1
|
Solares S, León J, García-Gutiérrez L. The Functional Interaction Between Epstein-Barr Virus and MYC in the Pathogenesis of Burkitt Lymphoma. Cancers (Basel) 2024; 16:4212. [PMID: 39766110 PMCID: PMC11674381 DOI: 10.3390/cancers16244212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
The Epstein-Barr virus (EBV) is associated with a wide range of diseases, malignant and non-malignant. EBV was, in fact, the first virus described with cell transformation capacity, discovered by Epstein in 1964 in lymphoma samples from African children. Since then, EBV has been associated with several human tumors including nasopharyngeal carcinoma, gastric carcinoma, T-cell lymphoma, Hodgkin lymphoma, diffuse large B cell lymphoma, and Burkitt lymphoma among others. The molecular hallmark of Burkitt lymphoma (BL) is a chromosomal translocation that involves the MYC gene and immunoglobulin loci, resulting in the deregulated expression of MYC, an oncogenic transcription factor that appears deregulated in about half of human tumors. The role of MYC in lymphoma is well established, as MYC overexpression drives B cell proliferation through multiple mechanisms, foremost, the stimulation of the cell cycle. Indeed, MYC is found overexpressed or deregulated in several non-Hodgkin lymphomas. Most endemic and many sporadic BLs are associated with EBV infection. While some mechanisms by which EBV can contribute to BL have been reported, the mechanism that links MYC translocation and EBV infection in BL is still under debate. Here, we review the main EBV-associated diseases, with a special focus on BL, and we discuss the interaction of EBV and MYC translocation during B cell malignant transformation in BL.
Collapse
Affiliation(s)
| | | | - Lucía García-Gutiérrez
- Instituto de Biomedicina y Biotecnología de Cantabria, Departamento de Biología Molecular, Universidad de Cantabria-CSIC, Albert Einstein 22, 39011 Cantabria, Spain; (S.S.); (J.L.)
| |
Collapse
|
2
|
Caetano BFR, Rocha VL, Rossini BC, Dos Santos LD, Elgui De Oliveira D. Epstein-Barr Virus miR-BARTs 7 and 9 modulate viral cycle, cell proliferation, and proteomic profiles in Burkitt lymphoma. Tumour Virus Res 2024; 17:200276. [PMID: 38159643 PMCID: PMC11000110 DOI: 10.1016/j.tvr.2023.200276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
The Epstein-Barr Virus (EBV) encodes viral microRNAs (miRs) that have been implicated in the pathogenesis of nasopharyngeal and gastric carcinomas, yet their potential roles in lymphomas remain to be fully elucidated. This study evaluated the impact of CRISPR/Cas9-mediated knockdown of EBV miRs BART-7 and BART-9 in EBV-positive Burkitt lymphoma cells Akata. As anticipated, the Akata cells subjected to CRISPR/Cas9-mediated knockdown of either EBV BART-7 or BART-9 exhibited a significant reduction in the expression of these viral miRs compared to cells with wild-type (wt) EBV genomes. This outcome effectively validates the experimental model employed in this study. Knocking down either BART-7 or BART-9 resulted in a notable reduction in cell viability and proliferation rates, alongside an elevation in the expression of EBV lytic genes. Global proteomic analysis revealed that the knockdown of EBV BART-7 significantly decreased the expression of ubiquitin/proteasome proteins while concurrently increasing RNA binding proteins (RBPs). Conversely, BART-9 knockdown reduced proteins associated with oxidoreductase activity, particularly those involved in fatty acid metabolism. Our findings unveil previously undiscovered EBV miRs BARTs 7 and 9 roles in cellular pathways relevant to both viral biology and lymphomagenesis.
Collapse
Affiliation(s)
- Brunno Felipe Ramos Caetano
- São Paulo State University (UNESP), Department of Pathology, Botucatu Medical School, Av. Prof. Dr. Mário Rubens Guimarães Montenegro S/n, CEP 18618-687, Botucatu, São Paulo, Brazil; São Paulo State University (UNESP), Institute of Biotechnology (IBTEC), Alameda Das Tecomarias S/n, CEP 18607-440, Botucatu, São Paulo, Brazil.
| | - Viviana Loureiro Rocha
- São Paulo State University (UNESP), Institute of Biotechnology (IBTEC), Alameda Das Tecomarias S/n, CEP 18607-440, Botucatu, São Paulo, Brazil; São Paulo State University (UNESP), Institute of Biosciences (IBB). R. Prof. Dr. Antônio Celso Wagner Zanin, 250, CEP 18618-689, Botucatu, São Paulo, Brazil.
| | - Bruno Cesar Rossini
- São Paulo State University (UNESP), Institute of Biotechnology (IBTEC), Alameda Das Tecomarias S/n, CEP 18607-440, Botucatu, São Paulo, Brazil.
| | - Lucilene Delazari Dos Santos
- São Paulo State University (UNESP), Institute of Biotechnology (IBTEC), Alameda Das Tecomarias S/n, CEP 18607-440, Botucatu, São Paulo, Brazil.
| | - Deilson Elgui De Oliveira
- São Paulo State University (UNESP), Department of Pathology, Botucatu Medical School, Av. Prof. Dr. Mário Rubens Guimarães Montenegro S/n, CEP 18618-687, Botucatu, São Paulo, Brazil; São Paulo State University (UNESP), Institute of Biotechnology (IBTEC), Alameda Das Tecomarias S/n, CEP 18607-440, Botucatu, São Paulo, Brazil.
| |
Collapse
|
3
|
Bristol JA, Nelson SE, Ohashi M, Casco A, Hayes M, Ranheim EA, Pawelski AS, Singh DR, Hodson DJ, Johannsen EC, Kenney SC. Latent Epstein-Barr virus infection collaborates with Myc over-expression in normal human B cells to induce Burkitt-like Lymphomas in mice. PLoS Pathog 2024; 20:e1012132. [PMID: 38620028 PMCID: PMC11045125 DOI: 10.1371/journal.ppat.1012132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/25/2024] [Accepted: 03/18/2024] [Indexed: 04/17/2024] Open
Abstract
Epstein-Barr virus (EBV) is an important cause of human lymphomas, including Burkitt lymphoma (BL). EBV+ BLs are driven by Myc translocation and have stringent forms of viral latency that do not express either of the two major EBV oncoproteins, EBNA2 (which mimics Notch signaling) and LMP1 (which activates NF-κB signaling). Suppression of Myc-induced apoptosis, often through mutation of the TP53 (p53) gene or inhibition of pro-apoptotic BCL2L11 (BIM) gene expression, is required for development of Myc-driven BLs. EBV+ BLs contain fewer cellular mutations in apoptotic pathways compared to EBV-negative BLs, suggesting that latent EBV infection inhibits Myc-induced apoptosis. Here we use an EBNA2-deleted EBV virus (ΔEBNA2 EBV) to create the first in vivo model for EBV+ BL-like lymphomas derived from primary human B cells. We show that cord blood B cells infected with both ΔEBNA2 EBV and a Myc-expressing vector proliferate indefinitely on a CD40L/IL21 expressing feeder layer in vitro and cause rapid onset EBV+ BL-like tumors in NSG mice. These LMP1/EBNA2-negative Myc-driven lymphomas have wild type p53 and very low BIM, and express numerous germinal center B cell proteins (including TCF3, BACH2, Myb, CD10, CCDN3, and GCSAM) in the absence of BCL6 expression. Myc-induced activation of Myb mediates expression of many of these BL-associated proteins. We demonstrate that Myc blocks LMP1 expression both by inhibiting expression of cellular factors (STAT3 and Src) that activate LMP1 transcription and by increasing expression of proteins (DNMT3B and UHRF1) known to enhance DNA methylation of the LMP1 promoters in human BLs. These results show that latent EBV infection collaborates with Myc over-expression to induce BL-like human B-cell lymphomas in mice. As NF-κB signaling retards the growth of EBV-negative BLs, Myc-mediated repression of LMP1 may be essential for latent EBV infection and Myc translocation to collaboratively induce human BLs.
Collapse
Affiliation(s)
- Jillian A. Bristol
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Scott E. Nelson
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Makoto Ohashi
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Alejandro Casco
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Mitchell Hayes
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Erik A. Ranheim
- Department of Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Abigail S. Pawelski
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Deo R. Singh
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Daniel J. Hodson
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Eric C. Johannsen
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
4
|
MacLennan SA, Marra MA. Oncogenic Viruses and the Epigenome: How Viruses Hijack Epigenetic Mechanisms to Drive Cancer. Int J Mol Sci 2023; 24:ijms24119543. [PMID: 37298494 DOI: 10.3390/ijms24119543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Globally, viral infections substantially contribute to cancer development. Oncogenic viruses are taxonomically heterogeneous and drive cancers using diverse strategies, including epigenomic dysregulation. Here, we discuss how oncogenic viruses disrupt epigenetic homeostasis to drive cancer and focus on how virally mediated dysregulation of host and viral epigenomes impacts the hallmarks of cancer. To illustrate the relationship between epigenetics and viral life cycles, we describe how epigenetic changes facilitate the human papillomavirus (HPV) life cycle and how changes to this process can spur malignancy. We also highlight the clinical impact of virally mediated epigenetic changes on cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Signe A MacLennan
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Marco A Marra
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| |
Collapse
|
5
|
Saikumar Lakshmi P, Oduor CI, Forconi CS, M'Bana V, Bly C, Gerstein RM, Otieno JA, Ong'echa JM, Münz C, Luftig MA, Brehm MA, Bailey JA, Moormann AM. Endemic Burkitt lymphoma avatar mouse models for exploring inter-patient tumor variation and testing targeted therapies. Life Sci Alliance 2023; 6:e202101355. [PMID: 36878637 PMCID: PMC9990458 DOI: 10.26508/lsa.202101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 03/08/2023] Open
Abstract
Endemic Burkitt lymphoma (BL) is a childhood cancer in sub-Saharan Africa characterized by Epstein-Barr virus and malaria-associated aberrant B-cell activation and MYC chromosomal translocation. Survival rates hover at 50% after conventional chemotherapies; therefore, clinically relevant models are necessary to test additional therapies. Hence, we established five patient-derived BL tumor cell lines and corresponding NSG-BL avatar mouse models. Transcriptomics confirmed that our BL lines maintained fidelity from patient tumors to NSG-BL tumors. However, we found significant variation in tumor growth and survival among NSG-BL avatars and in Epstein-Barr virus protein expression patterns. We tested rituximab responsiveness and found one NSG-BL model exhibiting direct sensitivity, characterized by apoptotic gene expression counterbalanced by unfolded protein response and mTOR pro-survival pathways. In rituximab-unresponsive tumors, we observed an IFN-α signature confirmed by the expression of IRF7 and ISG15. Our results demonstrate significant inter-patient tumor variation and heterogeneity, and that contemporary patient-derived BL cell lines and NSG-BL avatars are feasible tools to guide new therapeutic strategies and improve outcomes for these children.
Collapse
Affiliation(s)
- Priya Saikumar Lakshmi
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Cliff I Oduor
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Catherine S Forconi
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Viriato M'Bana
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Courtney Bly
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Rachel M Gerstein
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Juliana A Otieno
- Jaramogi Oginga Odinga Teaching and Referral Hospital, Ministry of Medical Services, Kisumu, Kenya
| | - John M Ong'echa
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Christian Münz
- Department of Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zurich, Switzerland
| | - Micah A Luftig
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Michael A Brehm
- Program in Molecular Medicine and the Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Ann M Moormann
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
6
|
The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022; 36:1720-1748. [PMID: 35732829 PMCID: PMC9214472 DOI: 10.1038/s41375-022-01620-2] [Citation(s) in RCA: 1755] [Impact Index Per Article: 585.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 02/05/2023]
Abstract
We herein present an overview of the upcoming 5th edition of the World Health Organization Classification of Haematolymphoid Tumours focussing on lymphoid neoplasms. Myeloid and histiocytic neoplasms will be presented in a separate accompanying article. Besides listing the entities of the classification, we highlight and explain changes from the revised 4th edition. These include reorganization of entities by a hierarchical system as is adopted throughout the 5th edition of the WHO classification of tumours of all organ systems, modification of nomenclature for some entities, revision of diagnostic criteria or subtypes, deletion of certain entities, and introduction of new entities, as well as inclusion of tumour-like lesions, mesenchymal lesions specific to lymph node and spleen, and germline predisposition syndromes associated with the lymphoid neoplasms.
Collapse
|
7
|
Wyżewski Z, Mielcarska MB, Gregorczyk-Zboroch KP, Myszka A. Virus-Mediated Inhibition of Apoptosis in the Context of EBV-Associated Diseases: Molecular Mechanisms and Therapeutic Perspectives. Int J Mol Sci 2022; 23:ijms23137265. [PMID: 35806271 PMCID: PMC9266970 DOI: 10.3390/ijms23137265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Epstein-Barr virus (EBV), the representative of the Herpesviridae family, is a pathogen extensively distributed in the human population. One of its most characteristic features is the capability to establish latent infection in the host. The infected cells serve as a sanctuary for the dormant virus, and therefore their desensitization to apoptotic stimuli is part of the viral strategy for long-term survival. For this reason, EBV encodes a set of anti-apoptotic products. They may increase the viability of infected cells and enhance their resistance to chemotherapy, thereby contributing to the development of EBV-associated diseases, including Burkitt’s lymphoma (BL), Hodgkin’s lymphoma (HL), gastric cancer (GC), nasopharyngeal carcinoma (NPC) and several other malignancies. In this paper, we have described the molecular mechanism of anti-apoptotic actions of a set of EBV proteins. Moreover, we have reviewed the pro-survival role of non-coding viral transcripts: EBV-encoded small RNAs (EBERs) and microRNAs (miRNAs), in EBV-carrying malignant cells. The influence of EBV on the expression, activity and/or intracellular distribution of B-cell lymphoma 2 (Bcl-2) protein family members, has been presented. Finally, we have also discussed therapeutic perspectives of targeting viral anti-apoptotic products or their molecular partners.
Collapse
Affiliation(s)
- Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland;
- Correspondence: ; Tel.: +48-728-208-338
| | - Matylda Barbara Mielcarska
- Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland; (M.B.M.); (K.P.G.-Z.)
| | | | - Anna Myszka
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland;
| |
Collapse
|
8
|
Le Goff E, Martinand-Mari C, Belkhir K, Vacelet J, Nidelet S, Godefroy N, Baghdiguian S. Molecular complexity and gene expression controlling cell turnover during a digestive cycle of carnivorous sponge Lycopodina hypogea. Cell Tissue Res 2022; 388:399-416. [PMID: 35260936 DOI: 10.1007/s00441-022-03610-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 02/28/2022] [Indexed: 11/30/2022]
Abstract
Lycopodina hypogea is a carnivorous sponge that tolerates laboratory husbandry very well. During a digestion cycle, performed without any digestive cavity, this species undergoes spectacular morphological changes leading to a total regression of long filaments that ensure the capture of prey and their reformation at the end of the cycle. This phenomenon is a unique opportunity to analyze the molecular and cellular determinants that ensure digestion in the sister group of all other metazoans. Using differential transcriptomic analysis coupled with cell biology studies of proliferation, differentiation, and programmed cell deaths (i.e., autophagy and the destructive/constructive function of apoptosis), we demonstrate that the molecular and cellular actors that ensure digestive homeostasis in a sister group of all remaining animals are similar in variety and complexity to those controlling tissue homeostasis in higher vertebrates. During a digestion cycle, most of these actors are finely tuned in a coordinated manner. Our data benefits from complementary approaches coupling in silico and cell biology studies and demonstrate that the nutritive function is provided by the coordination of molecular network that impacts the cells turnover in the entire organism.
Collapse
Affiliation(s)
- Emilie Le Goff
- ISEM, CNRS, EPHE, Université Montpellier, Montpellier, IRD, France
| | | | - Khalid Belkhir
- ISEM, CNRS, EPHE, Université Montpellier, Montpellier, IRD, France
| | - Jean Vacelet
- IMBE, CNRS, Station Marine d'Endoume, Université Aix-Marseille, Université d'Avignon, 13007, Marseille, IRD, France
| | - Sabine Nidelet
- Montpellier GenomiX, Université Montpellier, CNRS, INSERM, Montpellier, France
- New Affiliation: CBGP, INRA, CIRAD, Université Montpellier, Montpellier SupAgroMontpellier, IRD, France
| | - Nelly Godefroy
- ISEM, CNRS, EPHE, Université Montpellier, Montpellier, IRD, France.
| | | |
Collapse
|
9
|
Bagaloni I, Visani A, Biagiotti S, Ruzzo A, Navari M, Etebari M, Mundo L, Granai M, Lazzi S, Isidori A, Loscocco F, Li J, Leoncini L, Visani G, Magnani M, Piccaluga PP. Metabolic Switch and Cytotoxic Effect of Metformin on Burkitt Lymphoma. Front Oncol 2021; 11:661102. [PMID: 34557403 PMCID: PMC8454268 DOI: 10.3389/fonc.2021.661102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Altered cellular energetic metabolism has recently emerged as important feature of neoplastic cells. Indeed, interfering with cancer cell metabolism might represent a suitable therapeutic strategy. In this study, we aimed to assess glucose metabolism activation in human lymphomas and evaluate how metformin can exert its action on lymphoma cells. We studied a large series of human lymphomas (N = 252) and an in vitro model of Burkitt lymphoma (BL) cells. We combined molecular biology techniques, including global gene expression profiling (GEP) analysis, quantitative PCR (qPCR) and Western blotting, and biochemical assays, aimed to assess pentose phosphate pathway, tricarboxylic acid (TCA) cycle, and aerobic glycolysis rates. We found that glucose metabolism is overall enhanced in most lymphoma subtypes, based on gene expression profiling (GEP), with general shift to aerobic glycolysis. By contrast, normal B cells only showed an overall increase in glucose usage during germinal center transition. Interestingly, not only highly proliferating aggressive lymphomas but also indolent ones, like marginal zone lymphomas, showed the phenomenon. Consistently, genes involved in glycolysis were confirmed to be overexpressed in BL cells by qPCR. Biochemical assays showed that while aerobic glycolysis is increased, TCA cycle is reduced. Finally, we showed that metformin can induce cell death in BL cells by stressing cellular metabolism through the induction of GLUT1, PKM2, and LDHA. In conclusion, we unveiled glucose metabolism abnormalities in human lymphomas and characterized the mechanism of action of metformin in Burkitt lymphoma model.
Collapse
Affiliation(s)
- Irene Bagaloni
- Department of Biomolecular Sciences (DISB), University of Urbino, Urbino, Italy
| | - Axel Visani
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University School of Medicine, Bologna, Italy
| | - Sara Biagiotti
- Department of Biomolecular Sciences (DISB), University of Urbino, Urbino, Italy
| | - Annamaria Ruzzo
- Department of Biomolecular Sciences (DISB), University of Urbino, Urbino, Italy
| | - Mohsen Navari
- Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Etebari
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University School of Medicine, Bologna, Italy
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Lucia Mundo
- Section of Pathology, Department of Medical Biotechnology, University of Siena, Siena, Italy
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Massimo Granai
- Section of Pathology, Department of Medical Biotechnology, University of Siena, Siena, Italy
- Department of Pathology, Tubingen University, Tubingen, Germany
| | - Stefano Lazzi
- Section of Pathology, Department of Medical Biotechnology, University of Siena, Siena, Italy
| | | | | | - Jiejin Li
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Lorenzo Leoncini
- Section of Pathology, Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Giuseppe Visani
- Hematology and Transplant Center, AORMN Marche Nord, Pesaro, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences (DISB), University of Urbino, Urbino, Italy
| | - Pier Paolo Piccaluga
- Department of Experimental, Diagnostic, and Specialty Medicine, Bologna University School of Medicine, Bologna, Italy
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
- School of Health, Department of Pathology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| |
Collapse
|
10
|
|
11
|
Hutcheson RL, Chakravorty A, Sugden B. Burkitt Lymphomas Evolve to Escape Dependencies on Epstein-Barr Virus. Front Cell Infect Microbiol 2021; 10:606412. [PMID: 33505922 PMCID: PMC7829347 DOI: 10.3389/fcimb.2020.606412] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/27/2020] [Indexed: 01/25/2023] Open
Abstract
Epstein-Barr Virus (EBV) can transform B cells and contributes to the development of Burkitt lymphoma and other cancers. Through decades of study, we now recognize that many of the viral genes required to transform cells are not expressed in EBV-positive Burkitt lymphoma (BL) tumors, likely due to the immune pressure exerted on infected cells. This recognition has led to the hypothesis that the loss of expression of these viral genes must be compensated through some mechanisms. Recent progress in genome-wide mutational analysis of tumors provides a wealth of data about the cellular mutations found in EBV-positive BLs. Here, we review common cellular mutations found in these tumors and consider how they may compensate for the viral genes that are no longer expressed. Understanding these mutations and how they may substitute for EBV's genes and contribute to lymphomagenesis can serve as a launchpad for more mechanistic studies, which will help us navigate the sea of genomic data available today, and direct the discoveries necessary to improve the treatment of EBV-positive BLs.
Collapse
|
12
|
Fitzsimmons L, Cartlidge R, Chang C, Sejic N, Galbraith LCA, Suraweera CD, Croom-Carter D, Dewson G, Tierney RJ, Bell AI, Shannon-Lowe C, Herold MJ, Rickinson AB, Colman PM, Huang DCS, Strasser A, Kvansakul M, Rowe M, Kelly GL. EBV BCL-2 homologue BHRF1 drives chemoresistance and lymphomagenesis by inhibiting multiple cellular pro-apoptotic proteins. Cell Death Differ 2020; 27:1554-1568. [PMID: 31645677 PMCID: PMC7206097 DOI: 10.1038/s41418-019-0435-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 12/30/2022] Open
Abstract
Epstein-Barr virus (EBV), which is ubiquitous in the adult population, is causally associated with human malignancies. Like many infectious agents, EBV has evolved strategies to block host cell death, including through expression of viral homologues of cellular BCL-2 pro-survival proteins (vBCL-2s), such as BHRF1. Small molecule inhibitors of the cellular pro-survival BCL-2 family proteins, termed 'BH3-mimetics', have entered clinical trials for blood cancers with the BCL-2 inhibitor venetoclax already approved for treatment of therapy refractory chronic lymphocytic leukaemia and acute myeloid leukaemia in the elderly. The generation of BH3-mimetics that could specifically target vBCL-2 proteins may be an attractive therapeutic option for virus-associated cancers, since these drugs would be expected to only kill virally infected cells with only minimal side effects on normal healthy tissues. To achieve this, a better understanding of the contribution of vBCL-2 proteins to tumorigenesis and insights into their biochemical functions is needed. In the context of Burkitt lymphoma (BL), BHRF1 expression conferred strong resistance to diverse apoptotic stimuli. Furthermore, BHRF1 expression in mouse haematopoietic stem and progenitor cells accelerated MYC-induced lymphoma development in a model of BL. BHRF1 interacts with the cellular pro-apoptotic BCL-2 proteins, BIM, BID, PUMA and BAK, but its capability to inhibit apoptosis could not be mapped solely to one of these interactions, suggesting plasticity is a key feature of BHRF1. Site-directed mutagenesis revealed a site in BHRF1 that was critical for its interaction with PUMA and blocking DNA-damage-induced apoptosis, identifying a potentially therapeutically targetable vulnerability in BHRF1.
Collapse
Affiliation(s)
- Leah Fitzsimmons
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Rachel Cartlidge
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Catherine Chang
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
| | - Nenad Sejic
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Laura C A Galbraith
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Chathura D Suraweera
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Deborah Croom-Carter
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Grant Dewson
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - Rosemary J Tierney
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrew I Bell
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Clare Shannon-Lowe
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Marco J Herold
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - Alan B Rickinson
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Peter M Colman
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - David C S Huang
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - Marc Kvansakul
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Martin Rowe
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
13
|
Abstract
Apoptosis is a highly conserved programme for removing damaged and unwanted cells. Apoptosis in most cells is coordinated on mitochondria by the Bcl-2 family of proteins. The balance between pro- and anti-apoptotic Bcl-2 family proteins sets a threshold for mitochondrial apoptosis, a balance that is altered during cancer progression. Consequently, avoidance of cell death is an established cancer hallmark. Although there is a general perception that tumour cells are more resistant to apoptosis than their normal counterparts, the realities of cell death regulation in cancer are more nuanced. In this review we discuss how a profound understanding of this control has led to new therapeutic approaches, including the new class of BH3-mimetics, which directly target apoptosis as a vulnerability in cancer. We discuss recent findings that highlight the current limitations in our understanding of apoptosis and how these novel therapeutics work.
Collapse
Affiliation(s)
- Andrew Gilmore
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Louise King
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
14
|
Hadji A, Schmitt GK, Schnorenberg MR, Roach L, Hickey CM, Leak LB, Tirrell MV, LaBelle JL. Preferential targeting of MCL-1 by a hydrocarbon-stapled BIM BH3 peptide. Oncotarget 2019; 10:6219-6233. [PMID: 31692812 PMCID: PMC6817437 DOI: 10.18632/oncotarget.27262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 10/04/2019] [Indexed: 11/29/2022] Open
Abstract
BCL-2 family proteins are central regulators of apoptosis and represent prime therapeutic targets for overcoming cell death resistance in malignancies. However, plasticity of anti-apoptotic members, such as MCL-1, often allows for a switch in cell death dependency patterns that lie outside the binding profile of targeted BH3-mimetics. Therefore discovery of therapeutics that effectively inactivate all anti-apoptotic members is a high priority. To address this we tested the potency of a hydrocarbon stapled BIM BH3 peptide (BIM SAHB A ) to overcome both BCL-2 and MCL-1 apoptotic resistance given BIM's naturally wide ranging affinity for all BCL-2 family multidomain members. BIM SAHB A effectively killed diffuse large B-cell lymphoma (DLBCL) cell lines regardless of their anti-apoptotic dependence. Despite BIM BH3's ability to bind all BCL-2 anti-apoptotic proteins, BIM SAHB A 's dominant intracellular target was MCL-1 and this specificity was exploited in sequenced combination BH3-mimetic treatments targeting BCL-2, BCL-XL, and BCL-W. Extending this MCL-1 functional dependence, mouse embryonic fibroblasts (MEFs) deficient in MCL-1 were resistant to mitochondrial changes induced by BIM SAHB A . This study demonstrates the importance of understanding BH3 mimetic functional intracellular affinities for optimized use and highlights the diagnostic and therapeutic promise of a BIM BH3 peptide mimetic as a potential MCL-1 inhibitor.
Collapse
Affiliation(s)
- Abbas Hadji
- Department of Pediatrics, Section of Hematology/Oncology/Stem Cell Transplantation and Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| | - Greta K. Schmitt
- Department of Pediatrics, Section of Hematology/Oncology/Stem Cell Transplantation and Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| | - Mathew R. Schnorenberg
- Department of Pediatrics, Section of Hematology/Oncology/Stem Cell Transplantation and Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Lauren Roach
- Department of Pediatrics, Section of Hematology/Oncology/Stem Cell Transplantation and Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| | - Connie M. Hickey
- Department of Pediatrics, Section of Hematology/Oncology/Stem Cell Transplantation and Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| | - Logan B. Leak
- Department of Pediatrics, Section of Hematology/Oncology/Stem Cell Transplantation and Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| | - Matthew V. Tirrell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - James L. LaBelle
- Department of Pediatrics, Section of Hematology/Oncology/Stem Cell Transplantation and Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
15
|
Nehme Z, Pasquereau S, Herbein G. Control of viral infections by epigenetic-targeted therapy. Clin Epigenetics 2019; 11:55. [PMID: 30917875 PMCID: PMC6437953 DOI: 10.1186/s13148-019-0654-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
Epigenetics is defined as the science that studies the modifications of gene expression that are not owed to mutations or changes in the genetic sequence. Recently, strong evidences are pinpointing toward a solid interplay between such epigenetic alterations and the outcome of human cytomegalovirus (HCMV) infection. Guided by the previous possibly promising experimental trials of human immunodeficiency virus (HIV) epigenetic reprogramming, the latter is paving the road toward two major approaches to control viral gene expression or latency. Reactivating HCMV from the latent phase ("shock and kill" paradigm) or alternatively repressing the virus lytic and reactivation phases ("block and lock" paradigm) by epigenetic-targeted therapy represent encouraging options to overcome latency and viral shedding or otherwise replication and infectivity, which could lead eventually to control the infection and its complications. Not limited to HIV and HCMV, this concept is similarly studied in the context of hepatitis B and C virus, herpes simplex virus, and Epstein-Barr virus. Therefore, epigenetic manipulations stand as a pioneering research area in modern biology and could constitute a curative methodology by potentially consenting the development of broad-spectrum antivirals to control viral infections in vivo.
Collapse
Affiliation(s)
- Zeina Nehme
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté, University of Bourgogne Franche-Comté, 16 route de Gray, F-25030 Besançon cedex, France
- Université Libanaise, Beirut, Lebanon
| | - Sébastien Pasquereau
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté, University of Bourgogne Franche-Comté, 16 route de Gray, F-25030 Besançon cedex, France
| | - Georges Herbein
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté, University of Bourgogne Franche-Comté, 16 route de Gray, F-25030 Besançon cedex, France
- Department of Virology, CHRU Besancon, F-25030 Besançon, France
| |
Collapse
|
16
|
Abstract
Epstein–Barr virus (EBV) contributes to about 1.5% of all cases of human cancer worldwide, and viral genes are expressed in the malignant cells. EBV also very efficiently causes the proliferation of infected human B lymphocytes. The functions of the viral proteins and small RNAs that may contribute to EBV-associated cancers are becoming increasingly clear, and a broader understanding of the sequence variation of the virus genome has helped to interpret their roles. The improved understanding of the mechanisms of these cancers means that there are great opportunities for the early diagnosis of treatable stages of EBV-associated cancers and the use of immunotherapy to target EBV-infected cells or overcome immune evasion. There is also scope for preventing disease by immunization and for developing therapeutic agents that target the EBV gene products expressed in the cancers.
Collapse
Affiliation(s)
- Paul J. Farrell
- Section of Virology, Imperial College Faculty of Medicine, London W2 1PG, United Kingdom
| |
Collapse
|
17
|
Hu T, Gao Y. β-elemene against Burkitt's lymphoma via activation of PUMA mediated apoptotic pathway. Biomed Pharmacother 2018; 106:1557-1562. [PMID: 30119230 DOI: 10.1016/j.biopha.2018.07.124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/14/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
Burkitt's lymphoma is a type of highly aggressive Non-Hodgkin's lymphoma. Although advanced Burkitt's lymphoma is responsive to high-intensity chemotherapy regimens, increasing systemic toxicity, tumor recurrence and metastasis significantly reduce the patient survival. Thus, it is important to investigate novel antitumor agents with safety and effectiveness. β-elemene shows anti-proliferative effect on cancer cells by triggering apoptosis through regulating several molecular signaling pathways. However, its role in the suppression of Burkitt's lymphoma has not yet been fully elucidated. The inhibitory effect of β-elemene in Burkitt's lymphoma was studied in vitro and in vivo, as well as the involved molecular mechanism. The results demonstrated that β-elemene effectively inhibited the growth and induced the apoptosis of Burkitt's lymphoma cells through upregulation of PUMA expression and modulating PUMA related apoptotic signaling pathway. The in vivo data confirmed the anti-tumor effect of β-elemene in the xenografts, suggesting that β-elemene is associated with PUMA activation, leading to Bax and caspase induction and onset of mitochondrial apoptosis.
Collapse
Affiliation(s)
- Tonglin Hu
- Department of Hematology, Zhejiang Provincial Hospital of TCM, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, PR China
| | - Yu Gao
- Department of Hematology, Zhejiang Hospital, No.12 Lingyin Road, Hangzhou, Zhejiang, 310013, PR China.
| |
Collapse
|
18
|
Fitzsimmons L, Kelly GL. EBV and Apoptosis: The Viral Master Regulator of Cell Fate? Viruses 2017; 9:E339. [PMID: 29137176 PMCID: PMC5707546 DOI: 10.3390/v9110339] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) was first discovered in cells from a patient with Burkitt lymphoma (BL), and is now known to be a contributory factor in 1-2% of all cancers, for which there are as yet, no EBV-targeted therapies available. Like other herpesviruses, EBV adopts a persistent latent infection in vivo and only rarely reactivates into replicative lytic cycle. Although latency is associated with restricted patterns of gene expression, genes are never expressed in isolation; always in groups. Here, we discuss (1) the ways in which the latent genes of EBV are known to modulate cell death, (2) how these mechanisms relate to growth transformation and lymphomagenesis, and (3) how EBV genes cooperate to coordinately regulate key cell death pathways in BL and lymphoblastoid cell lines (LCLs). Since manipulation of the cell death machinery is critical in EBV pathogenesis, understanding the mechanisms that underpin EBV regulation of apoptosis therefore provides opportunities for novel therapeutic interventions.
Collapse
Affiliation(s)
- Leah Fitzsimmons
- Institute of Cancer and Genomic Sciences and Centre for Human Virology, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Gemma L Kelly
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC 3052, Australia.
| |
Collapse
|