1
|
Rezaei M, Moghoofei M. The role of viral infection in implantation failure: direct and indirect effects. Reprod Biol Endocrinol 2024; 22:142. [PMID: 39529140 PMCID: PMC11552308 DOI: 10.1186/s12958-024-01303-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Implantation is the key initial complex stage of pregnancy. Several factors are involved in implantation, but acute and controlled inflammation has been shown to play as a key role. On the other hand, the role of viral infections in directly infecting blastocyst and trophoblast and inducing chronic and uncontrolled inflammation and disrupting microRNAs expression can make this review strongly attractive and practical. We aim to provide an overview of viral infections as the potential etiology of unsuccessful implantation pathophysiology through alteration of the cellular and molecular endometrial microenvironment. Based on our search, this is the first review to discuss the role of inflammation associated with viral infection in implantation failure.
Collapse
Affiliation(s)
- Marzieh Rezaei
- Department of Obstetrics and Gynecology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Moghoofei
- Infectious Diseases Research Center, Health Research Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Avila-Bonilla RG, Salas-Benito JS. Computational Screening to Predict MicroRNA Targets in the Flavivirus 3' UTR Genome: An Approach for Antiviral Development. Int J Mol Sci 2024; 25:10135. [PMID: 39337625 PMCID: PMC11432202 DOI: 10.3390/ijms251810135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
MicroRNAs (miRNAs) are molecules that influence messenger RNA (mRNA) expression levels by binding to the 3' untranslated region (3' UTR) of target genes. Host miRNAs can influence flavivirus replication, either by inducing changes in the host transcriptome or by directly binding to viral genomes. The 3' UTR of the flavivirus genome is a conserved region crucial for viral replication. Cells might exploit this well-preserved region by generating miRNAs that interact with it, ultimately impacting viral replication. Despite significant efforts to identify miRNAs capable of arresting viral replication, the potential of all these miRNAs to interact with the flavivirus 3' UTR is still poorly characterised. In this context, bioinformatic tools have been proposed as a fundamental part of accelerating the discovery of interactions between miRNAs and the 3' UTR of viral genomes. In this study, we performed a computational analysis to reveal potential miRNAs from human and mosquito species that bind to the 3' UTR of flaviviruses. In humans, miR-6842 and miR-661 were found, while in mosquitoes, miR-9-C, miR-2945-5p, miR-11924, miR-282-5p, and miR-79 were identified. These findings open new avenues for studying these miRNAs as antivirals against flavivirus infections.
Collapse
Affiliation(s)
- Rodolfo Gamaliel Avila-Bonilla
- Laboratorio de Genómica y Biología Molecular de ARNs, Departamento de Genética y Biología Molecular, Cinvestav, Av. IPN 2508, Mexico City 07360, Mexico
| | - Juan Santiago Salas-Benito
- Laboratorio de Biomedicina Molecular 3, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico
| |
Collapse
|
3
|
Cheng X, Yang H, Chen Y, Zeng Z, Liu Y, Zhou X, Zhang C, Xie A, Wang G. METTL3-mediated m 6A modification of circGLIS3 promotes prostate cancer progression and represents a potential target for ARSI therapy. Cell Mol Biol Lett 2024; 29:109. [PMID: 39143552 PMCID: PMC11325714 DOI: 10.1186/s11658-024-00628-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been shown to be involved in tumorigenesis and progression. However, the role of circGLIS3 (hsa_circ_0002874) in prostate cancer (PCa) has yet not been reported. METHODS Candidate circRNA were determined through comprehensive analysis of public datasets, PCa cell lines, and tissues data. A series of cellular functional assays, including CCK-8, colony formation, wound healing, and transwell assays were performed. Subsequently, RNA sequencing, RNA immunoprecipitation, methylated RNA immunoprecipitation, microRNA pulldown, luciferase reporter assay, and western blot were used to explore the underlying molecular mechanisms. Moreover, the xenograft tumor mouse model was established to elucidate the function of circGLIS3. RESULTS CircGLIS3, derived from exon 2 of the parental GLIS3 gene, was identified as a novel oncogenic circRNA in PCa that was closely associated with the biochemical recurrence. Its expression levels were upregulated in PCa tissues and cell lines as well as enzalutamide high-resistant cells. The cellular functional assays revealed that circGLIS3 promoted PCa cell proliferation, migration, and invasion. METTL3-mediated N6-methyladenosine (m6A) modification maintained its upregulation by enhancing its stability. Mechanically, CircGLIS3 sponged miR-661 to upregulate MDM2, thus regulating the p53 signaling pathway to promote cell proliferation, migration, and invasion. Furthermore, in vitro and in vivo experiments, the knockdown of circGLIS3 improved the response of PCa cells to ARSI therapies such as enzalutamide. CONCLUSIONS METTL3-mediated m6A modification of circGLIS3 regulates the p53 signaling pathway via the miR-661/MDM2 axis, thereby facilitating PCa progression. Meanwhile, this study unveils a promising potential target for ARSI therapy for PCa.
Collapse
Affiliation(s)
- Xiaofeng Cheng
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi, China
| | - Heng Yang
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi, China
| | - Yujun Chen
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi, China
| | - Zhenhao Zeng
- Department of Urology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, Jiangxi, China
| | - Yifu Liu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi, China
| | - Xiaochen Zhou
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi, China
| | - Cheng Zhang
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi, China
| | - An Xie
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China.
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi, China.
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, China.
- Jiangxi Institute of Urology, Nanchang, 330000, Jiangxi, China.
| |
Collapse
|
4
|
Wu HH, Leng S, Sergi C, Leng R. How MicroRNAs Command the Battle against Cancer. Int J Mol Sci 2024; 25:5865. [PMID: 38892054 PMCID: PMC11172831 DOI: 10.3390/ijms25115865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules that regulate more than 30% of genes in humans. Recent studies have revealed that miRNAs play a crucial role in tumorigenesis. Large sets of miRNAs in human tumors are under-expressed compared to normal tissues. Furthermore, experiments have shown that interference with miRNA processing enhances tumorigenesis. Multiple studies have documented the causal role of miRNAs in cancer, and miRNA-based anticancer therapies are currently being developed. This review primarily focuses on two key points: (1) miRNAs and their role in human cancer and (2) the regulation of tumor suppressors by miRNAs. The review discusses (a) the regulation of the tumor suppressor p53 by miRNA, (b) the critical role of the miR-144/451 cluster in regulating the Itch-p63-Ago2 pathway, and (c) the regulation of PTEN by miRNAs. Future research and the perspectives of miRNA in cancer are also discussed. Understanding these pathways will open avenues for therapeutic interventions targeting miRNA regulation.
Collapse
Affiliation(s)
- Hong Helena Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| | - Sarah Leng
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB T6G 2B7, Canada (C.S.)
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB T6G 2B7, Canada (C.S.)
- Division of Anatomical Pathology, Children’s Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Roger Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada;
| |
Collapse
|
5
|
Omes C, Conti A, Benedetti L, Tomasoni V, De Marchi D, Nappi RE, Cusella De Angelis MG, Ceccarelli G. Expression of miRNA from spent pre-implantation embryos culture media. Reprod Biol 2024; 24:100847. [PMID: 38776743 DOI: 10.1016/j.repbio.2023.100847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 05/25/2024]
Abstract
This study examines the expression of three microRNAs (hsa-miR-661, hsa-miR-21-5p, hsa-miR-372-5p) in spent pre-implantation embryos culture media to identify possible new non-invasive biomarkers of embryo competence, predictive of development to the blastocyst stage. A preliminary analysis on 16 patients undergoing IVF cycles was performed by collecting and stored spent culture media on the fifth/sixth day of embryo culture. Expression of miRNAs was evaluated according to the embryos' fate: 1) NE/DG: non-evolved or degenerate embryos; 2) BLOK: embryos developed to the blastocyst stage. Preliminary results revealed a higher miRNAs expression in NE/DG spent media. To elucidate the roles of these miRNAs, we employed a robust bioinformatics pipeline involving: 1) in-silico miRNA Target Prediction using RNAHybrid, which identified the most-likely gene targets; 2) Construction of a Protein-Protein Interaction network via GeneMania, linking genes with significant biological correlations; 3) application of modularity-based clustering with the gLay app in Cytoscape, resulting in three size-adapted subnets for focused analysis; 4) Enrichment Analysis to discern the biological pathways influenced by the miRNAs. Our bioinformatics analysis revealed that hsa-miR-661 was closely associated with pathways regulating cell shape and morphogenesis of the epithelial sheet. These data suggest the potential use of certain miRNAs to identify embryos with a higher likelihood of developing to the blastocyst stage. Further analysis will be necessary to explore the reproducibility of these findings and to understand if miRNAs here investigated can be used as biomarkers for embryo selection before implantation into the uterus or if they may be reliable predictors of IVF outcome.
Collapse
Affiliation(s)
- Claudia Omes
- Center for Reproductive Medicine - Obstetrics and Gynecology Unit 2, Woman and Child Health Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Alice Conti
- Human Anatomy Unit, Department of Public Health, Experimental Medicine and Forensic, University of Pavia, Pavia, Italy
| | - Laura Benedetti
- Human Anatomy Unit, Department of Public Health, Experimental Medicine and Forensic, University of Pavia, Pavia, Italy
| | - Veronica Tomasoni
- Center for Reproductive Medicine - Obstetrics and Gynecology Unit 2, Woman and Child Health Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Davide De Marchi
- Centre for Health Technologies (CHT), University of Pavia, Pavia, Italy; Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Rossella E Nappi
- Center for Reproductive Medicine - Obstetrics and Gynecology Unit 2, Woman and Child Health Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - M Gabriella Cusella De Angelis
- Human Anatomy Unit, Department of Public Health, Experimental Medicine and Forensic, University of Pavia, Pavia, Italy; Centre for Health Technologies (CHT), University of Pavia, Pavia, Italy
| | - Gabriele Ceccarelli
- Human Anatomy Unit, Department of Public Health, Experimental Medicine and Forensic, University of Pavia, Pavia, Italy; Centre for Health Technologies (CHT), University of Pavia, Pavia, Italy
| |
Collapse
|
6
|
Wang J, Yu Z, Ma H, Zhang G. Suppression of miR-661 inhibits the metastasis of hepatocellular carcinoma. Asian J Surg 2024; 47:2491-2493. [PMID: 38281832 DOI: 10.1016/j.asjsur.2024.01.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/19/2024] [Indexed: 01/30/2024] Open
Affiliation(s)
- Jie Wang
- Laboratory of Cytobiology & Molecular Biology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang Province, China
| | - Ze Yu
- Laboratory of Cytobiology & Molecular Biology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang Province, China; Department of General Surgery, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang Province, China
| | - Haijie Ma
- Laboratory of Cytobiology & Molecular Biology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang Province, China.
| | - Guoqiang Zhang
- Department of General Surgery, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang Province, China.
| |
Collapse
|
7
|
Mitrovic K, Zivotic I, Kolic I, Zakula J, Zivkovic M, Stankovic A, Jovanovic I. A preliminary study of the miRNA restitution effect on CNV-induced miRNA downregulation in CAKUT. BMC Genomics 2024; 25:218. [PMID: 38413914 PMCID: PMC10900603 DOI: 10.1186/s12864-024-10121-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/14/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND The majority of CAKUT-associated CNVs overlap at least one miRNA gene, thus affecting the cellular levels of the corresponding miRNA. We aimed to investigate the potency of restitution of CNV-affected miRNA levels to remediate the dysregulated expression of target genes involved in kidney physiology and development in vitro. METHODS Heterozygous MIR484 knockout HEK293 and homozygous MIR185 knockout HEK293 cell lines were used as models depicting the deletion of the frequently affected miRNA genes by CAKUT-associated CNVs. After treatment with the corresponding miRNA mimics, the levels of the target genes have been compared to the non-targeting control treatment. For both investigated miRNAs, MDM2 and PKD1 were evaluated as common targets, while additional 3 genes were investigated as targets of each individual miRNA (NOTCH3, FIS1 and APAF1 as hsa-miR-484 targets and RHOA, ATF6 and CDC42 as hsa-miR-185-5p targets). RESULTS Restitution of the corresponding miRNA levels in both knockout cell lines has induced a change in the mRNA levels of certain candidate target genes, thus confirming the potential to alleviate the CNV effect on miRNA expression. Intriguingly, HEK293 WT treatment with investigated miRNA mimics has triggered a more pronounced effect, thus suggesting the importance of miRNA interplay in different genomic contexts. CONCLUSIONS Dysregulation of multiple mRNA targets mediated by CNV-affected miRNAs could represent the underlying mechanism behind the unresolved CAKUT occurrence and phenotypic variability observed in CAKUT patients. Characterizing miRNAs located in CNVs and their potential to become molecular targets could eventually help in understanding and improving the management of CAKUT.
Collapse
Affiliation(s)
- Kristina Mitrovic
- Department of Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, P.O. Box 522, Serbia
| | - Ivan Zivotic
- Department of Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, P.O. Box 522, Serbia
| | - Ivana Kolic
- Department of Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, P.O. Box 522, Serbia
| | - Jelena Zakula
- Department of Molecular Biology and Endocrinology, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, P.O. Box 522, Serbia
| | - Maja Zivkovic
- Department of Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, P.O. Box 522, Serbia
| | - Aleksandra Stankovic
- Department of Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, P.O. Box 522, Serbia
| | - Ivan Jovanovic
- Department of Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, P.O. Box 522, Serbia.
| |
Collapse
|
8
|
Salomao N, Maslah N, Giulianelli A, Drevon L, Aguinaga L, Gu X, Cassinat B, Giraudier S, Fenaux P, Fahraeus R. Reduced murine double minute 2 and
4
protein, but not
messenger RNA
, expression is associated with more severe disease in myelodysplastic syndromes and acute myeloblastic leukaemia. Br J Haematol 2022; 201:234-248. [PMID: 36546586 DOI: 10.1111/bjh.18608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
The human homologues of murine double minute 2 (MDM2) and 4 (MDM4) negatively regulate p53 tumour suppressor activity and are reported to be frequently overexpressed in human malignancies, prompting clinical trials with drugs that prevent interactions between MDM2/MDM4 and p53. Bone marrow samples from 111 patients with acute myeloblastic leukaemia, myelodysplastic syndrome or chronic myelomonocytic leukaemia were examined for protein (fluorescence-activated cell sorting) and messenger RNA (mRNA) expression (quantitative polymerase chain reaction) of MDM2, MDM4 and tumour protein p53 (TP53). Low protein expression of MDM2 and MDM4 was observed in immature cells from patients with excess of marrow blasts (>5%) compared with CD34+ /CD45low cells from healthy donors and patients without excess of marrow blasts (<5%). The mRNA levels were indistinguishable in all samples examined regardless of disease status or blast levels. Low MDM2 and MDM4 protein expression were correlated with poor survival. These data show a poor correlation between mRNA and protein expression levels, suggesting that quantitative flow cytometry analysis of protein expression levels should be used to predict and validate the efficacy of MDM2 and MDM4 inhibitors. These findings show that advanced disease is associated with reduced MDM2 and MDM4 protein expression and indicate that the utility of MDM2 and MDM4 inhibitors may have to be reconsidered in the treatment of advanced myeloid malignancies.
Collapse
Affiliation(s)
- Norman Salomao
- Inserm UMRS1131, Institut de Recherche Saint‐Louis, Institut de Génétique Moléculaire, Université de Paris‐Cité, Hôpital St. Louis Paris France
| | - Nabih Maslah
- Inserm UMRS1131, Institut de Recherche Saint‐Louis, Institut de Génétique Moléculaire, Université de Paris‐Cité, Hôpital St. Louis Paris France
| | - Anouk Giulianelli
- Service d'Hématologie Senior—Hôpital Saint‐Louis—Assistance Publique Hôpitaux de Paris, and Paris Cité university Paris France
| | - Louis Drevon
- Inserm UMRS1131, Institut de Recherche Saint‐Louis, Institut de Génétique Moléculaire, Université de Paris‐Cité, Hôpital St. Louis Paris France
- Service d'Hématologie Senior—Hôpital Saint‐Louis—Assistance Publique Hôpitaux de Paris, and Paris Cité university Paris France
| | - Lorea Aguinaga
- Inserm UMRS1131, Institut de Recherche Saint‐Louis, Institut de Génétique Moléculaire, Université de Paris‐Cité, Hôpital St. Louis Paris France
- Service d'Hématologie Senior—Hôpital Saint‐Louis—Assistance Publique Hôpitaux de Paris, and Paris Cité university Paris France
| | - Xiaolian Gu
- Department of Medical Biosciences Building 6M, Umeå University Umeå Sweden
| | - Bruno Cassinat
- Inserm UMRS1131, Institut de Recherche Saint‐Louis, Institut de Génétique Moléculaire, Université de Paris‐Cité, Hôpital St. Louis Paris France
- Service d'Hématologie Senior—Hôpital Saint‐Louis—Assistance Publique Hôpitaux de Paris, and Paris Cité university Paris France
| | - Stephane Giraudier
- Inserm UMRS1131, Institut de Recherche Saint‐Louis, Institut de Génétique Moléculaire, Université de Paris‐Cité, Hôpital St. Louis Paris France
- Service d'Hématologie Senior—Hôpital Saint‐Louis—Assistance Publique Hôpitaux de Paris, and Paris Cité university Paris France
| | - Pierre Fenaux
- Service d'Hématologie Senior—Hôpital Saint‐Louis—Assistance Publique Hôpitaux de Paris, and Paris Cité university Paris France
| | - Robin Fahraeus
- Inserm UMRS1131, Institut de Recherche Saint‐Louis, Institut de Génétique Moléculaire, Université de Paris‐Cité, Hôpital St. Louis Paris France
- Department of Medical Biosciences Building 6M, Umeå University Umeå Sweden
- RECAMO, Masaryk Memorial Cancer Institute Brno Czech Republic
| |
Collapse
|
9
|
LINC01426 aggravates the malignant progression of glioma through miR-661/Mdm2 axis. Brain Res Bull 2022; 188:110-121. [PMID: 35772605 DOI: 10.1016/j.brainresbull.2022.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/20/2022] [Accepted: 06/26/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Long intergenic non-protein coding RNA 1426 (LINC01426) is up-regulated in glioma and functions as a tumor promoter. However, the role of LINC01426 in glioma required further exploration. Therefore, this article mainly studied the role and possible mechanism of LINC01426 in glioma. METHODS The area under the receiver operating characteristic curve was used to determine the diagnostic value of LINC01426. The effect of LINC01426 on tumor growth was analyzed by tumorigenesis assay and immunohistochemical analysis. Bioinformatics analysis, dual-luciferase assay, RNA pull-down, Pearson test, and real-time quantitative PCR (RT-qPCR) were applied to verify the relationship between target genes. The expressions and effects of LINC01426, miR-661 and MDM2 proto-oncogene (Mdm2) in glioma were examined by bioinformatics analysis combined with molecular and functional experiments (RT-qRCR, 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide, clone formation, BrdU, flow cytometry). The expressions of proliferation and apoptosis-related proteins were determined by Western blot. RESULTS LINC01426, which was high-expressed in glioma and was related to poor prognosis, could be used as a diagnostic marker for glioma. SiLINC01426 inhibited the malignant phenotype of glioma cells in vitro and attenuated tumor growth and PCNA expression in vivo, while the effects of LINC01426 were the opposite. LINC01426 targeted and inversely correlated with miR-661, which was low-expressed in glioma. MiR-661 inhibitor evidently overturned the effect of siLINC01426 on biological functions, proliferation, and apoptosis-related proteins of glioma cells. Mdm2 bound to miR-661. Moreover, siMdm2 reversed the effects of miR-661 inhibitor on the biological characteristics and Mdm2/p53/p21 expression of glioma cells. CONCLUSION LINC01426 aggravated the malignant progression of glioma through miR-661/Mdm2 axis.
Collapse
|
10
|
The Complex Interaction between P53 and miRNAs Joins New Awareness in Physiological Stress Responses. Cells 2022; 11:cells11101631. [PMID: 35626668 PMCID: PMC9139524 DOI: 10.3390/cells11101631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 12/14/2022] Open
Abstract
This review emphasizes the important role of cross-talk between P53 and microRNAs in physiological stress signaling. P53 responds to stress in a variety of ways ranging from activating survival-promotion pathways to triggering programmed cell death to eliminate damaged cells. In physiological stress generated by any external or internal condition that challenges cell homeostasis, P53 exerts its function as a transcription factor for target genes or by regulating the expression and maturation of a class of small non-coding RNA molecules (miRNAs). The miRNAs control the level of P53 through direct control of P53 or through indirect control of P53 by targeting its regulators (such as MDMs). In turn, P53 controls the expression level of miRNAs targeted by P53 through the regulation of their transcription or biogenesis. This elaborate regulatory scheme emphasizes the relevance of miRNAs in the P53 network and vice versa.
Collapse
|
11
|
Eide JG, Welch KC, Adappa ND, Palmer JN, Tong CCL. Sinonasal Inverted Papilloma and Squamous Cell Carcinoma: Contemporary Management and Patient Outcomes. Cancers (Basel) 2022; 14:cancers14092195. [PMID: 35565324 PMCID: PMC9102473 DOI: 10.3390/cancers14092195] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Inverted papillomas are benign sinonasal tumors that can recur or become cancerous. The mainstay of treatment is surgical resection. We summarize the biology of inverted papillomas and review surgical outcomes in an effort to define the current treatment strategy. Abstract Inverted papillomas (IP) are the most common sinonasal tumor with a tendency for recurrence, potential attachment to the orbit and skull base, and risk of malignant degeneration into squamous cell carcinoma (SCC). While the overall rate of recurrence has decreased with the widespread adoption of high-definition endoscopic optics and advanced surgical tools, there remain challenges in managing tumors that are multiply recurrent or involve vital neurovascular structures. Here, we review the state-of-the-art diagnostic tools for IP and IP-degenerated SCC, contemporary surgical management, and propose a surveillance protocol.
Collapse
Affiliation(s)
- Jacob G. Eide
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.G.E.); (N.D.A.); (J.N.P.)
| | - Kevin C. Welch
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Nithin D. Adappa
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.G.E.); (N.D.A.); (J.N.P.)
| | - James N. Palmer
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.G.E.); (N.D.A.); (J.N.P.)
| | - Charles C. L. Tong
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.G.E.); (N.D.A.); (J.N.P.)
- Correspondence:
| |
Collapse
|
12
|
Qin Y, Qi Y, Zhang X, Guan Z, Han W, Peng X. Production and Stabilization of Specific Upregulated Long Noncoding RNA HOXD-AS2 in Glioblastomas Are Mediated by TFE3 and miR-661, Respectively. Int J Mol Sci 2022; 23:2828. [PMID: 35269968 PMCID: PMC8911140 DOI: 10.3390/ijms23052828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Differential expression of long noncoding RNAs (lncRNA) plays a key role in the development of gliomas. Because gliomas are the most common primary central nervous system tumor and glioblastomas have poor prognosis, it is urgent to develop new diagnostic methods. We have previously reported that lncRNA HOXD-AS2, which is specifically up-regulated in gliomas, can activate cell cycle and promote the development of gliomas. It is expected to be a new marker for molecular diagnosis of gliomas, but little is known about HOXD-AS2. Here, we demonstrate that TFE3 and miR-661 maintain the high expression level of HOXD-AS2 by regulating its production and degradation. We found that TFE3 acted as a transcription factor binding to the HOXD-AS2 promoter region and raised H3K27ac to activate HOXD-AS2. As the cytoplasmic-located lncRNA, HOXD-AS2 could be degraded by miR-661. This process was inhibited in gliomas due to the low expression of miR-661. Our study explains why HOXD-AS2 was specifically up-regulated in gliomas, helps to understand the molecular characteristics of gliomas, and provids insights for the search for specific markers in gliomas.
Collapse
Affiliation(s)
| | | | | | | | - Wei Han
- State Key Laboratory of Medical Molecular Biology, Medical Primate Research Center, Neuroscience Center, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine of Peking Union Medical College, Beijing 100005, China; (Y.Q.); (Y.Q.); (X.Z.); (Z.G.)
| | - Xiaozhong Peng
- State Key Laboratory of Medical Molecular Biology, Medical Primate Research Center, Neuroscience Center, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine of Peking Union Medical College, Beijing 100005, China; (Y.Q.); (Y.Q.); (X.Z.); (Z.G.)
| |
Collapse
|
13
|
Wu F, He H, Chen Y, Zhu D, Jiang T, Wang J. CircPDE7B/miR-661 axis accelerates the progression of human keloid fibroblasts by upregulating fibroblast growth factor 2 (FGF2). Mol Cell Biochem 2022; 477:1113-1126. [DOI: 10.1007/s11010-021-04345-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022]
|
14
|
Matboli M, Hassan MK, Ali MA, Mansour MT, Elsayed W, Atteya R, Aly HS, Meteini ME, Elghazaly H, El-Khamisy S, Agwa SHA. Impact of circ-0000221 in the Pathogenesis of Hepatocellular via Modulation of miR-661-PTPN11 mRNA Axis. Pharmaceutics 2022; 14:pharmaceutics14010138. [PMID: 35057034 PMCID: PMC8778063 DOI: 10.3390/pharmaceutics14010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death in Egypt. A deep understanding of the molecular events occurring in HCC can facilitate the development of novel diagnostic and/or therapeutic approaches. In the present study, we describe a novel axis of hsa-circ-0000221–miR-661–PTPN11 mRNA proposed by in silico and in vitro analysis and its role in HCC pathogenesis. We observe a reduction in the expression levels of hsa-circ-0000221 and PTPN11 mRNA in HCC patients’ sera tested compared with control subjects. The reduction occurs with a concomitant increase in the expression of miR-661. Furthermore, the introduction of exogenous hsa-circ-0000221 into Hep-G2 or SNU449 cell lines results in detectable decrease in cellular viability and an increase in apoptotic manifestations that is associated with G1 accumulation and CCDN1 overexpression. Altogether, these findings indicate the tumor-suppressive role of hsa-circ-0000221 in HCC, which acts through miR-661 inhibition, along with a subsequent PTPN11 mRNA increase, where PTPN11 is known to inhibit cell proliferation in many forms of cancer. Our study encourages further investigation of the role of circRNAs in cancer and their potential use as molecular biomarkers.
Collapse
Affiliation(s)
- Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo 11381, Egypt;
- Correspondence: (M.M.); (S.H.A.A.)
| | - Mohmed Kamal Hassan
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City for Science and Technology, Giza 12578, Egypt; (M.K.H.); (W.E.); (R.A.)
- Biotechnology Program, Biology Division, Zoology Department, Faculty of Science, Port Said University, Port Said 42526, Egypt
| | - Mahmoud A. Ali
- Department of Biomedical Research, Armed Forces College of Medicine (AFCM), Cairo 11774, Egypt; (M.A.A.); or (M.T.M.)
| | - Mohamed Tarek Mansour
- Department of Biomedical Research, Armed Forces College of Medicine (AFCM), Cairo 11774, Egypt; (M.A.A.); or (M.T.M.)
| | - Waheba Elsayed
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City for Science and Technology, Giza 12578, Egypt; (M.K.H.); (W.E.); (R.A.)
| | - Reham Atteya
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City for Science and Technology, Giza 12578, Egypt; (M.K.H.); (W.E.); (R.A.)
| | - Hebatallah Said Aly
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo 11381, Egypt;
| | - Mahmoud El Meteini
- Department of General Surgery, The School of Medicine, University of Ain Shams, Abbassia, Cairo 11382, Egypt;
| | - Hesham Elghazaly
- Oncology Department, Faculty of Medicine, Medical Ain Shams Research Institute (MASRI), Ain Shams University, Cairo 11382, Egypt;
| | - Sherif El-Khamisy
- The Healthy Lifespan Institute, The Institute of Neuroscience, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK;
- The Institute of Cancer Therapeutics, West Yorkshire BD7 1DP, UK
| | - Sara H. A. Agwa
- Clinical pathology and Molecular Genomics Unit, Faculty of Medicine, Medical Ain Shams Research Institute (MASRI), Ain Shams University, Cairo 11382, Egypt
- Correspondence: (M.M.); (S.H.A.A.)
| |
Collapse
|
15
|
Dittmer J. Biological effects and regulation of IGFBP5 in breast cancer. Front Endocrinol (Lausanne) 2022; 13:983793. [PMID: 36093095 PMCID: PMC9453429 DOI: 10.3389/fendo.2022.983793] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The insulin-like growth factor receptor (IGF1R) pathway plays an important role in cancer progression. In breast cancer, the IGF1R pathway is linked to estrogen-dependent signaling. Regulation of IGF1R activity is complex and involves the actions of its ligands IGF1 and IGF2 and those of IGF-binding proteins (IGFBPs). Six IGFBPs are known that share the ability to form complexes with the IGFs, by which they control the bioavailability of these ligands. Besides, each of the IGFBPs have specific features. In this review, the focus lies on the biological effects and regulation of IGFBP5 in breast cancer. In breast cancer, estrogen is a critical regulator of IGFBP5 transcription. It exerts its effect through an intergenic enhancer loop that is part of the chromosomal breast cancer susceptibility region 2q35. The biological effects of IGFBP5 depend upon the cellular context. By inhibiting or promoting IGF1R signaling, IGFBP5 can either act as a tumor suppressor or promoter. Additionally, IGFBP5 possesses IGF-independent activities, which contribute to the complexity by which IGFBP5 interferes with cancer cell behavior.
Collapse
|
16
|
Wu J, Lu G, Wang X. MDM4 alternative splicing and implication in MDM4 targeted cancer therapies. Am J Cancer Res 2021; 11:5864-5880. [PMID: 35018230 PMCID: PMC8727814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/31/2021] [Indexed: 06/14/2023] Open
Abstract
The oncogenic MDM4, initially named MDMX, has been identified as a p53-interacting protein and a key upstream negative regulator of the tumor suppressor p53. Accumulating evidence indicates that MDM4 plays critical roles in the initiation and progression of multiple human cancers. MDM4 is frequently amplified and upregulated in human cancers, contributing to overgrowth and apoptosis inhibition by blocking the expression of downstream target genes of p53 pathway. Disruptors for MDM4-p53 interaction have been shown to restore the anti-tumor activity of p53 in cancer cells. MDM4 possesses multiple splicing isoforms whose expressions are driven by the presence of oncogenes in cancer cells. Some of the MDM4 splicing isoforms lack p53 binding domain and may exhibit p53-independent oncogenic functions. These features render MDM4 to be an attractive therapeutic target for cancer therapy. In the present review, we primarily focus on the detailed molecular structure of MDM4 splicing isoforms, candidate regulators for initiating MDM4 splicing, deregulation of MDM4 isoforms in cancer and potential therapy strategies by targeting splicing isoforms of MDM4.
Collapse
Affiliation(s)
- Jin Wu
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer CenterBuffalo, NY, USA
| | - Guanting Lu
- Department of Pathology, Key Laboratory of Tumor Molecular Research, People’s Hospital of Deyang City173 Tai Shan North Road, Deyang 618000, Sichuan, P. R. China
| | - Xinjiang Wang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer CenterBuffalo, NY, USA
| |
Collapse
|
17
|
Dynamic Variations of 3'UTR Length Reprogram the mRNA Regulatory Landscape. Biomedicines 2021; 9:biomedicines9111560. [PMID: 34829789 PMCID: PMC8615635 DOI: 10.3390/biomedicines9111560] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/10/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022] Open
Abstract
This paper concerns 3′-untranslated regions (3′UTRs) of mRNAs, which are non-coding regulatory platforms that control stability, fate and the correct spatiotemporal translation of mRNAs. Many mRNAs have polymorphic 3′UTR regions. Controlling 3′UTR length and sequence facilitates the regulation of the accessibility of functional effectors (RNA binding proteins, miRNAs or other ncRNAs) to 3′UTR functional boxes and motifs and the establishment of different regulatory landscapes for mRNA function. In this context, shortening of 3′UTRs would loosen miRNA or protein-based mechanisms of mRNA degradation, while 3′UTR lengthening would strengthen accessibility to these effectors. Alterations in the mechanisms regulating 3′UTR length would result in widespread deregulation of gene expression that could eventually lead to diseases likely linked to the loss (or acquisition) of specific miRNA binding sites. Here, we will review the mechanisms that control 3′UTR length dynamics and their alterations in human disorders. We will discuss, from a mechanistic point of view centered on the molecular machineries involved, the generation of 3′UTR variability by the use of alternative polyadenylation and cleavage sites, of mutually exclusive terminal alternative exons (exon skipping) as well as by the process of exonization of Alu cassettes to generate new 3′UTRs with differential functional features.
Collapse
|
18
|
Abstract
Alu RNA are implicated in the poor prognosis of several human disease states. These RNA are transcription products of primate specific transposable elements called Alu elements. These elements are extremely abundant, comprising over 10% of the human genome, and 100 to 1000 cytoplasmic copies of Alu RNA per cell. Alu RNA do not have a single universal functional role aside from selfish self-propagation. Despite this, Alu RNA have been found to operate in a diverse set of translational and transcriptional mechanisms. This review will focus on the current knowledge of Alu RNA involved in human disease states and known mechanisms of action. Examples of Alu RNA that are transcribed in a variety of contexts such as introns, mature mRNA, and non-coding transcripts will be discussed. Past and present challenges in studying Alu RNA, and the future directions of Alu RNA in basic and clinical research will also be examined.
Collapse
Affiliation(s)
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
19
|
Li M, Larsen PA. Primate-specific retrotransposons and the evolution of circadian networks in the human brain. Neurosci Biobehav Rev 2021; 131:988-1004. [PMID: 34592258 DOI: 10.1016/j.neubiorev.2021.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/03/2021] [Accepted: 09/26/2021] [Indexed: 11/26/2022]
Abstract
The circadian rhythm of the human brain is attuned to sleep-wake cycles that entail global alterations in neuronal excitability. This periodicity involves a highly coordinated regulation of gene expression. A growing number of studies are documenting a fascinating connection between primate-specific retrotransposons (Alu elements) and key epigenetic regulatory processes in the primate brain. Collectively, these studies indicate that Alu elements embedded in the human neuronal genome mediate post-transcriptional processes that unite human-specific neuroepigenetic landscapes and circadian rhythm. Here, we review evidence linking Alu retrotransposon-mediated posttranscriptional pathways to circadian gene expression. We hypothesize that Alu retrotransposons participate in the organization of circadian brain function through multidimensional neuroepigenetic pathways. We anticipate that these pathways are closely tied to the evolution of human cognition and their perturbation contributes to the manifestation of human-specific neurological diseases. Finally, we address current challenges and accompanying opportunities in studying primate- and human-specific transposable elements.
Collapse
Affiliation(s)
- Manci Li
- University of Minnesota, St. Paul, MN, 55108, United States
| | - Peter A Larsen
- University of Minnesota, St. Paul, MN, 55108, United States.
| |
Collapse
|
20
|
Perez SM, Brinton LT, Kelly KA. Plectin in Cancer: From Biomarker to Therapeutic Target. Cells 2021; 10:2246. [PMID: 34571895 PMCID: PMC8469460 DOI: 10.3390/cells10092246] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/17/2022] Open
Abstract
The cytolinker and scaffolding protein, plectin, has emerged as a potent driver of malignant hallmarks in many human cancers due to its involvement in various cellular activities contributing to tumorigenesis, including cancer cell proliferation, adhesion, migration, invasion, and signal transduction. Evidence shows that beyond plectin's diverse protein interactome, its cancer-specific mislocalization to the cell surface enables its function as a potent oncoprotein. As such, therapeutic targeting of plectin, its protein interactors, and, in particular, cancer-specific plectin (CSP) presents an attractive opportunity to impede carcinogenesis directly. Here, we report on plectin's differential gene and protein expression in cancer, explore its mutational profile, and discuss the current understanding of plectin's and CSP's biological function in cancer. Moreover, we review the landscape of plectin as a prognostic marker, diagnostic biomarker, and target for imaging and therapeutic modalities. We highlight how, beyond their respective biological importance, plectin's common overexpression in cancer and CSP's cancer-specific bioavailability underscore their potential as high-value druggable targets. We discuss how recent evidence of the potent anti-cancer effects of CSP therapeutic targeting opens the door for cell-surface mislocalized proteins as novel therapeutic targets.
Collapse
Affiliation(s)
- Samantha M. Perez
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA;
| | | | - Kimberly A. Kelly
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA;
- ZielBio, Inc., Charlottesville, VA 22903, USA
| |
Collapse
|
21
|
Huskey ALW, McNeely I, Merner ND. CEACAM Gene Family Mutations Associated With Inherited Breast Cancer Risk - A Comparative Oncology Approach to Discovery. Front Genet 2021; 12:702889. [PMID: 34447411 PMCID: PMC8383343 DOI: 10.3389/fgene.2021.702889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/05/2021] [Indexed: 01/11/2023] Open
Abstract
Introduction Recent studies comparing canine mammary tumors (CMTs) and human breast cancers have revealed remarkable tumor similarities, identifying shared expression profiles and acquired mutations. CMTs can also provide a model of inherited breast cancer susceptibility in humans; thus, we investigated breed-specific whole genome sequencing (WGS) data in search for novel CMT risk factors that could subsequently explain inherited breast cancer risk in humans. Methods WGS was carried out on five CMT-affected Gold Retrievers from a large pedigree of 18 CMT-affected dogs. Protein truncating variants (PTVs) detected in all five samples (within human orthlogs) were validated and then genotyped in the 13 remaining CMT-affected Golden Retrievers. Allele frequencies were compared to canine controls. Subsequently, human blood-derived exomes from The Cancer Genome Atlas breast cancer cases were analyzed and allele frequencies were compared to Exome Variant Server ethnic-matched controls. Results Carcinoembryonic Antigen-related Cell Adhesion Molecule 24 (CEACAM24) c.247dupG;p.(Val83Glyfs∗48) was the only validated variant and had a frequency of 66.7% amongst the 18 Golden Retrievers with CMT. This was significant compared to the European Variation Archive (p-value 1.52 × 10–8) and non-Golden Retriever American Kennel Club breeds (p-value 2.48 × 10–5). With no direct ortholog of CEACAM24 in humans but high homology to all CEACAM gene family proteins, all human CEACAM genes were investigated for PTVs. A total of six and sixteen rare PTVs were identified in African and European American breast cancer cases, respectively. Single variant assessment revealed five PTVs associated with breast cancer risk. Gene-based aggregation analyses revealed that rare PTVs in CEACAM6, CEACAM7, and CEACAM8 are associated with European American breast cancer risk, and rare PTVs in CEACAM7 are associated with breast cancer risk in African Americans. Ultimately, rare PTVs in the entire CEACAM gene family are associated with breast cancer risk in both European and African Americans with respective p-values of 1.75 × 10–13 and 1.87 × 10–04. Conclusion This study reports the first association of inherited CEACAM mutations and breast cancer risk, and potentially implicates the whole gene family in genetic risk. Precisely how these mutations contribute to breast cancer needs to be determined; especially considering our current knowledge on the role that the CEACAM gene family plays in tumor development, progression, and metastasis.
Collapse
Affiliation(s)
- Anna L W Huskey
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States.,Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Isaac McNeely
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Nancy D Merner
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
22
|
Yu D, Xu Z, Cheng X, Qin J. The role of miRNAs in MDMX-p53 interplay. J Evid Based Med 2021; 14:152-160. [PMID: 33988919 DOI: 10.1111/jebm.12428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are endogenous noncoding RNAs of 19-24 nucleotides in length and are tightly related to tumorigenesis and progression. Recent studies have demonstrated that the tumor suppressor p53 and its negative controller MDMX are regulated by miRNAs in different ways. Some miRNAs directly target p53 and regulate its expression and function, whereas some miRNAs target MDMX and regulate p53's activity indirectly. The overexpression of several miRNAs can restore the activity of p53 by negatively regulating MDMX in cancer cells. Therefore, a better understanding of the miRNAs-MDMX-p53 network will put forward potential research directions for developing anticancer therapeutics. In the present review, we mainly focus on the regulatory effects of miRNAs on the MDMX-p53 interplay as well as the role of the miRNAs-MDMX-p53 network in human cancer.
Collapse
Affiliation(s)
- Dehua Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiyuan Xu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Xiangdong Cheng
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Jiangjiang Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
23
|
Potter ML, Hill WD, Isales CM, Hamrick MW, Fulzele S. MicroRNAs are critical regulators of senescence and aging in mesenchymal stem cells. Bone 2021; 142:115679. [PMID: 33022453 PMCID: PMC7901145 DOI: 10.1016/j.bone.2020.115679] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 01/10/2023]
Abstract
MicroRNAs (miRNAs) have recently come under scrutiny for their role in various age-related diseases. Similarly, cellular senescence has been linked to disease and aging. MicroRNAs and senescence likely play an intertwined role in driving these pathologic states. In this review, we present the connection between these two drivers of age-related disease concerning mesenchymal stem cells (MSCs). First, we summarize key miRNAs that are differentially expressed in MSCs and other musculoskeletal lineage cells during senescence and aging. Additionally, we also reviewed miRNAs that are regulated via traditional senescence-associated secretory phenotype (SASP) cytokines in MSC. Lastly, we summarize miRNAs that have been found to target components of the cell cycle arrest pathways inherently activated in senescence. This review attempts to highlight potential miRNA targets for regenerative medicine applications in age-related musculoskeletal disease.
Collapse
Affiliation(s)
- Matthew L Potter
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America
| | - William D Hill
- Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H Johnson Veterans Affairs Medical Center, Charleston, SC, 29403, United States of America
| | - Carlos M Isales
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Department of Medicine, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America
| | - Mark W Hamrick
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America; Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, United States of America
| | - Sadanand Fulzele
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Department of Medicine, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America; Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, United States of America.
| |
Collapse
|
24
|
Navarro E, Mallén A, Cruzado JM, Torras J, Hueso M. Unveiling ncRNA regulatory axes in atherosclerosis progression. Clin Transl Med 2020; 9:5. [PMID: 32009226 PMCID: PMC6995802 DOI: 10.1186/s40169-020-0256-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023] Open
Abstract
Completion of the human genome sequencing project highlighted the richness of the cellular RNA world, and opened the door to the discovery of a plethora of short and long non-coding RNAs (the dark transcriptome) with regulatory or structural potential, which shifted the balance of pathological gene alterations from coding to non-coding RNAs. Thus, disease risk assessment currently has to also evaluate the expression of new RNAs such as small micro RNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), competing endogenous RNAs (ceRNAs), retrogressed elements, 3'UTRs of mRNAs, etc. We are interested in the pathogenic mechanisms of atherosclerosis (ATH) progression in patients suffering Chronic Kidney Disease, and in this review, we will focus in the role of the dark transcriptome (non-coding RNAs) in ATH progression. We will focus in miRNAs and in the formation of regulatory axes or networks with their mRNA targets and with the lncRNAs that function as miRNA sponges or competitive inhibitors of miRNA activity. In this sense, we will pay special attention to retrogressed genomic elements, such as processed pseudogenes and Alu repeated elements, that have been recently seen to also function as miRNA sponges, as well as to the use or miRNA derivatives in gene silencing, anti-ATH therapies. Along the review, we will discuss technical developments associated to research in lncRNAs, from sequencing technologies to databases, repositories and algorithms to predict miRNA targets, as well as new approaches to miRNA function, such as integrative or enrichment analysis and their potential to unveil RNA regulatory networks.
Collapse
Affiliation(s)
- Estanislao Navarro
- Independent Researcher, Barcelona, Spain. .,Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
| | - Adrian Mallén
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Josep M Cruzado
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Joan Torras
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Miguel Hueso
- Department of Nephrology, Hospital Universitari Bellvitge and Bellvitge Research Institute (IDIBELL), C/Feixa Llarga, s/n; L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
| |
Collapse
|
25
|
Sun J, Zhang Z, Yang S. Circ_RUSC2 upregulates the expression of miR-661 target gene SYK and regulates the function of vascular smooth muscle cells. Biochem Cell Biol 2019; 97:709-714. [PMID: 31199889 DOI: 10.1139/bcb-2019-0031] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Many studies have identified circRNA as a prospective direction in the field of cardiovascular research. Detection of circRNA expression in different vascular smooth muscle cell (VSMC) phenotypes revealed that circ_RUSC2 is upregulated in proliferative VSMCs. Sequence analysis of circ_RUSC2 showed that there are multiple binding sites of miR-661 on circ_RUSC2, and that SYK is an important target gene of miR-661. MiR-661 expression is downregulated in proliferative VSMCs, whereas the expression of SYK is upregulated. Circ_RUSC2 and miR-661 do not affect each other’s expression levels, but circ_RUSC2 can promote the expression of SYK and inhibit the expression of SM22-alpha, whereas miR-661 has the opposite effect. At the same time, VSMC proliferation and migration can be promoted by SYK or circ_RUSC2, but the linear sequence of circ_RUSC2 can not. MiR-661 and circ_RUSC2 siRNAs inhibit VSMC proliferation and migration, and promote cell apoptosis. When an miR-661 mimic or SYK siRNAs were co-transfected with circ_RUSC2 overexpression vector, VSMC proliferation, apoptosis, and migration were not significantly altered. Accordingly, circ_RUSC2 can promote the expression of SYK, a target gene of miR-661, and regulate VSMC proliferation, apoptosis, phenotypic modulation, and migration. These findings will supply a theoretical basis for studying circRNA function in VSMCs, and new ideas for the diagnosis and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Jingang Sun
- Department of Cardiology, Linyi Central Hospital, Linyi 276400, China
- Department of Cardiology, Linyi Central Hospital, Linyi 276400, China
| | - Zhigang Zhang
- Department of Cardiology, Linyi Central Hospital, Linyi 276400, China
- Department of Cardiology, Linyi Central Hospital, Linyi 276400, China
| | - Shuguo Yang
- Department of Cardiology, Linyi Central Hospital, Linyi 276400, China
- Department of Cardiology, Linyi Central Hospital, Linyi 276400, China
| |
Collapse
|
26
|
Wang K, Chen Y, Zhao Z, Feng M, Zhang S. Identification of potential core genes and miRNAs in testicular seminoma via bioinformatics analysis. Mol Med Rep 2019; 20:4013-4022. [PMID: 31545448 PMCID: PMC6797975 DOI: 10.3892/mmr.2019.10684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/21/2019] [Indexed: 12/28/2022] Open
Abstract
Testicular seminoma is one of the most common tumours in the field of urology, and its aetiology is still unclear. The aim of the present study was to identify the factors responsible for the development of testicular cancer and to investigate whether mutations in these genes were primarily congenital or acquired. To identify the key genes and miRNAs linked to testicular seminoma, as well as their potential molecular mechanisms, the GSE15220, GSE1818 and GSE59520 microarray datasets were analysed. A total of 5,195 and 1,163 differentially expressed genes (DEGs) were identified after analysing the GSE15220 and GSE1818 datasets, respectively. Among them, 287 genes were common between the two datasets. Of these, 110 were upregulated and 177 were downregulated. Five differentially expressed microRNAs (miRs; DEMs) that were downregulated in seminoma were identified after analysing the GSE59520 dataset. Following protein-protein interaction network and Gene Ontology analysis, the five nodes with the highest degrees were screened as hub genes. Among them, the high expression of hub genes, such as protein tyrosine phosphatase receptor type C (PTPRC), was associated with worse overall survival. We also predicted the potential target genes of the DEMs. DNA topoisomerase II α (TOP2A), marker of proliferation Ki-67 (MKI67), PTPRC and ubiquitin conjugating enzyme E2 C were associated with the PI3K/AKT and Wnt/β-catenin signalling pathways. In addition, hsa-miR-650 and hsa-miR-665 were associated with the PI3K/AKT and Wnt/β-catenin signalling pathways. Additionally, TOP2A and MKI67 were strongly associated with the target genes hsa-miR-650 and hsa-miR-665, respectively. We proposed that the hub genes reported in the present study may have a certain impact on cellular proliferation and migration in testicular seminoma. The roles of these hub genes in seminoma may provide novel insight to improve the diagnosis and treatment of patients with seminoma.
Collapse
Affiliation(s)
- Kai Wang
- Guangdong Provincial Key Laboratory of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Yun Chen
- Guangdong Provincial Key Laboratory of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Zhihong Zhao
- Guangdong Provincial Key Laboratory of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Meiying Feng
- Guangdong Provincial Key Laboratory of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Shouquan Zhang
- Guangdong Provincial Key Laboratory of Agro‑Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| |
Collapse
|
27
|
Kang SH, Choi JS. MicroRNA-661 upregulation in myelodysplastic syndromes induces apoptosis through p53 activation and associates with decreased overall survival. Leuk Lymphoma 2019; 60:2779-2786. [PMID: 31056984 DOI: 10.1080/10428194.2019.1608528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
MicroRNA (miRNA) dysregulation contributes to myelodysplastic syndromes (MDS), and apoptosis is one of the pathogenic features of MDS. We investigated the dysregulation of miRNA expression and its biological significance in MDS. We compared the expression profiles of miRNAs encoded by chromosome 8 in 65 patients with MDS and 11 controls, and analyzed the in vitro effect of the upregulated miRNA expression. We found that compared to the controls, miR-661 was upregulated by 5.28-fold in patients with MDS. Patients with high miR-661 expression showed significantly decreased overall survival. In vitro study results demonstrated that transfection with a miR-661 mimic induced apoptosis through the activation of p53. These findings suggest that high miR-661 expression can be associated with decreased overall survival and recapitulates apoptosis, the characteristic feature of MDS.
Collapse
Affiliation(s)
- Seong-Ho Kang
- Department of Laboratory Medicine, Chosun University College of Medicine, Gwangju, Republic of Korea
| | - Ji-Seon Choi
- Department of Laboratory Medicine, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Republic of Korea
| |
Collapse
|
28
|
Yang Z, Zhang Y, Wang X, Huang J, Guo W, Wei P, Li G, Wang Z, Huang Z, Zhang L. Putative biomarkers of malignant transformation of sinonasal inverted papilloma into squamous cell carcinoma. J Int Med Res 2019; 47:2371-2380. [PMID: 30991875 PMCID: PMC6567723 DOI: 10.1177/0300060519838385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To compare genome-wide DNA methylation between samples of sinonasal inverted papilloma (SNIP) and squamous cell carcinoma (SCC) samples in order to identify aberrantly methylated genes that might be involved in malignant transformation. METHODS Tissue samples were collected from patients. DNA methylation in C-phosphate-G islands and gene promoters was analysed using a DNA methylation microarray kit. The levels of mRNA or protein from aberrantly methylated genes were measured using real-time polymerase chain reaction or Western blot analysis. RESULTS A total of 27 tissue samples were included in this study; 15 SNIP samples and 12 SCCs arising in SNIPs. A total of 11 201 nominally differentially methylated sites were observed between SNIP and SCC arising in SNIPs. Six sites were significantly different at P < 0.01 and contained three genes ( MIR661, PLEC and OPA3). These three genes were hypermethylated. In addition, the levels of mature miR-661 mRNA and PLEC protein were significantly upregulated in SCC tissues compared with SNIP samples. The levels of OPA3 protein were downregulated in SCC tissues compared with SNIP samples. CONCLUSIONS This study demonstrated hypermethylation and abnormal expression of the MIR661, PLEC and OPA3 genes, suggesting a role for their involvement in the malignant transformation of SNIP.
Collapse
Affiliation(s)
- Zheng Yang
- 1 Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,2 Key Laboratory of Otolaryngology Head and Neck Surgery of the Ministry of Education, Beijing, China
| | - Yang Zhang
- 1 Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,2 Key Laboratory of Otolaryngology Head and Neck Surgery of the Ministry of Education, Beijing, China
| | - Xiangdong Wang
- 1 Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,2 Key Laboratory of Otolaryngology Head and Neck Surgery of the Ministry of Education, Beijing, China
| | - Junwei Huang
- 1 Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,2 Key Laboratory of Otolaryngology Head and Neck Surgery of the Ministry of Education, Beijing, China
| | - Wei Guo
- 1 Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,2 Key Laboratory of Otolaryngology Head and Neck Surgery of the Ministry of Education, Beijing, China
| | - Peng Wei
- 3 Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guojun Li
- 4 Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,5 Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ziqiao Wang
- 3 Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhigang Huang
- 1 Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,2 Key Laboratory of Otolaryngology Head and Neck Surgery of the Ministry of Education, Beijing, China
| | - Luo Zhang
- 1 Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,2 Key Laboratory of Otolaryngology Head and Neck Surgery of the Ministry of Education, Beijing, China
| |
Collapse
|
29
|
Haupt S, Mejía-Hernández JO, Vijayakumaran R, Keam SP, Haupt Y. The long and the short of it: the MDM4 tail so far. J Mol Cell Biol 2019; 11:231-244. [PMID: 30689920 PMCID: PMC6478121 DOI: 10.1093/jmcb/mjz007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/16/2018] [Accepted: 01/21/2019] [Indexed: 12/27/2022] Open
Abstract
The mouse double minute 4 (MDM4) is emerging from the shadow of its more famous relative MDM2 and is starting to steal the limelight, largely due to its therapeutic possibilities. MDM4 is a vital regulator of the tumor suppressor p53. It restricts p53 transcriptional activity and also, at least in development, facilitates MDM2's E3 ligase activity toward p53. These functions of MDM4 are critical for normal cell function and a proper response to stress. Their importance for proper cell maintenance and proliferation identifies them as a risk for deregulation associated with the uncontrolled growth of cancer. MDM4 tails are vital for its function, where its N-terminus transactivation domain engages p53 and its C-terminus RING domain binds to MDM2. In this review, we highlight recently identified cellular functions of MDM4 and survey emerging therapies directed to correcting its dysregulation in disease.
Collapse
Affiliation(s)
- Sue Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Reshma Vijayakumaran
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria, Australia
| | - Simon P Keam
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria, Australia
| | - Ygal Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
30
|
Kotler E, Shani O, Goldfeld G, Lotan-Pompan M, Tarcic O, Gershoni A, Hopf TA, Marks DS, Oren M, Segal E. A Systematic p53 Mutation Library Links Differential Functional Impact to Cancer Mutation Pattern and Evolutionary Conservation. Mol Cell 2019; 71:178-190.e8. [PMID: 29979965 DOI: 10.1016/j.molcel.2018.06.012] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/23/2018] [Accepted: 06/06/2018] [Indexed: 12/11/2022]
Abstract
The TP53 gene is frequently mutated in human cancer. Research has focused predominantly on six major "hotspot" codons, which account for only ∼30% of cancer-associated p53 mutations. To comprehensively characterize the consequences of the p53 mutation spectrum, we created a synthetically designed library and measured the functional impact of ∼10,000 DNA-binding domain (DBD) p53 variants in human cells in culture and in vivo. Our results highlight the differential outcome of distinct p53 mutations in human patients and elucidate the selective pressure driving p53 conservation throughout evolution. Furthermore, while loss of anti-proliferative functionality largely correlates with the occurrence of cancer-associated p53 mutations, we observe that selective gain-of-function may further favor particular mutants in vivo. Finally, when combined with additional acquired p53 mutations, seemingly neutral TP53 SNPs may modulate phenotypic outcome and, presumably, tumor progression.
Collapse
Affiliation(s)
- Eran Kotler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Odem Shani
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Guy Goldfeld
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maya Lotan-Pompan
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ohad Tarcic
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anat Gershoni
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Thomas A Hopf
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Debora S Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Eran Segal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
31
|
Liu Z, Ren L, Tian J, Liu N, Hu Y, Zhang P. Comprehensive Analysis of Long Noncoding RNAs and Messenger RNAs Expression Profiles in Patients with Marjolin Ulcer. Med Sci Monit 2018; 24:7828-7840. [PMID: 30385735 PMCID: PMC6228116 DOI: 10.12659/msm.911177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Marjolin ulcer (MU) is an aggressive cutaneous malignancy. Typically, MU occurs over a period of time in post-burn and/or post-traumatic lesions and scars. However, the pathogenesis of scar carcinogenesis and MU development remains to be elucidated. The present study aimed to investigate the long noncoding RNA (lncRNA) and messenger RNA (mRNA) expression profiling in MU, which could provide new information on the potential molecular mechanisms of MU development. Material/Methods The lncRNA microarray analysis was conducted in normal skin, scar, and MU tissue, and quantitative real-time PCR experiment was carried out to validate the reliability of the microarray data. Furthermore, a series of integrative bioinformatic approaches were applied to decipher the function of differentially expressed lncRNAs. Results A total of 7130 lncRNAs and 9867 mRNAs were differentially expressed among normal skin, scar, and MU tissues. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated that these aberrantly expressed transcripts were mainly involved in cell cycle, immune response, and the p53 signaling pathway. Series Test of Cluster analysis indicated certain dysregulated lncRNAs were expressed with a gradually increasing or decreasing trend and might participated in malignant transformation of scar tissue postburn. Co-expression analysis showed 5 selected lncRNAs might regulate cell proliferation through the p53 signaling pathway. Finally, the competing endogenous RNA (ceRNA) network indicated that lncRNA uc001oou.3 might be implicated in ceRNA mechanism during MU development. Conclusions Taken together, our study implied the aberrant expression of lncRNAs may play an important role in the pathogenesis and development of MU, and the exact mechanism warrants further investigation.
Collapse
Affiliation(s)
- Zan Liu
- Department of Burns and Reconstructive Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Licheng Ren
- Department of Burns and Reconstructive Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Jing Tian
- Department of Burns and Reconstructive Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Ning Liu
- Department of Burns and Reconstructive Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Yanke Hu
- Department of Burns and Reconstructive Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Pihong Zhang
- Department of Burns and Reconstructive Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| |
Collapse
|
32
|
Kim YJ, Lee JH, Jin S, Kim JH, Kim SH. Primate-specific miR-944 activates p53-dependent tumor suppression in human colorectal cancers. Cancer Lett 2018; 440-441:168-179. [PMID: 30393117 DOI: 10.1016/j.canlet.2018.10.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/04/2018] [Accepted: 10/10/2018] [Indexed: 01/08/2023]
Abstract
As cancers with a high incidence rate, colorectal cancers are a main cause of cancer-related death. MicroRNAs are often deregulated in cancers. The primate-specific miR-944, located in a p63 intron, is known to be highly expressed in patients exhibiting low colorectal cancer recurrence rates. However, the biological functions of miR-944 in colorectal cancers remain unclear. In this study, we found that miR-944 was downregulated in colorectal cancer tissues, and inhibited cancer cell growth in a xenograft mouse model. The overexpression of miR-944 caused G1 phase arrest and increased p53 expression in cancer cells. p53 stability was enhanced by miR-944s targeting E3 ligases COP1 and MDM2. Overexpression of COP1 and MDM2 restored cell growth inhibition caused by miR-944. Taken together, our results suggest that miR-944 acts as a potential tumor suppressor in colorectal cancers through the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Yoon-Jin Kim
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jeong Hwa Lee
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Soll Jin
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jung Hoon Kim
- Department of Radiology, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Sang Hoon Kim
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
33
|
Xu XX, Jia SZ, Dai Y, Zhang JJ, Li XY, Shi JH, Leng JH, Lang JH. Identification of Circular RNAs as a Novel Biomarker for Ovarian Endometriosis. Chin Med J (Engl) 2018; 131:559-566. [PMID: 29483390 PMCID: PMC5850672 DOI: 10.4103/0366-6999.226070] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Endometriosis is a challenging disease with symptoms such as dysmenorrhea and infertility. However, its etiology is still vague and there is still no effective markers or treatment. This study aimed to profile the circular RNAs (circRNAs) expressed in eutopic endometrium from patients with ovarian endometriosis and explore potential clues to the pathogenesis of endometriosis, providing an evidence for clinical diagnosis and treatment. Methods A total of 63 clinical samples, including control endometrium (n = 22) and eutopic endometrium (n = 41), were collected from Peking Union Medical College Hospital between May 1, 2016, and December 31, 2016. Of them, four samples in each group were used for circRNA microarray. Then, four upregulated circRNAs were screened out for quantitative real-time polymerase chain reaction (qRT-PCR) validation. After that, bioinformatics analysis was performed to predict miRNAs targeted by validated circRNAs and investigate the circRNA-miRNA-mRNA interactions. Results Among 88 differentially expressed circRNAs, 11 were upregulated and 77 were downregulated in eutopic endometrium of patients with endometriosis. qRT-PCR validation results for two upregulated circRNAs (circ_0004712 and circ_0002198) matched the microarray results. The area under the receiver operating characteristic curve of circ_0002198 for distinguishing ovarian endometriosis was 0.846 (95% confidence interval [CI]: 0.752-0.939; P < 0.001) while that of circ_0004712 was 0.704 (95% CI: 0.571-0.837; P = 0.008). On the basis of target prediction, we depicted the molecular interactions between the identified circRNAs and their dominant target miRNAs, as well as constructed a circRNA-miRNA-mRNA network. Conclusions This study provides evidence that circRNAs are differentially expressed between eutopic and normal endometrium, which suggests that circRNAs are candidate factors in the activation of endometriosis. circ_0002198 and circ_0004712 may be potential novel biomarkers for the diagnosis of ovarian endometriosis.
Collapse
Affiliation(s)
- Xiao-Xuan Xu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Shuang-Zheng Jia
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yi Dai
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jun-Ji Zhang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiao-Yan Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jing-Hua Shi
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jin-Hua Leng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jing-He Lang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
34
|
Winship A, Ton A, Van Sinderen M, Menkhorst E, Rainczuk K, Griffiths M, Cuman C, Dimitriadis E. Mouse double minute homologue 2 (MDM2) downregulation by miR-661 impairs human endometrial epithelial cell adhesive capacity. Reprod Fertil Dev 2018; 30:477-486. [PMID: 28847363 DOI: 10.1071/rd17095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/16/2017] [Indexed: 12/11/2022] Open
Abstract
Human blastocysts that fail to implant following IVF secrete elevated levels of miR-661, which is taken up by primary human endometrial epithelial cells (HEECs) and impairs their adhesive capability. MicroRNA miR-661 downregulates mouse double minute homologue 2 (MDM2) and MDM4 in other epithelial cell types to activate p53; however, this has not been examined in the endometrium. In this study MDM2 protein was detected in the luminal epithelium of the endometrium, the site of blastocyst attachment, during the mid secretory receptive phase of the menstrual cycle. The effects of miR-661 on gene expression in and adhesion of endometrial cells was also examined. MiR-661 overexpression consistently downregulated MDM2 but not MDM4 or p53 gene expression in the Ishikawa endometrial epithelial cell line and primary HEEC. Adhesion assays were performed on the real-time monitoring xCELLigence system and by co-culture using Ishikawa cells and HEECs with HTR8/SVneo trophoblast spheroids. Targeted siRNA-mediated knockdown of MDM2 in endometrial epithelial cells reduced Ishikawa cell adhesion (P<0.001) and also reduced HTR8/SVneo trophoblast spheroid adhesion to Ishikawa cells (P<0.05) and HEECs (P<0.05). MDM2 overexpression using recombinant protein treatment resulted in enhanced HTR8/SVneo trophoblast spheroid adhesion to Ishikawa cells (P<0.01) and HEECs (P<0.05). This study highlights a potential new mechanism by which human blastocyst-secreted miR-661 reduces endometrial epithelial cell adhesion; via downregulation of MDM2. These findings suggest that MDM2 contributes to endometrial-blastocyst adhesion, implantation and infertility in women.
Collapse
Affiliation(s)
- Amy Winship
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Vic. 3168, Australia
| | - Amanda Ton
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Vic. 3168, Australia
| | - Michelle Van Sinderen
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Vic. 3168, Australia
| | - Ellen Menkhorst
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Vic. 3168, Australia
| | - Katarzyna Rainczuk
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Vic. 3168, Australia
| | - Meaghan Griffiths
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Vic. 3168, Australia
| | - Carly Cuman
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Vic. 3168, Australia
| | - Evdokia Dimitriadis
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Vic. 3168, Australia
| |
Collapse
|
35
|
Komoto TT, Bernardes TM, Mesquita TB, Bortolotto LFB, Silva G, Bitencourt TA, Baek SJ, Marins M, Fachin AL. Chalcones Repressed the AURKA and MDR Proteins Involved in Metastasis and Multiple Drug Resistance in Breast Cancer Cell Lines. Molecules 2018; 23:molecules23082018. [PMID: 30104527 PMCID: PMC6222917 DOI: 10.3390/molecules23082018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/27/2018] [Accepted: 08/06/2018] [Indexed: 11/16/2022] Open
Abstract
In the present investigation, trans-chalcone and licochalcone A were tested against MCF-7 and BT-20 breast cancer cell lines for anti-tumor activity. We found that both chalcones down regulated important genes associated to cancer development and inhibited cell migration of metastatic cells (BT-20). Finally, we observed that licochalcone A reduces the MDR-1 protein, while both chalcones suppress the AURKA protein in a dose-dependent manner. In conclusion, we observed the trans-chalcone and licochalcone A affected the cell viability of breast cancer cell lines MCF-7 and BT-20 and presents anti-metastatic and anti-resistance potential, by the repression of AUKA and MDR-1 proteins.
Collapse
Affiliation(s)
- Tatiana Takahasi Komoto
- Biotechnology Unit, University of Ribeirão Preto, SP, Av. Costábile Romano, 2201, Ribeirão Preto, SP, CEP 14096-900, Brazil.
| | - Tayná Minervina Bernardes
- Biotechnology Unit, University of Ribeirão Preto, SP, Av. Costábile Romano, 2201, Ribeirão Preto, SP, CEP 14096-900, Brazil.
| | - Thaís Balthazar Mesquita
- Biotechnology Unit, University of Ribeirão Preto, SP, Av. Costábile Romano, 2201, Ribeirão Preto, SP, CEP 14096-900, Brazil.
| | - Luis Felipe Buso Bortolotto
- Biotechnology Unit, University of Ribeirão Preto, SP, Av. Costábile Romano, 2201, Ribeirão Preto, SP, CEP 14096-900, Brazil.
| | - Gabriel Silva
- Biotechnology Unit, University of Ribeirão Preto, SP, Av. Costábile Romano, 2201, Ribeirão Preto, SP, CEP 14096-900, Brazil.
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA.
| | - Tamires Aparecida Bitencourt
- Biotechnology Unit, University of Ribeirão Preto, SP, Av. Costábile Romano, 2201, Ribeirão Preto, SP, CEP 14096-900, Brazil.
| | - Seung Joon Baek
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA.
| | - Mozart Marins
- Biotechnology Unit, University of Ribeirão Preto, SP, Av. Costábile Romano, 2201, Ribeirão Preto, SP, CEP 14096-900, Brazil.
| | - Ana Lúcia Fachin
- Biotechnology Unit, University of Ribeirão Preto, SP, Av. Costábile Romano, 2201, Ribeirão Preto, SP, CEP 14096-900, Brazil.
| |
Collapse
|
36
|
ALUminating the Path of Atherosclerosis Progression: Chaos Theory Suggests a Role for Alu Repeats in the Development of Atherosclerotic Vascular Disease. Int J Mol Sci 2018; 19:ijms19061734. [PMID: 29895733 PMCID: PMC6032270 DOI: 10.3390/ijms19061734] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/04/2018] [Accepted: 06/09/2018] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis (ATH) and coronary artery disease (CAD) are chronic inflammatory diseases with an important genetic background; they derive from the cumulative effect of multiple common risk alleles, most of which are located in genomic noncoding regions. These complex diseases behave as nonlinear dynamical systems that show a high dependence on their initial conditions; thus, long-term predictions of disease progression are unreliable. One likely possibility is that the nonlinear nature of ATH could be dependent on nonlinear correlations in the structure of the human genome. In this review, we show how chaos theory analysis has highlighted genomic regions that have shared specific structural constraints, which could have a role in ATH progression. These regions were shown to be enriched with repetitive sequences of the Alu family, genomic parasites that have colonized the human genome, which show a particular secondary structure and are involved in the regulation of gene expression. Here, we show the impact of Alu elements on the mechanisms that regulate gene expression, especially highlighting the molecular mechanisms via which the Alu elements alter the inflammatory response. We devote special attention to their relationship with the long noncoding RNA (lncRNA); antisense noncoding RNA in the INK4 locus (ANRIL), a risk factor for ATH; their role as microRNA (miRNA) sponges; and their ability to interfere with the regulatory circuitry of the (nuclear factor kappa B) NF-κB response. We aim to characterize ATH as a nonlinear dynamic system, in which small initial alterations in the expression of a number of repetitive elements are somehow amplified to reach phenotypic significance.
Collapse
|
37
|
MiR-766 induces p53 accumulation and G2/M arrest by directly targeting MDM4. Oncotarget 2018; 8:29914-29924. [PMID: 28430625 PMCID: PMC5444713 DOI: 10.18632/oncotarget.15530] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/31/2017] [Indexed: 12/22/2022] Open
Abstract
p53, a transcription factor that participates in multiple cellular functions, is considered the most important tumor suppressor. Previous evidence suggests that post-transcriptional deregulation of p53 by microRNAs contributes to tumorigenesis, tumor progression and therapeutic resistance. In the present study, we found that the microRNA miR-766 was aberrantly expressed in breast cancer, and that over-expression of miR-766 caused accumulation of wild-type p53 protein in multiple cancer cell lines. Supporting its role in the p53 signalling pathway, miR-766 decreased cell proliferation and colony formation in several cancer cell lines, and cell cycle analyses revealed that miR-766 causes G2 arrest. At a mechanistic level, we demonstrate that miR-766 enhances p53 signalling by directly targeting MDM4, an oncogene and negative regulator of p53. Analysis of clinical genomic data from multiple cancer types supports the relevance of miR-766 in p53 signalling. Collectively, our study demonstrates that miR-766 can function as a novel tumor suppressor by enhancing p53 signalling.
Collapse
|
38
|
Circular RNAs and their associations with breast cancer subtypes. Oncotarget 2018; 7:80967-80979. [PMID: 27829232 PMCID: PMC5348369 DOI: 10.18632/oncotarget.13134] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 10/29/2016] [Indexed: 12/22/2022] Open
Abstract
Circular RNAs (circRNAs) are highly stable forms of non-coding RNAs with diverse biological functions. They are implicated in modulation of gene expression thus affecting various cellular and disease processes. Based on existing bioinformatics approaches, we developed a comprehensive workflow called Circ-Seq to identify and report expressed circRNAs. Circ-Seq also provides informative genomic annotation along circRNA fused junctions thus allowing prioritization of circRNA candidates. We applied Circ-Seq first to RNA-sequence data from breast cancer cell lines and validated one of the large circRNAs identified. Circ-Seq was then applied to a larger cohort of breast cancer samples (n = 885) provided by The Cancer Genome Atlas (TCGA), including tumors and normal-adjacent tissue samples. Notably, circRNA results reveal that normal-adjacent tissues in estrogen receptor positive (ER+) subtype have relatively higher numbers of circRNAs than tumor samples in TCGA. Similar phenomenon of high circRNA numbers were observed in normal breast-mammary tissues from the Genotype-Tissue Expression (GTEx) project. Finally, we observed that number of circRNAs in normal-adjacent samples of ER+ subtype is inversely correlated to the risk-of-relapse proliferation (ROR-P) score for proliferating genes, suggesting that circRNA frequency may be a marker for cell proliferation in breast cancer. The Circ-Seq workflow will function for both single and multi-threaded compute environments. We believe that Circ-Seq will be a valuable tool to identify circRNAs useful in the diagnosis and treatment of other cancers and complex diseases.
Collapse
|
39
|
Sugita B, Gill M, Mahajan A, Duttargi A, Kirolikar S, Almeida R, Regis K, Oluwasanmi OL, Marchi F, Marian C, Makambi K, Kallakury B, Sheahan L, Cavalli IJ, Ribeiro EM, Madhavan S, Boca S, Gusev Y, Cavalli LR. Differentially expressed miRNAs in triple negative breast cancer between African-American and non-Hispanic white women. Oncotarget 2018; 7:79274-79291. [PMID: 27813494 PMCID: PMC5346713 DOI: 10.18632/oncotarget.13024] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 10/25/2016] [Indexed: 01/09/2023] Open
Abstract
Triple Negative Breast Cancer (TNBC), a clinically aggressive subtype of breast cancer, disproportionately affects African American (AA) women when compared to non-Hispanic Whites (NHW). MiRNAs(miRNAs) play a critical role in these tumors, through the regulation of cancer driver genes. In this study, our goal was to characterize and compare the patterns of miRNA expression in TNBC of AA (n = 27) and NHW women (n = 30). A total of 256 miRNAs were differentially expressed between these groups, and distinct from the ones observed in their respective non-TNBC subtypes. Fifty-five of these miRNAs were mapped in cytobands carrying copy number alterations (CNAs); 26 of them presented expression levels concordant with the observed CNAs. Receiving operating characteristic (ROC) analysis showed a good power (AUC ≥ 0.80; 95% CI) for over 65% of the individual miRNAs and a high combined power with superior sensitivity and specificity (AUC = 0.88 (0.78−0.99); 95% CI) of the 26 miRNA panel in discriminating TNBC between these populations. Subsequent miRNA target analysis revealed their involvement in the interconnected PI3K/AKT, MAPK and insulin signaling pathways. Additionally, three miRNAs of this panel were associated with early age at diagnosis. Altogether, these findings indicated that there are different patterns of miRNA expression between TNBC of AA and NHW women and that their mapping in genomic regions with high levels of CNAs is not merely physical, but biologically relevant to the TNBC phenotype. Once validated in distinct cohorts of AA women, this panel can potentially represent their intrinsic TNBC genome signature.
Collapse
Affiliation(s)
- Bruna Sugita
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Mandeep Gill
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Akanskha Mahajan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Anju Duttargi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Saurabh Kirolikar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Rodrigo Almeida
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Kenny Regis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Olusayo L Oluwasanmi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Fabio Marchi
- International Research Center-CIPE, A. C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Catalin Marian
- The Ohio State University Comprehensive Cancer Center, Division of Cancer Prevention and Control, College of Medicine, The Ohio State University, Columbus, Ohio.,The University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| | - Kepher Makambi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Departments of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington, DC USA
| | - Bhaskar Kallakury
- Department of Pathology, Georgetown University Medical Center, Washington, DC, USA
| | - Laura Sheahan
- Innovation Center for Biomedical Informatics, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Iglenir J Cavalli
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Enilze M Ribeiro
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Subha Madhavan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Innovation Center for Biomedical Informatics, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Simina Boca
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Innovation Center for Biomedical Informatics, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Yuriy Gusev
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Innovation Center for Biomedical Informatics, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Luciane R Cavalli
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
40
|
Ali MA, Matboli M, El-Khazragy N, Saber O, El-Nakeep S, Abdelzaher HM, Shafei AES, Mostafa R. Investigating miRNA-661 and ATG4-B mRNA expression as potential biomarkers for hepatocellular carcinoma. Biomark Med 2018; 12:245-256. [PMID: 29441798 DOI: 10.2217/bmm-2017-0273] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIM We aimed to examine the statistical association between serum expression of miRNA 661 (miR-661) and ATG-4B mRNA and hepatocellular carcinoma (HCC) based on in silico data analysis followed by clinical validation. PATIENTS & METHODS Quantitative reverse-transcriptase real-time PCR was used to examine the expression of miR-661 and ATG-4B mRNA in the sera of HCC patients versus control. RESULTS The expression of miR-661 and ATG-4B mRNA was positive in 97.14 and 77.14%, respectively, in HCC patients. The survival analysis showed that ATG-4B mRNA was an independent prognostic factor. CONCLUSION Our data are the first report of its kind regarding the considerable clinical significance of miR-661 and ATG-4B mRNA in HCC patients.
Collapse
Affiliation(s)
- Mahmoud A Ali
- Department of Biomedical Research, Armed Forces College of Medicine (AFCM), Cairo, 11774, Egypt
| | - Marwa Matboli
- Department of Medical Biochemistry & Molecular Biology, Ain Shams Faculty of Medicine Research Center (Masri), 11778, Eygpt
| | - Nashwa El-Khazragy
- Department of Clinical Pathology, Oncology Diagnostic Unit, Faculty of Medicine, Ain Shams University, Cairo, 11778, Egypt
| | - Osama Saber
- Armed Forces College of Medicine (AFCM), Cairo, 11774, Egypt
| | - Sarah El-Nakeep
- Hepatology & Gastroenterology Unit, Internal Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, 11778, Egypt
| | - Hana M Abdelzaher
- Faculty of Biotechnology, October University for Modern Sciences & Arts, Cairo, 12585, Egypt
| | - Ayman El-Sayed Shafei
- Department of Biomedical Research, Armed Forces College of Medicine (AFCM), Cairo, 11774, Egypt
| | - Randa Mostafa
- Department of Biomedical Research, Armed Forces College of Medicine (AFCM), Cairo, 11774, Egypt
| |
Collapse
|
41
|
Agostini M, Annicchiarico-Petruzzelli M, Melino G, Rufini A. Metabolic pathways regulated by TAp73 in response to oxidative stress. Oncotarget 2017; 7:29881-900. [PMID: 27119504 PMCID: PMC5058650 DOI: 10.18632/oncotarget.8935] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/16/2016] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species are involved in both physiological and pathological processes including neurodegeneration and cancer. Therefore, cells have developed scavenging mechanisms to maintain redox homeostasis under control. Tumor suppressor genes play a critical role in the regulation of antioxidant genes. Here, we investigated whether the tumor suppressor gene TAp73 is involved in the regulation of metabolic adaptations triggered in response to oxidative stress. H2O2 treatment resulted in numerous biochemical changes in both control and TAp73 knockout (TAp73−/−) mouse embryonic fibroblasts, however the extent of these changes was more pronounced in TAp73−/− cells when compared to control cells. In particular, loss of TAp73 led to alterations in glucose, nucleotide and amino acid metabolism. In addition, H2O2 treatment resulted in increased pentose phosphate pathway (PPP) activity in null mouse embryonic fibroblasts. Overall, our results suggest that in the absence of TAp73, H2O2 treatment results in an enhanced oxidative environment, and at the same time in an increased pro-anabolic phenotype. In conclusion, the metabolic profile observed reinforces the role of TAp73 as tumor suppressor and indicates that TAp73 exerts this function, at least partially, by regulation of cellular metabolism.
Collapse
Affiliation(s)
- Massimiliano Agostini
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, UK.,Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | | | - Gerry Melino
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, UK.,Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Alessandro Rufini
- Department of Cancer Studies, CRUK Leicester Cancer Centre, University of Leicester, Leicester, UK
| |
Collapse
|
42
|
p73 promotes glioblastoma cell invasion by directly activating POSTN (periostin) expression. Oncotarget 2017; 7:11785-802. [PMID: 26930720 PMCID: PMC4914248 DOI: 10.18632/oncotarget.7600] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/18/2016] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma Multiforme is one of the most highly metastatic cancers and constitutes 70% of all gliomas. Despite aggressive treatments these tumours have an exceptionally bad prognosis, mainly due to therapy resistance and tumour recurrence. Here we show that the transcription factor p73 confers an invasive phenotype by directly activating expression of POSTN (periostin, HGNC:16953) in glioblastoma cells. Knock down of endogenous p73 reduces invasiveness and chemo-resistance, and promotes differentiation in vitro. Using chromatin immunoprecipitation and reporter assays we demonstrate that POSTN, an integrin binding protein that has recently been shown to play a major role in metastasis, is a transcriptional target of TAp73. We further show that POSTN overexpression is sufficient to rescue the invasive phenotype of glioblastoma cells after p73 knock down. Additionally, bioinformatics analysis revealed that an intact p73/POSTN axis, where POSTN and p73 expression is correlated, predicts bad prognosis in several cancer types. Taken together, our results support a novel role of TAp73 in controlling glioblastoma cell invasion by regulating the expression of the matricellular protein POSTN.
Collapse
|
43
|
Gómez de Cedrón M, Acín Pérez R, Sánchez-Martínez R, Molina S, Herranz J, Feliu J, Reglero G, Enríquez JA, Ramírez de Molina A. MicroRNA-661 modulates redox and metabolic homeostasis in colon cancer. Mol Oncol 2017; 11:1768-1787. [PMID: 28981199 PMCID: PMC5709620 DOI: 10.1002/1878-0261.12142] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 09/22/2017] [Accepted: 09/23/2017] [Indexed: 12/31/2022] Open
Abstract
Cancer cell survival and metastasis are dependent on metabolic reprogramming that is capable of increasing resistance to oxidative and energetic stress. Targeting these two processes can be crucial for cancer progression. Herein, we describe the role of microRNA‐661 (miR661) as epigenetic regulator of colon cancer (CC) cell metabolism. MicroR661 induces a global increase in reactive oxygen species, specifically in mitochondrial superoxide anions, which appears to be mediated by decreased carbohydrate metabolism and pentose phosphate pathway, and by a higher dependency on mitochondrial respiration. MicroR661 overexpression in non‐metastatic human CC cells induces an epithelial‐to‐mesenchymal transition phenotype, and a reduced tolerance to metabolic stress. This seems to be a general effect of miR661 in CC, since metastatic CC cell metabolism is also compromised upon miR661 overexpression. We propose hexose‐6‐phosphate dehydrogenase and pyruvate kinase M2 as two key players related to the observed metabolic reprogramming. Finally, the clinical relevance of miR661 expression levels in stage‐II and III CC patients is discussed. In conclusion, we propose miR661 as a potential modulator of redox and metabolic homeostasis in CC.
Collapse
Affiliation(s)
- Marta Gómez de Cedrón
- Precision Nutrition and Cancer Program, Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Rebeca Acín Pérez
- Functional Genetics of the Oxidative Phosphorylation System, Spanish National Cardiovascular Research Centre (CNIC), Madrid, Spain
| | - Ruth Sánchez-Martínez
- Precision Nutrition and Cancer Program, Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Susana Molina
- Precision Nutrition and Cancer Program, Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Jesús Herranz
- Precision Nutrition and Cancer Program, Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Jaime Feliu
- Medical Oncology, La Paz University Hospital (IdiPAZ-UAM), Madrid, Spain
| | - Guillermo Reglero
- Precision Nutrition and Cancer Program, Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Jose Antonio Enríquez
- Functional Genetics of the Oxidative Phosphorylation System, Spanish National Cardiovascular Research Centre (CNIC), Madrid, Spain
| | - Ana Ramírez de Molina
- Precision Nutrition and Cancer Program, Molecular Oncology and Nutritional Genomics of Cancer Group, IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| |
Collapse
|
44
|
Breunig C, Pahl J, Küblbeck M, Miller M, Antonelli D, Erdem N, Wirth C, Will R, Bott A, Cerwenka A, Wiemann S. MicroRNA-519a-3p mediates apoptosis resistance in breast cancer cells and their escape from recognition by natural killer cells. Cell Death Dis 2017; 8:e2973. [PMID: 28771222 PMCID: PMC5596553 DOI: 10.1038/cddis.2017.364] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 06/22/2017] [Accepted: 07/02/2017] [Indexed: 12/19/2022]
Abstract
Aggressive breast cancer is associated with poor patient outcome and characterized by the development of tumor cell variants that are able to escape from control of the immune system or are resistant to targeted therapies. The complex molecular mechanisms leading to immune escape and therapy resistance are incompletely understood. We have previously shown that high miR-519a-3p levels are associated with poor survival in breast cancer. Here, we demonstrate that miR-519a-3p confers resistance to apoptosis induced by TRAIL, FasL and granzyme B/perforin by interfering with apoptosis signaling in breast cancer cells. MiR-519a-3p diminished the expression of its direct target genes for TRAIL-R2 (TNFRSF10B) and for caspase-8 (CASP8) and its indirect target gene for caspase-7 (CASP7), resulting in reduced sensitivity and tumor cell apoptosis in response to apoptotic stimuli. Furthermore, miR-519a-3p impaired tumor cell killing by natural killer (NK) cells via downregulation of the NKG2D ligands ULBP2 and MICA on the surface of tumor cells that are crucial for the recognition of these tumor cells by NK cells. We determined that miR-519a-3p was overexpressed in more aggressive mutant TP53 breast cancer that was associated with poor survival. Furthermore, low levels of TRAIL-R2, caspase-7 and caspase-8 correlated with poor survival, suggesting that the inhibitory effect of miR-519a-3p on TRAIL-R2 and caspases may have direct clinical relevance in lowering patient’s prognosis. In conclusion, we demonstrate that miR-519a-3p is a critical factor in mediating resistance toward cancer cell apoptosis and impairing tumor cell recognition by NK cells. This joint regulation of apoptosis and immune cell recognition through miR-519a-3p supports the hypothesis that miRNAs are key regulators of cancer cell fate, facilitating cancer progression and evasion from immunosurveillance at multiple and interconnected levels.
Collapse
Affiliation(s)
- Christian Breunig
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jens Pahl
- Innate Immunity Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Moritz Küblbeck
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Miller
- Innate Immunity Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniela Antonelli
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nese Erdem
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cornelia Wirth
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rainer Will
- Genomics &Proteomics Core Facilities, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander Bott
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Adelheid Cerwenka
- Innate Immunity Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
45
|
MicroRNA-1301 suppresses tumor cell migration and invasion by targeting the p53/UBE4B pathway in multiple human cancer cells. Cancer Lett 2017; 401:20-32. [DOI: 10.1016/j.canlet.2017.04.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/21/2017] [Accepted: 04/26/2017] [Indexed: 11/20/2022]
|
46
|
Ahmad A, Fröhlich H. Towards clinically more relevant dissection of patient heterogeneity via survival-based Bayesian clustering. Bioinformatics 2017; 33:3558-3566. [DOI: 10.1093/bioinformatics/btx464] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 07/24/2017] [Indexed: 01/26/2023] Open
Affiliation(s)
- Ashar Ahmad
- Bonn Aachen International Center for Information Technology, University of Bonn, Bonn, Germany
| | - Holger Fröhlich
- Bonn Aachen International Center for Information Technology, University of Bonn, Bonn, Germany
- UCB Biosciences GmbH, Monheim, Germany
| |
Collapse
|
47
|
Liu F, Cai Y, Rong X, Chen J, Zheng D, Chen L, Zhang J, Luo R, Zhao P, Ruan J. MiR-661 promotes tumor invasion and metastasis by directly inhibiting RB1 in non small cell lung cancer. Mol Cancer 2017; 16:122. [PMID: 28716024 PMCID: PMC5514511 DOI: 10.1186/s12943-017-0698-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/11/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Aberrant microRNA expression has been implicated in metastasis of cancers. MiR-661 accelerates proliferation and invasion of breast cancer and ovarian cancer, while impedes that of glioma. Its role in non small cell lung cancer (NSCLC) and underlying mechanism are worthy elucidation. METHODS Expression of miR-661 was measured with real-time PCR in both NSCLC tissues and cell lines. The effects of miR-661 on migration, invasion and metastasis capacity of NSCLC were evaluated using wound healing, transwell assay and animal models. Dual reporter luciferase assay and complementary experiments were performed to validate RB1 as a direct target of miR-661 for participation in the progression of NSCLC. RESULTS MiR-661 was upregulated in NSCLC tissues as compared to paired adjacent tissues and associated with shorter overall survival. Furthermore, miR-661 promoted proliferation, migration and metastasis of NSCLC. Then, we identified RB1 as a direct target of miR-661 through which miR-661 affected EMT process and metastasis of NSCLC. RB1 interacted with E2F1 and both could mediate EMT process in NSCLC. CONCLUSION MiR-661 promotes metastasis of NSCLC through RB/E2F1 signaling and EMT events, thus may serves as a negative prognostic factor and possible target for treatment of NSCLC patient.
Collapse
Affiliation(s)
- Feiye Liu
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern medical University, Guangdong, 510315 China
| | - Yanjun Cai
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern medical University, Guangdong, 510315 China
- Center for Geriatrics, General Hospital of Guangzhou Military Command of People’s Liberation Army, Guangdong, 510010 China
| | - Xiaoxiang Rong
- Department of Oncology, Nanfang Hospital, Southern medical University, Guangdong, 510515 China
| | - Jinzhang Chen
- Department of Oncology, Nanfang Hospital, Southern medical University, Guangdong, 510515 China
| | - Dayong Zheng
- Department of Oncology, Nanfang Hospital, Southern medical University, Guangdong, 510515 China
| | - Lu Chen
- Center for Geriatrics, General Hospital of Guangzhou Military Command of People’s Liberation Army, Guangdong, 510010 China
| | - Junyi Zhang
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern medical University, Guangdong, 510315 China
| | - Rongcheng Luo
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern medical University, Guangdong, 510315 China
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310003 China
| | - Jian Ruan
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern medical University, Guangdong, 510315 China
| |
Collapse
|
48
|
Patel N, Garikapati KR, Pandita RK, Singh DK, Pandita TK, Bhadra U, Bhadra MP. miR-15a/miR-16 down-regulates BMI1, impacting Ub-H2A mediated DNA repair and breast cancer cell sensitivity to doxorubicin. Sci Rep 2017; 7:4263. [PMID: 28655885 PMCID: PMC5487337 DOI: 10.1038/s41598-017-02800-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/18/2017] [Indexed: 12/18/2022] Open
Abstract
The B-lymphoma Moloney murine leukemia virus insertion region-1 protein (BMI1) acts as an oncogene in various cancers, including breast cancer. Recent evidence suggests that BMI1 is rapidly recruited to sites of DNA double strand breaks where it facilitates histone H2A ubiquitination and DNA double strand break repair by homologous recombination. Here we show that miR-15a and miR-16 expressionis decreased during the initial period after DNA damage where it would otherwise down-regulate BMI1, impairing DNA repair. Elevated miR-15a and miR-16 levels down-regulated BMI1 and other polycomb group proteins like RING1A, RING1B, EZH2 and also altered the expression of proteins associated with the BMI1 dependent ubiquitination pathway. Antagonizing the expression of miR-15a and miR-16, enhanced BMI1 protein levels and increased DNA repair. Further, overexpression of miR-15a and miR-16 sensitized breast cancer cells to DNA damage induced by the chemotherapeutic drug doxorubicin. Our results suggest that miR-15a and miR-16 mediate the down-regulation of BMI1, which impedes DNA repair while elevated levels can sensitize breast cancer cells to doxorubicin leading to apoptotic cell death. This data identifies a new target for manipulating DNA damage response that could impact the development of improved therapeutics for breast cancer.
Collapse
Affiliation(s)
- Nibedita Patel
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana State, 500007, India
| | - Koteswara Rao Garikapati
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana State, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Training and Development Complex, CSIR Campus, CSIR Road, Taramani, Chennai, 600 113, India
| | - Raj K Pandita
- Department of Radiation Oncology, Weill Cornell Medical College, The Methodist Hospital Research Institute, Houston, TX, 77030, USA
| | - Dharmendra Kumar Singh
- Department of Radiation Oncology, Weill Cornell Medical College, The Methodist Hospital Research Institute, Houston, TX, 77030, USA
| | - Tej K Pandita
- Department of Radiation Oncology, Weill Cornell Medical College, The Methodist Hospital Research Institute, Houston, TX, 77030, USA
| | - Utpal Bhadra
- Gene Silencing Group, Centre for Cellular and Molecular Biology, Hyderabad, Telangana State, 500007, India
| | - Manika Pal Bhadra
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana State, 500007, India.
| |
Collapse
|
49
|
Marini A, Lena AM, Panatta E, Ivan C, Han L, Liang H, Annicchiarico-Petruzzelli M, Di Daniele N, Calin GA, Candi E, Melino G. Ultraconserved long non-coding RNA uc.63 in breast cancer. Oncotarget 2017; 8:35669-35680. [PMID: 27447964 PMCID: PMC5482607 DOI: 10.18632/oncotarget.10572] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/13/2016] [Indexed: 12/13/2022] Open
Abstract
Transcribed-ultraconserved regions (T-UCRs) are long non-coding RNAs (lncRNA) encoded by a subset of long ultraconserved stretches in the human genome. Recent studies revealed that the expression of several T-UCRs is altered in cancer and growing evidences underline the importance of T-UCRs in oncogenesis, offering also potential new strategies for diagnosis and prognosis. We found that overexpression of one specific T-UCRs named uc.63 is associated with bad outcome in luminal A subtype of breast cancer patients. uc.63 is localized in the third intron of exportin-1 gene (XPO1) and is transcribed in the same orientation of its host gene. Interestingly, silencing of uc.63 induces apoptosis in vitro. However, silencing of host gene XPO1 does not cause the same effect suggesting that the transcription of uc.63 is independent of XPO1. Our results reveal an important role of uc.63 in promoting breast cancer cells survival and offer the prospect to identify a signature associated with poor prognosis.
Collapse
Affiliation(s)
- Alberto Marini
- Medical Research Council, Toxicology Unit, Hodgkin Building, University of Leicester, Leicester, UK
| | - Anna Maria Lena
- Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| | - Emanuele Panatta
- Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| | - Cristina Ivan
- Department of Experimental Therapeutics and The Center for RNA interference and non-coding RNA, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | | - Nicola Di Daniele
- Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| | - George A. Calin
- Department of Experimental Therapeutics and The Center for RNA interference and non-coding RNA, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Eleonora Candi
- Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
- IDI-IRCCS, Biochemistry Laboratory, Rome, Italy
| | - Gerry Melino
- Medical Research Council, Toxicology Unit, Hodgkin Building, University of Leicester, Leicester, UK
- Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
50
|
Essential Roles of E3 Ubiquitin Ligases in p53 Regulation. Int J Mol Sci 2017; 18:ijms18020442. [PMID: 28218667 PMCID: PMC5343976 DOI: 10.3390/ijms18020442] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 01/30/2023] Open
Abstract
The ubiquitination pathway and proteasomal degradation machinery dominantly regulate p53 tumor suppressor protein stability, localization, and functions in both normal and cancerous cells. Selective E3 ubiquitin ligases dominantly regulate protein levels and activities of p53 in a large range of physiological conditions and in response to cellular changes induced by exogenous and endogenous stresses. The regulation of p53’s functions by E3 ubiquitin ligases is a complex process that can lead to positive or negative regulation of p53 protein in a context- and cell type-dependent manner. Accessory proteins bind and modulate E3 ubiquitin ligases, adding yet another layer of regulatory control for p53 and its downstream functions. This review provides a comprehensive understanding of p53 regulation by selective E3 ubiquitin ligases and their potential to be considered as a new class of biomarkers and therapeutic targets in diverse types of cancers.
Collapse
|