascon G, Kurth A, Akesson KE, Bouxsein M, Tranquilli Leali P, Civinini R, Falez F, Brandi ML. Gaps and alternative surgical and non-surgical approaches in the bone fragility management: an updated review. Osteoporos Int 2022; 33:2467-2478. [PMID: 35851407 DOI: 10.1007/s00198-022-06482-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
Osteoporotic fractures are one of the major problems facing healthcare systems worldwide. Undoubtedly, fragility fractures of the hip represent a far greater burden in terms of morbidity, mortality, and healthcare costs than other fracture sites. However, despite the significant impact on the health and quality of life of older adults, there is a general lack of awareness of osteoporosis, which results in suboptimal care. In fact, most high-risk individuals are never identified and do not receive adequate treatment, leading to further fragility fractures and worsening health status. Furthermore, considering the substantial treatment gap and the proven cost-effectiveness of fracture prevention programs such as Fracture Liaison Services, urgent action is needed to ensure that all individuals at high risk of fragility fracture are adequately assessed and treated. Based on this evidence, the aim of our review was to (i) provide an overview and comparison of the burden and management of fragility fractures, highlighting the main gaps, and (ii) highlight the importance of using alternative approaches, both surgical and non-surgical, with the aim of implementing early prevention of osteoporotic fractures and improving the management of osteoporotic patients at imminent and/or very high risk of fracture.
Collapse
Affiliation(s)
- Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133, Rome, Italy
- Department of Orthopaedics and Traumatology, "Policlinico Tor Vergata" Foundation, Viale Oxford 1, 00133, Rome, Italy
| | - Ida Cariati
- Department of Clinical Sciences and Translational Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133, Rome, Italy
- PhD in Medical-Surgical Biotechnologies and Translational Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133, Rome, Italy
| | - Chiara Greggi
- Department of Clinical Sciences and Translational Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133, Rome, Italy
- PhD in Medical-Surgical Biotechnologies and Translational Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133, Rome, Italy
| | - Riccardo Iundusi
- Department of Orthopaedics and Traumatology, "Policlinico Tor Vergata" Foundation, Viale Oxford 1, 00133, Rome, Italy
| | - Elena Gasbarra
- Department of Orthopaedics and Traumatology, "Policlinico Tor Vergata" Foundation, Viale Oxford 1, 00133, Rome, Italy
| | - Giovanni Iolascon
- Department of Medical and Surgical Specialties and Dentistry, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Andreas Kurth
- Department of Orthopaedic and Trauma Surgery, Community Clinics Middle Rhine, Campus Kemperhof, Koblenz, Germany
| | - Kristina E Akesson
- Department of Clinical Sciences Malmö, Lund University and Department of Orthopedics, Skane University Hospital, Malmö, Sweden
| | - Mary Bouxsein
- Department of Orthopedic Surgery, Center for Advanced Orthopedic Studies, Harvard Medical School, BIDMC, Boston, MA, USA
| | | | - Roberto Civinini
- Department of Surgical Science, University of Florence, Florence, Italy
| | - Francesco Falez
- Orthopaedic and Traumatology Department, S. Spirito Hospital, Rome, Italy
| | | |
Collapse
|
9
|
Sas A, Sermon A, van Lenthe GH. Experimental validation of a voxel-based finite element model simulating femoroplasty of lytic lesions in the proximal femur. Sci Rep 2022; 12:7602. [PMID: 35534595 PMCID: PMC9085891 DOI: 10.1038/s41598-022-11667-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/15/2022] [Indexed: 11/09/2022] Open
Abstract
Femoroplasty is a procedure where bone cement is injected percutaneously into a weakened proximal femur. Uncertainty exists whether femoroplasty provides sufficient mechanical strengthening to prevent fractures in patients with femoral bone metastases. Finite element models are promising tools to evaluate the mechanical effectiveness of femoroplasty, but a thorough validation is required. This study validated a voxel-based finite element model against experimental data from eight pairs of human cadaver femurs with artificial metastatic lesions. One femur from each pair was left untreated, while the contralateral femur was augmented with bone cement. Finite element models accurately predicted the femoral strength in the defect (R2 = 0.96) and augmented (R2 = 0.93) femurs. The modelled surface strain distributions showed a good qualitative match with results from digital image correlation; yet, quantitatively, only moderate correlation coefficients were found for the defect (mean R2 = 0.78) and augmented (mean R2 = 0.76) femurs. This was attributed to the presence of vessel holes in the femurs and the jagged surface representation of our voxel-based models. Despite some inaccuracies in the surface measurements, the FE models accurately predicted the global bone strength and qualitative deformation behavior, both before and after femoroplasty. Hence, they can offer a useful biomechanical tool to assist clinicians in assessing the need for prophylactic augmentation in patients with metastatic bone disease, as well as in identifying suitable patients for femoroplasty.
Collapse
Affiliation(s)
- Amelie Sas
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300C, 3001, Leuven, Belgium
| | - An Sermon
- Department of Traumatology, University Hospitals Gasthuisberg, Leuven, Belgium.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - G Harry van Lenthe
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300C, 3001, Leuven, Belgium.
| |
Collapse
|
10
|
Gueorguiev B, Lenz M. [Cement augmentation and bone graft substitutes-Materials and biomechanics]. Unfallchirurg 2022; 125:430-435. [PMID: 35486124 DOI: 10.1007/s00113-022-01182-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Materials with different characteristics are used for cement augmentation and as bone graft substitutes. OBJECTIVE Cement augmentation and bone graft substitutes are the subject of current research. The evaluation of new knowledge allows its specific application. MATERIAL AND METHODS Selective literature search and outline of experimental research results on cement augmentation and bone graft substitutes. RESULTS Augmentation and bone graft substitutes are essential components of current trauma surgical procedures. Despite intensive research all materials have specific disadvantages. Cement augmentation of implants enhances not only the anchorage but also influences the failure mode. CONCLUSION Cement augmentation has large potential especially in osteoporotic bone. In load-bearing regions acrylic-based cements remain the standard of choice. Ceramic cements are preferred in non-load-bearing areas. Their combination with resorbable metals offers still largely unexplored potential. Virtual biomechanics can help improve the targeted application of cement augmentation.
Collapse
Affiliation(s)
- Boyko Gueorguiev
- AO Forschungsinstitut Davos, Clavadelerstraße 8, 7270, Davos, Schweiz.
| | - Mark Lenz
- AO Forschungsinstitut Davos, Clavadelerstraße 8, 7270, Davos, Schweiz.,Klinik für Unfall‑, Hand- und Wiederherstellungschirurgie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, 07747, Jena, Deutschland
| |
Collapse
|
11
|
Kok J, Törnquist E, Raina DB, Le Cann S, Novak V, Širka A, Lidgren L, Grassi L, Isaksson H. Fracture behavior of a composite of bone and calcium sulfate/hydroxyapatite. J Mech Behav Biomed Mater 2022; 130:105201. [DOI: 10.1016/j.jmbbm.2022.105201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022]
|
12
|
Reynders-Frederix P, Schiopu D, Malissard M, Jayankura M, Sibilla F, Le Huec JC. Pilot study: To assess feasibility and tolerability of a minimal invasive implantable PEEK device for prevention of contralateral osteoporotic hip fracture. Acta Orthop Belg 2022; 88:11-16. [PMID: 35512149 DOI: 10.52628/88.1.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A non-comparative multi-centre and international pilot study have been carried on Y-STRUT® (Hyprevention, France), an implantable medical device meant to reinforce the hip to reduce the risk of a contralateral hip fracture. Objectives of the study were to determine the feasibility and tolerance of the procedure. Methods Patients older than 60 years were recruited when presenting at the emergency departments with a low-energy pertrochanteric fracture on one side and with a fracture risk assessed for the contralateral side with BMD, T-Score or other bone quality evaluation tool, FRAX index, or fall risk assessment. Pain and functional ability were assessed at the different follow-up visits using VAS, WOMAC and OHS-12 scores. Results Twelve patients were included and reached a one-year follow-up. Mean age was 82 years old (65 - 91). The average hospital stay was 13 days (3 - 29). The prophylactic surgery did not delay the hospital discharge for any patient. The procedure did not lead to unresolvable serious adverse events. At 3 weeks, all patients were able to walk 6 meters, half of them in less of 30 seconds. Minimal pain was reported all along the follow-up visits, except at 3 years when one patient presented high pain in both hips. WOMAC and OHS-12 scores showed a moderate to mild hip impairment. Conclusion The good short and medium-term outcomes of this pilot study demonstrate the feasibility and the tolerability of the device. Further studies should focus on the efficacy of this immediate and lasting bone reinforcement technique.
Collapse
|
13
|
LaMonica JN, Rhee B, Milligan K, Leslie M, Tommasini SM, Wiznia DH. Finite Element Evaluation of the Femoral Neck System as Prophylactic Fixation to Prevent Contralateral Hip Fractures. Geriatr Orthop Surg Rehabil 2022; 13:21514593221135117. [DOI: 10.1177/21514593221135117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/12/2022] Open
Abstract
Introduction Hip fractures cause significant morbidity and mortality for geriatric patients, and incidence is increasing as the population ages. Following a primary hip fracture, up to 20% may suffer a contralateral hip fracture within 5 years despite fracture risk reduction measures, including fall prevention and osteoporosis pharmacologic treatment. The aim of this study is to assess whether insertion of the Femoral Neck System (Depuy Synthes, West Chester, PA) into the contralateral proximal femur may strengthen the bone and decrease the incidence of contralateral hip fractures. Materials and Methods ScanIP, an image processing software was used to produce 3-dimensional models of a cadaver femur with the implanted device. Models were meshed and exported to Abaqus for finite element analysis to evaluate the device’s ability to reduce stress in the proximal femur. Results were analyzed for element-wise volume and von-Mises stresses. Results The implant reduced peak stress and bone failure at all levels of bone quality. Specifically in osteoporotic bone, the implant decreased peak stress by 27%, proximal femur trabecular bone failure by 5% and cortical bone failure by 100% in the femoral neck. Conclusions Our results from computer generated finite element analyses indicate that the Femoral Neck System may strengthen an osteoporotic proximal femur in the event of a lateral fall. Further investigation with expanded finite element analysis and cadaveric biomechanical studies are needed to validate these results.
Collapse
Affiliation(s)
- Julia N. LaMonica
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT, USA
- Quinnipiac University, Frank H. Netter M.D. School of Medicine, North Haven, CT, USA
| | - Brian Rhee
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT, USA
| | - Kenneth Milligan
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT, USA
| | - Michael Leslie
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT, USA
| | - Steven M. Tommasini
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT, USA
| | - Daniel H. Wiznia
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
14
|
Rhee B, Tommasini SM, Milligan K, Moulton J, Leslie M, Wiznia DH. Finite Element Analysis of Cannulated Screws as Prophylactic Intervention of Hip Fractures. Geriatr Orthop Surg Rehabil 2021; 12:21514593211055890. [PMID: 34868723 PMCID: PMC8637371 DOI: 10.1177/21514593211055890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Introduction The frequency of hip fractures, a major cause of morbidity and mortality for geriatric patients, is expected to increase exponentially in the next few decades. The aim of this study is to assess the ability of stainless-steel cannulated screws to reduce the risk of a femoral neck fracture, if placed prophylactically prior to a fall. Materials and Methods We created finite element models from computed tomography (CT) scan-based 3D models of a geriatric patient through 3D-image processing and model generation software. We used linear finite element simulations to analyze the effect of cannulated screws in the proximal femur in single-leg stance and lateral fall, which were processed for peak von Mises stresses and element failure. Findings Prophylactically placed cannulated screws significantly reduced failure in an osteoporotic proximal femur undergoing lateral fall. Three implanted screws in an inverted triangle formation decreased proximal femoral trabecular failure by 21% and cortical failure by 5%. This reduction in failure was achieved with a 55% decrease in femoral neck failure and 14% in lateral cortex failure. Conclusion Our results indicate that cannulated hip screws in an inverted triangle formation may strengthen an osteoporotic proximal femur in the event of a lateral fall. Mechanical testing on cadaveric or composite models is required to validate these results.
Collapse
Affiliation(s)
- Brian Rhee
- Yale University School of Medicine, New Haven, CT, USA
| | | | | | - Julia Moulton
- Quinnipiac University Frank H. Netter M.D. School of Medicine, North Haven, CT, USA
| | | | | |
Collapse
|
15
|
Hip Fracture Prevention in Osteoporotic Elderly and Cancer Patients: An On-Line French Survey Evaluating Current Needs. ACTA ACUST UNITED AC 2020; 56:medicina56080397. [PMID: 32784811 PMCID: PMC7466279 DOI: 10.3390/medicina56080397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 11/17/2022]
Abstract
Background and objectives: Hip fracture is a major public health issue. Those fractures lead to high costs and a decrease in quality of life. A national French survey was conducted, with the objectives to firstly assess the current management of hip fracture and its prevention, both in the osteoporotic and cancer settings, and secondly to evaluate the opinions of physicians on the potential use of minimally invasive implantable devices to prevent hip fracture in alternative of surgery. Materials and methods: This national survey was conducted in France between April and July 2017. Questionnaires were sent to orthopedic surgeons, interventional radiologists, oncologists, and rheumatologists. Completed questionnaires were analyzed and compared according to two indications: orthopedics-traumatology and oncology. Factors associated with these responses were assessed using univariable analyses, based on chi-square tests or an exact Fisher test, as appropriate. Results: A total of 182 questionnaires were completed and further analyzed. Physicians have highlighted the need for a low re-fracture rate and to improve life expectancy for more than 1 year (50% for responders of the orthopedics-traumatology questionnaire and 80% for the responders interested in both indications), as well as quality of life (12.5% and 31%, respectively), but with no significant differences in the oncologic indication. Most of the experts were willing to use or prescribe implantable devices for prevention (63% in orthopedics-traumatology and 93% in oncology), although limited clinical experience (54 and 58%) and surgical risk (around 30% in each indication) were considered as limits. Conclusions: Prevention of hip fracture remains a concern for physicians. More clinical experience with implantable devices, in particular in cancer patients, is needed, but implemented in a strategy to maximize patient recovery while reducing costs.
Collapse
|
16
|
Sas A, Tanck E, Sermon A, van Lenthe GH. Finite element models for fracture prevention in patients with metastatic bone disease. A literature review. Bone Rep 2020; 12:100286. [PMID: 32551337 PMCID: PMC7292864 DOI: 10.1016/j.bonr.2020.100286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/04/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
Patients with bone metastases have an increased risk to sustain a pathological fracture as lytic metastatic lesions damage and weaken the bone. In order to prevent fractures, prophylactic treatment is advised for patients with a high fracture risk. Mechanical stabilization of the femur can be provided through femoroplasty, a minimally invasive procedure where bone cement is injected into the lesion, or through internal fixation with intra- or extramedullary implants. Clinicians face the task of determining whether or not prophylactic treatment is required and which treatment would be the most optimal. Finite element (FE) models are promising tools that could support this decision process. The aim of this paper is to provide an overview of the state-of-the-art in FE modeling for the treatment decision of metastatic bone lesions in the femur. First, we will summarize the clinical and mechanical results of femoroplasty as a prophylactic treatment method. Secondly, current FE models for fracture risk assessment of metastatic femurs will be reviewed and the remaining challenges for clinical implementation will be discussed. Thirdly, we will elaborate on the simulation of femoroplasty in FE models and discuss future opportunities. Femoroplasty has already proven to effectively relieve pain and improve functionality, but there remains uncertainty whether it provides sufficient mechanical strengthening to prevent pathological fractures. FE models could help to select appropriate candidates for whom femoroplasty provides sufficient increase in strength and to further improve the mechanical benefit by optimizing the locations for cement augmentation.
Collapse
Affiliation(s)
- Amelie Sas
- Biomechanics Section, KU Leuven, Leuven, Belgium
| | - Esther Tanck
- Orthopaedic Research Laboratory, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - An Sermon
- Department of Traumatology, University Hospitals Gasthuisberg, Leuven, Belgium and Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
17
|
Howe JG, Hill RS, Stroncek JD, Shaul JL, Favell D, Cheng RR, Engelke K, Genant HK, Lee DC, Keaveny TM, Bouxsein ML, Huber B. Treatment of bone loss in proximal femurs of postmenopausal osteoporotic women with AGN1 local osteo-enhancement procedure (LOEP) increases hip bone mineral density and hip strength: a long-term prospective cohort study. Osteoporos Int 2020; 31:921-929. [PMID: 31802158 PMCID: PMC7170985 DOI: 10.1007/s00198-019-05230-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022]
Abstract
UNLABELLED This first-in-human study of AGN1 LOEP demonstrated that this minimally-invasive treatment durably increased aBMD in femurs of osteoporotic postmenopausal women. AGN1 resorption was coupled with new bone formation by 12 weeks and that new bone was maintained for at least 5-7 years resulting in substantially increased FEA-estimated femoral strength. INTRODUCTION This first-in-human study evaluated feasibility, safety, and in vivo response to treating proximal femurs of postmenopausal osteoporotic women with a minimally-invasive local osteo-enhancement procedure (LOEP) to inject a resorbable triphasic osteoconductive implant material (AGN1). METHODS This prospective cohort study enrolled 12 postmenopausal osteoporotic (femoral neck T-score ≤ - 2.5) women aged 56 to 89 years. AGN1 LOEP was performed on left femurs; right femurs were untreated controls. Subjects were followed-up for 5-7 years. Outcomes included adverse events, proximal femur areal bone mineral density (aBMD), AGN1 resorption, and replacement with bone by X-ray and CT, and finite element analysis (FEA) estimated hip strength. RESULTS Baseline treated and control femoral neck aBMD was equivalent. Treated femoral neck aBMD increased by 68 ± 22%, 59 ± 24%, and 58 ± 27% over control at 12 and 24 weeks and 5-7 years, respectively (p < 0.001, all time points). Using conservative assumptions, FEA-estimated femoral strength increased by 41%, 37%, and 22% at 12 and 24 weeks and 5-7 years, respectively (p < 0.01, all time points). Qualitative analysis of X-ray and CT scans demonstrated that AGN1 resorption and replacement with bone was nearly complete by 24 weeks. By 5-7 years, AGN1 appeared to be fully resorbed and replaced with bone integrated with surrounding trabecular and cortical bone. No procedure- or device-related serious adverse events (SAEs) occurred. CONCLUSIONS Treating femurs of postmenopausal osteoporotic women with AGN1 LOEP results in a rapid, durable increase in aBMD and femoral strength. These results support the use and further clinical study of this approach in osteoporotic patients at high risk of hip fracture.
Collapse
Affiliation(s)
- J G Howe
- AgNovos Healthcare LLC, Rockville, MD, USA
| | - R S Hill
- AgNovos Healthcare LLC, Rockville, MD, USA.
| | | | - J L Shaul
- AgNovos Healthcare LLC, Rockville, MD, USA
| | - D Favell
- AgNovos Healthcare LLC, Rockville, MD, USA
| | - R R Cheng
- AgNovos Healthcare LLC, Rockville, MD, USA
| | - K Engelke
- Bioclinica-Synarc, Inc., Hamburg, Germany
- FAU University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - H K Genant
- University of California San Francisco, San Francisco, CA, USA
- Bioclinica-Synarc, Inc., Newark, CA, USA
| | - D C Lee
- O.N. Diagnostics, Berkeley, CA, USA
| | - T M Keaveny
- University of California Berkeley, Berkley, CA, USA
| | - M L Bouxsein
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - B Huber
- Mansfield Orthopedics, Morrisville, VT, USA
| |
Collapse
|
18
|
Sas A, Van Camp D, Lauwers B, Sermon A, van Lenthe GH. Cement augmentation of metastatic lesions in the proximal femur can improve bone strength. J Mech Behav Biomed Mater 2020; 104:103648. [DOI: 10.1016/j.jmbbm.2020.103648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/15/2020] [Accepted: 01/18/2020] [Indexed: 12/16/2022]
|
19
|
Stroncek JD, Shaul JL, Favell D, Hill RS, Huber BM, Howe JG, Bouxsein ML. In vitro injection of osteoporotic cadaveric femurs with a triphasic calcium-based implant confers immediate biomechanical integrity. J Orthop Res 2019; 37:908-915. [PMID: 30793358 PMCID: PMC6593990 DOI: 10.1002/jor.24239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 01/21/2019] [Indexed: 02/04/2023]
Abstract
Current pharmaceutical therapies can reduce hip fractures by up to 50%, but compliance to treatment is low and therapies take up to 18 months to reduce risk. Thus, alternative or complementary approaches to reduce the risk of hip fracture are needed. The AGN1 local osteo-enhancement procedure (LOEP) is one such alternative approach, as it is designed to locally replace bone lost due to osteoporosis and provide immediate biomechanical benefit. This in vitro study evaluated the initial biomechanical impact of this treatment on human cadaveric femurs. We obtained 45 pairs of cadaveric femurs from women aged 77.8 ± 8.8 years. One femur of each pair was treated, while the contralateral femur served as an untreated control. Treatment included debridement, irrigation/suction, and injection of a triphasic calcium-based implant (AGN1). Mechanical testing of the femora was performed in a sideways fall configuration 24 h after treatment. Of the 45 pairs, 4 had normal, 16 osteopenic, and 25 osteoporotic BMD T-scores. Altogether, treatment increased failure load on average by 20.5% (p < 0.0001). In the subset of osteoporotic femurs, treatment increased failure load by 26% and work to failure by 45% (p < 0.01 for both). Treatment did not significantly affect stiffness in any group. These findings provide evidence that local delivery of the triphasic calcium-based implant in the proximal femur is technically feasible and provides immediate biomechanical benefit. Our results provide strong rationale for additional studies investigating the utility of this approach for reducing the risk of hip fracture. © 2019 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society.
Collapse
Affiliation(s)
- John D. Stroncek
- AgNovos Healthcare7301 Calhoun Place Suite 100RockvilleMaryland 20855
| | - Jonathan L. Shaul
- AgNovos Healthcare7301 Calhoun Place Suite 100RockvilleMaryland 20855
| | - Dominique Favell
- AgNovos Healthcare7301 Calhoun Place Suite 100RockvilleMaryland 20855
| | - Ronald S. Hill
- AgNovos Healthcare7301 Calhoun Place Suite 100RockvilleMaryland 20855
| | - Bryan M. Huber
- Copley Hospital528 Washington HwyMorrisvilleVermont 05661
| | - James G. Howe
- AgNovos Healthcare7301 Calhoun Place Suite 100RockvilleMaryland 20855
| | - Mary L. Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Dept. of Orthopedic SurgeryHarvard Medical School330 Brookline AveBostonMassachusetts 02215
| |
Collapse
|
20
|
Kok J, Širka A, Grassi L, Raina DB, Tarasevičius Š, Tägil M, Lidgren L, Isaksson H. Fracture strength of the proximal femur injected with a calcium sulfate/hydroxyapatite bone substitute. Clin Biomech (Bristol, Avon) 2019; 63:172-178. [PMID: 30903873 DOI: 10.1016/j.clinbiomech.2019.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/05/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Available interventions for preventing fragility hip fractures show limited efficacy. Injection of a biomaterial as bone substitute could increase the fracture strength of the hip. This study aimed to show the feasibility of injecting a calcium sulfate/hydroxyapatite based biomaterial in the femoral neck and to calculate the consequent change in strength using the finite element method. METHODS Five patients were injected with 10 ml calcium sulfate/hydroxyapatite in their femoral neck. Quantitative CT scans were taken before and after injection. Five additional patients with fragility hip fractures were also scanned and the images from the non-fractured contralateral sides were used. Finite element models were created for all proximal femora with and without injection and the models were tested under stance and sideways fall loading until fracture. The change in fracture strength caused by the injection was calculated. Additionally, perturbations in volume, location, and stiffness of the injected material were created to investigate their contribution to the fracture strength increase. FINDINGS The 10 ml injection succeeded in all patients. Baseline simulations showed theoretical fracture strength increases of 0-9%. Volume increase, change in location and increase in stiffness of the material led to increases in fracture strength of 1-27%, -8-26% and 0-17%, respectively. Altering the location of the injection to a more lateral position and increasing the stiffness of the material led to increases in fracture strength of up to 42%. INTERPRETATION This study shows that an injection of calcium sulfate/hydroxyapatite is feasible and can theoretically increase the hip's fracture strength.
Collapse
Affiliation(s)
- Joeri Kok
- Department of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden.
| | - Aurimas Širka
- Department of Orthopedics and Traumatology, Lithuanian University of Health Sciences, A. Mickevičiaus g. 9, LT 44307 Kaunas, Lithuania
| | - Lorenzo Grassi
- Department of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden.
| | - Deepak Bushan Raina
- Department of Orthopedics, Clinical Sciences, Lund University, Box 118, 221 00 Lund, Sweden.
| | - Šarūnas Tarasevičius
- Department of Orthopedics and Traumatology, Lithuanian University of Health Sciences, A. Mickevičiaus g. 9, LT 44307 Kaunas, Lithuania
| | - Magnus Tägil
- Department of Orthopedics, Clinical Sciences, Lund University, Box 118, 221 00 Lund, Sweden.
| | - Lars Lidgren
- Department of Orthopedics, Clinical Sciences, Lund University, Box 118, 221 00 Lund, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Box 118, 221 00 Lund, Sweden; Department of Orthopedics, Clinical Sciences, Lund University, Box 118, 221 00 Lund, Sweden.
| |
Collapse
|
21
|
Varga P, Inzana JA, Schwiedrzik J, Zysset PK, Gueorguiev B, Blauth M, Windolf M. New approaches for cement-based prophylactic augmentation of the osteoporotic proximal femur provide enhanced reinforcement as predicted by non-linear finite element simulations. Clin Biomech (Bristol, Avon) 2017; 44:7-13. [PMID: 28282569 DOI: 10.1016/j.clinbiomech.2017.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND High incidence and increased mortality related to secondary, contralateral proximal femoral fractures may justify invasive prophylactic augmentation that reinforces the osteoporotic proximal femur to reduce fracture risk. Bone cement-based approaches (femoroplasty) may deliver the required strengthening effect; however, the significant variation in the results of previous studies calls for a systematic analysis and optimization of this method. Our hypothesis was that efficient generalized augmentation strategies can be identified via computational optimization. METHODS This study investigated, by means of finite element analysis, the effect of cement location and volume on the biomechanical properties of fifteen proximal femora in sideways fall. Novel cement cloud locations were developed using the principles of bone remodeling and compared to the "single central" location that was previously reported to be optimal. FINDINGS The new augmentation strategies provided significantly greater biomechanical benefits compared to the "single central" cement location. Augmenting with approximately 12ml of cement in the newly identified location achieved increases of 11% in stiffness, 64% in yield force, 156% in yield energy and 59% in maximum force, on average, compared to the non-augmented state. The weaker bones experienced a greater biomechanical benefit from augmentation than stronger bones. The effect of cement volume on the biomechanical properties was approximately linear. Results of the "single central" model showed good agreement with previous experimental studies. INTERPRETATION These findings indicate enhanced potential of cement-based prophylactic augmentation using the newly developed cementing strategy. Future studies should determine the required level of strengthening and confirm these numerical results experimentally.
Collapse
Affiliation(s)
| | | | - Jakob Schwiedrzik
- Institute of Surgical Technology and Biomechanics, University of Bern, Switzerland
| | - Philippe K Zysset
- Institute of Surgical Technology and Biomechanics, University of Bern, Switzerland
| | | | - Michael Blauth
- Department for Trauma Surgery, Medical University Innsbruck, Austria
| | | |
Collapse
|