1
|
Lee SY, Kim SJ, Park KH, Lee G, Oh Y, Ryu JH, Huh YH. Differential but complementary roles of HIF-1α and HIF-2α in the regulation of bone homeostasis. Commun Biol 2024; 7:892. [PMID: 39039245 PMCID: PMC11263705 DOI: 10.1038/s42003-024-06581-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/11/2024] [Indexed: 07/24/2024] Open
Abstract
Bone is a highly dynamic tissue undergoing continuous formation and resorption. Here, we investigated differential but complementary roles of hypoxia-inducible factor (HIF)-1α and HIF-2α in regulating bone remodeling. Using RNA-seq analysis, we identified that specific genes involved in regulating osteoblast differentiation were similarly but slightly differently governed by HIF-1α and HIF-2α. We found that increased HIF-1α expression inhibited osteoblast differentiation via inhibiting RUNX2 function by upregulation of Twist2, confirmed using Hif1a conditional knockout (KO) mouse. Ectopic expression of HIF-1α via adenovirus transduction resulted in the increased expression and activity of RANKL, while knockdown of Hif1a expression via siRNA or osteoblast-specific depletion of Hif1a in conditional KO mice had no discernible effect on osteoblast-mediated osteoclast activation. The unexpected outcome was elucidated by the upregulation of HIF-2α upon Hif1a overexpression, providing evidence that Hif2a is a transcriptional target of HIF-1α in regulating RANKL expression, verified through an experiment of HIF-2α knockdown after HIF-1α overexpression. The above results were validated in an ovariectomized- and aging-induced osteoporosis model using Hif1a conditional KO mice. Our findings conclude that HIF-1α plays an important role in regulating bone homeostasis by controlling osteoblast differentiation, and in influencing osteoclast formation through the regulation of RANKL secretion via HIF-2α modulation.
Collapse
Affiliation(s)
- Sun Young Lee
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Su-Jin Kim
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ka Hyon Park
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Gyuseok Lee
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Youngsoo Oh
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Je-Hwang Ryu
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Yun Hyun Huh
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
2
|
Dong H, Tang F, Zhao Z, Huang W, Wan X, Hong Z, Liu Y, Dong X, Chen S. The Bioactive Compounds of Epimedium and Their Potential Mechanism of Action in Treating Osteoporosis: A Network Pharmacology and Experimental Validation Study. Pharmaceuticals (Basel) 2024; 17:706. [PMID: 38931373 PMCID: PMC11206986 DOI: 10.3390/ph17060706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Osteoporosis is a global health challenge characterized by bone loss and microstructure deterioration, which urgently requires the development of safer and more effective treatments due to the significant adverse effects and limitations of existing drugs for long-term treatment. Traditional Chinese medicine, like Epimedium, offers fewer side effects and has been used to treat osteoporosis, yet its active compounds and pharmacological mechanisms remain unclear. In this study, 65 potential active compounds, 258 potential target proteins, and 488 pathways of Epimedium were identified through network pharmacology analysis. Further network analysis and review of the literature identified six potential active compounds and HIF-1α for subsequent experimental validation. In vitro experiments confirmed that 2″-O-RhamnosylIcariside II is the most effective compound among the six potential active compounds. It can promote osteoblast differentiation, bind with HIF-1α, and inhibit both HIF-1α gene and protein expression, as well as enhance COL1A1 protein expression under hypoxic conditions. In vivo experiments demonstrated its ability to improve bone microstructures and reduce bone loss by decreasing bone marrow adipose tissue, enhancing bone formation, and suppressing HIF-1α protein expression. This study is the first to describe the therapeutic effects of 2-O-RhamnosylIcariside II on osteoporosis, which was done, specifically, through a mechanism that targets and inhibits HIF-1α. This study provides a scientific basis for the clinical application of Epimedium and offers a new candidate drug for the treatment of osteoporosis. Additionally, it provides new evidence supporting HIF-1α as a therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Huizhong Dong
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Fen Tang
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Zilu Zhao
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Wenxuan Huang
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xiangyang Wan
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Zhanying Hong
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Ying Liu
- Institute of Translational Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China;
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Si Chen
- School of Medicine, Shanghai University, Shanghai 200444, China
| |
Collapse
|
3
|
Hypoxia-inducible factor signaling in vascular calcification in chronic kidney disease patients. J Nephrol 2022; 35:2205-2213. [PMID: 36208406 DOI: 10.1007/s40620-022-01432-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/02/2022] [Indexed: 10/10/2022]
Abstract
Chronic kidney disease (CKD) affects approximately 15% of the adult population in high-income countries and is associated with significant comorbidities, including increased vascular calcifications which is associated with a higher risk for cardiovascular events. Even though the underlying pathophysiology is unclear, hypoxia-inducible factor (HIF) signaling appears to play a central role in inflammation, angiogenesis, fibrosis, cellular proliferation, apoptosis and vascular calcifications which is influenced by multiple variables such as iron deficiency anemia, serum phosphorus and calcium levels, fibroblast growth factor-23 (FGF-23) and Klotho. Along with the growing understanding of the pathology, potential therapeutic alternatives have emerged including HIF stabilizers and SGLT-2 inhibitors. The aim of this review is to discuss the role of HIF signaling in the pathophysiology of vascular calcification in CKD patients and to identify potential therapeutic approaches.
Collapse
|
4
|
Maruoka H, Zhao S, Yoshino H, Abe M, Yamamoto T, Hongo H, Haraguchi-Kitakamae M, Nasoori A, Ishizu H, Nakajima Y, Omaki M, Shimizu T, Iwasaki N, Luiz de Freitas PH, Li M, Hasegawa T. Histochemical examination of blood vessels in murine femora with intermittent PTH administration. J Oral Biosci 2022; 64:329-336. [DOI: 10.1016/j.job.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
|
5
|
Deng C, Zhou Q, Zhang M, Li T, Chen H, Xu C, Feng Q, Wang X, Yin F, Cheng Y, Wu C. Bioceramic Scaffolds with Antioxidative Functions for ROS Scavenging and Osteochondral Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105727. [PMID: 35182053 PMCID: PMC9036007 DOI: 10.1002/advs.202105727] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 05/19/2023]
Abstract
Osteoarthritis (OA) is a degenerative disease that involves excess reactive oxygen species (ROS) and osteochondral defects. Although multiple approaches have been developed for osteochondral regeneration, how to balance the biochemical and physical microenvironment in OA remains a big challenge. In this study, a bioceramic scaffold by 3D printed akermanite (AKT) integrated with hair-derived antioxidative nanoparticles (HNPs)/microparticles (HMPs) for ROS scavenging and osteochondral regeneration has been developed. The prepared bioscaffold with multi-mimetic enzyme effects, which can scavenge a broad spectrum of free radicals in OA, can protect chondrocytes under the ROS microenvironment. Importantly, the bioscaffold can distinctly stimulate the proliferation and maturation of chondrocytes due to the stimulation of the glucose transporter pathway (GLUT) via HNPs/HMPs. Furthermore, it significantly accelerated osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). In vivo results showed that the bioscaffold can effectively enhance the osteochondral regeneration compared to the unmodified scaffold. The work shows that integration of antioxidant and mechanical properties via the bioscaffold is a promising strategy for osteochondral regeneration in OA treatment.
Collapse
Affiliation(s)
- Cuijun Deng
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative MedicineShanghai East HospitalTongji University School of Medicine1800 Yuntai RoadShanghai200123P.R. China
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P.R. China
- Department of Joint SurgeryShanghai East HospitalSchool of MedicineTongji UniversityShanghai200123P.R. China
| | - Quan Zhou
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative MedicineShanghai East HospitalTongji University School of Medicine1800 Yuntai RoadShanghai200123P.R. China
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P.R. China
| | - Meng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P.R. China
| | - Tian Li
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P.R. China
| | - Haotian Chen
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative MedicineShanghai East HospitalTongji University School of Medicine1800 Yuntai RoadShanghai200123P.R. China
- Department of Joint SurgeryShanghai East HospitalSchool of MedicineTongji UniversityShanghai200123P.R. China
| | - Chang Xu
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative MedicineShanghai East HospitalTongji University School of Medicine1800 Yuntai RoadShanghai200123P.R. China
| | - Qishuai Feng
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative MedicineShanghai East HospitalTongji University School of Medicine1800 Yuntai RoadShanghai200123P.R. China
| | - Xin Wang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P.R. China
| | - Feng Yin
- Department of Joint SurgeryShanghai East HospitalSchool of MedicineTongji UniversityShanghai200123P.R. China
| | - Yu Cheng
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative MedicineShanghai East HospitalTongji University School of Medicine1800 Yuntai RoadShanghai200123P.R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P.R. China
| |
Collapse
|
6
|
Gomez GA, Rundle CH, Xing W, Kesavan C, Pourteymoor S, Lewis RE, Powell DR, Mohan S. Contrasting effects of <i>Ksr2</i>, an obesity gene, on trabecular bone volume and bone marrow adiposity. eLife 2022; 11:82810. [PMID: 36342465 PMCID: PMC9640193 DOI: 10.7554/elife.82810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 11/25/2022] Open
Abstract
Pathological obesity and its complications are associated with an increased propensity for bone fractures. Humans with certain genetic polymorphisms at the kinase suppressor of ras2 (KSR2) locus develop severe early-onset obesity and type 2 diabetes. Both conditions are phenocopied in mice with <i>Ksr2</i> deleted, but whether this affects bone health remains unknown. Here we studied the bones of global <i>Ksr2</i> null mice and found that <i>Ksr2</i> negatively regulates femoral, but not vertebral, bone mass in two genetic backgrounds, while the paralogous gene, <i>Ksr1</i>, was dispensable for bone homeostasis. Mechanistically, KSR2 regulates bone formation by influencing adipocyte differentiation at the expense of osteoblasts in the bone marrow. Compared with <i>Ksr2</i>'s known role as a regulator of feeding by its function in the hypothalamus, pair-feeding and osteoblast-specific conditional deletion of <i>Ksr2</i> reveals that <i>Ksr2</i> can regulate bone formation autonomously. Despite the gains in appendicular bone mass observed in the absence of <i>Ksr2</i>, bone strength, as well as fracture healing response, remains compromised in these mice. This study highlights the interrelationship between adiposity and bone health and provides mechanistic insights into how <i>Ksr2</i>, an adiposity and diabetic gene, regulates bone metabolism.
Collapse
Affiliation(s)
| | - Charles H Rundle
- VA Loma Linda Healthcare SystemLoma LindaUnited States,Loma Linda University Medical CenterLoma LindaUnited States
| | - Weirong Xing
- VA Loma Linda Healthcare SystemLoma LindaUnited States,Loma Linda University Medical CenterLoma LindaUnited States
| | - Chandrasekhar Kesavan
- VA Loma Linda Healthcare SystemLoma LindaUnited States,Loma Linda University Medical CenterLoma LindaUnited States
| | | | | | | | - Subburaman Mohan
- VA Loma Linda Healthcare SystemLoma LindaUnited States,Loma Linda University Medical CenterLoma LindaUnited States
| |
Collapse
|
7
|
Shen S, Xu Y, Gong Z, Yao T, Qiao D, Huang Y, Zhang Z, Gao J, Ni H, Jin Z, Zhu Y, Wu H, Wang Q, Fang X, Huang K, Ma J. Positive Feedback Regulation of Circular RNA Hsa_circ_0000566 and HIF-1α promotes Osteosarcoma Progression and Glycolysis Metabolism. Aging Dis 2022; 14:529-547. [PMID: 37008055 PMCID: PMC10017158 DOI: 10.14336/ad.2022.0826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022] Open
Abstract
Hypoxia is an indispensable factor for cancer progression and is closely associated with the Warburg effect. Circular RNAs (CircRNA) have garnered considerable attention in molecular malignancy therapy as they are potentially important modulators. However, the roles of circRNAs and hypoxia in osteosarcoma (OS) progression have not yet been elucidated. This study reveals the hypoxia-sensitive circRNA, Hsa_circ_0000566, that plays a crucial role in OS progression and energy metabolism under hypoxic stress. Hsa_circ_0000566 is regulated by hypoxia-inducible factor-1α (HIF-1α) and directly binds to it as well as to the Von Hippel-Lindau (VHL) E3 ubiquitin ligase protein. Consequentially, binding between VHL and HIF-1α is impeded. Furthermore, Hsa_circ_0000566 contributes to OS progression by binding to HIF-1α (while competing with VHL) and by confers protection against HIF-1α against VHL-mediated ubiquitin degradation. These findings demonstrate the existence of a positive feedback loop formed by HIF-1α and Hsa_circ_0000566 and the key role they play in OS glycolysis. Taken together, these data indicate the significance of Hsa_circ_0000566 in the Warburg effect and suggest that Hsa_circ_0000566 could be a potential therapeutic target to combat OS progression.
Collapse
Affiliation(s)
- Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China.
| | - Yining Xu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China.
| | - Zhe Gong
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China.
| | - Teng Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China.
| | - Di Qiao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China.
| | - Yizhen Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China.
| | - Zhenlei Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China.
| | - Jun Gao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China.
| | - Haonan Ni
- Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force of the Chinese People’s Liberation Army, Kunming, China.
| | - Zhanping Jin
- Department of Orthopedics, Ningbo First Hospital, Ningbo, Zhejiang, China.
| | - Yingchun Zhu
- Department of Orthopedics, Ningbo First Hospital, Ningbo, Zhejiang, China.
| | - Hongfei Wu
- Departments of Orthopedics, Marine Police Hospital, Zhejiang, China.
| | - Qingxin Wang
- Departments of Orthopedics, Marine Police Hospital, Zhejiang, China.
| | - Xiangqian Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China.
- Correspondence should be addressed to: Dr. Xiangqian Fang, Kangmao Huang, Jianjun Ma, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. (J. Ma); (K. Huang); (X. Fang)
| | - Kangmao Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China.
- Correspondence should be addressed to: Dr. Xiangqian Fang, Kangmao Huang, Jianjun Ma, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. (J. Ma); (K. Huang); (X. Fang)
| | - Jianjun Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China.
- Correspondence should be addressed to: Dr. Xiangqian Fang, Kangmao Huang, Jianjun Ma, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. (J. Ma); (K. Huang); (X. Fang)
| |
Collapse
|
8
|
Kan C, Lu X, Zhang R. Effects of hypoxia on bone metabolism and anemia in patients with chronic kidney disease. World J Clin Cases 2021; 9:10616-10625. [PMID: 35004993 PMCID: PMC8686129 DOI: 10.12998/wjcc.v9.i34.10616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/12/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Abnormal bone metabolism and renal anemia seriously affect the prognosis of patients with chronic kidney disease (CKD). Existing studies have mostly addressed the pathogenesis and treatment of bone metabolism abnormality and anemia in patients with CKD, but few have evaluated their mutual connection. Administration of exogenous erythropoietin to CKD patients with anemia used to be the mainstay of therapeutic approaches; however, with the availability of hypoxia-inducible factor (HIF) stabilizers such as roxadustat, more therapeutic choices for renal anemia are expected in the future. However, the effects posed by the hypoxic environment on both CKD complications remain incompletely understood. AIM To summarize the relationship between renal anemia and abnormal bone metabolism, and to discuss the influence of hypoxia on bone metabolism. METHODS CNKI and PubMed searches were performed using the key words "chronic kidney disease," "abnormal bone metabolism," "anemia," "hypoxia," and "HIF" to identify relevant articles published in multiple languages and fields. Reference lists from identified articles were reviewed to extract additional pertinent articles. Then we retrieved the Abstract and Introduction and searched the results from the literature, classified the extracted information, and summarized important information. Finally, we made our own conclusions. RESULTS There is a bidirectional relationship between renal anemia and abnormal bone metabolism. Abnormal vitamin D metabolism and hyperparathyroidism can affect bone metabolism, blood cell production, and survival rates through multiple pathways. Anemia will further attenuate the normal bone growth. The hypoxic environment regulates bone morphogenetic protein, vascular endothelial growth factor, and neuropilin-1, and affects osteoblast/osteoclast maturation and differentiation through bone metabolic changes. Hypoxia preconditioning of mesenchymal stem cells (MSCs) can enhance their paracrine effects and promote fracture healing. Concurrently, hypoxia reduces the inhibitory effect on osteocyte differentiation by inhibiting the expression of fibroblast growth factor 23. Hypoxia potentially improves bone metabolism, but it still carries potential risks. The optimal concentration and duration of hypoxia remain unclear. CONCLUSION There is a bidirectional relationship between renal anemia and abnormal bone metabolism. Hypoxia may improve bone metabolism but the concentration and duration of hypoxia remain unclear and need further study.
Collapse
Affiliation(s)
- Chao Kan
- Department of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130000, Jilin Province, China
| | - Xu Lu
- Department of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130000, Jilin Province, China
| | - Rui Zhang
- Department of Nephrology, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519070, Guangdong Province, China
| |
Collapse
|
9
|
Zweifler LE, Koh AJ, Daignault-Newton S, McCauley LK. Anabolic actions of PTH in murine models: two decades of insights. J Bone Miner Res 2021; 36:1979-1998. [PMID: 34101904 PMCID: PMC8596798 DOI: 10.1002/jbmr.4389] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 01/19/2023]
Abstract
Parathyroid hormone (PTH) is produced by the parathyroid glands in response to low serum calcium concentrations where it targets bones, kidneys, and indirectly, intestines. The N-terminus of PTH has been investigated for decades for its ability to stimulate bone formation when administered intermittently (iPTH) and is used clinically as an effective anabolic agent for the treatment of osteoporosis. Despite great interest in iPTH and its clinical use, the mechanisms of PTH action remain complicated and not fully defined. More than 70 gene targets in more than 90 murine models have been utilized to better understand PTH anabolic actions. Because murine studies utilized wild-type mice as positive controls, a variety of variables were analyzed to better understand the optimal conditions under which iPTH functions. The greatest responses to iPTH were in male mice, with treatment starting later than 12 weeks of age, a treatment duration lasting 5-6 weeks, and a PTH dose of 30-60 μg/kg/day. This comprehensive study also evaluated these genetic models relative to the bone formative actions with a primary focus on the trabecular compartment revealing trends in critical genes and gene families relevant for PTH anabolic actions. The summation of these data revealed the gene deletions with the greatest increase in trabecular bone volume in response to iPTH. These included PTH and 1-α-hydroxylase (Pth;1α(OH)ase, 62-fold), amphiregulin (Areg, 15.8-fold), and PTH related protein (Pthrp, 10.2-fold). The deletions with the greatest inhibition of the anabolic response include deletions of: proteoglycan 4 (Prg4, -9.7-fold), low-density lipoprotein receptor-related protein 6 (Lrp6, 1.3-fold), and low-density lipoprotein receptor-related protein 5 (Lrp5, -1.0-fold). Anabolic actions of iPTH were broadly affected via multiple and diverse genes. This data provides critical insight for future research and development, as well as application to human therapeutics. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Laura E Zweifler
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Amy J Koh
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | | | - Laurie K McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Department of Pathology, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
10
|
Hou YP, Mao XY, Wang C, Xu ZH, Bu ZH, Xu M, Li B. Roxadustat treatment for anemia in peritoneal dialysis patients: A randomized controlled trial. J Formos Med Assoc 2021; 121:529-538. [PMID: 34167878 DOI: 10.1016/j.jfma.2021.06.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/04/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND/PURPOSE Roxadustat, a first-in-class hypoxia-inducible factor prolyl hydroxylase inhibitor, promotes erythropoiesis and regulates iron metabolism. This study investigated the efficacy and safety of roxadustat in Chinese patients with anemia on peritoneal dialysis (PD). METHODS One hundred and twenty-nine patients were randomized and treated with roxadustat (n = 86) or erythropoiesis-stimulating agents (ESAs) (n = 43) for 24 weeks. The primary end points were the mean hemoglobin (Hb) level at week 24, the change in average Hb levels from baseline to week 24, and the cumulative response rate throughout the treatment period. The secondary end points included changes in hepcidin and iron indices and serum lipid levels. Subgroup analysis examined the effect of inflammatory status on the efficacy of Hb. Safety was assessed as the occurrence of emergent adverse events after treatment. RESULTS The mean average Hb levels at week 24 and average change in Hb levels from baseline to week 24 were 11.5 g/dL and 2.5 g/dL in the roxadustat group and 11.2 g/dL and 2.2 g/dL in the ESAs group, respectively. The cumulative response rate was 96% in the roxadustat group and 92% in the ESAs group at week 24. Roxadustat decreased hepcidin levels and increased total iron-binding capacity. The decreases in total cholesterol and low-density lipoprotein cholesterol were greater with roxadustat than with ESAs. Roxadustat-induced Hb increases were independent of baseline C-reactive protein levels. Common adverse events included hyperkalemia, hypertension, and insomnia. CONCLUSION Roxadustat effectively corrected and maintained target Hb levels in Chinese PD patients. This trial was registered in the Chinese Clinical Trial Register (ChiCTR2000035054).
Collapse
Affiliation(s)
- Yan-Pei Hou
- Department of Nephrology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin-Yue Mao
- Department of Nephrology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Nephrology, Institute of Nephrology, 2nd Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Chang Wang
- Department of Nephrology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Nephrology, Institute of Nephrology, 2nd Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhi-Hui Xu
- Department of Nephrology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhi-Hua Bu
- Department of Nephrology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Meng Xu
- Department of Nephrology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Li
- Department of Nephrology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Nephrology, Institute of Nephrology, 2nd Affiliated Hospital of Hainan Medical University, Haikou, China.
| |
Collapse
|
11
|
Haussler MR, Livingston S, Sabir ZL, Haussler CA, Jurutka PW. Vitamin D Receptor Mediates a Myriad of Biological Actions Dependent on Its 1,25-Dihydroxyvitamin D Ligand: Distinct Regulatory Themes Revealed by Induction of Klotho and Fibroblast Growth Factor-23. JBMR Plus 2021; 5:e10432. [PMID: 33553988 PMCID: PMC7839824 DOI: 10.1002/jbm4.10432] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/01/2020] [Indexed: 11/21/2022] Open
Abstract
The hormonal vitamin D metabolite, 1,25‐dihydroxyvitamin D [1,25(OH)2D], produced in kidney, acts in numerous end organs via the nuclear vitamin D receptor (VDR) to trigger molecular events that orchestrate bone mineral homeostasis. VDR is a ligand‐controlled transcription factor that obligatorily heterodimerizes with retinoid X receptor (RXR) to target vitamin D responsive elements (VDREs) in the vicinity of vitamin D‐regulated genes. Circulating 1,25(OH)2D concentrations are governed by PTH, an inducer of renal D‐hormone biosynthesis catalyzed by CYP27B1 that functions as the key player in a calcemic endocrine circuit, and by fibroblast growth factor‐23 (FGF23), a repressor of the CYP27B1 renal enzyme, creating a hypophosphatemic endocrine loop. 1,25(OH)2D/VDR–RXR acts in kidney to induce Klotho (a phosphaturic coreceptor for FGF23) to correct hyperphosphatemia, NPT2a/c to correct hypophosphatemia, and TRPV5 and CaBP28k to enhance calcium reabsorption. 1,25(OH)2D‐liganded VDR–RXR functions in osteoblasts/osteocytes by augmenting RANK‐ligand expression to paracrine signal osteoclastic bone resorption, while simultaneously inducing FGF23, SPP1, BGLP, LRP5, ANK1, ENPP1, and TNAP, and conversely repressing RUNX2 and PHEX expression, effecting localized control of mineralization to sculpt the skeleton. Herein, we document the history of 1,25(OH)2D/VDR and summarize recent advances in characterizing their physiology, biochemistry, and mechanism of action by highlighting two examples of 1,25(OH)2D/VDR molecular function. The first is VDR‐mediated primary induction of Klotho mRNA by 1,25(OH)2D in kidney via a mechanism initiated by the docking of liganded VDR–RXR on a VDRE at −35 kb in the mouse Klotho gene. In contrast, the secondary induction of FGF23 by 1,25(OH)2D in bone is proposed to involve rapid nongenomic action of 1,25(OH)2D/VDR to acutely activate PI3K, in turn signaling the induction of MZF1, a transcription factor that, in cooperation with c‐ets1‐P, binds to an enhancer element centered at −263 bp in the promoter‐proximal region of the mouse fgf23 gene. Chronically, 1,25(OH)2D‐induced osteopontin apparently potentiates MZF1. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mark R Haussler
- Department of Basic Medical Sciences University of Arizona College of Medicine-Phoenix Phoenix AZ
| | - Sarah Livingston
- School of Mathematical and Natural Sciences Arizona State University Glendale AZ
| | - Zhela L Sabir
- School of Mathematical and Natural Sciences Arizona State University Glendale AZ
| | - Carol A Haussler
- Department of Basic Medical Sciences University of Arizona College of Medicine-Phoenix Phoenix AZ
| | - Peter W Jurutka
- Department of Basic Medical Sciences University of Arizona College of Medicine-Phoenix Phoenix AZ.,School of Mathematical and Natural Sciences Arizona State University Glendale AZ
| |
Collapse
|
12
|
Zhang M, Lu Q, Budden T, Wang J. NFAT1 protects articular cartilage against osteoarthritic degradation by directly regulating transcription of specific anabolic and catabolic genes. Bone Joint Res 2019; 8:90-100. [PMID: 30915215 PMCID: PMC6397328 DOI: 10.1302/2046-3758.82.bjr-2018-0114.r1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objectives Adult mice lacking the transcription factor NFAT1 exhibit osteoarthritis (OA). The precise molecular mechanism for NFAT1 deficiency-induced osteoarthritic cartilage degradation remains to be clarified. This study aimed to investigate if NFAT1 protects articular cartilage (AC) against OA by directly regulating the transcription of specific catabolic and anabolic genes in articular chondrocytes. Methods Through a combined approach of gene expression analysis and web-based searching of NFAT1 binding sequences, 25 candidate target genes that displayed aberrant expression in Nfat1 -/- AC at the initiation stage of OA, and possessed at least four NFAT1 binding sites in the promoter of each gene, were selected and tested for NFAT1 transcriptional activities by chromatin immunoprecipitation (ChIP) and promoter luciferase reporter assays using chondrocytes isolated from the AC of three- to four-month-old wild-type mice or Nfat1 -/- mice with early OA phenotype. Results Chromatin immunoprecipitation assays revealed that NFAT1 bound directly to the promoter of 21 of the 25 tested genes encoding cartilage-matrix proteins, growth factors, inflammatory cytokines, matrix-degrading proteinases, and specific transcription factors. Promoter luciferase reporter assays of representative anabolic and catabolic genes demonstrated that NFAT1-DNA binding functionally regulated the luciferase activity of specific target genes in wild-type chondrocytes, but not in Nfat1 -/- chondrocytes or in wild-type chondrocytes transfected with plasmids containing mutated NFAT1 binding sequences. Conclusion NFAT1 protects AC against degradation by directly regulating the transcription of target genes in articular chondrocytes. NFAT1 deficiency causes defective transcription of specific anabolic and catabolic genes in articular chondrocytes, leading to increased matrix catabolism and osteoarthritic cartilage degradation.Cite this article: M. Zhang, Q. Lu, T. Budden, J. Wang. NFAT1 protects articular cartilage against osteoarthritic degradation by directly regulating transcription of specific anabolic and catabolic genes. Bone Joint Res 2019;8:90-100. DOI: 10.1302/2046-3758.82.BJR-2018-0114.R1.
Collapse
Affiliation(s)
- M Zhang
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery; The Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Q Lu
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of KansasMedical Center, Kansas City, Kansas, USA
| | - T Budden
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of KansasMedical Center, Kansas City, Kansas, USA
| | - J Wang
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery; and Department of Biochemistry & Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
13
|
Oxygen desaturation during the 6-min walk test as a risk for osteoporosis in non-cystic fibrosis bronchiectasis. BMC Pulm Med 2019; 19:28. [PMID: 30717716 PMCID: PMC6360688 DOI: 10.1186/s12890-019-0794-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/28/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Osteoporosis is a common comorbidity in non-cystic fibrosis (non-CF) bronchiectasis patients. We determined whether desaturation during 6-min walk test (6MWT) can be a predictor for osteoporosis risk. METHODS This was a retrospective cross-sectional study. Sixty-six non-CF bronchiectasis patients were enrolled. Lung function, walking distance, the lowest oxygen saturation (SpO2), the fall in SpO2 (ΔSpO2), and the distance-saturation product (DSP) were determined during the 6MWT. Desaturators (n = 45) were defined as those with ΔSpO2 > 10% or the lowest SpO2 < 88%. Bone mineral density (BMD) was determined through dual-energy X-ray absorptiometry. The severity of non-CF bronchiectasis was evaluated using high-resolution computed tomography. RESULTS Osteoporosis was evident in more desaturators (82%) than non-desaturators (43%, p < 0.01). BMD at the level of the femoral neck was significantly lower in desaturators than in non-desaturators (- 3.6 ± 1.1 vs. - 2.4 ± 0.9, p < 0.01). BMD was correlated positively with the lowest SpO2 and negatively with ΔSpO2 and severe exacerbations. In multivariate linear regression analysis, desaturation during 6MWT was the most significant predictive factor for osteoporosis (95% confidence interval - 1.60 to - 0.26, p = 0.01). Other risk factors included old age, low body mass index and severe exacerbation. CONCLUSIONS Exertional desaturation during the 6MWT was a significant predictive factor for osteoporosis in Asian non-CF bronchiectasis patients. The 6MWT may be useful in identifying the osteoporotic phenotype of non-CF bronchiectasis and increasing clinician awareness to promote early intervention.
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW We reviewed recent literature on oxygen sensing in osteogenic cells and its contribution to development of a skeletal phenotype, the coupling of osteogenesis with angiogenesis and integration of hypoxia into canonical Wnt signaling, and opportunities to manipulate oxygen sensing to promote skeletal repair. RECENT FINDINGS Oxygen sensing in osteocytes can confer a high bone mass phenotype in murine models; common and unique targets of HIF-1α and HIF-2α and lineage-specific deletion of oxygen sensing machinery suggest differentia utilization and requirement of HIF-α proteins in the differentiation from mesenchymal stem cell to osteoblast to osteocyte; oxygen-dependent but HIF-α-independent signaling may contribute to observed skeletal phenotypes. Manipulating oxygen sensing machinery in osteogenic cells influences skeletal phenotype through angiogenesis-dependent and angiogenesis-independent pathways and involves HIF-1α, HIF-2α, or both proteins. Clinically, an FDA-approved iron chelator promotes angiogenesis and osteogenesis, thereby enhancing the rate of fracture repair.
Collapse
Affiliation(s)
- Clare E Yellowley
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Damian C Genetos
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA.
| |
Collapse
|
15
|
Hyzy SL, Kajan I, Wilson DS, Lawrence KA, Mason D, Williams JK, Olivares-Navarrete R, Cohen DJ, Schwartz Z, Boyan BD. Inhibition of angiogenesis impairs bone healing in anin vivomurine rapid resynostosis model. J Biomed Mater Res A 2017; 105:2742-2749. [PMID: 28589712 DOI: 10.1002/jbm.a.36137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/12/2017] [Accepted: 06/05/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Sharon L. Hyzy
- Department of Biomedical Engineering; Virginia Commonwealth University; 601 West Main Street Richmond Virginia 23284
| | - Illya Kajan
- Department of Biomedical Engineering; Virginia Commonwealth University; 601 West Main Street Richmond Virginia 23284
| | - D. Scott Wilson
- Department of Biomedical Engineering; Georgia Institute of Technology; 313 Ferst Drive NW Atlanta Georgia USA
| | - Kelsey A. Lawrence
- Department of Biomedical Engineering; Georgia Institute of Technology; 313 Ferst Drive NW Atlanta Georgia USA
| | - Devon Mason
- Department of Biomedical Engineering; Virginia Commonwealth University; 601 West Main Street Richmond Virginia 23284
| | | | - Rene Olivares-Navarrete
- Department of Biomedical Engineering; Virginia Commonwealth University; 601 West Main Street Richmond Virginia 23284
| | - David J. Cohen
- Department of Biomedical Engineering; Virginia Commonwealth University; 601 West Main Street Richmond Virginia 23284
| | - Zvi Schwartz
- Department of Biomedical Engineering; Virginia Commonwealth University; 601 West Main Street Richmond Virginia 23284
- Department of Periodontics; University of Texas Health Science Center at San Antonio; 7703 Floyd Curl Drive San Antonio Texas
| | - Barbara D. Boyan
- Department of Biomedical Engineering; Virginia Commonwealth University; 601 West Main Street Richmond Virginia 23284
- Department of Biomedical Engineering; Georgia Institute of Technology; 313 Ferst Drive NW Atlanta Georgia USA
| |
Collapse
|
16
|
Xie Q, Xie J, Tian T, Ma Q, Zhang Q, Zhu B, Cai X. Hypoxia triggers angiogenesis by increasing expression of LOX genes in 3-D culture of ASCs and ECs. Exp Cell Res 2017; 352:157-163. [PMID: 28189640 DOI: 10.1016/j.yexcr.2017.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/16/2017] [Accepted: 02/08/2017] [Indexed: 10/20/2022]
|
17
|
Xie Q, Xie J, Zhong J, Cun X, Lin S, Lin Y, Cai X. Hypoxia enhances angiogenesis in an adipose-derived stromal cell/endothelial cell co-culture 3D gel model. Cell Prolif 2016; 49:236-45. [PMID: 26997164 DOI: 10.1111/cpr.12244] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/19/2015] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES This study aimed to investigate the influence of hypoxia on angiogenesis in a 3D gel, with co-culturing adipose-derived stromal cells (ASCs) and endothelial cells (ECs). MATERIALS AND METHODS ASCs from green fluorescent protein-labeled mice and ECs from red fluorescent protein-labeled mice were co-cultured in 3D collagen gels at 1:1 ratio, in normal and hypoxic oxygen conditions, and morphology of angiogenesis was observed using confocal laser scanning microscopy. To discover changes in growth factors between monoculture ASCs and ECs, transwell co-cultures of ASCs and ECs were applied. Semi-quantitative PCR was performed to explore mRNA expression of growth factors. RESULTS Enhanced angiogenesis was observed in 3D gels implanted with 1:1 mixture of ASCs and ECs after 7 days hypoxia. Genes including VEGFA/B, EGF-1, HIF-1a, IGF-1, PDGF, TGF-β1 and BMP-2/4 in ECs, both monoculture and co-culture, were significantly enhanced after being cultured under hypoxia. In comparison, genes VEGFA/B, EGF-1, HIF-1a, TGF-β1 and BMP-2 in ASCs increased. In all, factors VEGFA/B, EGF-1, HIF-1a, TGF-β1 and BMP-2 increased in both ASCs and ECs after being cultured in hypoxia no matter whether as monoculture or co-culture. CONCLUSIONS Co-culture of ASCs and ECs at 1:1 ratio in a 3D gel under hypoxia promoted angiogenesis. Those growth factors which were increased in both ASCs and ECs, indicate that VEGFA/B, EGF-1, HIF-1a, TGF-β1 and BMP-2 might be responsible for enhancement in angiogenesis triggered by hypoxia.
Collapse
Affiliation(s)
- Qiang Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Juan Zhong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Xiangzhu Cun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Shiyu Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| |
Collapse
|
18
|
Zhang T, Xie J, Sun K, Fu N, Deng S, Lin S, Shi S, Zhong J, Lin Y. Physiological oxygen tension modulates soluble growth factor profile after crosstalk between chondrocytes and osteoblasts. Cell Prolif 2016; 49:122-33. [PMID: 26840553 DOI: 10.1111/cpr.12239] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/23/2015] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Physiological oxygen tension plays a critical role in homoeostatic maintenance and development of endochondral bone. Based on the proximity between uncalcified cartilage and subchondral bone, and microchannels that serve as a message delivery network between them, we aimed to explore the influence of low oxygen tension on soluble factor secretion in both chondrocytes and osteoblasts, after co-culture. MATERIALS AND METHODS Contact co-culture was achieved for morphological observation using red fluorescent protein (RFP)-labelled chondrocytes and green fluorescent protein (GFP)-labelled osteoblasts, and non-contact co-culture achieved by transwell chambers. This was used to screen genetic variation of growth factors in hypoxia, including respective phenotypic markers, factors involving hypoxia and angiogenesis relationships, bone morphogenetic family proteins, and other general factors. RESULTS We observed a significant increase in chondrocyte size following co-culture, in both normoxia and hypoxia, but not of osteoblasts. Expression of Aggrecan in chondrocytes and alkaline phosphatase in osteoblasts was down-regulated under hypoxia following co-culture. Under hypoxia, we found that expression of hypoxia-inducible factor-1α, vascular endothelial growth factor-A/B, VE-cadherin, bone morphogenetic protein-2, and insulin-like growth factor-1 in chondrocytes, increased, but HIF-1α, platelet-derived growth factor, BMP-5/-6 and fibroblast growth factor-1 in osteoblasts, decreased. CONCLUSIONS These results not only indicate the importance of crosstalk between chondrocytes and osteoblasts but also improve our understanding of the mechanisms underlying homoeostatic maintenance of endochondral bone.
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ke Sun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Na Fu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shuwen Deng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shiyu Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Juan Zhong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
19
|
Cun X, Xie J, Lin S, Fu N, Deng S, Xie Q, Zhong J, Lin Y. Gene profile of soluble growth factors involved in angiogenesis, in an adipose-derived stromal cell/endothelial cell co-culture, 3D gel model. Cell Prolif 2015; 48:405-12. [PMID: 26037311 DOI: 10.1111/cpr.12193] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/05/2015] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The aim of this study was to investigate gene expressions of growth factors for angiogenesis, in a three-dimensional (3D) gel populated with adipose-derived stromal cells (ASCs) and endothelial cells (ECs) in co-culture. MATERIALS AND METHODS The 3D gel, mixed with green fluorescent protein (GFP)-positive ASCs and DsRed-Express-positive ECs, 1:1 ratio, was established in vitro. The phenomenon of angiogenesis was observed using confocal microscopy. To detect gene expressions for growth factor proteins in both ASCs and ECs, transwell co-culture was used, and cell lysate samples were collected at 1, 3, 5 and 7 days. Semi-quantitative polymerase chain reaction (PCR) was conducted to quantify mRNA expressions of the growth factors. RESULTS Angiogenesis was first observed in the gels by 7 days post-implantation. Over this time in ECs, genes coding for VEGFA/B, IGF-1, HIF-1α, FGF-1/-2 and BMP-5/-7 significantly increased. Meanwhile in ASCs, genes coding for VEGFA/B, IGF-1, HIF-1α, FGF-1/-2 and BMP-6 also were significantly enhanced. In particular, increased amounts of IGF-1 and HIF-1α in both ECs and ASCs were prominent relative to other factors. CONCLUSIONS Contact co-culture with ASCs and ECs at 1:1 ratio, in the 3D gel promoted angiogenesis; non-contact co-culture further confirmed gene expressions for growth factors, VEGFA/B, IGF-1, HIF-1α and FGF-1/-2 in both ASCs and ECs; BMP-5/-7 in ECs and BMP-6 in ASCs were also confirmed. This establishment of growth factor expression seemed to be responsible for enhancement of angiogenesis. This indicates that these factors could be utilized as targets for engineered angiogenesis.
Collapse
Affiliation(s)
- Xiangzhu Cun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shiyu Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Na Fu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shuwen Deng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qiang Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Juan Zhong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
20
|
Mediero A, Wilder T, Perez-Aso M, Cronstein BN. Direct or indirect stimulation of adenosine A2A receptors enhances bone regeneration as well as bone morphogenetic protein-2. FASEB J 2015; 29:1577-90. [PMID: 25573752 PMCID: PMC4396602 DOI: 10.1096/fj.14-265066] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/10/2014] [Indexed: 12/11/2022]
Abstract
Promoting bone regeneration and repair of bone defects is a need that has not been well met to date. We have previously found that adenosine, acting via A2A receptors (A2AR) promotes wound healing and inhibits inflammatory osteolysis and hypothesized that A2AR might be a novel target to promote bone regeneration. Therefore, we determined whether direct A2AR stimulation or increasing endogenous adenosine concentrations via purine transport blockade with dipyridamole regulates bone formation. We determined whether coverage of a 3 mm trephine defect in a mouse skull with a collagen scaffold soaked in saline, bone morphogenetic protein-2 (BMP-2; 200 ng), 1 μM CGS21680 (A2AR agonist, EC50 = 160 nM), or 1 μM dipyridamole (EC50 = 32 nM) promoted bone regeneration. Microcomputed tomography examination demonstrated that CGS21680 and dipyridamole markedly enhanced bone regeneration as well as BMP-2 8 wk after surgery (60 ± 2%, 79 ± 2%, and 75 ± 1% bone regeneration, respectively, vs. 32 ± 2% in control, P < 0.001). Blockade by a selective A2AR antagonist (ZM241385, 1 μM) or deletion of A2AR abrogated the effect of CGS21680 and dipyridamole on bone regeneration. Both CGS21680 and dipyridamole treatment increased alkaline phosphatase-positive osteoblasts and diminished tartrate resistance acid phosphatase-positive osteoclasts in the defects. In vivo imaging with a fluorescent dye for new bone formation revealed a strong fluorescent signal in treated animals that was equivalent to BMP-2. In conclusion, stimulation of A2AR by specific agonists or by increasing endogenous adenosine levels stimulates new bone formation as well as BMP-2 and represents a novel approach to stimulating bone regeneration.
Collapse
Affiliation(s)
- Aránzazu Mediero
- Divisions of Translational Medicine and Rheumatology, Department of Medicine, New York University Langone Medical Center, New York, New York, USA
| | - Tuere Wilder
- Divisions of Translational Medicine and Rheumatology, Department of Medicine, New York University Langone Medical Center, New York, New York, USA
| | - Miguel Perez-Aso
- Divisions of Translational Medicine and Rheumatology, Department of Medicine, New York University Langone Medical Center, New York, New York, USA
| | - Bruce N Cronstein
- Divisions of Translational Medicine and Rheumatology, Department of Medicine, New York University Langone Medical Center, New York, New York, USA
| |
Collapse
|
21
|
Swanson CM, Shea SA, Stone KL, Cauley JA, Rosen CJ, Redline S, Karsenty G, Orwoll ES. Obstructive sleep apnea and metabolic bone disease: insights into the relationship between bone and sleep. J Bone Miner Res 2015; 30:199-211. [PMID: 25639209 PMCID: PMC4572893 DOI: 10.1002/jbmr.2446] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 12/19/2014] [Accepted: 12/24/2014] [Indexed: 12/11/2022]
Abstract
Obstructive sleep apnea (OSA) and low bone mass are two prevalent conditions, particularly among older adults-a section of the U.S. population that is expected to grow dramatically over the coming years. OSA, the most common form of sleep-disordered breathing, has been linked to multiple cardiovascular, metabolic, hormonal, and inflammatory derangements and may have adverse effects on bone. However, little is known about how OSA (including the associated hypoxia and sleep loss) affects bone metabolism. In order to gain insight into the relationship between sleep and bone, we review the growing information on OSA and metabolic bone disease and discuss the pathophysiological mechanisms by which OSA may affect bone metabolism/architecture.
Collapse
Affiliation(s)
- Christine M Swanson
- Division of Endocrinology, Oregon Health and Science University, Portland, OR, USA; Bone and Mineral Unit, Oregon Health and Science University, Portland, OR, USA
| | | | | | | | | | | | | | | |
Collapse
|