1
|
Fortin J, Bassi C, Ramachandran P, Li WY, Tian R, Zarrabi I, Hill G, Snow BE, Haight J, Tobin C, Hodgson K, Wakeham A, Stambolic V, Mak TW. Concerted roles of PTEN and ATM in controlling hematopoietic stem cell fitness and dormancy. J Clin Invest 2021; 131:131698. [PMID: 33444287 PMCID: PMC7919727 DOI: 10.1172/jci131698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/13/2021] [Indexed: 12/21/2022] Open
Abstract
In order to sustain proficient life-long hematopoiesis, hematopoietic stem cells (HSCs) must possess robust mechanisms to preserve their quiescence and genome integrity. DNA-damaging stress can perturb HSC homeostasis by affecting their survival, self-renewal, and differentiation. Ablation of the kinase ataxia telangiectasia mutated (ATM), a master regulator of the DNA damage response, impairs HSC fitness. Paradoxically, we show here that loss of a single allele of Atm enhances HSC functionality in mice. To explain this observation, we explored a possible link between ATM and the tumor suppressor phosphatase and tensin homolog (PTEN), which also regulates HSC function. We generated and analyzed a knockin mouse line (PtenS398A/S398A), in which PTEN cannot be phosphorylated by ATM. Similar to Atm+/-, PtenS398A/S398A HSCs have enhanced hematopoietic reconstitution ability, accompanied by resistance to apoptosis induced by genotoxic stress. Single-cell transcriptomic analyses and functional assays revealed that dormant PtenS398A/S398A HSCs aberrantly tolerate elevated mitochondrial activity and the accumulation of reactive oxygen species, which are normally associated with HSC priming for self-renewal or differentiation. Our results unveil a molecular connection between ATM and PTEN, which couples the response to genotoxic stress and dormancy in HSCs.
Collapse
Affiliation(s)
- Jerome Fortin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Christian Bassi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - Wanda Y. Li
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ruxiao Tian
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ida Zarrabi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Graham Hill
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Bryan E. Snow
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jillian Haight
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Chantal Tobin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Kelsey Hodgson
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Andrew Wakeham
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Vuk Stambolic
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Tak W. Mak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Pulido R, Mingo J, Gaafar A, Nunes-Xavier CE, Luna S, Torices L, Angulo JC, López JI. Precise Immunodetection of PTEN Protein in Human Neoplasia. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a036293. [PMID: 31501265 DOI: 10.1101/cshperspect.a036293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PTEN is a major tumor-suppressor protein whose expression and biological activity are frequently diminished in sporadic or inherited cancers. PTEN gene deletion or loss-of-function mutations favor tumor cell growth and are commonly found in clinical practice. In addition, diminished PTEN protein expression is also frequently observed in tumor samples from cancer patients in the absence of PTEN gene alterations. This makes PTEN protein levels a potential biomarker parameter in clinical oncology, which can guide therapeutic decisions. The specific detection of PTEN protein can be achieved by using highly defined anti-PTEN monoclonal antibodies (mAbs), characterized with precision in terms of sensitivity for the detection technique, specificity for PTEN binding, and constraints of epitope recognition. This is especially relevant taking into consideration that PTEN is highly targeted by mutations and posttranslational modifications, and different PTEN protein isoforms exist. The precise characterization of anti-PTEN mAb reactivity is an important step in the validation of these reagents as diagnostic and prognostic tools in clinical oncology, including their routine use in analytical immunohistochemistry (IHC). Here, we review the current status on the use of well-defined anti-PTEN mAbs for PTEN immunodetection in the clinical context and discuss their potential usefulness and limitations for a more precise cancer diagnosis and patient benefit.
Collapse
Affiliation(s)
- Rafael Pulido
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao 48011, Spain
| | - Janire Mingo
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Ayman Gaafar
- Department of Pathology, Cruces University Hospital, Barakaldo 48903, Spain
| | - Caroline E Nunes-Xavier
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain.,Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo N-0310, Norway
| | - Sandra Luna
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Leire Torices
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Javier C Angulo
- Department of Urology, University Hospital of Getafe, Getafe, Madrid 28904, Spain.,Clinical Department, European University of Madrid, Laureate Universities, Madrid 28904, Spain
| | - José I López
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain.,Department of Pathology, Cruces University Hospital, Barakaldo 48903, Spain.,University of the Basque Country, Leioa 48940, Spain
| |
Collapse
|
3
|
A pathogenic role for germline PTEN variants which accumulate into the nucleus. Eur J Hum Genet 2018; 26:1180-1187. [PMID: 29706633 DOI: 10.1038/s41431-018-0155-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/27/2018] [Accepted: 03/30/2018] [Indexed: 11/08/2022] Open
Abstract
The PTEN gene encodes a master regulator protein that exerts essential functions both in the cytoplasm and in the nucleus. PTEN is mutated in the germline of both patients with heterogeneous tumor syndromic diseases, categorized as PTEN hamartoma tumor syndrome (PHTS), and a group affected with autism spectrum disorders (ASD). Previous studies have unveiled the functional heterogeneity of PTEN variants found in both patient cohorts, making functional studies necessary to provide mechanistic insights related to their pathogenicity. Here, we have functionally characterized a PTEN missense variant [c.49C>G; p.(Gln17Glu); Q17E] associated to both PHTS and ASD patients. The PTEN Q17E variant displayed partially reduced PIP3-catalytic activity and normal stability in cells, as shown using S. cerevisiae and mammalian cell experimental models. Remarkably, PTEN Q17E accumulated in the nucleus, in a process involving the PTEN N-terminal nuclear localization sequence. The analysis of additional germline-associated PTEN N-terminal variants illustrated the existence of a PTEN N-terminal region whose targeting in disease causes PTEN nuclear accumulation, in parallel with defects in PIP3-catalytic activity in cells. Our findings highlight the frequent occurrence of PTEN gene mutations targeting PTEN N-terminus whose pathogenicity may be related, at least in part, with the retention of PTEN in the nucleus. This could be important for the implementation of precision therapies for patients with alterations in the PTEN pathway.
Collapse
|
4
|
Lusche DF, Buchele EC, Russell KB, Soll BA, Vitolo MI, Klemme MR, Wessels DJ, Soll DR. Overexpressing TPTE2 ( TPIP), a homolog of the human tumor suppressor gene PTEN, rescues the abnormal phenotype of the PTEN-/- mutant. Oncotarget 2018; 9:21100-21121. [PMID: 29765523 PMCID: PMC5940379 DOI: 10.18632/oncotarget.24941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/06/2018] [Indexed: 11/25/2022] Open
Abstract
One possible approach to normalize mutant cells that are metastatic and tumorigenic, is to upregulate a functionally similar homolog of the mutated gene. Here we have explored this hypothesis by generating an overexpressor of TPTE2 (TPIP), a homolog of PTEN, in PTEN-/- mutants, the latter generated by targeted mutagenesis of a human epithelial cell line. Overexpression of TPTE2 normalized phenotypic changes associated with the PTEN mutation. The PTEN-/- -associated changes rescued by overexpressing TPTE2 included 1) accelerated wound healing in the presence or absence of added growth factors (GFs), 2) increased division rates on a 2D substrate in the presence of GFs, 3) adhesion and viability on a 2D substrate in the absence of GFs, 4) viability in a 3D Matrigel model in the absence of GFs and substrate adhesion 5) loss of apoptosis-associated annexin V cell surface binding sites. The results justify further exploration into the possibility that upregulating TPTE2 by a drug may reverse metastatic and tumorigenic phenotypes mediated in part by a mutation in PTEN. This strategy may also be applicable to other tumorigenic mutations in which a homolog to the mutated gene is present and can substitute functionally.
Collapse
Affiliation(s)
- Daniel F. Lusche
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, 52242 IA, USA
| | - Emma C. Buchele
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, 52242 IA, USA
| | - Kanoe B. Russell
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, 52242 IA, USA
| | - Benjamin A. Soll
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, 52242 IA, USA
| | - Michele I. Vitolo
- Greenebaum Cancer Center, The University of Maryland, Baltimore, Maryland, Baltimore, 21201 MD, USA
| | - Michael R. Klemme
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, 52242 IA, USA
| | - Deborah J. Wessels
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, 52242 IA, USA
| | - David R. Soll
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, 52242 IA, USA
| |
Collapse
|
5
|
Haddadi N, Lin Y, Travis G, Simpson AM, McGowan EM, Nassif NT. PTEN/PTENP1: 'Regulating the regulator of RTK-dependent PI3K/Akt signalling', new targets for cancer therapy. Mol Cancer 2018; 17:37. [PMID: 29455665 PMCID: PMC5817727 DOI: 10.1186/s12943-018-0803-3] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Regulation of the PI-3 kinase (PI3K)/Akt signalling pathway is essential for maintaining the integrity of fundamental cellular processes, cell growth, survival, death and metabolism, and dysregulation of this pathway is implicated in the development and progression of cancers. Receptor tyrosine kinases (RTKs) are major upstream regulators of PI3K/Akt signalling. The phosphatase and tensin homologue (PTEN), a well characterised tumour suppressor, is a prime antagonist of PI3K and therefore a negative regulator of this pathway. Loss or inactivation of PTEN, which occurs in many tumour types, leads to overactivation of RTK/PI3K/Akt signalling driving tumourigenesis. Cellular PTEN levels are tightly regulated by a number of transcriptional, post-transcriptional and post-translational regulatory mechanisms. Of particular interest, transcription of the PTEN pseudogene, PTENP1, produces sense and antisense transcripts that exhibit post-transcriptional and transcriptional modulation of PTEN expression respectively. These additional levels of regulatory complexity governing PTEN expression add to the overall intricacies of the regulation of RTK/PI-3 K/Akt signalling. This review will discuss the regulation of oncogenic PI3K signalling by PTEN (the regulator) with a focus on the modulatory effects of the sense and antisense transcripts of PTENP1 on PTEN expression, and will further explore the potential for new therapeutic opportunities in cancer treatment.
Collapse
Affiliation(s)
- Nahal Haddadi
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, Sydney, NSW 2007 Australia
| | - Yiguang Lin
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, Sydney, NSW 2007 Australia
| | - Glena Travis
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, Sydney, NSW 2007 Australia
| | - Ann M. Simpson
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, Sydney, NSW 2007 Australia
| | - Eileen M. McGowan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, Sydney, NSW 2007 Australia
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080 China
| | - Najah T. Nassif
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, Sydney, NSW 2007 Australia
| |
Collapse
|
6
|
Kuninty PR, Bojmar L, Tjomsland V, Larsson M, Storm G, Östman A, Sandström P, Prakash J. MicroRNA-199a and -214 as potential therapeutic targets in pancreatic stellate cells in pancreatic tumor. Oncotarget 2017; 7:16396-408. [PMID: 26918939 PMCID: PMC4941323 DOI: 10.18632/oncotarget.7651] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/29/2016] [Indexed: 12/21/2022] Open
Abstract
Pancreatic stellate cells (PSCs) are the key precursor cells for cancer-associated fibroblasts (CAFs) in pancreatic tumor stroma. In this study, we explored miRNA as therapeutic targets in tumor stroma and found miR-199a-3p and miR-214-3p induced in patient-derived pancreatic CAFs and TGF-β-activated human PSCs (hPSCs). Inhibition of miR-199a/-214 using hairpin inhibitors significantly inhibited TGFβ-induced differentiation markers (e.g. α-SMA, collagen, PDGFβR), migration and proliferation. Furthermore, heterospheroids of Panc-1 and hPSCs attained smaller size with hPSCs transfected with anti-miR-199a/-214 compared to control anti-miR. The conditioned medium obtained from TGFβ-activated hPSCs induced tumor cell growth and endothelial cell tube formation. Interestingly, these inductions were abrogated in hPSCs transfected with anti-miR-199a or miR-214. Moreover, IPA analyses revealed signaling pathways related to miR-199a (TP53, mTOR, Smad1) and miR-214 (PTEN, Bax, ING4). Taken together, this study reveals miR-199a-3p and miR-214-3p as major regulators of PSC activation and PSC-induced pro-tumoral effects, representing them as key therapeutic targets in pancreatic cancer.
Collapse
Affiliation(s)
- Praneeth R Kuninty
- Department of Biomaterials, Science and Technology, Section: Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Twente, Netherlands
| | - Linda Bojmar
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Pediatric Hematology/Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Vegard Tjomsland
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Hepato-pancreato-biliary Surgery, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Marie Larsson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Gert Storm
- Department of Biomaterials, Science and Technology, Section: Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Twente, Netherlands.,Department of Pharmaceutics, Utrecht University, Utrecht, Netherlands
| | - Arne Östman
- Department of Oncology-Pathology, Cancer Centre Karolinska, Karolinska Institutet, Karolinska, Sweden
| | - Per Sandström
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jai Prakash
- Department of Biomaterials, Science and Technology, Section: Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Twente, Netherlands.,Department of Oncology-Pathology, Cancer Centre Karolinska, Karolinska Institutet, Karolinska, Sweden
| |
Collapse
|
7
|
Yndestad S, Austreid E, Knappskog S, Chrisanthar R, Lilleng PK, Lønning PE, Eikesdal HP. High PTEN gene expression is a negative prognostic marker in human primary breast cancers with preserved p53 function. Breast Cancer Res Treat 2017; 163:177-190. [PMID: 28213783 PMCID: PMC5387035 DOI: 10.1007/s10549-017-4160-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 02/13/2017] [Indexed: 12/22/2022]
Abstract
Purpose PTEN is an important tumor suppressor in breast cancer. Here, we examined the prognostic and predictive value of PTEN and PTEN pseudogene (PTENP1) gene expression in patients with locally advanced breast cancer given neoadjuvant chemotherapy. Methods The association between pretreatment PTEN and PTENP1 gene expression, response to neoadjuvant chemotherapy, and recurrence-free and disease-specific survival was assessed in 364 patients with locally advanced breast cancer given doxorubicin, 5-fluorouracil/mitomycin, or epirubicin versus paclitaxel in three phase II prospective studies. Further, protein expression of PTEN or phosphorylated Akt, S6 kinase, and 4EBP1 was assessed in a subgroup of 187 tumors. Results Neither PTEN nor PTENP1 gene expression level predicted response to any of the chemotherapy regimens tested (n = 317). Among patients without distant metastases (n = 282), a high pretreatment PTEN mRNA level was associated with inferior relapse-free (RFS; p = 0.001) and disease-specific survival (DSS; p = 0.003). Notably, this association was limited to patients harboring TP53 wild-type tumors (RFS; p = 0.003, DSS; p = 0.009). PTEN mRNA correlated significantly with PTENP1 mRNA levels (rs = 0.456, p < 0.0001) and PTEN protein staining (rs = 0.163, p = 0.036). However, no correlation between PTEN, phosphorylated Akt, S6 kinase or 4EBP1 protein staining, and survival was recorded. Similarly, no correlation between PTENP1 gene expression and survival outcome was observed. Conclusion High intratumoral PTEN gene expression was associated with poor prognosis in patients with locally advanced breast cancers harboring wild-type TP53. Electronic supplementary material The online version of this article (doi:10.1007/s10549-017-4160-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Synnøve Yndestad
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Eilin Austreid
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Stian Knappskog
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Ranjan Chrisanthar
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway.,Section of Molecular Pathology, Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Peer Kåre Lilleng
- Department of Pathology, Haukeland University Hospital, Bergen, Norway.,The Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Per Eystein Lønning
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Hans Petter Eikesdal
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway. .,Department of Oncology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
8
|
Abstract
Starting from the discovery of "inhibitory chromosomes" by Theodor Boveri to the finding by Henry Harris that fusing a normal cell to a cancer cell reduced tumorigenic potential, the notion of tumor suppression was recognized well before any tumor-suppressor genes were discovered. Although not the first to be revealed, PTEN has been demonstrated to be one of the most frequently altered tumor suppressors in cancer. This introductory chapter provides a historical perspective on our current understanding of PTEN including some of the seminal discoveries in the tumor suppressor field, the events leading to PTEN's discovery, and an introduction to some of the most important researchers and their studies which have shed light on PTEN biology and function as we know it today.
Collapse
Affiliation(s)
- Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Princess Margaret Cancer Centre, Room 4211, Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8.
| |
Collapse
|
9
|
Gil A, Rodríguez-Escudero I, Stumpf M, Molina M, Cid VJ, Pulido R. A functional dissection of PTEN N-terminus: implications in PTEN subcellular targeting and tumor suppressor activity. PLoS One 2015; 10:e0119287. [PMID: 25875300 PMCID: PMC4398541 DOI: 10.1371/journal.pone.0119287] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/12/2015] [Indexed: 11/17/2022] Open
Abstract
Spatial regulation of the tumor suppressor PTEN is exerted through alternative plasma membrane, cytoplasmic, and nuclear subcellular locations. The N-terminal region of PTEN is important for the control of PTEN subcellular localization and function. It contains both an active nuclear localization signal (NLS) and an overlapping PIP2-binding motif (PBM) involved in plasma membrane targeting. We report a comprehensive mutational and functional analysis of the PTEN N-terminus, including a panel of tumor-related mutations at this region. Nuclear/cytoplasmic partitioning in mammalian cells and PIP3 phosphatase assays in reconstituted S. cerevisiae defined categories of PTEN N-terminal mutations with distinct PIP3 phosphatase and nuclear accumulation properties. Noticeably, most tumor-related mutations that lost PIP3 phosphatase activity also displayed impaired nuclear localization. Cell proliferation and soft-agar colony formation analysis in mammalian cells of mutations with distinctive nuclear accumulation and catalytic activity patterns suggested a contribution of both properties to PTEN tumor suppressor activity. Our functional dissection of the PTEN N-terminus provides the basis for a systematic analysis of tumor-related and experimentally engineered PTEN mutations.
Collapse
Affiliation(s)
- Anabel Gil
- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Isabel Rodríguez-Escudero
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Miriam Stumpf
- Centro de Investigación Príncipe Felipe, Valencia, Spain; Hubrecht Institute, Utrecht, The Netherlands
| | - María Molina
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Víctor J Cid
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Rafael Pulido
- BioCruces Health Research Institute, Barakaldo, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
10
|
Rotblat B, Grunewald TGP, Leprivier G, Melino G, Knight RA. Anti-oxidative stress response genes: bioinformatic analysis of their expression and relevance in multiple cancers. Oncotarget 2014; 4:2577-90. [PMID: 24342878 PMCID: PMC3926850 DOI: 10.18632/oncotarget.1658] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cells mount a transcriptional anti-oxidative stress (AOS) response program to scavenge reactive oxygen species (ROS) that arise from chemical, physical, and metabolic challenges. This protective program has been shown to reduce carcinogenesis triggered by chemical and physical insults. However, it is also hijacked by established cancers to thrive and proliferate within the hostile tumor microenvironment and to gain resistance against chemo- and radiotherapies. Therefore, targeting the AOS response proteins that are exploited by cancer cells is an attractive therapeutic strategy. In order to identify the AOS genes that are suspected to support cancer progression and resistance, we analyzed the expression patterns of 285 genes annotated for being involved in oxidative stress in 994 tumors and 353 normal tissues. Thereby we identified a signature of 116 genes that are highly overexpressed in multiple carcinomas while being only minimally expressed in normal tissues. To establish which of these genes are more likely to functionally drive cancer resistance and progression, we further identified those whose overexpression correlates with negative patient outcome in breast and lung carcinoma. Gene-set enrichment, GO, network, and pathway analyses revealed that members of the thioredoxin and glutathione pathways are prominent components of this oncogenic signature and that activation of these pathways is common feature of many cancer entities. Interestingly, a large fraction of these AOS genes are downstream targets of the transcription factors NRF2, NF-kappaB and FOXM1, and relay on NADPH for their enzymatic activities highlighting promising drug targets. We discuss these findings and propose therapeutic strategies that may be applied to overcome cancer resistance.
Collapse
Affiliation(s)
- Barak Rotblat
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, UK
| | | | | | | | | |
Collapse
|
11
|
Henley JM, Craig TJ, Wilkinson KA. Neuronal SUMOylation: mechanisms, physiology, and roles in neuronal dysfunction. Physiol Rev 2014; 94:1249-85. [PMID: 25287864 PMCID: PMC4187031 DOI: 10.1152/physrev.00008.2014] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Protein SUMOylation is a critically important posttranslational protein modification that participates in nearly all aspects of cellular physiology. In the nearly 20 years since its discovery, SUMOylation has emerged as a major regulator of nuclear function, and more recently, it has become clear that SUMOylation has key roles in the regulation of protein trafficking and function outside of the nucleus. In neurons, SUMOylation participates in cellular processes ranging from neuronal differentiation and control of synapse formation to regulation of synaptic transmission and cell survival. It is a highly dynamic and usually transient modification that enhances or hinders interactions between proteins, and its consequences are extremely diverse. Hundreds of different proteins are SUMO substrates, and dysfunction of protein SUMOylation is implicated in a many different diseases. Here we briefly outline core aspects of the SUMO system and provide a detailed overview of the current understanding of the roles of SUMOylation in healthy and diseased neurons.
Collapse
Affiliation(s)
- Jeremy M Henley
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Tim J Craig
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Kevin A Wilkinson
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|