1
|
Van Ngo H, Robertin S, Brokatzky D, Bielecka MK, Lobato‐Márquez D, Torraca V, Mostowy S. Septins promote caspase activity and coordinate mitochondrial apoptosis. Cytoskeleton (Hoboken) 2023; 80:254-265. [PMID: 35460543 PMCID: PMC10952901 DOI: 10.1002/cm.21696] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/08/2022] [Accepted: 04/05/2022] [Indexed: 11/06/2022]
Abstract
Apoptosis is a form of regulated cell death essential for tissue homeostasis and embryonic development. Apoptosis also plays a key role during bacterial infection, yet some intracellular bacterial pathogens (such as Shigella flexneri, whose lipopolysaccharide can block apoptosis) can manipulate cell death programs as an important survival strategy. Septins are a component of the cytoskeleton essential for mitochondrial dynamics and host defense, however, the role of septins in regulated cell death is mostly unknown. Here, we discover that septins promote mitochondrial (i.e., intrinsic) apoptosis in response to treatment with staurosporine (a pan-kinase inhibitor) or etoposide (a DNA topoisomerase inhibitor). Consistent with a role for septins in mitochondrial dynamics, septins promote the release of mitochondrial protein cytochrome c in apoptotic cells and are required for the proteolytic activation of caspase-3, caspase-7, and caspase-9 (core components of the apoptotic machinery). Apoptosis of HeLa cells induced in response to infection by S. flexneri ΔgalU (a lipopolysaccharide mutant unable to block apoptosis) is also septin-dependent. In vivo, zebrafish larvae are significantly more susceptible to infection with S. flexneri ΔgalU (as compared to infection with wildtype S. flexneri), yet septin deficient larvae are equally susceptible to infection with S. flexneri ΔgalU and wildtype S. flexneri. These data provide a new molecular framework to understand the complexity of mitochondrial apoptosis and its ability to combat bacterial infection.
Collapse
Affiliation(s)
- Hoan Van Ngo
- Department of Infection BiologyLondon School of Hygiene and Tropical MedicineLondonUK
| | - Stevens Robertin
- Department of Infection BiologyLondon School of Hygiene and Tropical MedicineLondonUK
| | - Dominik Brokatzky
- Department of Infection BiologyLondon School of Hygiene and Tropical MedicineLondonUK
| | - Magdalena K. Bielecka
- Department of Infection BiologyLondon School of Hygiene and Tropical MedicineLondonUK
| | - Damián Lobato‐Márquez
- Department of Infection BiologyLondon School of Hygiene and Tropical MedicineLondonUK
| | - Vincenzo Torraca
- Department of Infection BiologyLondon School of Hygiene and Tropical MedicineLondonUK
- School of Life SciencesUniversity of WestminsterLondonUK
| | - Serge Mostowy
- Department of Infection BiologyLondon School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
2
|
Nandi I, Aroeti L, Ramachandran RP, Kassa EG, Zlotkin-Rivkin E, Aroeti B. Type III secreted effectors that target mitochondria. Cell Microbiol 2021; 23:e13352. [PMID: 33960116 DOI: 10.1111/cmi.13352] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 01/05/2023]
Abstract
A type III secretion system (T3SS) is used by Gram-negative bacterial pathogens to secrete and translocate a battery of proteins, termed effectors, from the bacteria directly into the host cells. These effectors, which are thought to play a key role in bacterial virulence, hijack and modify the activity of diverse host cell organelles, including mitochondria. Mitochondria-the energy powerhouse of the cell-are important cell organelles that play role in numerous critical cellular processes, including the initiation of apoptosis and the induction of innate immunity. Therefore, it is not surprising that pathogenic bacteria use mitochondrially targeted effectors to control host cell death and immunity pathways. Surprisingly, however, we found that despite their importance, only a limited number of type III secreted effectors have been characterised to target host mitochondria, and the mechanisms underlying their mitochondrial activity have not been sufficiently analysed. These include effectors secreted by the enteric attaching and effacing (A/E), Salmonella and Shigella bacterial pathogens. Here we give an overview of key findings, present gaps in knowledge and hypotheses concerning the mode by which these type III secreted effectors control the host and the bacterial cell life (and death) through targeting mitochondria.
Collapse
Affiliation(s)
- Ipsita Nandi
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lior Aroeti
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rachana Pattani Ramachandran
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ephrem G Kassa
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Efrat Zlotkin-Rivkin
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Benjamin Aroeti
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
3
|
Yang X, Chen X, Xia C, Li S, Zhu L, Xu C. Comparative analysis of the expression profiles of genes related to the Gadd45α signaling pathway in four kinds of liver diseases. Histol Histopathol 2020; 35:949-960. [PMID: 32298459 DOI: 10.14670/hh-18-218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gadd45α (growth arrest and DNA damage inducible alpha) is a member of a group of genes whose transcript levels are increased following stressful conditions that lead to growth arrest and treatment with agents that lead to DNA damage. Gadd45α is upregulated in liver cirrhosis (LC), hepatic cancer (HC), acute liver failure (AHF) and non-alcoholic fatty liver disease(NAFLD). Here, we investigated the essential differences in the Gadd45α signaling pathway in these diseases at the transcriptional level. The results showed that 44, 46, 71 and 27 genes significant changes in these diseases, and the H-cluster showed that the expression of the Gadd45α signaling-related genes was significantly different in the four liver diseases. DAVID functional analysis showed that the Gadd45α signaling pathway-related genes were mainly involved in cell adhesion and migration, cell proliferation, apoptosis, stress and inflammatory responses, etc. Ingenuity pathway analysis (IPA) software was used to predict the functions of the Gadd45α signaling-related genes, and the results indicated that there were significant changes in cell differentiation, DNA damage repair, autophagy, apoptosis and necrosis. Gadd45α signaling pathway is involved in four kinds of liver disease and regulates a variety of activities via P38 MAPK, NF-κB, mTOR/STAT3, P21, PCNA, PI3K/Akt and other signaling pathways. Modulation of Gadd45α may be exploited to prevent the progression of liver disease, and to identify specific treatments for different stages of liver disease. In summary, the Gadd45α signaling pathway is involved in four kinds of liver disease and regulates a variety of physiological activities through various signaling pathways.
Collapse
Affiliation(s)
- Xianguang Yang
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, China. .,State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Bioengineering Key Laboratory, Henan Normal University, Xinxiang, Henan Province, China
| | - Xuelin Chen
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Bioengineering Key Laboratory, Henan Normal University, Xinxiang, Henan Province, China.,College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Cong Xia
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Bioengineering Key Laboratory, Henan Normal University, Xinxiang, Henan Province, China.,College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Shuaihong Li
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Bioengineering Key Laboratory, Henan Normal University, Xinxiang, Henan Province, China.,College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Lin Zhu
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Bioengineering Key Laboratory, Henan Normal University, Xinxiang, Henan Province, China.,College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| | - Cunshuan Xu
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Bioengineering Key Laboratory, Henan Normal University, Xinxiang, Henan Province, China.,College of Life Science, Henan Normal University, Xinxiang, Henan Province, China
| |
Collapse
|
4
|
Ellwanger K, Briese S, Arnold C, Kienes I, Heim V, Nachbur U, Kufer TA. XIAP controls RIPK2 signaling by preventing its deposition in speck-like structures. Life Sci Alliance 2019; 2:2/4/e201900346. [PMID: 31350258 PMCID: PMC6660644 DOI: 10.26508/lsa.201900346] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 11/24/2022] Open
Abstract
This study provides evidence that the NOD1/2-associated kinase RIPK2 localizes to detergent insoluble cytosolic complexes upon activation and suggests novel regulatory mechanisms for RIPK2 signaling. The receptor interacting serine/threonine kinase 2 (RIPK2) is essential for linking activation of the pattern recognition receptors NOD1 and NOD2 to cellular signaling events. Recently, it was shown that RIPK2 can form higher order molecular structures in vitro. Here, we demonstrate that RIPK2 forms detergent insoluble complexes in the cytosol of host cells upon infection with invasive enteropathogenic bacteria. Formation of these structures occurred after NF-κB activation and depended on the caspase activation and recruitment domain of NOD1 or NOD2. Complex formation upon activation required RIPK2 autophosphorylation at Y474 and was influenced by phosphorylation at S176. We found that the E3 ligase X-linked inhibitor of apoptosis (XIAP) counteracts complex formation of RIPK2, accordingly mutation of the XIAP ubiquitylation sites in RIPK2 enhanced complex formation. Taken together, our work reveals novel roles of XIAP in the regulation of RIPK2 and expands our knowledge on the function of RIPK2 posttranslational modifications in NOD1/2 signaling.
Collapse
Affiliation(s)
- Kornelia Ellwanger
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Selina Briese
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Christine Arnold
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Ioannis Kienes
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Valentin Heim
- Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Ueli Nachbur
- Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
5
|
Diao D, Wang H, Li T, Shi Z, Jin X, Sperka T, Zhu X, Zhang M, Yang F, Cong Y, Shen L, Zhan Q, Yan J, Song Z, Ju Z. Telomeric epigenetic response mediated by Gadd45a regulates stem cell aging and lifespan. EMBO Rep 2018; 19:embr.201745494. [PMID: 30126922 DOI: 10.15252/embr.201745494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/17/2022] Open
Abstract
Progressive attrition of telomeres triggers DNA damage response (DDR) and limits the regenerative capacity of adult stem cells during mammalian aging. Intriguingly, telomere integrity is not only determined by telomere length but also by the epigenetic status of telomeric/sub-telomeric regions. However, the functional interplay between DDR induced by telomere shortening and epigenetic modifications in aging remains unclear. Here, we show that deletion of Gadd45a improves the maintenance and function of intestinal stem cells (ISCs) and prolongs lifespan of telomerase-deficient mice (G3Terc -/-). Mechanistically, Gadd45a facilitates the generation of a permissive chromatin state for DDR signaling by inducing base excision repair-dependent demethylation of CpG islands specifically at sub-telomeric regions of short telomeres. Deletion of Gadd45a promotes chromatin compaction in sub-telomeric regions and attenuates DDR initiation at short telomeres of G3Terc -/- ISCs. Treatment with a small molecule inhibitor of base excision repair reduces DDR and improves the maintenance and function of G3Terc -/- ISCs. Taken together, our study proposes a therapeutic approach to enhance stem cell function and prolong lifespan by targeting epigenetic modifiers.
Collapse
Affiliation(s)
- Daojun Diao
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Hu Wang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Tangliang Li
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Zhencan Shi
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | | | - Tobias Sperka
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Xudong Zhu
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Meimei Zhang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Fan Yang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Yusheng Cong
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Li Shen
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology and Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Yan
- Zhejiang Hospital, Hangzhou, China
| | - Zhangfa Song
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital affiliated to Zhejiang University, Hangzhou, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China .,Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
6
|
Lembo-Fazio L, Billod JM, Di Lorenzo F, Paciello I, Pallach M, Vaz-Francisco S, Holgado A, Beyaert R, Fresno M, Shimoyama A, Lanzetta R, Fukase K, Gully D, Giraud E, Martín-Santamaría S, Bernardini ML, Silipo A. Bradyrhizobium Lipid A: Immunological Properties and Molecular Basis of Its Binding to the Myeloid Differentiation Protein-2/Toll-Like Receptor 4 Complex. Front Immunol 2018; 9:1888. [PMID: 30154796 PMCID: PMC6102379 DOI: 10.3389/fimmu.2018.01888] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/31/2018] [Indexed: 11/24/2022] Open
Abstract
Lipopolysaccharides (LPS) are potent activator of the innate immune response through the binding to the myeloid differentiation protein-2 (MD-2)/toll-like receptor 4 (TLR4) receptor complexes. Although a variety of LPSs have been characterized so far, a detailed molecular description of the structure–activity relationship of the lipid A part has yet to be clarified. Photosynthetic Bradyrhizobium strains, symbiont of Aeschynomene legumes, express distinctive LPSs bearing very long-chain fatty acids with a hopanoid moiety covalently linked to the lipid A region. Here, we investigated the immunological properties of LPSs isolated from Bradyrhizobium strains on both murine and human immune systems. We found that they exhibit a weak agonistic activity and, more interestingly, a potent inhibitory effect on MD-2/TLR4 activation exerted by toxic enterobacterial LPSs. By applying computational modeling techniques, we also furnished a plausible explanation for the Bradyrhizobium LPS inhibitory activity at atomic level, revealing that its uncommon lipid A chemical features could impair the proper formation of the receptorial complex, and/or has a destabilizing effect on the pre-assembled complex itself.
Collapse
Affiliation(s)
- Luigi Lembo-Fazio
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza-Università di Roma, Rome, Italy
| | - Jean-Marc Billod
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas, CIB-CSIC, Madrid, Spain
| | - Flaviana Di Lorenzo
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant'Angelo, Università di Napoli Federico II, Naples, Italy
| | - Ida Paciello
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza-Università di Roma, Rome, Italy
| | - Mateusz Pallach
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant'Angelo, Università di Napoli Federico II, Naples, Italy
| | | | - Aurora Holgado
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Manuel Fresno
- Diomune SL, Parque Científico de Madrid, Madrid, Spain
| | - Atsushi Shimoyama
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Rosa Lanzetta
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant'Angelo, Università di Napoli Federico II, Naples, Italy
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Djamel Gully
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRA/UM2/CIRAD, TA-A82/J - Campus de Baillarguet, Montpellier, France
| | - Eric Giraud
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/SupAgro/INRA/UM2/CIRAD, TA-A82/J - Campus de Baillarguet, Montpellier, France
| | - Sonsoles Martín-Santamaría
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas, CIB-CSIC, Madrid, Spain
| | - Maria-Lina Bernardini
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza-Università di Roma, Rome, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza-Università di Roma, Rome, Italy
| | - Alba Silipo
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant'Angelo, Università di Napoli Federico II, Naples, Italy
| |
Collapse
|
7
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. To Eat and to Be Eaten: Mutual Metabolic Adaptations of Immune Cells and Intracellular Bacterial Pathogens upon Infection. Front Cell Infect Microbiol 2017; 7:316. [PMID: 28752080 PMCID: PMC5508010 DOI: 10.3389/fcimb.2017.00316] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022] Open
Abstract
Intracellular bacterial pathogens (IBPs) invade and replicate in different cell types including immune cells, in particular of the innate immune system (IIS) during infection in the acute phase. However, immune cells primarily function as essential players in the highly effective and integrated host defense systems comprising the IIS and the adaptive immune system (AIS), which cooperatively protect the host against invading microbes including IBPs. As countermeasures, the bacterial pathogens (and in particular the IBPs) have developed strategies to evade or reprogram the IIS at various steps. The intracellular replication capacity and the anti-immune defense responses of the IBP's as well as the specific antimicrobial responses of the immune cells of the innate and the AIS depend on specific metabolic programs of the IBPs and their host cells. The metabolic programs of the immune cells supporting or counteracting replication of the IBPs appear to be mutually exclusive. Indeed, recent studies show that upon interaction of naïve, metabolically quiescent immune cells with IBPs, different metabolic activation processes occur which may result in the provision of a survival and replication niche for the pathogen or its eradication. It is therefore likely that within a possible host cell population subsets exist that are metabolically programmed for pro- or anti-microbial conditions. These metabolic programs may be triggered by the interactions between different bacterial agonistic components and host cell receptors. In this review, we summarize the current status in the field and discuss metabolic adaptation processes within immune cells of the IIS and the IBPs that support or restrict the intracellular replication of the pathogens.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Department of Chemistry, Chair of Biochemistry, Technische Universität MünchenGarching, Germany
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of WürzburgWürzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Chair of Medical Microbiology and Hospital Epidemiology, Ludwig Maximilian University of MunichMünchen, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Chair of Medical Microbiology and Hospital Epidemiology, Ludwig Maximilian University of MunichMünchen, Germany
| |
Collapse
|
8
|
Costa MO, Fernando C, Nosach R, Harding JCS, Hill JE. Infection of porcine colon explants with "Brachyspira hampsonii" leads to increased epithelial necrosis and catarrhal exudate. Pathog Dis 2017; 75:3078539. [PMID: 28369531 DOI: 10.1093/femspd/ftx032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/18/2017] [Indexed: 01/12/2023] Open
Abstract
Mucohemorrhagic diarrhea in pigs caused by Brachyspira spp. has a global distribution, and an economic impact on affected farms due to poor performance of animals. Demonstrations that "Brachyspira hampsonii" is pathogenic have been achieved using in vivo animal models, but a critical knowledge gap exists regarding the pathogenic mechanisms employed by Brachyspira. Here, we used in vitro organ culture of porcine colon to investigate interactions between "B. hampsonii" and explants during the first 12 h of contact. Explants were either inoculated with "B. hampsonii" or sterile culture broth. Responses to infection were evaluated by optical microscopy and quantitative PCR. Significantly greater numbers of necrotic crypt cells and thicker catarrhal exudate were observed on infected explants compared to controls. Spirochaetes were observed in the mucus layer, in contact with necrotic exfoliated cells, in crypts and the lamina propria. Statistical differences were observed in mRNA levels between inoculated and control explants for IL-1α, TNF-α and ZO-1 using a Bayesian analysis, but not observed using the ΔΔCq method. These results provide a demonstration of a porcine colon explant model for investigating interactions of Brachyspira with its host and show that initial effects on the host are observed within the first 12 h of contact.
Collapse
Affiliation(s)
- Matheus O Costa
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, SK S7N 5B4, Canada.,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, The Netherlands
| | - Champika Fernando
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, SK S7N 5B4, Canada
| | - Roman Nosach
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, SK S7N 5B4, Canada
| | - John C S Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, SK S7N 5B4, Canada
| | - Janet E Hill
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, SK S7N 5B4, Canada
| |
Collapse
|
9
|
Bonnet M, Tran Van Nhieu G. How Shigella Utilizes Ca(2+) Jagged Edge Signals during Invasion of Epithelial Cells. Front Cell Infect Microbiol 2016; 6:16. [PMID: 26904514 PMCID: PMC4748038 DOI: 10.3389/fcimb.2016.00016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/25/2016] [Indexed: 12/20/2022] Open
Abstract
Shigella, the causative agent of bacillary dysentery invades intestinal epithelial cells using a type III secretion system (T3SS). Through the injection of type III effectors, Shigella manipulates the actin cytoskeleton to induce its internalization in epithelial cells. At early invasion stages, Shigella induces atypical Ca(2+) responses confined at entry sites allowing local cytoskeletal remodeling for bacteria engulfment. Global Ca(2+) increase in the cell triggers the opening of connexin hemichannels at the plasma membrane that releases ATP in the extracellular milieu, favoring Shigella invasion and spreading through purinergic receptor signaling. During intracellular replication, Shigella regulates inflammatory and death pathways to disseminate within the epithelium. At later stages of infection, Shigella downregulates hemichannel opening and the release of extracellular ATP to dampen inflammatory signals. To avoid premature cell death, Shigella activates cell survival by upregulating the PI3K/Akt pathway and downregulating the levels of p53. Furthermore, Shigella interferes with pro-apoptotic caspases, and orients infected cells toward a slow necrotic cell death linked to mitochondrial Ca(2+) overload. In this review, we will focus on the role of Ca(2+) responses and their regulation by Shigella during the different stages of bacterial infection.
Collapse
Affiliation(s)
- Mariette Bonnet
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie, Collège de FranceParis, France; Institut National de la Santé et de la Recherche Médicale U1050Paris, France; Centre National de la Recherche Scientifique, UMR7241Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science LettreParis, France
| | - Guy Tran Van Nhieu
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie, Collège de FranceParis, France; Institut National de la Santé et de la Recherche Médicale U1050Paris, France; Centre National de la Recherche Scientifique, UMR7241Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science LettreParis, France
| |
Collapse
|
10
|
The Orchestra and Its Maestro: Shigella's Fine-Tuning of the Inflammasome Platforms. Curr Top Microbiol Immunol 2016; 397:91-115. [PMID: 27460806 DOI: 10.1007/978-3-319-41171-2_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Shigella spp. are the causative agents of bacillary dysentery, leading to extensive mortality and morbidity worldwide. These facultative intracellular bacteria invade the epithelium of the colon and the rectum, inducing a severe inflammatory response from which the symptoms of the disease originate. Shigella are human pathogens able to manipulate and subvert the innate immune system surveillance. Shigella dampens inflammasome activation in epithelial cells. In infected macrophages, inflammasome activation and IL-1β and IL-18 release lead to massive neutrophil recruitment and greatly contribute to inflammation. Here, we describe how Shigella hijacks and finely tunes inflammasome activation in the different cell populations involved in pathogenesis: epithelial cells, macrophages, neutrophils, DCs, and B and T lymphocytes. Shigella emerges as a "sly" pathogen that switches on/off the inflammasome mechanisms in order to optimize the interaction with the host and establish a successful infection.
Collapse
|
11
|
Lu R, Herrera BB, Eshleman HD, Fu Y, Bloom A, Li Z, Sacks DB, Goldberg MB. Shigella Effector OspB Activates mTORC1 in a Manner That Depends on IQGAP1 and Promotes Cell Proliferation. PLoS Pathog 2015; 11:e1005200. [PMID: 26473364 PMCID: PMC4608727 DOI: 10.1371/journal.ppat.1005200] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/10/2015] [Indexed: 12/12/2022] Open
Abstract
The intracellular bacterial pathogen Shigella infects and spreads through the human intestinal epithelium. Effector proteins delivered by Shigella into cells promote infection by modulating diverse host functions. We demonstrate that the effector protein OspB interacts directly with the scaffolding protein IQGAP1, and that the absence of either OspB or IQGAP1 during infection leads to larger areas of S. flexneri spread through cell monolayers. We show that the effect on the area of bacterial spread is due to OspB triggering increased cell proliferation at the periphery of infected foci, thereby replacing some of the cells that die within infected foci and restricting the area of bacterial spread. We demonstrate that OspB enhancement of cell proliferation results from activation of mTORC1, a master regulator of cell growth, and is blocked by the mTORC1-specific inhibitor rapamycin. OspB activation of mTORC1, and its effects on cell proliferation and bacterial spread, depends on IQGAP1. Our results identify OspB as a regulator of mTORC1 and mTORC1-dependent cell proliferation early during S. flexneri infection and establish a role for IQGAP1 in mTORC1 signaling. They also raise the possibility that IQGAP1 serves as a scaffold for the assembly of an OspB-mTORC1 signaling complex. During infection, Shigella spp. deliver into the cytoplasm of cells effector proteins that manipulate host cell processes in ways that promote infection and bacterial spread. We have discovered that the Shigella effector protein OspB interacts with the cellular scaffolding protein IQGAP1. OspB induces increased cell proliferation by activating mTORC1 kinase, a master regulator of cellular growth, in a manner that depends on IQGAP1. As IQGAP1 has been shown to interact with mTOR and with the mTORC1 activators ERK1/2, we propose that IQGAP1 serves as a scaffold for OspB activation of mTORC1. The presence of OspB and IQGAP1 lead to restricting the area of spread of S. flexneri in cell monolayers; our data support a model in which the effect of OspB and IQGAP1 on the area of S. flexneri spread is due to effects on cell proliferation locally within infected foci. As infection of cells and tissue by Shigella spp. leads to cell death, increased local cellular proliferation may serve to provide additional protective intracellular niches for the organism within infected tissue.
Collapse
Affiliation(s)
- Richard Lu
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bobby Brooke Herrera
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
| | - Heather D. Eshleman
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yang Fu
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
| | - Alexander Bloom
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
| | - Zhigang Li
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David B. Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marcia B. Goldberg
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
12
|
Ashida H, Kim M, Sasakawa C. Manipulation of the host cell death pathway by Shigella. Cell Microbiol 2014; 16:1757-66. [PMID: 25264025 DOI: 10.1111/cmi.12367] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/11/2014] [Accepted: 08/21/2014] [Indexed: 12/25/2022]
Abstract
Host cells deploy multiple defences against microbial infection. One prominent host defence mechanism, the death of infected cells, plays a pivotal role in clearing damaged cells, eliminating pathogens, removing replicative niches, exposing intracellular bacterial pathogens to extracellular immune surveillance and presenting bacteria-derived antigens to the adaptive immune system. Although cell death can occur under either physiological or pathophysiological conditions, it acts as an innate defence mechanism against bacterial pathogens by limiting their persistent colonization. However, many bacterial pathogens, including Shigella, have evolved mechanisms that manipulate host cell death for their own benefit.
Collapse
Affiliation(s)
- Hiroshi Ashida
- Division of Bacterial Infection Biology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | | | | |
Collapse
|
13
|
Nothelfer K, Arena ET, Pinaud L, Neunlist M, Mozeleski B, Belotserkovsky I, Parsot C, Dinadayala P, Burger-Kentischer A, Raqib R, Sansonetti PJ, Phalipon A. B lymphocytes undergo TLR2-dependent apoptosis upon Shigella infection. ACTA ACUST UNITED AC 2014; 211:1215-29. [PMID: 24863068 PMCID: PMC4042640 DOI: 10.1084/jem.20130914] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Shigella flexneri interacts with B cells and induces apoptosis via IpaD binding to TLR2. Antibody-mediated immunity to Shigella, the causative agent of bacillary dysentery, requires several episodes of infection to get primed and is short-lasting, suggesting that the B cell response is functionally impaired. We show that upon ex vivo infection of human colonic tissue, invasive S. flexneri interacts with and occasionally invades B lymphocytes. The induction of a type three secretion apparatus (T3SA)–dependent B cell death is observed in the human CL-01 B cell line in vitro, as well as in mouse B lymphocytes in vivo. In addition to cell death occurring in Shigella-invaded CL-01 B lymphocytes, we provide evidence that the T3SA needle tip protein IpaD can induce cell death in noninvaded cells. IpaD binds to and induces B cell apoptosis via TLR2, a signaling receptor thus far considered to result in activation of B lymphocytes. The presence of bacterial co-signals is required to sensitize B cells to apoptosis and to up-regulate tlr2, thus enhancing IpaD binding. Apoptotic B lymphocytes in contact with Shigella-IpaD are detected in rectal biopsies of infected individuals. This study therefore adds direct B lymphocyte targeting to the diversity of mechanisms used by Shigella to dampen the host immune response.
Collapse
Affiliation(s)
- Katharina Nothelfer
- Institut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, FranceInstitut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, France
| | - Ellen T Arena
- Institut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, FranceInstitut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, France
| | - Laurie Pinaud
- Institut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, FranceInstitut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, France Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur UPMC, 75013 Paris, France
| | - Michel Neunlist
- INSERM U913, Institut des Maladies de l'Appareil Digestif du Centre Hospitalier Universitaire de Nantes, 44093 Nantes, France
| | - Brian Mozeleski
- Institut Pasteur, INSERM U1041, Unité de Régulation Immunitaire et Vaccinologie, 75015 Paris, France Institut Pasteur, INSERM U1041, Unité de Régulation Immunitaire et Vaccinologie, 75015 Paris, France
| | - Ilia Belotserkovsky
- Institut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, FranceInstitut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, France
| | - Claude Parsot
- Institut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, FranceInstitut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, France
| | | | - Anke Burger-Kentischer
- Molekulare Biotechnologie, Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, 70569 Stuttgart, Germany
| | - Rubhana Raqib
- Laboratory Sciences Division, International Centre for Diarrhoeal Diseases Research, Bangladesh (ICDDR,B), Dhaka 1000, Bangladesh
| | - Philippe J Sansonetti
- Institut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, FranceInstitut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, France Chaire de Microbiologie et Maladies Infectieuses, Collège de France, 75005 Paris, France
| | - Armelle Phalipon
- Institut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, FranceInstitut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, France
| |
Collapse
|
14
|
Pathogenesis of human enterovirulent bacteria: lessons from cultured, fully differentiated human colon cancer cell lines. Microbiol Mol Biol Rev 2014; 77:380-439. [PMID: 24006470 DOI: 10.1128/mmbr.00064-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hosts are protected from attack by potentially harmful enteric microorganisms, viruses, and parasites by the polarized fully differentiated epithelial cells that make up the epithelium, providing a physical and functional barrier. Enterovirulent bacteria interact with the epithelial polarized cells lining the intestinal barrier, and some invade the cells. A better understanding of the cross talk between enterovirulent bacteria and the polarized intestinal cells has resulted in the identification of essential enterovirulent bacterial structures and virulence gene products playing pivotal roles in pathogenesis. Cultured animal cell lines and cultured human nonintestinal, undifferentiated epithelial cells have been extensively used for understanding the mechanisms by which some human enterovirulent bacteria induce intestinal disorders. Human colon carcinoma cell lines which are able to express in culture the functional and structural characteristics of mature enterocytes and goblet cells have been established, mimicking structurally and functionally an intestinal epithelial barrier. Moreover, Caco-2-derived M-like cells have been established, mimicking the bacterial capture property of M cells of Peyer's patches. This review intends to analyze the cellular and molecular mechanisms of pathogenesis of human enterovirulent bacteria observed in infected cultured human colon carcinoma enterocyte-like HT-29 subpopulations, enterocyte-like Caco-2 and clone cells, the colonic T84 cell line, HT-29 mucus-secreting cell subpopulations, and Caco-2-derived M-like cells, including cell association, cell entry, intracellular lifestyle, structural lesions at the brush border, functional lesions in enterocytes and goblet cells, functional and structural lesions at the junctional domain, and host cellular defense responses.
Collapse
|
15
|
Lum M, Morona R. Dynamin-related protein Drp1 and mitochondria are important for Shigella flexneri infection. Int J Med Microbiol 2014; 304:530-41. [PMID: 24755420 DOI: 10.1016/j.ijmm.2014.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/17/2014] [Accepted: 03/24/2014] [Indexed: 12/26/2022] Open
Abstract
Shigella infection in epithelial cells induces cell death which is accompanied by mitochondrial dysfunction. In this study the role of the mitochondrial fission protein, Drp1 during Shigella infection in HeLa cells was examined. Significant lactate dehydrogenase (LDH) release was detected in the culture supernatant when HeLa cells were infected with Shigella at a high multiplicity of infection. Drp1 inhibition with Mdivi-1 and siRNA knockdown significantly reduced LDH release. HeLa cell death was also accompanied by mitochondrial fragmentation. Tubular mitochondrial networks were partially restored when Drp1 was depleted with either siRNA or inhibited with Mdivi-1. Surprisingly either Mdivi-1 treatment or Drp1 siRNA-depletion of HeLa cells also reduced Shigella plaque formation. The effect of Mdivi-1 on Shigella infection was assessed using the murine Sereny model, however it had no impact on ocular inflammation. Overall our results suggest that Drp1 and the mitochondria play important roles during Shigella infection.
Collapse
Affiliation(s)
- Mabel Lum
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Renato Morona
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
16
|
Intracellular Shigella remodels its LPS to dampen the innate immune recognition and evade inflammasome activation. Proc Natl Acad Sci U S A 2013; 110:E4345-54. [PMID: 24167293 DOI: 10.1073/pnas.1303641110] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
LPS is a potent bacterial effector triggering the activation of the innate immune system following binding with the complex CD14, myeloid differentiation protein 2, and Toll-like receptor 4. The LPS of the enteropathogen Shigella flexneri is a hexa-acylated isoform possessing an optimal inflammatory activity. Symptoms of shigellosis are produced by severe inflammation caused by the invasion process of Shigella in colonic and rectal mucosa. Here we addressed the question of the role played by the Shigella LPS in eliciting a dysregulated inflammatory response of the host. We unveil that (i) Shigella is able to modify the LPS composition, e.g., the lipid A and core domains, during proliferation within epithelial cells; (ii) the LPS of intracellular bacteria (iLPS) and that of bacteria grown in laboratory medium differ in the number of acyl chains in lipid A, with iLPS being the hypoacylated; (iii) the immunopotential of iLPS is dramatically lower than that of bacteria grown in laboratory medium; (iv) both LPS forms mainly signal through the Toll-like receptor 4/myeloid differentiation primary response gene 88 pathway; (v) iLPS down-regulates the inflammasome-mediated release of IL-1β in Shigella-infected macrophages; and (vi) iLPS exhibits a reduced capacity to prime polymorfonuclear cells for an oxidative burst. We propose a working model whereby the two forms of LPS might govern different steps of the invasive process of Shigella. In the first phases, the bacteria, decorated with hypoacylated LPS, are able to lower the immune system surveillance, whereas, in the late phases, shigellae harboring immunopotent LPS are fully recognized by the immune system, which can then successfully resolve the infection.
Collapse
|
17
|
Fang SB, Schüller S, Phillips AD. Human Intestinal In Vitro Organ Culture as a Model for Investigation of Bacteria–Host Interactions. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.jecm.2013.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Abstract
The use of probiotic strains as nutritional supplements has been gaining ground in the last decade. As the mechanisms with which they modulate innate and adaptive immunity start to unravel, probiotics have repeatedly been suggested as potential treatment for a wide variety of diseases, including inflammatory bowel disease (IBD). However, even though the benefits of probiotic treatment for conditions like atopic dermatitis are well established, very limited clinical benefit has been obtained on IBD treatment. This could be due to the lack of suitable models on which to obtain valid pre-clinical data to select the most appropriate strain for a given condition. We recently described a newly developed model for the culture and apical stimulation of whole human intestinal mucosal explants. We showed that the tissue was only viable if incubated in an O(2) chamber, but it was possible to stimulate the tissue with bacteria in a conventional incubator. We used the new set-up to test three different Lactobacilli strains, none of which appeared to be benign on inflamed IBD mucosa.
Collapse
Affiliation(s)
- Katerina Tsilingiri
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | | |
Collapse
|
19
|
Teo I, Toms SM, Marteyn B, Barata TS, Simpson P, Johnston KA, Schnupf P, Puhar A, Bell T, Tang C, Zloh M, Matthews S, Rendle PM, Sansonetti PJ, Shaunak S. Preventing acute gut wall damage in infectious diarrhoeas with glycosylated dendrimers. EMBO Mol Med 2012; 4:866-81. [PMID: 22887873 PMCID: PMC3491821 DOI: 10.1002/emmm.201201290] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 06/15/2012] [Accepted: 06/22/2012] [Indexed: 01/25/2023] Open
Abstract
Intestinal pathogens use the host's excessive inflammatory cytokine response, designed to eliminate dangerous bacteria, to disrupt epithelial gut wall integrity and promote their tissue invasion. We sought to develop a non-antibiotic-based approach to prevent this injury. Molecular docking studies suggested that glycosylated dendrimers block the TLR4-MD-2-LPS complex, and a 13.6 kDa polyamidoamine (PAMAM) dendrimer glucosamine (DG) reduced the induction of human monocyte interleukin (IL)-6 by Gram-negative bacteria. In a rabbit model of shigellosis, PAMAM-DG prevented epithelial gut wall damage and intestinal villous destruction, reduced local IL-6 and IL-8 expression, and minimized bacterial invasion. Computational modelling studies identified a 3.3 kDa polypropyletherimine (PETIM)-DG as the smallest likely bioactive molecule. In human monocytes, high purity PETIM-DG potently inhibited Shigella Lipid A-induced IL-6 expression. In rabbits, PETIM-DG prevented Shigella-induced epithelial gut wall damage, reduced local IL-6 and IL-8 expression, and minimized bacterial invasion. There was no change in β-defensin, IL-10, interferon-β, transforming growth factor-β, CD3 or FoxP3 expression. Small and orally delivered DG could be useful for preventing gut wall tissue damage in a wide spectrum of infectious diarrhoeal diseases. –>See accompanying article http://dx.doi.org/10.1002/emmm.201201668
Collapse
Affiliation(s)
- Ian Teo
- Departments of Medicine, Infectious Diseases & Immunity, Imperial College London, Hammersmith Hospital, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bergounioux J, Elisee R, Prunier AL, Donnadieu F, Sperandio B, Sansonetti P, Arbibe L. Calpain activation by the Shigella flexneri effector VirA regulates key steps in the formation and life of the bacterium's epithelial niche. Cell Host Microbe 2012; 11:240-52. [PMID: 22423964 DOI: 10.1016/j.chom.2012.01.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 09/15/2011] [Accepted: 01/20/2012] [Indexed: 01/22/2023]
Abstract
The enteropathogen Shigella flexneri invades epithelial cells, leading to inflammation and tissue destruction. We report that Shigella infection of epithelial cells induces an early genotoxic stress, but the resulting p53 response and cell death are impaired due to the bacterium's ability to promote p53 degradation, mainly through calpain protease activation. Calpain activation is promoted by the Shigella virulence effector VirA and dependent on calcium flux and the depletion of the endogenous calpain inhibitor calpastatin. Further, although VirA-induced calpain activity is critical for regulating cytoskeletal events driving bacterial uptake, calpain activation ultimately leads to necrotic cell death, thereby restricting Shigella intracellular growth. Therefore, calpains work at multiple steps in regulating Shigella pathogenesis by disrupting the p53-dependent DNA repair response early during infection and regulating both formation and ultimate death of the Shigella epithelial replicative niche.
Collapse
Affiliation(s)
- Jean Bergounioux
- Unité de Pathogénie Microbienne Moléculaire, Département de Biologie Cellulaire et Infection, Institut Pasteur, Paris, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Bucur O, Stancu AL, Khosravi-Far R, Almasan A. Analysis of apoptosis methods recently used in Cancer Research and Cell Death & Disease publications. Cell Death Dis 2012; 3:e263. [PMID: 22297295 PMCID: PMC3288344 DOI: 10.1038/cddis.2012.2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|