1
|
Chai H, Huang Q, Jiao Z, Wang S, Sun C, Geng D, Xu W. Osteocytes Exposed to Titanium Particles Inhibit Osteoblastic Cell Differentiation via Connexin 43. Int J Mol Sci 2023; 24:10864. [PMID: 37446062 DOI: 10.3390/ijms241310864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Periprosthetic osteolysis (PPO) induced by wear particles is the most severe complication of total joint replacement; however, the mechanism behind PPO remains elusive. Previous studies have shown that osteocytes play important roles in wear-particle-induced osteolysis. In this study, we investigated the effects of connexin 43 (Cx43) on the regulation of osteocyte-to-osteoblast differentiation. We established an in vivo murine model of calvarial osteolysis induced by titanium (Ti) particles. The osteolysis characteristic and osteogenesis markers in the osteocyte-selective Cx43 (CKO)-deficient and wild-type (WT) mice were observed. The calvarial osteolysis induced by Ti particles was partially attenuated in CKO mice. The expression of β-catenin and osteogenesis markers increased significantly in CKO mice. In vitro, the osteocytic cell line MLO-Y4 was treated with Ti particles. The co-culturing of MLO-Y4 cells with MC3T3-E1 osteoblastic cells was used to observe the effects of Ti-treated osteocytes on osteoblast differentiation. When Cx43 of MLO-Y4 cells was silenced or overexpressed, β-catenin was detected. Additionally, co-immunoprecipitation detection of Cx43 and β-catenin binding in MLO-Y4 cells and MC3T3-E1 cells was performed. Finally, β-catenin expression in MC3T3-E1 cells and osteoblast differentiation were evaluated after 18α-glycyrrhetinic acid (18α-GA) was used to block the intercellular communication of Cx43 between MLO-Y4 and MC3T3-E1 cells. Ti particles increased Cx43 expression and decreased β-catenin expression in MLO-Y4 cells. The silencing of Cx43 increased the β-catenin expression, and the over-expression of Cx43 decreased the β-catenin expression. In the co-culture model, Ti treatment of MLO-Y4 cells inhibited the osteoblastic differentiation of MC3T3-E1 cells and Cx43 silencing in MLO-Y4 cells attenuated the inhibitory effects on osteoblastic differentiation. With Cx43 silencing in the MLO-Y4 cells, the MC3T3-E1 cells, co-cultured alongside MLO-Y4, displayed decreased Cx43 expression, increased β-catenin expression, activation of Runx2, and promotion of osteoblastic differentiation in vitro co-culture. Finally, Cx43 expression was found to be negatively correlated to the activity of the Wnt signaling pathway, mostly through the Cx43 binding of β-catenin from its translocation to the nucleus. The results of our study suggest that Ti particles increased Cx43 expression in osteocytes and that osteocytes may participate in the regulation of osteoblast function via the Cx43 during PPO.
Collapse
Affiliation(s)
- Hao Chai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Qun Huang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Zixue Jiao
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Shendong Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chunguang Sun
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Wei Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| |
Collapse
|
2
|
Lin J, Zheng Z, Liu J, Yang G, Leng L, Wang H, Qiu G, Wu Z. LRP5-Mediated Lipid Uptake Modulates Osteogenic Differentiation of Bone Marrow Mesenchymal Stromal Cells. Front Cell Dev Biol 2021; 9:766815. [PMID: 34796178 PMCID: PMC8593169 DOI: 10.3389/fcell.2021.766815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
Nutritional microenvironment determines the specification of progenitor cells, and lipid availability was found to modulate osteogenesis in skeletal progenitors. Here, we investigated the implications of lipid scarcity in the osteogenic differentiation of bone marrow mesenchymal stromal cells (BMSCs) and the role of low-density lipoprotein receptor-related protein 5 (LRP5), a co-receptor transducing canonical Wnt/beta-catenin signals, in BMSC lipid uptake during osteogenesis. The osteogenic differentiation of murine BMSCs was suppressed by lipid scarcity and partially rescued by additional fatty acid treatment with oleate. The enhancement of osteogenesis by oleate was found to be dosage-dependent, along with the enhanced activation of beta-catenin and Wnt target genes. Conditional knockout (CKO) of Lrp5 gene in murine mesenchymal lineage using Lrp5fl/fl;Prrx1-cre mice led to decreased bone quality and altered fat distribution in vivo. After Lrp5 ablation using adenoviral Cre-recombinase, the accumulation of lipid droplets in BMSC cytoplasm was significantly reduced, and the osteogenesis of BMSCs was suppressed. Moreover, the impaired osteogenesis due to either lipid scarcity or Lrp5 ablation could be rescued by recombinant Wnt3a protein, indicating that the osteogenesis induced by Wnt/beta-catenin signaling was independent of LRP5-mediated lipid uptake. In conclusion, lipid scarcity suppresses BMSC osteogenic differentiation. LRP5 plays a role in the uptake of lipids in BMSCs and therefore mediates osteogenic specification.
Collapse
Affiliation(s)
- Jiachen Lin
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhifa Zheng
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jieying Liu
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guihua Yang
- Harmony Technology Co., Ltd., Beijing, China
| | - Ling Leng
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hai Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihong Wu
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Gonzalez-Pastor R, Hernandez Y, Gimeno M, de Martino A, Man YS, Hallden G, Quintanilla M, de la Fuente JM, Martin-Duque P. Coating an adenovirus with functionalized gold nanoparticles favors uptake, intracellular trafficking and anti-cancer therapeutic efficacy. Acta Biomater 2021; 134:593-604. [PMID: 34325075 DOI: 10.1016/j.actbio.2021.07.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022]
Abstract
Adenoviral (Ad) vectors have proven to be important tools for gene and cell therapy, although some issues still need to be addressed, such as undesired interactions with blood components and off-target sequestration that ultimately hamper efficacy. In the past years, several organic and inorganic materials have been developed to reduce immunogenicity and improve biodistribution of Ad vectors. Here we investigated the influence of the functionalization of 14 nm PEGylated gold nanoparticles (AuNPs) with quaternary ammonium groups and an arginine-glycine-aspartic acid (RGD)-motif on the uptake and biodistribution of Ad vectors. We report the formation of Ad@AuNPs complexes that promote cell attachment and uptake, independently of the presence of the coxsackievirus and adenovirus receptor (CAR) and αvβ3 and αvβ5 integrins, significantly improving transduction without limiting Ad bioactivity. Besides, the presence of the RGD peptide favors tumor targeting and decreases Ad sequestration in the liver. Additionally, tumor delivery of a coated Ad vector expressing the human sodium iodide symporter (hNIS) by mesenchymal stem cells induces increased accumulation of radioactive iodine (131I) and tumor volume reduction compared to naked Ad-hNIS, highlighting the promising potential of our coating formulation in cancer gene therapy. STATEMENT OF SIGNIFICANCE: Modification of adenoviral vectors with lipids and polymers can reduce interactions with blood components and increase tumor accumulation; however, increased toxicity and reduced transduction efficiency were indicated. Coating with gold nanoparticles has proven to be a successful strategy for increasing the efficiency of transduction of receptor-defective cell lines. Here we explore the contribution of cell surface receptors on the mechanisms of entry of Ad vectors coated with gold nanoparticles in cell lines with varying degrees of resistance to infection. The enhancement of the anti-tumoral effect shown in this work provides new evidence for the potential of our formulation.
Collapse
|
4
|
Jung KM, Kim YM, Kim JL, Han JY. Efficient gene transfer into zebra finch germline-competent stem cells using an adenoviral vector system. Sci Rep 2021; 11:14746. [PMID: 34285320 PMCID: PMC8292312 DOI: 10.1038/s41598-021-94229-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/07/2021] [Indexed: 11/09/2022] Open
Abstract
Zebra finch is a representative animal model for studying the molecular basis of human disorders of vocal development and communication. Accordingly, various functional studies of zebra finch have knocked down or introduced foreign genes in vivo; however, their germline transmission efficiency is remarkably low. The primordial germ cell (PGC)-mediated method is preferred for avian transgenic studies; however, use of this method is restricted in zebra finch due to the lack of an efficient gene transfer method for the germline. To target primary germ cells that are difficult to transfect and manipulate, an adenovirus-mediated gene transfer system with high efficiency in a wide range of cell types may be useful. Here, we isolated and characterized two types of primary germline-competent stem cells, PGCs and spermatogonial stem cells (SSCs), from embryonic and adult reproductive tissues of zebra finch and demonstrated that genes were most efficiently transferred into these cells using an adenovirus-mediated system. This system was successfully used to generate gene-edited PGCs in vitro. These results are expected to improve transgenic zebra finch production.
Collapse
Affiliation(s)
- Kyung Min Jung
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Young Min Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Jin Lee Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
| |
Collapse
|
5
|
Nilson R, Lübbers O, Weiß L, Singh K, Scharffetter-Kochanek K, Rojewski M, Schrezenmeier H, Zeplin PH, Funk W, Krutzke L, Kochanek S, Kritzinger A. Transduction Enhancers Enable Efficient Human Adenovirus Type 5-Mediated Gene Transfer into Human Multipotent Mesenchymal Stromal Cells. Viruses 2021; 13:v13061136. [PMID: 34204818 PMCID: PMC8231506 DOI: 10.3390/v13061136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022] Open
Abstract
Human multipotent mesenchymal stromal cells (hMSCs) are currently developed as cell therapeutics for different applications, including regenerative medicine, immune modulation, and cancer treatment. The biological properties of hMSCs can be further modulated by genetic engineering. Viral vectors based on human adenovirus type 5 (HAdV-5) belong to the most frequently used vector types for genetic modification of human cells in vitro and in vivo. However, due to a lack of the primary attachment receptor coxsackievirus and adenovirus receptor (CAR) in hMSCs, HAdV-5 vectors are currently not suitable for transduction of this cell type without capsid modification. Here we present several transduction enhancers that strongly enhance HAdV-5-mediated gene transfer into both bone marrow- and adipose tissue-derived hMSCs. Polybrene, poly-l-lysine, human lactoferrin, human blood coagulation factor X, spermine, and spermidine enabled high eGFP expression levels in hMSCs. Importantly, hMSCs treated with enhancers were not affected in their migration behavior, which is a key requisite for many therapeutic applications. Exemplary, strongly increased expression of tumor necrosis factor (TNF)-stimulated gene 6 (TSG-6) (a secreted model therapeutic protein) was achieved by enhancer-facilitated HAdV-5 transduction. Thus, enhancer-mediated HAdV-5 vector transduction is a valuable method for the engineering of hMSCs, which can be further exploited for the development of innovative hMSC therapeutics.
Collapse
Affiliation(s)
- Robin Nilson
- Department of Gene Therapy, University Medical Center Ulm, 89081 Ulm, Germany; (R.N.); (O.L.); (L.W.); (L.K.); (A.K.)
| | - Olivia Lübbers
- Department of Gene Therapy, University Medical Center Ulm, 89081 Ulm, Germany; (R.N.); (O.L.); (L.W.); (L.K.); (A.K.)
| | - Linus Weiß
- Department of Gene Therapy, University Medical Center Ulm, 89081 Ulm, Germany; (R.N.); (O.L.); (L.W.); (L.K.); (A.K.)
| | - Karmveer Singh
- Department of Dermatology and Allergology, University Medical Center Ulm, 89081 Ulm, Germany; (K.S.); (K.S.-K.)
| | - Karin Scharffetter-Kochanek
- Department of Dermatology and Allergology, University Medical Center Ulm, 89081 Ulm, Germany; (K.S.); (K.S.-K.)
| | - Markus Rojewski
- Institute for Transfusion Medicine, University Medical Center Ulm, 89081 Ulm, Germany; (M.R.); (H.S.)
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service, 89081 Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, University Medical Center Ulm, 89081 Ulm, Germany; (M.R.); (H.S.)
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service, 89081 Ulm, Germany
| | - Philip Helge Zeplin
- Schlosspark Klinik Ludwigsburg, Privatklinik für Plastische und Ästhetische Chirurgie, 71638 Ludwigsburg, Germany;
| | | | - Lea Krutzke
- Department of Gene Therapy, University Medical Center Ulm, 89081 Ulm, Germany; (R.N.); (O.L.); (L.W.); (L.K.); (A.K.)
| | - Stefan Kochanek
- Department of Gene Therapy, University Medical Center Ulm, 89081 Ulm, Germany; (R.N.); (O.L.); (L.W.); (L.K.); (A.K.)
- Correspondence: ; Tel.: +49-73150046103
| | - Astrid Kritzinger
- Department of Gene Therapy, University Medical Center Ulm, 89081 Ulm, Germany; (R.N.); (O.L.); (L.W.); (L.K.); (A.K.)
| |
Collapse
|
6
|
Chowdhury S, Schulz L, Palmisano B, Singh P, Berger JM, Yadav VK, Mera P, Ellingsgaard H, Hidalgo J, Brüning J, Karsenty G. Muscle-derived interleukin 6 increases exercise capacity by signaling in osteoblasts. J Clin Invest 2021; 130:2888-2902. [PMID: 32078586 DOI: 10.1172/jci133572] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
Given the numerous health benefits of exercise, understanding how exercise capacity is regulated is a question of paramount importance. Circulating interleukin 6 (IL-6) levels surge during exercise and IL-6 favors exercise capacity. However, neither the cellular origin of circulating IL-6 during exercise nor the means by which this cytokine enhances exercise capacity has been formally established yet. Here we show through genetic means that the majority of circulating IL-6 detectable during exercise originates from muscle and that to increase exercise capacity, IL-6 must signal in osteoblasts to favor osteoclast differentiation and the release of bioactive osteocalcin in the general circulation. This explains why mice lacking the IL-6 receptor only in osteoblasts exhibit a deficit in exercise capacity of similar severity to the one seen in mice lacking muscle-derived IL-6 (mIL-6), and why this deficit is correctable by osteocalcin but not by IL-6. Furthermore, in agreement with the notion that IL-6 acts through osteocalcin, we demonstrate that mIL-6 promotes nutrient uptake and catabolism into myofibers during exercise in an osteocalcin-dependent manner. Finally, we show that the crosstalk between osteocalcin and IL-6 is conserved between rodents and humans. This study provides evidence that a muscle-bone-muscle endocrine axis is necessary to increase muscle function during exercise in rodents and humans.
Collapse
Affiliation(s)
- Subrata Chowdhury
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Logan Schulz
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Biagio Palmisano
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | - Julian M Berger
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Vijay K Yadav
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA.,National Institute of Immunology, New Delhi, India
| | - Paula Mera
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Helga Ellingsgaard
- Centre of Inflammation and Metabolism and.,Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Juan Hidalgo
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jens Brüning
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Gerard Karsenty
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
7
|
Dumitrescu M, Vacaru AM, Trusca VG, Fenyo IM, Ionita R, Gafencu AV. K2 Transfection System Boosts the Adenoviral Transduction of Murine Mesenchymal Stromal Cells. Int J Mol Sci 2021; 22:E598. [PMID: 33435318 PMCID: PMC7826527 DOI: 10.3390/ijms22020598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Adenoviral vectors are important vehicles for delivering therapeutic genes into mammalian cells. However, the yield of the adenoviral transduction of murine mesenchymal stromal cells (MSC) is low. Here, we aimed to improve the adenoviral transduction efficiency of bone marrow-derived MSC. Our data showed that among all the potential transduction boosters that we tested, the K2 Transfection System (K2TS) greatly increased the transduction efficiency. After optimization of both K2TS components, the yield of the adenoviral transduction increased from 18% to 96% for non-obese diabetic (NOD)-derived MSC, from 30% to 86% for C57BL/6-derived MSC, and from 0.6% to 63% for BALB/c-derived MSC, when 250 transduction units/cell were used. We found that MSC derived from these mouse strains expressed different levels of the coxsackievirus and adenovirus receptors (MSC from C57BL/6≥NOD>>>BALB/c). K2TS did not increase the level of the receptor expression, but desensitized the cells to foreign DNA and facilitated the virus entry into the cell. The expression of Stem cells antigen-1 (Sca-1) and 5'-nucleotidase (CD73) MSC markers, the adipogenic and osteogenic differentiation potential, and the immunosuppressive capacity were preserved after the adenoviral transduction of MSC in the presence of the K2TS. In conclusion, K2TS significantly enhanced the adenoviral transduction of MSC, without interfering with their main characteristics and properties.
Collapse
Affiliation(s)
| | | | | | | | | | - Anca Violeta Gafencu
- Institute of Cellular Biology and Pathology “N. Simionescu”, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania; (M.D.); (A.M.V.); (V.G.T.); (I.M.F.); (R.I.)
| |
Collapse
|
8
|
Sharma A, Goring A, Clarkin CE. Commentary: A Cost-Effective Method to Enhance Adenoviral Transduction of Primary Murine Osteoblasts and Bone Marrow Stromal Cells. Front Endocrinol (Lausanne) 2020; 11:419. [PMID: 32670202 PMCID: PMC7330116 DOI: 10.3389/fendo.2020.00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/26/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Aikta Sharma
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | | | - Claire E. Clarkin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
9
|
Gao J, Zhang W, Mese K, Bunz O, Lu F, Ehrhardt A. Transient Chimeric Ad5/37 Fiber Enhances NK-92 Carrier Cell-Mediated Delivery of Oncolytic Adenovirus Type 5 to Tumor Cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:376-389. [PMID: 32695840 PMCID: PMC7358217 DOI: 10.1016/j.omtm.2020.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023]
Abstract
Methods for customizing and improving virus vector tropism are limited. In this study, we introduce a microRNA (miRNA)-regulated molecular method to enhance vector transduction without genome alteration. Based on the importance of adenovirus (Ad) vectors for cancer and gene treatment, we exemplified this technology for an Ad type 5 (Ad5) vector temporally carrying a knob from Ad37. We constructed a producer cell line stably expressing a fused Ad5/37 chimeric fiber comprising the Ad5 shaft-tail and the Ad37 knob and a miRNA inhibiting Ad5 knob expression (HEK293-Ad5/37-miRNA). The chimeric Ad5/37 vector resulted in enhanced transduction rates in Ad37 adequately and Ad5 poorly transduced cells. Particularly, encapsidation of the oncolytic Ad5-human telomerase reverse transcriptase (hTERT) vector genome into the chimeric Ad5/37 capsid showed efficient transduction of NK-92 carrier cells. These infected carrier cells then delivered the oncolytic vector to tumor cells, which resulted in enhanced Ad5-hTERT-mediated tumor cell killing. We show that this transiently capsid-modified chimeric vector carrying an Ad5 genome displayed higher transduction efficiencies of natural killer cell-derived NK-92 cells utilized as carriers in cancer immune therapy. In summary, transiently modified adenoviral vectors will have important implications for cancer and gene therapy.
Collapse
Affiliation(s)
- Jian Gao
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Wenli Zhang
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Kemal Mese
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Oskar Bunz
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Fengmin Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| |
Collapse
|
10
|
Sharma A, Goring A, Staines KA, Emery RJ, Pitsillides AA, Oreffo RO, Mahajan S, Clarkin CE. Raman spectroscopy links differentiating osteoblast matrix signatures to pro-angiogenic potential. Matrix Biol Plus 2020; 5:100018. [PMID: 33543015 PMCID: PMC7852201 DOI: 10.1016/j.mbplus.2019.100018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/21/2019] [Accepted: 10/09/2019] [Indexed: 01/25/2023] Open
Abstract
Mineralization of bone is achieved by the sequential maturation of the immature amorphous calcium phase to mature hydroxyapatite (HA) and is central in the process of bone development and repair. To study normal and dysregulated mineralization in vitro, substrates are often coated with poly-l-lysine (PLL) which facilitates cell attachment. This study has used Raman spectroscopy to investigate the effect of PLL coating on osteoblast (OB) matrix composition during differentiation, with a focus on collagen specific proline and hydroxyproline and precursors of HA. Deconvolution analysis of murine derived long bone OB Raman spectra revealed collagen species were 4.01-fold higher in OBs grown on PLL. Further, an increase of 1.91-fold in immature mineral species (amorphous calcium phosphate) was coupled with a 9.32-fold reduction in mature mineral species (carbonated apatite) on PLL versus controls. These unique low mineral signatures identified in OBs were linked with reduced alkaline phosphatase enzymatic activity, reduced Alizarin Red staining and altered osteogenic gene expression. The promotion of immature mineral species and restriction of mature mineral species of OB grown on PLL were linked to increased cell viability and pro-angiogenic vascular endothelial growth factor (VEGF) production. These results demonstrate the utility of Raman spectroscopy to link distinct matrix signatures with OB maturation and VEGF release. Importantly, Raman spectroscopy could provide a label-free approach to clinically assess the angiogenic potential of bone during fracture repair or degenerative bone loss.
Collapse
Key Words
- ACP, amorphous calcium phosphate
- ALP, tissue non-specific alkaline phosphatase
- CAP, carbonated apatite
- CCEC, collagenase-collagenase-EDTA-collagenase
- ECM, extracellular matrix
- HA, hydroxyapatite
- HBSS, Hank's balanced salt solution
- MV, matrix vesicles
- OB, osteoblast
- OCP, octacalcium phosphate
- Osteoblast mineralization
- PCA, principle component analysis
- PLL, poly-l-lysine
- Poly-l-lysine
- RT-qPCR, reverse transcription-quantiative PCR
- Raman spectroscopy
- VEGF
- VEGF, vascular endothelial growth factor
Collapse
Affiliation(s)
- Aikta Sharma
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, United Kingdom of Great Britain and Northern Ireland
| | - Alice Goring
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, United Kingdom of Great Britain and Northern Ireland
| | - Katherine A. Staines
- School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, Edinburgh, EH11 4BN, United Kingdom of Great Britain and Northern Ireland
| | - Roger J.H. Emery
- Department of Surgery and Cancer, Faculty of Medicine, St Mary's Campus, Imperial College London, London, W2 1PG, United Kingdom of Great Britain and Northern Ireland
| | - Andrew A. Pitsillides
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, NW1 0TU, United Kingdom of Great Britain and Northern Ireland
| | - Richard O.C. Oreffo
- Centre for Human Development, Stem Cell and Regeneration, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, United Kingdom of Great Britain and Northern Ireland
| | - Sumeet Mahajan
- School of Chemistry and Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, United Kingdom of Great Britain and Northern Ireland
| | - Claire E. Clarkin
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
11
|
Lindsey RC, Cheng S, Mohan S. Vitamin C effects on 5-hydroxymethylcytosine and gene expression in osteoblasts and chondrocytes: Potential involvement of PHD2. PLoS One 2019; 14:e0220653. [PMID: 31390373 PMCID: PMC6685624 DOI: 10.1371/journal.pone.0220653] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/20/2019] [Indexed: 12/02/2022] Open
Abstract
Vitamin C (ascorbic acid, AA) is a well-known regulator of bone and cartilage metabolism. However, the mechanisms of AA’s action in these tissues are only partly understood. In this study, we confirmed that AA contributes to bone and cartilage metabolism by showing decreased articular cartilage and trabecular bone in AA-deficient spontaneous fracture (sfx) mutant mice. In vitro, we found that AA exerts differential effects on chondrocyte and osteoblast differentiation. Since AA is known to increase levels of 5-hydroxymethylcytosine (5-hmC) and induce DNA demethylation via the ten-eleven translocases (TETs), and since prolyl hydroxylase domain-containing protein 2 (PHD2), a known mediator of AA’s effects in these tissues, is part of the same enzyme family as the TETs, we next investigated whether increases in 5-hmC might mediate some of these effects. All TETs and PHDs are expressed in chondrocytes and osteoblasts, and PHD2 is localized in both the cytoplasm and nucleus of the cell, lending plausibility to the hypothesis of altered 5-hmC content in these cells. We found that AA treatment increased levels of 5-hmC in both cell types globally, notably including promoter regions of osteoblast differentiation genes. Furthermore, inhibition of PHD2 decreased 5-hmC levels in chondrocyte differentiation gene promoters, and knockdown of Phd2 in chondrocytes reduced global 5-hmC levels, suggesting for the first time that PHD2 may itself directly mediate increases in 5-hmC in chondrocyte and osteoblast genes. Further investigation of this mechanism could lead to novel therapeutic approaches to treat debilitating diseases such as osteoarthritis and osteoporosis.
Collapse
Affiliation(s)
- Richard C. Lindsey
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, United States of America
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
| | - Shaohong Cheng
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, United States of America
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, United States of America
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
- Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
- Department of Orthopedics, School of Medicine, Loma Linda University, Loma Linda, CA, United States of America
- * E-mail:
| |
Collapse
|
12
|
Connexin43 enhances Wnt and PGE2-dependent activation of β-catenin in osteoblasts. Pflugers Arch 2019; 471:1235-1243. [PMID: 31240382 DOI: 10.1007/s00424-019-02295-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/06/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022]
Abstract
Connexin43 is an important modulator of many signaling pathways in bone. β-Catenin, a key regulator of the osteoblast differentiation and function, is among the pathways downstream of connexin43-dependent intercellular communication. There are striking overlaps between the functions of these two proteins in bone cells. However, differential effects of connexin43 on β-catenin activity have been reported. Here, we examined how connexin43 influenced both Wnt-dependent and Wnt-independent activation of β-catenin in osteoblasts in vitro. Our data show that loss of connexin43 in primary osteoblasts or connexin43 overexpression in UMR106 cells regulated active β-catenin and phospho-Akt levels, with loss of connexin43 inhibiting and connexin43 overexpression increasing the levels of active β-catenin and phospho-Akt. Increasing connexin43 expression synergistically enhanced Wnt3a-dependent activation of β-catenin protein and β-catenin transcriptional activity, as well as Wnt-independent activation of β-catenin by prostaglandin E2 (PGE2). Finally, we show that the activation of β-catenin by PGE2 required signaling through the phosphatidylinositol 3-kinase (PI3K)/Akt/glycogen synthase kinase 3 beta (GSK3β) pathway, as the PI3K inhibitor, LY-294002, disrupted the synergy between connexin43 and PGE2. These data show that connexin43 regulates Akt and β-catenin activity and synergistically enhances both Wnt-dependent and Wnt-independent β-catenin signaling in osteoblasts.
Collapse
|
13
|
Gupta A, Leser JM, Gould NR, Buo AM, Moorer MC, Stains JP. Connexin43 regulates osteoprotegerin expression via ERK1/2 -dependent recruitment of Sp1. Biochem Biophys Res Commun 2019; 509:728-733. [PMID: 30626485 DOI: 10.1016/j.bbrc.2018.12.173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 12/27/2018] [Indexed: 02/08/2023]
Abstract
In bone, connexin43 expression in cells of the osteoblast lineage plays an important role in restraining osteoclastogenesis and bone resorption. While there is a consensus around the notion that the anti-osteoclastogenic factor, osteoprotegerin, is a driver of this effect, how connexin43 regulates osteoprotegerin gene expression is unclear. Here, we show that loss of connexin43 decreased osteoprotegerin gene expression and reduced ERK1/2 activation. Conversely, overexpression of connexin43 increased osteoprotegerin expression and enhanced ERK1/2 activation. This increase in phospho-ERK1/2 is required for connexin43 to induce transcription from the osteoprotegerin proximal promoter. Connexin43 increased promoter activity via a specific 200 base pair region of the osteoprotegerin promoter located at -1486 to -1286 with respect to the transcriptional start site, a region which includes four Sp1 binding elements. Further, activation of this promoter region required an intact functional connexin43, as hypomorphic or dominant negative connexin43 mutant constructs, including one with increased hemichannel activity, were unable to stimulate osteoprotegerin expression as strongly as wild type connexin43. Using chromatin immunoprecipitations, we show that connexin43 expression enhanced the recruitment of Sp1, but not Runx2, to the osteoprotegerin proximal promoter. In total, these data show that connexin43-dependent gap junctional communication among osteoblast cells permits efficient ERK1/2 activation. ERK1/2 signaling promotes the recruitment of the potent transcriptional activator, Sp1, to the osteoprotegerin proximal promoter, resulting in robust transcription of anti-osteoclastogenic factor, osteoprotegerin.
Collapse
Affiliation(s)
- Aditi Gupta
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States.
| | - Jenna M Leser
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States.
| | - Nicole R Gould
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States.
| | - Atum M Buo
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States.
| | - Megan C Moorer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States.
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
14
|
Choi JY, Lai JK, Xiong ZM, Ren M, Moorer MC, Stains JP, Cao K. Diminished Canonical β-Catenin Signaling During Osteoblast Differentiation Contributes to Osteopenia in Progeria. J Bone Miner Res 2018; 33:2059-2070. [PMID: 30001457 PMCID: PMC7739562 DOI: 10.1002/jbmr.3549] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/25/2018] [Accepted: 06/30/2018] [Indexed: 12/31/2022]
Abstract
Patients with Hutchinson-Gilford progeria syndrome (HGPS) have low bone mass and an atypical skeletal geometry that manifests in a high risk of fractures. Using both in vitro and in vivo models of HGPS, we demonstrate that defects in the canonical WNT/β-catenin pathway, seemingly at the level of the efficiency of nuclear import of β-catenin, impair osteoblast differentiation and that restoring β-catenin activity rescues osteoblast differentiation and significantly improves bone mass. Specifically, we show that HGPS patient-derived iPSCs display defects in osteoblast differentiation, characterized by a decreased alkaline phosphatase activity and mineralizing capacity. We demonstrate that the canonical WNT/β-catenin pathway, a major signaling cascade involved in skeletal homeostasis, is impaired by progerin, causing a reduction in the active β-catenin in the nucleus and thus decreased transcriptional activity, and its reciprocal cytoplasmic accumulation. Blocking farnesylation of progerin restores active β-catenin accumulation in the nucleus, increasing signaling, and ameliorates the defective osteogenesis. Moreover, in vivo analysis of the Zmpste24-/- HGPS mouse model demonstrates that treatment with a sclerostin-neutralizing antibody (SclAb), which targets an antagonist of canonical WNT/β-catenin signaling pathway, fully rescues the low bone mass phenotype to wild-type levels. Together, this study reveals that the β-catenin signaling cascade is a therapeutic target for restoring defective skeletal microarchitecture in HGPS. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ji Young Choi
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD 20742
| | - Jim K Lai
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Zheng-Mei Xiong
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD 20742
| | - Margaret Ren
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD 20742
| | - Megan C Moorer
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Joseph P Stains
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Kan Cao
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD 20742
| |
Collapse
|
15
|
Buo AM, Tomlinson RE, Eidelman ER, Chason M, Stains JP. Connexin43 and Runx2 Interact to Affect Cortical Bone Geometry, Skeletal Development, and Osteoblast and Osteoclast Function. J Bone Miner Res 2017; 32:1727-1738. [PMID: 28419546 PMCID: PMC5550348 DOI: 10.1002/jbmr.3152] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/30/2017] [Accepted: 04/10/2017] [Indexed: 12/30/2022]
Abstract
The coupling of osteoblasts and osteocytes by connexin43 (Cx43) gap junctions permits the sharing of second messengers that coordinate bone cell function and cortical bone acquisition. However, details of how Cx43 converts shared second messengers into signals that converge onto essential osteogenic processes are incomplete. Here, we use in vitro and in vivo methods to show that Cx43 and Runx2 functionally interact to regulate osteoblast gene expression and proliferation, ultimately affecting cortical bone properties. Using compound hemizygous mice for the Gja1 (Cx43) and Runx2 genes, we observed a skeletal phenotype not visible in wild-type or singly hemizygous animals. Cortical bone analysis by micro-computed tomography (μCT) revealed that 8-week-old male, compound Gja1+/- Runx2+/- mice have a marked increase in cross-sectional area, endosteal and periosteal bone perimeter, and an increase in porosity compared to controls. These compound Gja1+/- Runx2+/- mice closely approximate the cortical bone phenotypes seen in osteoblast-specific Gja1-conditional knockout models. Furthermore, μCT analysis of skulls revealed an altered interparietal bone geometry in compound hemizygotes. Consistent with this finding, Alizarin red/Alcian blue staining of 2-day-old Gja1+/- Runx2+/- neonates showed a hypomorphic interparietal bone, an exacerbation of the open fontanelles, and a further reduction in the hypoplastic clavicles compared to Runx2+/- neonates. Expression of osteoblast genes, including osteocalcin, osterix, periostin, and Hsp47, was markedly reduced in tibial RNA extracts from compound hemizygous mice, and osteoblasts from compound hemizygous mice exhibited increased proliferative capacity. Further, the reduced osteocalcin expression and hyperproliferative nature of osteoblasts from Cx43 deficient mice was rescued by Runx2 expression. In summary, these findings provide evidence that Cx43 and Runx2 functionally intersect in vivo to regulate cortical bone properties and affect osteoblast differentiation and proliferation, and likely contributes to aspects of the skeletal phenotype of Cx43 conditional knockout mice. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Atum M Buo
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ryan E Tomlinson
- Department of Orthopedic Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Eric R Eidelman
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Max Chason
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Moorer MC, Hebert C, Tomlinson RE, Iyer SR, Chason M, Stains JP. Defective signaling, osteoblastogenesis and bone remodeling in a mouse model of connexin 43 C-terminal truncation. J Cell Sci 2017; 130:531-540. [PMID: 28049723 PMCID: PMC5312734 DOI: 10.1242/jcs.197285] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/28/2016] [Indexed: 01/29/2023] Open
Abstract
In skeletal tissue, loss or mutation of the gap junction protein connexin 43 (Cx43, also known as GJA1) in cells of the osteoblast lineage leads to a profound cortical bone phenotype and defective tissue remodeling. There is mounting evidence in bone cells that the C-terminus (CT) of Cx43 is a docking platform for signaling effectors and is required for efficient downstream signaling. Here, we examined this function, using a mouse model of Cx43 CT-truncation (Gja1 K258Stop). Relative to Gja1+/- controls, male Gja1-/K258Stop mice have a cortical bone phenotype that is remarkably similar to those reported for deletion of the entire Cx43 gene in osteoblasts. Furthermore, we show that the Cx43 CT binds several signaling proteins that are required for optimal osteoblast function, including PKCδ, ERK1 and ERK2 (ERK1/2, also known as MAPK3 and MAPK1, respectively) and β-catenin. Deletion of the Cx43 CT domain affects these signaling cascades, impacting osteoblast proliferation, differentiation, and collagen processing and organization. These data imply that, at least in bone, Cx43 gap junctions not only exchange signals, but also recruit the appropriate effector molecules to the Cx43 CT in order to efficiently activate signaling cascades that affect cell function and bone acquisition.
Collapse
Affiliation(s)
- Megan C Moorer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Carla Hebert
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ryan E Tomlinson
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Shama R Iyer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Max Chason
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|