1
|
Ye Y, Xie W, Wang X, Tan S, Yang L, Ma Z, Zhu Z, Chen X, Liu X, O'Neill E, Chang L, Zhang W. DNA-damage orchestrates self-renewal and differentiation via reciprocal p53 family and Hippo/Wnt/TGF-β pathway activation in embryonic stem cells. Cell Mol Life Sci 2025; 82:38. [PMID: 39762370 PMCID: PMC11704118 DOI: 10.1007/s00018-024-05561-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/18/2024] [Accepted: 12/22/2024] [Indexed: 01/30/2025]
Abstract
The mechanism by which DNA-damage affects self-renewal and pluripotency remains unclear. DNA damage and repair mechanisms have been largely elucidated in mutated cancer cells or simple eukaryotes, making valid interpretations on early development difficult. Here we show the impact of ionizing irradiation on the maintenance and early differentiation of mouse embryonic stem cells (ESCs). Our findings demonstrate that irradiation induces the upregulation of the p53 family genes, including p53, p63, and p73, resulting in elevated expression of the E3 ubiquitin ligases Itch and Trim32. Consequently, this impairs ESC maintenance by reducing the protein levels of key pluripotency transcription factors in both mouse ESCs and early embryos. Notably, our study reveals that irradiation-induced DNA damage leads to the recruitment of the BAF complex, causing it to dissociate from its binding sites on the target genes associated with the Yap, Wnt, and TGF-β pathways, thereby increasing signaling and promoting differentiation of ESCs into all three lineages. Importantly, pathway inhibition demonstrates that DNA damage accelerated ESC differentiation relies on Wnt and TGF-β, and is selectively dependent on p53 or p63/ p73 for mesoderm and endoderm respectively. Finally, our study reveals that p53 family proteins form complexes with effector proteins of key signaling pathways which actively contribute to ESC differentiation. In summary, this study uncovered a mechanism by which multiple differentiation signaling pathways converge on the p53 family genes to promote ESC differentiation and are impacted by exposure to ionizing radiation.
Collapse
Affiliation(s)
- Ying Ye
- Department of Clinical Pathobiology and Immunological Testing, School of Medical Laboratory, Qilu Medical University, Zibo, 255300, China
| | - Wenyan Xie
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Xuepeng Wang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Shuping Tan
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Lingyue Yang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong, China
| | - Zhaoru Ma
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China
| | - Zhexin Zhu
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, 4090 Guanhai Road, Heifei, China
| | - Xi Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xiaoyu Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200120, China
| | - Eric O'Neill
- Department of Oncology, University of Oxford, Oxford, UK.
| | - Lei Chang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Province International Joint Laboratory for Regeneration Medicine, Medical College of Soochow University, Suzhou, China.
| | - Wensheng Zhang
- Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China.
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China.
| |
Collapse
|
2
|
Hu C, Sun Y, Li W, Bi Y. Hypoxia improves self-renew and migration of urine-derived stem cells by upregulating autophagy and mitochondrial function through ERK signal pathway. Mitochondrion 2023; 73:1-9. [PMID: 37678426 DOI: 10.1016/j.mito.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/10/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Urine-derived stem cells (USCs) are autologous stem cells with self-renewal ability and multi-lineage differentiation potential. Our previous studies have shown that hypoxia preconditioning can improve self-renewal and migration abilities of USCs by up-regulating autophagy. The purpose of this study was to investigate the specific mechanism by which hypoxia treatment promotes the biological function of USCs. We found that hypoxia treatment upregulated the expression of phosphralated ERK protein without affecting the expression of total ERK protein. Inhibiting ERK signaling with the PD98059 inhibitor decreased cell proliferation, migration and colony formation during hypoxia treatment. Hypoxia increased ATP production, mitochondrial membrane potential and mt-DNA copy number, which were reversed by inhibiting the ERK signal. Additionally, the number of autophagosomes and autophagic lysosomes was significantly lower in PD98059 group than in the hypoxia group. PD98059 treatment inhibited the up-regulation of autophagy related proteins induced by hypoxia. Therefore, this study suggests that hypoxia improves the self-renewal and migration abilities of USCs by upregulating autophagy and mitochondrial function through ERK signaling pathway. This finding may provide a new therapeutic mechanism for hypoxia pretreated USCs as a source of stem cell transplantation.
Collapse
Affiliation(s)
- Chaoqun Hu
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, The Children's Hospital of Chongqing Medical University, Chongqing, China; Digestive Department, Chongqing People's Hospital, Chongqing, China
| | - Yanting Sun
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, The Children's Hospital of Chongqing Medical University, Chongqing, China; Centre of Clinical Laboratory, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wanxia Li
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Bi
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, The Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Kolahdouzmohammadi M, Pahlavan S, Sotoodehnejadnematalahi F, Tahamtani Y, Totonchi M. Activation of AMPK promotes cardiac differentiation by stimulating the autophagy pathway. J Cell Commun Signal 2023; 17:939-955. [PMID: 37040028 PMCID: PMC10409960 DOI: 10.1007/s12079-023-00744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/22/2023] [Indexed: 04/12/2023] Open
Abstract
Autophagy, a critical catabolic process for cell survival against different types of stress, has a role in the differentiation of various cells, such as cardiomyocytes. Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) is an energy-sensing protein kinase involved in the regulation of autophagy. In addition to its direct role in regulating autophagy, AMPK can also influence other cellular processes by regulating mitochondrial function, posttranslational acetylation, cardiomyocyte metabolism, mitochondrial autophagy, endoplasmic reticulum stress, and apoptosis. As AMPK is involved in the control of various cellular processes, it can influence the health and survival of cardiomyocytes. This study investigated the effects of an AMPK inducer (Metformin) and an autophagy inhibitor (Hydroxychloroquine) on the differentiation of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs). The results showed that autophagy was upregulated during cardiac differentiation. Furthermore, AMPK activation increased the expression of CM-specific markers in hPSC-CMs. Additionally, autophagy inhibition impaired cardiomyocyte differentiation by targeting autophagosome-lysosome fusion. These results indicate the significance of autophagy in cardiomyocyte differentiation. In conclusion, AMPK might be a promising target for the regulation of cardiomyocyte generation by in vitro differentiation of pluripotent stem cells.
Collapse
Affiliation(s)
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mehdi Totonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
4
|
p53 Inhibition in Pancreatic Progenitors Enhances the Differentiation of Human Pluripotent Stem Cells into Pancreatic β-Cells. Stem Cell Rev Rep 2023; 19:942-952. [PMID: 36707464 DOI: 10.1007/s12015-023-10509-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 01/29/2023]
Abstract
The multipotent pancreatic progenitor cells (MPCs) co-expressing the transcription factors, PDX1 and NKX6.1, are the source of functional pancreatic β-cells. The aim of this study was to examine the effect of p53 inhibition in MPCs on the generation of PDX1+/NKX6.1+ MPCs and pancreatic β-cell generation. Human embryonic stem cells (hESCs) were differentiated into MPCs and β-cells. hESC-MPCs (stage 4) were treated with different concentrations of p53 inhibitors, and their effect was evaluated using different approaches. NKX6.1 was overexpressed during MPCs specification. Inhibition of p53 using pifithrin-μ (PFT-μ) at the MPC stage resulted in a significant increase in the number of PDX1+/NKX6.1+ cells and a reduction in the number of CHGA+/NKX6.1- cells. Further differentiation of MPCs treated with PFT-μ into pancreatic β-cells showed that PFT-μ treatment did not significantly change the number of C-Peptide+ cells; however, the number of C-PEP+ cells co-expressing glucagon (polyhormonal) was significantly reduced in the PFT-μ treated cells. Interestingly, overexpression of NKX6.1 in hESC-MPCs enhanced the expression of key MPC genes and dramatically suppressed p53 expression. Our findings demonstrated that the p53 inhibition during stage 4 of differentiation enhanced MPC generation, prevented premature endocrine induction and favored the differentiation into monohormonal β-cells. These findings suggest that adding a p53 inhibitor to the differentiation media can significantly enhance the generation of monohormonal β-cells.
Collapse
|
5
|
Maternal Undernutrition Induces Cell Signalling and Metabolic Dysfunction in Undifferentiated Mouse Embryonic Stem Cells. Stem Cell Rev Rep 2022; 19:767-783. [PMID: 36517693 PMCID: PMC10070223 DOI: 10.1007/s12015-022-10490-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Abstract
Peri-conceptional environment can induce permanent changes in embryo phenotype which alter development and associate with later disease susceptibility. Thus, mouse maternal low protein diet (LPD) fed exclusively during preimplantation is sufficient to lead to cardiovascular, metabolic and neurological dysfunction in adult offspring. Embryonic stem cell (ESC) lines were generated from LPD and control NPD C57BL/6 blastocysts and characterised by transcriptomics, metabolomics, bioinformatics and molecular/cellular studies to assess early potential mechanisms in dietary environmental programming. Previously, we showed these lines retain cellular and epigenetic characteristics of LPD and NPD embryos after several passages. Here, three main changes were identified in LPD ESC lines. First, their derivation capacity was reduced but pluripotency marker expression was similar to controls. Second, LPD lines had impaired Mitogen-activated protein kinase (MAPK) pathway with altered gene expression of several regulators (e.g., Maff, Rassf1, JunD), reduced ERK1/2 signalling capacity and poorer cell survival characteristics which may contribute to reduced derivation. Third, LPD lines had impaired glucose metabolism comprising reduced upstream enzyme expression (e.g., Gpi, Mpi) and accumulation of metabolites (e.g., glucose-6-P, fructose-6-P) above the phosphofructokinase (PFK) gateway with PFK enzyme activity reduced. ESC lines may therefore permit investigation of peri-conceptional programming mechanisms with reduced need for animal experimentation.
Graphical Abstract
Collapse
|
6
|
Harikumar A, Lim PSL, Nissim-Rafinia M, Park JE, Sze SK, Meshorer E. Embryonic Stem Cell Differentiation Is Regulated by SET through Interactions with p53 and β-Catenin. Stem Cell Reports 2021; 15:1260-1274. [PMID: 33296674 PMCID: PMC7724474 DOI: 10.1016/j.stemcr.2020.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
The multifunctional histone chaperone, SET, is essential for embryonic development in the mouse. Previously, we identified SET as a factor that is rapidly downregulated during embryonic stem cell (ESC) differentiation, suggesting a possible role in the maintenance of pluripotency. Here, we explore SET's function in early differentiation. Using immunoprecipitation coupled with protein quantitation by LC-MS/MS, we uncover factors and complexes, including P53 and β-catenin, by which SET regulates lineage specification. Knockdown for P53 in SET-knockout (KO) ESCs partially rescues lineage marker misregulation during differentiation. Paradoxically, SET-KO ESCs show increased expression of several Wnt target genes despite reduced levels of active β-catenin. Further analysis of RNA sequencing datasets hints at a co-regulatory relationship between SET and TCF proteins, terminal effectors of Wnt signaling. Overall, we discover a role for both P53 and β-catenin in SET-regulated early differentiation and raise a hypothesis for SET function at the β-catenin-TCF regulatory axis.
Collapse
Affiliation(s)
- Arigela Harikumar
- Department of Genetics, The Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Patrick S L Lim
- Department of Genetics, The Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Malka Nissim-Rafinia
- Department of Genetics, The Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Jung Eun Park
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Eran Meshorer
- Department of Genetics, The Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; The Edmond and Lily Safra Center for Brain Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
7
|
Brandt EB, Li X, Nelson TJ. Activation of P53 Via Nutlin-3a Reveals Role for P53 In ROS Signaling During Cardiac Differentiation of hiPSCs. JOURNAL OF STEM CELL REPORTS 2021; 3:101. [PMID: 34485982 PMCID: PMC8415805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Activation of the transcription factor P53 within cancer cells is a well-characterized pathway, whereas the effects of P53 activation during development remain largely unexplored. Previous research has indicated that increased levels of P53 protein during key murine developmental stages cause defects in multiple embryonic tissues, including the heart. These findings were confirmed in several different mouse models of congenital heart defects, but P53 activation in a human system of cardiovascular development is not available. Utilizing human induced pluripotent stem cells (hiPSCs), we characterized the normal levels of P53 during cardiac differentiation and showed that levels of P53 are high in hiPSCs and decrease upon cardiac lineage commitment. We also observed P53 localization changed from mainly cytoplasmic in iPS colonies to the nucleus in the Nkx2-5 + cardiac progenitor stage. Pharmacological-mediated increase of P53 protein levels with the Mdm2 inhibitor Nutlin-3a during early (mesoderm to cardiac mesoderm) stages of cardiogenesis resulted in a sizeable loss of cardiomyocytes due to increased apoptosis and cell cycle arrest. Interestingly, increasing P53 levels did not result in apoptosis at later (cardiac progenitor to beating cardiomyocytes) stages of the cardiac differentiation. These results illustrate the temporal sensitivity to increased P53 levels during cardiogenesis. We conducted RNA-Seq on these cells with or without Nutlin-3a to ascertain transcriptional differences due to increased P53 at the different stages during the differentiation. Our results from the RNA-Seq revealed up-regulation of Sestrins after Nutlin-3a treatment suggesting a new role for P53 in the metabolism of cardiac regeneration.
Collapse
Affiliation(s)
- Emma B Brandt
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
- Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Xing Li
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Timothy J Nelson
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
- Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of General Internal Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
8
|
Zhu J, Singh M, Selivanova G, Peuget S. Pifithrin-α alters p53 post-translational modifications pattern and differentially inhibits p53 target genes. Sci Rep 2020; 10:1049. [PMID: 31974452 PMCID: PMC6978515 DOI: 10.1038/s41598-020-58051-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/06/2020] [Indexed: 11/19/2022] Open
Abstract
Pifithrin-α (PFT-α) is a small molecule which has been widely used as a specific inhibitor of p53 transcription activity. However, its molecular mechanism of action remains unclear. PFT-α has also been described to display potent p53-independent activity in cells. In this study, we addressed the mechanism of action of PFT-α. We found that PFT-α failed to prevent the effects of Mdm2 inhibitor Nutlin-3 on cell cycle and apoptosis in several cancer cell lines. However, PFT-α rescued normal primary fibroblasts from growth inhibition by Nutlin-3. PFT-α displayed a very limited effect on p53-dependent transcription upon its activation by Nutlin-3. Moreover, PFT-α inhibitory effect on transcription was highly dependent on the nature of the p53 target gene. PFT-α attenuated post-translational modifications of p53 without affecting total p53 protein level. Finally, we found that PFT-α can decrease the level of intracellular reactive oxygen species through activation of an aryl hydrocarbon receptor (AHR)-Nrf2 axis in a p53-independent manner. In conclusion, PFT-α inhibits only some aspects of p53 function, therefore it should be used with extreme caution to study p53-dependent processes.
Collapse
Affiliation(s)
- Jiawei Zhu
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Madhurendra Singh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Galina Selivanova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Sylvain Peuget
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
9
|
Madan E, Pelham CJ, Nagane M, Parker TM, Canas-Marques R, Fazio K, Shaik K, Yuan Y, Henriques V, Galzerano A, Yamashita T, Pinto MAF, Palma AM, Camacho D, Vieira A, Soldini D, Nakshatri H, Post SR, Rhiner C, Yamashita H, Accardi D, Hansen LA, Carvalho C, Beltran AL, Kuppusamy P, Gogna R, Moreno E. Flower isoforms promote competitive growth in cancer. Nature 2019; 572:260-264. [PMID: 31341286 DOI: 10.1038/s41586-019-1429-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/26/2019] [Indexed: 12/28/2022]
Abstract
In humans, the adaptive immune system uses the exchange of information between cells to detect and eliminate foreign or damaged cells; however, the removal of unwanted cells does not always require an adaptive immune system1,2. For example, cell selection in Drosophila uses a cell selection mechanism based on 'fitness fingerprints', which allow it to delay ageing3, prevent developmental malformations3,4 and replace old tissues during regeneration5. At the molecular level, these fitness fingerprints consist of combinations of Flower membrane proteins3,4,6. Proteins that indicate reduced fitness are called Flower-Lose, because they are expressed in cells marked to be eliminated6. However, the presence of Flower-Lose isoforms at a cell's membrane does not always lead to elimination, because if neighbouring cells have similar levels of Lose proteins, the cell will not be killed4,6,7. Humans could benefit from the capability to recognize unfit cells, because accumulation of damaged but viable cells during development and ageing causes organ dysfunction and disease8-17. However, in Drosophila this mechanism is hijacked by premalignant cells to gain a competitive growth advantage18. This would be undesirable for humans because it might make tumours more aggressive19-21. It is unknown whether a similar mechanism of cell-fitness comparison is present in humans. Here we show that two human Flower isoforms (hFWE1 and hFWE3) behave as Flower-Lose proteins, whereas the other two isoforms (hFWE2 and hFWE4) behave as Flower-Win proteins. The latter give cells a competitive advantage over cells expressing Lose isoforms, but Lose-expressing cells are not eliminated if their neighbours express similar levels of Lose isoforms; these proteins therefore act as fitness fingerprints. Moreover, human cancer cells show increased Win isoform expression and proliferate in the presence of Lose-expressing stroma, which confers a competitive growth advantage on the cancer cells. Inhibition of the expression of Flower proteins reduces tumour growth and metastasis, and induces sensitivity to chemotherapy. Our results show that ancient mechanisms of cell recognition and selection are active in humans and affect oncogenic growth.
Collapse
Affiliation(s)
- Esha Madan
- Champalimaud Centre for the Unknown, Lisbon, Portugal.,Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Christopher J Pelham
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, MO, USA
| | - Masaki Nagane
- Department of Biochemistry, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Taylor M Parker
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Biochemistry and Molecular Biology, IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Kimberly Fazio
- Department of Biomedical Sciences, Creighton University, Omaha, NE, USA
| | - Kranti Shaik
- Department of Biomedical Sciences, Creighton University, Omaha, NE, USA
| | - Youzhong Yuan
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | - Tadashi Yamashita
- Department of Biochemistry, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | | | | | | | - Ana Vieira
- Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - David Soldini
- Institute for Surgical Pathology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Harikrishna Nakshatri
- Department of Biochemistry and Molecular Biology, IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Steven R Post
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Hiroko Yamashita
- Department of Breast Surgery, Hokkaido University Hospital, Sapporo, Japan
| | | | - Laura A Hansen
- Department of Biomedical Sciences, Creighton University, Omaha, NE, USA
| | | | | | - Periannan Kuppusamy
- Department of Radiology and Medicine, Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Rajan Gogna
- Champalimaud Centre for the Unknown, Lisbon, Portugal. .,Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | | |
Collapse
|
10
|
Sarni AR, Baroni L. Milk and Parkinson disease: Could galactose be the missing link. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2019. [DOI: 10.3233/mnm-180234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Luciana Baroni
- Primary Care Unit, Northern District, Local Health Unit 2 Marca Trevigiana, Treviso, Italy
| |
Collapse
|
11
|
Khole S, Mittal S, Jagadish N, Ghosh D, Gadgil V, Sinkar V, Ghaskadbi S. Andrographolide enhances redox status of liver cells by regulating microRNA expression. Free Radic Biol Med 2019; 130:397-407. [PMID: 30414976 DOI: 10.1016/j.freeradbiomed.2018.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/03/2018] [Accepted: 11/04/2018] [Indexed: 12/21/2022]
Abstract
Andrographis paniculata Nees and its principal compound andrographolide are well known for exerting beneficial effects by modulating signaling pathways in different biological systems. Our earlier studies have demonstrated the ability of andrographolide as well as andrographolide enriched extracts to activate Nrf2/HO-1 pathway through adenosine A2a receptor. Present study investigated ability of andrographolide to regulate Nrf2 induced antioxidant defense systems by miRNAs using HepG2 cells. Andrographolide strongly induced Nrf2 which in turn modulated enzymes of glutathione and thioredoxin antioxidant systems. It also regulated crucial transcription factors viz. hepatocyte nuclear factor alpha (HNF4A) and tumor suppressor protein 53 (p53). Downregulation of HNF4A by andrographolide led to decrease in miRNAs regulating Heme oxygenase-1 (miR-377) and glutathione cysteine ligase (miR-433). Upregulation of p53 on the other hand led to increase in miRNAs regulating thioredoxin interacting protein (miR-17, miR-224) and glutathione peroxidase (miR-181a). Involvement of p53 and HNF4A in modulation of these miRNAs was confirmed by chromatin immunoprecipitation assay. Overall, the work reveals that andrographolide through modulation of p53 and HNF4A, regulates miRNAs leading to upregulation of HO-1, glutathione and thioredoxin systems. Andrographolide thus, can play a beneficial role in modulating antioxidant defense in oxidative stress induced diseases such as diabetes, ageing etc.
Collapse
Affiliation(s)
- Swati Khole
- Department of Zoology, Savitribai Phule Pune University (SPPU), Ganeshkhind, Pune 411007, Maharashtra, India
| | - Smriti Mittal
- Department of Zoology, Savitribai Phule Pune University (SPPU), Ganeshkhind, Pune 411007, Maharashtra, India; Department of Biotechnology, Savitribai Phule Pune University (SPPU), Ganeshkhind, Pune 411007, Maharashatra, India
| | - Nidhi Jagadish
- Strategic Science Group, Naturals and Traditional Medicine, Unilever R&D Bangalore, 64, Main Road, Whitefield, Bangalore 560066, Karnataka, India
| | - Debjani Ghosh
- Strategic Science Group, Naturals and Traditional Medicine, Unilever R&D Bangalore, 64, Main Road, Whitefield, Bangalore 560066, Karnataka, India
| | - Vijay Gadgil
- Strategic Science Group, Naturals and Traditional Medicine, Unilever R&D Bangalore, 64, Main Road, Whitefield, Bangalore 560066, Karnataka, India
| | - Vilas Sinkar
- Strategic Science Group, Naturals and Traditional Medicine, Unilever R&D Bangalore, 64, Main Road, Whitefield, Bangalore 560066, Karnataka, India
| | - Saroj Ghaskadbi
- Department of Zoology, Savitribai Phule Pune University (SPPU), Ganeshkhind, Pune 411007, Maharashtra, India.
| |
Collapse
|
12
|
Jie Z, Shen S, Zhao X, Xu W, Zhang X, Huang B, Tang P, Qin A, Fan S, Xie Z. Activating β-catenin/Pax6 axis negatively regulates osteoclastogenesis by selectively inhibiting phosphorylation of p38/MAPK. FASEB J 2018; 33:4236-4247. [PMID: 30526042 DOI: 10.1096/fj.201801977r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Balance of osteoclast formation is regulated by the receptor activator of NF-κB ligand and extracellular negative regulators such as IFN-γ and IFN-β. However, very little is known about the intrinsic negative regulatory factors of osteoclast differentiation. Recently, the paired-box homeodomain transcription factor Pax6 was shown to negatively regulate receptor activator of NF-κB ligand-mediated osteoclast differentiation. However, the mechanism underlying this regulation is still unclear. In this study, we show that a p38 inhibitor (VX-745) up-regulates the expression of Pax6 during osteoclast differentiation. Subsequently, we found that β-catenin could bind to the proximal region of Pax6 promoter to induce its expression, and this action could be impaired by p38-induced ubiquitin-mediated degradation of β-catenin. Our results suggest that Pax6 is regulated by a novel p38/β-catenin pathway. Pax6 can further regulate the nuclear translocation of NF of activated T cells, cytoplasmic 1. Our study indicates that this novel p38/β-catenin/Pax6 axis contributes to negative regulation of osteoclastogenesis. In addition, our study proposes a novel approach to treat osteoclast-related diseases through the use of VX-745 complemented with the β-catenin activator SKL2001.-Jie, Z., Shen, S., Zhao, X., Xu, W., Zhang, X., Huang, B., Tang, P., Qin, A., Fan, S., Xie, Z. Activating β-catenin/Pax6 axis negatively regulates osteoclastogenesis by selectively inhibiting phosphorylation of p38/MAPK.
Collapse
Affiliation(s)
- Zhiwei Jie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xiangde Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Wenbin Xu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xuyang Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Bao Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Pan Tang
- Department of Orthopaedics, Huzhou Hospital, Zhejiang University, Hangzhou, China; and
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Ziang Xie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
13
|
Li T, He Z, Zhang X, Tian M, Jiang K, Cheng G, Wang Y. The status of MAPK cascades contributes to the induction and activation of Gata4 and Nkx2.5 during the stepwise process of cardiac differentiation. Cell Signal 2018; 54:17-26. [PMID: 30471465 DOI: 10.1016/j.cellsig.2018.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 12/28/2022]
Abstract
Cardiac differentiation in vitro is a complex, stepwise process that is rigidly governed by a subset of transcription factors and signaling cascades. In this study, we investigated the cooperation of cardiac-specific transcription factors Gata4 and Nkx2.5, as well as mitogen-activated protein kinase (MAPK) cascades. P19 embryonic carcinoma cells were induced into spontaneously beating cardiomyocytes utilizing a two-step protocol that comprised an early stage and a late stage of differentiation. During early-stage differentiation in suspension culture, P19 cells aggregated to form embryoid bodies (EBs), and the Gata4 and Nkx2.5 genes were induced. However, Gata4 expressed at the early stage of differentiation was incapable of activating downstream gene expression, as it was localized in the cytoplasm and prone to degradation. After EBs were plated for late-stage differentiation in adherent culture, the MAPK cascades were highly activated and contributed to the activation of Gata4 and Nkx2.5. Specifically, we revealed that p38 signaling participated in regulating the localization and stabilization of Gata4 and Nkx2.5. Additionally, the JNK cascade regulated late-stage cardiac differentiation; JNK kinase reduced Gata4 stabilization and conversely alleviated Nkx2.5 degradation by direct interaction and phosphorylation of Nkx2.5. Finally, we found that the C-terminal domain of Nkx2.5 was required for its stabilization under conditions of oxidative stress and JNK activation. Overall, our results indicated that the induction and activation of Gata4 and Nkx2.5 during early- and late-stage cardiac differentiation was closely associated with the function of the MAPK signaling cascades.
Collapse
Affiliation(s)
- Tao Li
- School of Medicine, Hunan Normal University, Changsha, Hunan 410081, China.
| | - Zezhao He
- School of Medicine, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xia Zhang
- School of Medicine, Hunan Normal University, Changsha, Hunan 410081, China
| | - Mei Tian
- School of Medicine, Hunan Normal University, Changsha, Hunan 410081, China
| | - Kesheng Jiang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Guanchang Cheng
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, China
| | - Yunlong Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| |
Collapse
|
14
|
Moore JB, Tang XL, Zhao J, Fischer AG, Wu WJ, Uchida S, Gumpert AM, Stowers H, Wysoczynski M, Bolli R. Epigenetically modified cardiac mesenchymal stromal cells limit myocardial fibrosis and promote functional recovery in a model of chronic ischemic cardiomyopathy. Basic Res Cardiol 2018; 114:3. [PMID: 30446837 PMCID: PMC6335654 DOI: 10.1007/s00395-018-0710-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/31/2018] [Indexed: 01/01/2023]
Abstract
Preclinical investigations support the concept that donor cells more oriented towards a cardiovascular phenotype favor repair. In light of this philosophy, we previously identified HDAC1 as a mediator of cardiac mesenchymal cell (CMC) cardiomyogenic lineage commitment and paracrine signaling potency in vitro-suggesting HDAC1 as a potential therapeutically exploitable target to enhance CMC cardiac reparative capacity. In the current study, we examined the effects of pharmacologic HDAC1 inhibition, using the benzamide class 1 isoform-selective HDAC inhibitor entinostat (MS-275), on CMC cardiomyogenic lineage commitment and CMC-mediated myocardial repair in vivo. Human CMCs pre-treated with entinostat or DMSO diluent control were delivered intramyocardially in an athymic nude rat model of chronic ischemic cardiomyopathy 30 days after a reperfused myocardial infarction. Indices of cardiac function were assessed by echocardiography and left ventricular (LV) Millar conductance catheterization 35 days after treatment. Compared with naïve CMCs, entinostat-treated CMCs exhibited heightened capacity for myocyte-like differentiation in vitro and superior ability to attenuate LV remodeling and systolic dysfunction in vivo. The improvement in CMC therapeutic efficacy observed with entinostat pre-treatment was not associated with enhanced donor cell engraftment, cardiomyogenesis, or vasculogenesis, but instead with more efficient inhibition of myocardial fibrosis and greater increase in myocyte size. These results suggest that HDAC inhibition enhances the reparative capacity of CMCs, likely via a paracrine mechanism that improves ventricular compliance and contraction and augments myocyte growth and function.
Collapse
Affiliation(s)
- Joseph B Moore
- Institute of Molecular Cardiology, Division of Cardiovascular Medicine, University of Louisville, 580 S. Preston Street, Louisville, KY, 40292, USA.
| | - Xian-Liang Tang
- Institute of Molecular Cardiology, Division of Cardiovascular Medicine, University of Louisville, 580 S. Preston Street, Louisville, KY, 40292, USA
| | - John Zhao
- Institute of Molecular Cardiology, Division of Cardiovascular Medicine, University of Louisville, 580 S. Preston Street, Louisville, KY, 40292, USA
| | - Annalara G Fischer
- Institute of Molecular Cardiology, Division of Cardiovascular Medicine, University of Louisville, 580 S. Preston Street, Louisville, KY, 40292, USA
| | - Wen-Jian Wu
- Institute of Molecular Cardiology, Division of Cardiovascular Medicine, University of Louisville, 580 S. Preston Street, Louisville, KY, 40292, USA
| | - Shizuka Uchida
- Department of Medicine, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA
| | - Anna M Gumpert
- Institute of Molecular Cardiology, Division of Cardiovascular Medicine, University of Louisville, 580 S. Preston Street, Louisville, KY, 40292, USA
| | - Heather Stowers
- Institute of Molecular Cardiology, Division of Cardiovascular Medicine, University of Louisville, 580 S. Preston Street, Louisville, KY, 40292, USA
| | - Marcin Wysoczynski
- Institute of Molecular Cardiology, Division of Cardiovascular Medicine, University of Louisville, 580 S. Preston Street, Louisville, KY, 40292, USA
| | - Roberto Bolli
- Institute of Molecular Cardiology, Division of Cardiovascular Medicine, University of Louisville, 580 S. Preston Street, Louisville, KY, 40292, USA
| |
Collapse
|
15
|
Richardson L, Dixon CL, Aguilera-Aguirre L, Menon R. Oxidative stress-induced TGF-beta/TAB1-mediated p38MAPK activation in human amnion epithelial cells. Biol Reprod 2018; 99:1100-1112. [PMID: 29893818 PMCID: PMC7190655 DOI: 10.1093/biolre/ioy135] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/04/2018] [Accepted: 06/07/2018] [Indexed: 02/07/2023] Open
Abstract
Term and preterm parturition are associated with oxidative stress (OS)-induced p38 mitogen-activated protein kinase (p38MAPK)-mediated fetal tissue (amniochorion) senescence. p38MAPK activation is a complex cell- and stimulant-dependent process. Two independent pathways of OS-induced p38MAPK activation were investigated in amnion epithelial cells (AECs) in response to cigarette smoke extract (CSE: a validated OS inducer in fetal cells): (1) the OS-mediated oxidation of apoptosis signal-regulating kinase (ASK)-1 bound Thioredoxin (Trx[SH]2) dissociates this complex, creating free and activated ASK1-signalosome and (2) transforming growth factor-mediated activation of (TGF)-beta-activated kinase (TAK)1 and TGF-beta-activated kinase 1-binding protein (TAB)1. AECs isolated from normal term, not-in-labor fetal membranes increased p38MAPK in response to CSE and downregulated it in response to antioxidant N-acetylcysteine. In AECs, both Trx and ASK1 were localized; however, they remained dissociated and not complexed, regardless of conditions. Silencing either ASK1 or its downstream effectors (MKK3/6) did not affect OS-induced p38MAPK activation. Conversely, OS increased TGF-beta's release from AECs and increased phosphorylation of both p38MAPK and TAB1. Silencing of TAB1, but not TAK1, prevented p38MAPK activation, which is indicative of TAB1-mediated autophosphorylation of p38MAPK, an activation mechanism seldom seen. OS-induced p38MAPK activation in AECs is ASK1-Trx signalosome-independent and is mediated by the TGF-beta pathway. This knowledge will help to design strategies to reduce p38MAPK activation-associated pregnancy risks.
Collapse
Affiliation(s)
- Lauren Richardson
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Perinatal Research, The University of Texas Medical Branch, Galveston, Texas, USA
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Tx, 77550
| | - Christopher Luke Dixon
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Perinatal Research, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Leopoldo Aguilera-Aguirre
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Perinatal Research, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Perinatal Research, The University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
16
|
Kim SM, Jeon Y, Kim D, Jang H, Bae JS, Park MK, Kim H, Kim S, Lee H. AIMP3 depletion causes genome instability and loss of stemness in mouse embryonic stem cells. Cell Death Dis 2018; 9:972. [PMID: 30250065 PMCID: PMC6155375 DOI: 10.1038/s41419-018-1037-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/04/2018] [Accepted: 09/05/2018] [Indexed: 12/16/2022]
Abstract
Aminoacyl-tRNA synthetase-interacting multifunctional protein-3 (AIMP3) is a component of the multi-aminoacyl-tRNA synthetase complex and is involved in diverse cellular processes. Given that AIMP3 deficiency causes early embryonic lethality in mice, AIMP3 is expected to play a critical role in early mouse development. To elucidate a functional role of AIMP3 in early mouse development, we induced AIMP3 depletion in mouse embryonic stem cells (mESCs) derived from blastocysts of AIMP3f/f; CreERT2 mice. In the present study, AIMP3 depletion resulted in loss of self-renewal and ability to differentiate to three germ layers in mESCs. AIMP3 depletion led to accumulation of DNA damage by blocking double-strand break repair, in particular homologous recombination. Through microarray analysis, the p53 signaling pathway was identified as being activated in AIMP3-depleted mESCs. Knockdown of p53 rescued loss of stem cell characteristics by AIMP3 depletion in mESCs. These results imply that AIMP3 depletion in mESCs leads to accumulation of DNA damage and p53 transactivation, resulting in loss of stemness. We propose that AIMP3 is involved in maintenance of genome stability and stemness in mESCs.
Collapse
Affiliation(s)
- Sun Mi Kim
- Graduate School of Cancer Science and Policy, Research Institute, National Cancer Center, Gyeonggi, 10408, Republic of Korea
| | - Yoon Jeon
- Research Institute, National Cancer Center, Gyeonggi, 10408, Republic of Korea
| | - Doyeun Kim
- Medicinal Bioconvergence Research Center, Department of Pharmacology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyonchol Jang
- Research Institute, National Cancer Center, Gyeonggi, 10408, Republic of Korea
| | - June Sung Bae
- Research Institute, National Cancer Center, Gyeonggi, 10408, Republic of Korea
| | - Mi Kyung Park
- Research Institute, National Cancer Center, Gyeonggi, 10408, Republic of Korea
| | - Hongtae Kim
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Department of Pharmacology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ho Lee
- Research Institute, National Cancer Center, Gyeonggi, 10408, Republic of Korea.
| |
Collapse
|
17
|
Huang L, Hou Y, Wang L, Xu X, Guan Q, Li X, Chen Y, Zhou W. p38 Inhibitor Protects Mitochondrial Dysfunction by Induction of DJ-1 Mitochondrial Translocation After Subarachnoid Hemorrhage. J Mol Neurosci 2018; 66:163-171. [PMID: 30242669 DOI: 10.1007/s12031-018-1131-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/19/2018] [Indexed: 12/20/2022]
Abstract
p38 mitogen-activated protein kinase (MAPK) is a major player in mitochondrial dysfunction after subarachnoid hemorrhage (SAH). Moreover, DJ-1, which responds to oxidative stress and translocates to mitochondria, maintains mitochondrial homeostasis. Although a few studies have demonstrated that DJ-1 indirectly regulates p38 activation, the relationship between DJ-1 and p38 in mitochondrial dysfunction after SAH has not been delineated. Using an in vitro SAH model, alterations in p38, p-p38, DJ-1, and autophagic-related protein expression were detected. As expected, p38 inhibitor significantly blocked excessive expression of p38 and p-p38 after SAH, whereas total DJ-1 expression and mitochondrial DJ-1 were up-regulated. Further analysis showed that p38 inhibitor significantly blocked oxyhemoglobin (OxyHb) induced mitochondrial dysfunction, including mitochondrial membrane potential depolarization and reactive oxygen species (ROS) release. In addition, p38 inhibitor restored OxyHb-induced abnormal autophagic flux at the initiation and formation stage by regulating Atg5, beclin-1, the ratio of LC3-II/LC3-I, and p62 expression. This study suggested that overexpression of p38 induced the accumulation of mitochondrial dysfunction partly due to abnormal activation of autophagy, which largely relied on DJ-1 mitochondrial translocation.
Collapse
Affiliation(s)
- Liyong Huang
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China
| | - Yaqing Hou
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China
| | - Lei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China
| | - Xiahui Xu
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China
| | - Qingkai Guan
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China
| | - Xiangsheng Li
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China
| | - Ying Chen
- College of Life Science, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Wenke Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, China.
| |
Collapse
|
18
|
Wang Y, Lei T, Dai Q, Ding P, Qiu T, Fang Y. Identification of Potential Molecular Determinants of Murine Embryonic Stem Cell Differentiation by a Transposon-Based Approach. Mol Biotechnol 2018; 60:791-798. [PMID: 30171517 DOI: 10.1007/s12033-018-0110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Embryonic stem cells (ESCs) are self-renewing pluripotent cells, capable of differentiating into all somatic cell types. The molecular control of self-renewal is relatively well-characterized, whereas how ESCs exit pluripotent state to differentiate is poorly understood. Here we identify two genes are required for differentiation and dozens of intergenic regions that potentially regulate ESC differentiation. We used PiggyBac (PB) transposon-based approach to randomly mutate the genome of ESCs, and generated hundreds of clones that resisted differentiation signals. Each clone was sequenced to determine genomic regions mutated by PB insertion. Intriguingly, many mutations were localized among intergenic regions and we identified two genes are required for differentiation. This study should facilitate further exploration of novel molecular determinants of embryonic stem cell differentiation.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tingjun Lei
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Center of Growth, Metabolism, and Aging, College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qian Dai
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ping Ding
- Sichuan Cunde Therapeutics, Chengdu, 610093, China
| | - Tong Qiu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. .,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yin Fang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. .,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
19
|
Stelcer E, Kulcenty K, Rucinski M, Jopek K, Richter M, Trzeciak T, Suchorska WM. Forced differentiation in vitro leads to stress-induced activation of DNA damage response in hiPSC-derived chondrocyte-like cells. PLoS One 2018; 13:e0198079. [PMID: 29864138 PMCID: PMC5986142 DOI: 10.1371/journal.pone.0198079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/14/2018] [Indexed: 01/22/2023] Open
Abstract
A human induced pluripotent stem cell line (GPCCi001-A) created by our group was differentiated towards chondrocyte-like cells (ChiPS) via monolayer culturing with growth factors. ChiPS are promising because they have the potential to be used in tissue engineering to regenerate articular cartilage. However, their safety must be confirmed before they can be routinely used in regenerative medicine. Using microarray analysis, we compared the ChiPS to both GPCCi001-A cells and chondrocytes. The analysis showed that, compared to both GPCCi001-A cells and chondrocytes, the expression of genes engaged in DNA damage and in the tumor protein p53 signalling pathways was significantly higher in the ChiPS. The significant amount of DNA double strand breaks and increased DNA damage response may lead to incomplete DNA repair and the accumulation of mutations and, ultimately, to genetic instability. These findings provide evidence indicating that the differentiation process in vitro places stress on human induced pluripotent stem cells (hiPSCs). The results of this study raise doubts about the use of stem cell-derived components given the negative effects of the differentiation process in vitro on hiPSCs.
Collapse
Affiliation(s)
- Ewelina Stelcer
- Radiobiology Laboratory, Greater Poland Cancer Centre, Poznan, Poland
- The Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
- * E-mail:
| | - Katarzyna Kulcenty
- Radiobiology Laboratory, Greater Poland Cancer Centre, Poznan, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Marcin Rucinski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Karol Jopek
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Magdalena Richter
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Tomasz Trzeciak
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wiktoria Maria Suchorska
- Radiobiology Laboratory, Greater Poland Cancer Centre, Poznan, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
20
|
Tan Z, Li J, Zhang X, Yang X, Zhang Z, Yin KJ, Huang H. P53 Promotes Retinoid Acid-induced Smooth Muscle Cell Differentiation by Targeting Myocardin. Stem Cells Dev 2018; 27:534-544. [PMID: 29482449 DOI: 10.1089/scd.2017.0244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
TP53 is a widely studied tumor suppressor gene that controls various cellular functions, including cell differentiation. However, little is known about its functional roles in smooth muscle cells (SMCs) differentiation from embryonic stem cells (ESCs). SMC differentiation is at the heart of our understanding of vascular development, normal blood pressure homeostasis, and the pathogenesis of vascular diseases such as atherosclerosis, hypertension, restenosis, as well as aneurysm. Using retinoid acid (RA)-induced SMC differentiation models, we observed that p53 expression is increased during in vitro differentiation of mouse ESCs into SMCs. Meanwhile, suppression of p53 by shRNA reduced RA-induced SMC differentiation. Mechanistically, we have identified for the first time that Myocardin, a transcription factor that induces muscle cell differentiation and muscle-specific gene expression, is the direct target of p53 by bioinformatic analysis, luciferase reporter assay, and chromatin immunoprecipitation approaches. Moreover, in vivo SMC-selective p53 transgenic overexpression inhibited injury-induced neointimal formation. Taken together, our data demonstrate that p53 and its target gene, Myocardin, play regulatory roles in SMC differentiation. This study may lead to the identification of novel target molecules that may, in turn, lead to novel drug discoveries for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Zhou Tan
- 1 Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Institute of Life Sciences, College of Life Sciences, Hangzhou Normal University , Hangzhou, China
| | - Jingya Li
- 1 Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Institute of Life Sciences, College of Life Sciences, Hangzhou Normal University , Hangzhou, China
| | - Xuejing Zhang
- 2 Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Xueqin Yang
- 1 Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Institute of Life Sciences, College of Life Sciences, Hangzhou Normal University , Hangzhou, China
| | - Zunyi Zhang
- 1 Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Institute of Life Sciences, College of Life Sciences, Hangzhou Normal University , Hangzhou, China
| | - Ke-Jie Yin
- 2 Department of Neurology, Pittsburgh Institute of Brain Disorders & Recovery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Huarong Huang
- 1 Key Laboratory of Organ Development and Regeneration of Zhejiang Province, Institute of Life Sciences, College of Life Sciences, Hangzhou Normal University , Hangzhou, China
| |
Collapse
|
21
|
Madan E, Parker TM, Bauer MR, Dhiman A, Pelham CJ, Nagane M, Kuppusamy ML, Holmes M, Holmes TR, Shaik K, Shee K, Kiparoidze S, Smith SD, Park YSA, Gomm JJ, Jones LJ, Tomás AR, Cunha AC, Selvendiran K, Hansen LA, Fersht AR, Hideg K, Gogna R, Kuppusamy P. The curcumin analog HO-3867 selectively kills cancer cells by converting mutant p53 protein to transcriptionally active wildtype p53. J Biol Chem 2018; 293:4262-4276. [PMID: 29382728 DOI: 10.1074/jbc.ra117.000950] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/10/2018] [Indexed: 01/13/2023] Open
Abstract
p53 is an important tumor-suppressor protein that is mutated in more than 50% of cancers. Strategies for restoring normal p53 function are complicated by the oncogenic properties of mutant p53 and have not met with clinical success. To counteract mutant p53 activity, a variety of drugs with the potential to reconvert mutant p53 to an active wildtype form have been developed. However, these drugs are associated with various negative effects such as cellular toxicity, nonspecific binding to other proteins, and inability to induce a wildtype p53 response in cancer tissue. Here, we report on the effects of a curcumin analog, HO-3867, on p53 activity in cancer cells from different origins. We found that HO-3867 covalently binds to mutant p53, initiates a wildtype p53-like anticancer genetic response, is exclusively cytotoxic toward cancer cells, and exhibits high anticancer efficacy in tumor models. In conclusion, HO-3867 is a p53 mutant-reactivating drug with high clinical anticancer potential.
Collapse
Affiliation(s)
- Esha Madan
- From the Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.,the Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Gautam Buddha Nagar Section 125, Noida 201301, India
| | - Taylor M Parker
- the Department of Surgery, Simon Cancer Research Center, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Matthias R Bauer
- the Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Alisha Dhiman
- the Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907
| | - Christopher J Pelham
- the Department of Pharmacology and Physiology, Saint Louis University, St. Louis, Missouri 63104
| | - Masaki Nagane
- the Department of Biochemistry, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - M Lakshmi Kuppusamy
- the Department of Radiology and Medicine, Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756
| | - Matti Holmes
- the Department of Biomedical Sciences, Creighton University, Omaha, Nebraska 68178
| | - Thomas R Holmes
- the Department of Biomedical Sciences, Creighton University, Omaha, Nebraska 68178
| | - Kranti Shaik
- the Department of Biomedical Sciences, Creighton University, Omaha, Nebraska 68178
| | - Kevin Shee
- the Department of Radiology and Medicine, Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756
| | | | - Sean D Smith
- the Department of Biomedical Sciences, Creighton University, Omaha, Nebraska 68178
| | - Yu-Soon A Park
- the Department of Biomedical Sciences, Creighton University, Omaha, Nebraska 68178
| | - Jennifer J Gomm
- the Centre for Tumour Biology, Barts Cancer Institute, Charterhouse Square, London, EC1M 6BQ, United Kingdom
| | - Louise J Jones
- the Centre for Tumour Biology, Barts Cancer Institute, Charterhouse Square, London, EC1M 6BQ, United Kingdom
| | - Ana R Tomás
- From the Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Ana C Cunha
- From the Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Karuppaiyah Selvendiran
- the Department of Obstetrics and Gynecology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, and
| | - Laura A Hansen
- the Department of Biomedical Sciences, Creighton University, Omaha, Nebraska 68178
| | - Alan R Fersht
- the Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Kálmán Hideg
- the Institute of Organic and Medicinal Chemistry, Faculty of Sciences, University of Pécs, Pécs-H-7624, Hungary
| | - Rajan Gogna
- From the Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal, .,the Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Gautam Buddha Nagar Section 125, Noida 201301, India
| | - Periannan Kuppusamy
- the Department of Radiology and Medicine, Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756,
| |
Collapse
|
22
|
Jin J, Grimmig B, Izzo J, Brown LAM, Hudson C, Smith AJ, Tan J, Bickford PC, Giunta B. HIV Non-Nucleoside Reverse Transcriptase Inhibitor Efavirenz Reduces Neural Stem Cell Proliferation in Vitro and in Vivo. Cell Transplant 2018; 25:1967-1977. [PMID: 28836850 DOI: 10.3727/096368916x691457] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The prevalence of HIV-associated neurocognitive disorders (HAND) remains high despite combination antiretroviral therapy (cART). There is evidence that neural stem cells (NSCs) can migrate to sites of brain injury such as those caused by inflammation and oxidative stress, which are pathological features of HAND. Thus, reductions in NSCs may contribute to HAND pathogenesis. Since the HIV non-nucleoside reverse transcriptase inhibitor efavirenz (EFV) has previously been associated with cognitive deficits and promotion of oxidative stress pathways, we examined its effect on NSCs in vitro as well as in C57BL/6J mice. Here we report that EFV induced a decrease in NSC proliferation in vitro as indicated by MTT assay, as well as BrdU and nestin immunocytochemistry. In addition, EFV decreased intracellular NSC adenosine triphosphate (ATP) stores and NSC mitochondrial membrane potential (MMP). Further, we found that EFV promoted increased lactate dehydrogenase (LDH) release, activation of p38 mitogen-activated protein kinase (MAPK), and increased Bax expression in cultured NSCs. Moreover, EFV reduced the quantity of proliferating NSCs in the subventricular zone (SVZ) of C57BL/6J mice as suggested by BrdU, and increased apoptosis as measured by active caspase-3 immunohistochemistry. If these in vitro and in vivo models translate to the clinical syndrome, then a pharmacological or cell-based therapy aimed at opposing EFV-mediated reductions in NSC proliferation may be beneficial to prevent or treat HAND in patients receiving EFV.
Collapse
Affiliation(s)
- Jingji Jin
- Department of Psychiatry and Behavioral Neurosciences, Neuroimmunology Laboratory, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Bethany Grimmig
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - James Izzo
- Department of Psychiatry and Behavioral Neurosciences, Neuroimmunology Laboratory, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Lecia A M Brown
- Department of Psychiatry and Behavioral Neurosciences, Neuroimmunology Laboratory, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Charles Hudson
- Research Service, James A. Haley VA Hospital, Tampa, FL, USA
| | - Adam J Smith
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Jun Tan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA.,Research Service, James A. Haley VA Hospital, Tampa, FL, USA.,Department of Psychiatry and Behavioral Neurosciences, Rashid Laboratory for Developmental Neurobiology, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Paula C Bickford
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA.,Research Service, James A. Haley VA Hospital, Tampa, FL, USA
| | - Brian Giunta
- Department of Psychiatry and Behavioral Neurosciences, Neuroimmunology Laboratory, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
23
|
Srinivas KP, Viji R, Dan VM, Sajitha IS, Prakash R, Rahul PV, Santhoshkumar TR, Lakshmi S, Pillai MR. DEPTOR promotes survival of cervical squamous cell carcinoma cells and its silencing induces apoptosis through downregulating PI3K/AKT and by up-regulating p38 MAP kinase. Oncotarget 2018; 7:24154-71. [PMID: 26992219 PMCID: PMC5029691 DOI: 10.18632/oncotarget.8131] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/02/2016] [Indexed: 12/26/2022] Open
Abstract
DEPTOR is an endogenous inhibitor of mTOR complexes, de-regulated in cancers. The present study reveals a vital role for DEPTOR in survival of cervical squamous cell carcinoma (SCC). DEPTOR was found to be overexpressed in both cervical SCC cells and tissues and it's silencing in cervical SCC cells induced apoptosis, mainly by up-regulation of p38 MAPK and by inhibiting PI3K/AKT pathway via a feed-back inhibition from mTORC1-S6K. DEPTOR silencing resulted in reduced expression of the nitric oxide synthases iNOS and eNOS, as well as increased activation of ERK1/2 and p38 MAP kinases. Activation of AKT signaling by overexpression of constitutively active-AKT (CA-AKT) failed to overcome the apoptosis caused by DEPTOR silencing. Similarly pharmacological inhibition of ERK also failed to control apoptosis. However pharmacological inhibition of p38 MAPK rescued the cells from apoptosis, indicating the major role of p38 MAPK in cell death induced by DEPTOR silencing. DEPTOR was also found to regulate ERK1/2 in an AKT dependent manner. DEPTOR knockdown induced cell death in SiHa cells overexpressing the anti-apoptotic Bcl-2 and Bcl-xL, indicating strong survival role of DEPTOR in these cells. DEPTOR overexpression activated PI3K/AKT by relieving the negative feed-back inhibition from mTORC1-S6K. DEPTOR regulation was also observed to be independent of HPV E6/E7 oncoproteins, but it might be a molecular co-factor contributing to cervical carcinogenesis. In summary, DEPTOR is found to promote survival of cervical SCC cells and its reduction induced apoptosis via differential effects on PI3K/AKT and p38 MAPK and can be a potential target in cervical SCC.
Collapse
Affiliation(s)
| | - Remadevi Viji
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram-695014, Kerala, India
| | - Vipin Mohan Dan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram-695014, Kerala, India
| | - Indira Sukumaran Sajitha
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram-695014, Kerala, India
| | - Rajappan Prakash
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram-695014, Kerala, India
| | - Puthan Valappil Rahul
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram-695014, Kerala, India
| | - Thankayyan R Santhoshkumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram-695014, Kerala, India
| | - Subhadra Lakshmi
- Division of Cancer Research, Regional Cancer Centre, Thiruvananthapuram-695011, Kerala, India
| | | |
Collapse
|
24
|
She S, Wei Q, Kang B, Wang YJ. Cell cycle and pluripotency: Convergence on octamer‑binding transcription factor 4 (Review). Mol Med Rep 2017; 16:6459-6466. [PMID: 28901500 PMCID: PMC5865814 DOI: 10.3892/mmr.2017.7489] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 07/14/2017] [Indexed: 12/14/2022] Open
Abstract
Embryonic stem cells (ESCs) have unlimited expansion potential and the ability to differentiate into all somatic cell types for regenerative medicine and disease model studies. Octamer-binding transcription factor 4 (OCT4), encoded by the POU domain, class 5, transcription factor 1 gene, is a transcription factor vital for maintaining ESC pluripotency and somatic reprogramming. Many studies have established that the cell cycle of ESCs is featured with an abbreviated G1 phase and a prolonged S phase. Changes in cell cycle dynamics are intimately associated with the state of ESC pluripotency, and manipulating cell-cycle regulators could enable a controlled differentiation of ESCs. The present review focused primarily on the emerging roles of OCT4 in coordinating the cell cycle progression, the maintenance of pluripotency and the glycolytic metabolism in ESCs.
Collapse
Affiliation(s)
- Shiqi She
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Qucheng Wei
- Cardiovascular Key Lab of Zhejiang, Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Bo Kang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Ying-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
25
|
Moore JB, Zhao J, Keith MCL, Amraotkar AR, Wysoczynski M, Hong KU, Bolli R. The Epigenetic Regulator HDAC1 Modulates Transcription of a Core Cardiogenic Program in Human Cardiac Mesenchymal Stromal Cells Through a p53-Dependent Mechanism. Stem Cells 2016; 34:2916-2929. [PMID: 27501845 DOI: 10.1002/stem.2471] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/29/2016] [Accepted: 07/18/2016] [Indexed: 01/01/2023]
Abstract
Histone deacetylase (HDAC) regulation is an essential process in myogenic differentiation. Inhibitors targeting the activity of specific HDAC family members have been shown to enhance the cardiogenic differentiation capacity of discrete progenitor cell types; a key property of donor cell populations contributing to their afforded benefits in cardiac cell therapy applications. The influence of HDAC inhibition on cardiac-derived mesenchymal stromal cell (CMC) transdifferentiation or the role of specific HDAC family members in dictating cardiovascular cell lineage specification has not been investigated. In the current study, the consequences of HDAC inhibition on patient-derived CMC proliferation, cardiogenic program activation, and cardiovascular differentiation/cell lineage specification were investigated using pharmacologic and genetic targeting approaches. Here, CMCs exposed to the pan-HDAC inhibitor sodium butyrate exhibited induction of a cardiogenic transcriptional program and heightened expression of myocyte and endothelial lineage-specific markers when coaxed to differentiate in vitro. Further, shRNA knockdown screens revealed CMCs depleted of HDAC1 to promote the induction of a cardiogenic transcriptional program characterized by enhanced expression of cardiomyogenic- and vasculogenic-specific markers, a finding which depended on and correlated with enhanced acetylation and stabilization of p53. Cardiogenic gene activation and elevated p53 expression levels observed in HDAC1-depleted CMCs were associated with improved aptitude to assume a cardiomyogenic/vasculogenic cell-like fate in vitro. These results suggest that HDAC1 depletion-induced p53 expression alters CMC cell fate decisions and identify HDAC1 as a potential exploitable target to facilitate CMC-mediated myocardial repair in ischemic cardiomyopathy. Stem Cells 2016;34:2916-2929.
Collapse
Affiliation(s)
- Joseph B Moore
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA
| | - John Zhao
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA
| | - Matthew C L Keith
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA
| | - Alok R Amraotkar
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA
| | - Marcin Wysoczynski
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA
| | - Kyung U Hong
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA
| | - Roberto Bolli
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
26
|
A Modified Murine Embryonic Stem Cell Test for Evaluating the Teratogenic Effects of Drugs on Early Embryogenesis. PLoS One 2015; 10:e0145286. [PMID: 26682887 PMCID: PMC4686177 DOI: 10.1371/journal.pone.0145286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/02/2015] [Indexed: 12/27/2022] Open
Abstract
Mammalian fetal development is easily disrupted by exogenous agents, making it essential to test new drug candidates for embryotoxicity and teratogenicity. To standardize the testing of drugs that might be used to treat pregnant women, the U.S. Food and Drug Administration (FDA) formulated special grade categories, labeled A, B, C, D and X, that define the level of risk associated with the use of a specific drug during pregnancy. Drugs in categories (Cat.) D and X are those with embryotoxic and/or teratogenic effects on humans and animals. However, which stages of pregnancy are affected by these agents and their molecular mechanisms are unknown. We describe here an embryonic stem cell test (EST) that classifies FDA pregnancy Cat.D and Cat.X drugs into 4 classes based on their differing effects on primitive streak formation. We show that ~84% of Cat.D and Cat.X drugs target this period of embryogenesis. Our results demonstrate that our modified EST can identify how a drug affects early embryogenesis, when it acts, and its molecular mechanism. Our test may thus be a useful addition to the drug safety testing armamentarium.
Collapse
|
27
|
Cefalù S, Lena AM, Vojtesek B, Musarò A, Rossi A, Melino G, Candi E. TAp63gamma is required for the late stages of myogenesis. Cell Cycle 2015; 14:894-901. [PMID: 25790093 DOI: 10.4161/15384101.2014.988021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
p53 family members, p63 and p73, play a role in controlling early stage of myogenic differentiation. We demonstrated that TAp63gamma, unlike the other p53 family members, is markedly up-regulated during myogenic differentiation in murine C2C7 cell line. We also found that myotubes formation was inhibited upon TAp63gamma knock-down, as also indicated by atrophyic myotubes and reduction of myoblasts fusion index. Analysis of TAp63gamma-dependend transcripts identified several target genes involved in skeletal muscle contractility energy metabolism, myogenesis and skeletal muscle autocrine signaling. These results indicate that TAp63gamma is a late marker of myogenic differentiation and, by controlling different sub-sets of target genes, it possibly contributes to muscle growth, remodeling, functional differentiation and tissue homeostasis.
Collapse
Affiliation(s)
- S Cefalù
- a Istututo Dermopatico dell'Immacolata ; IDI-IRCCS ; Rome , Italy
| | | | | | | | | | | | | |
Collapse
|
28
|
Amelio I, Antonov AA, Catani MV, Massoud R, Bernassola F, Knight RA, Melino G, Rufini A. TAp73 promotes anabolism. Oncotarget 2015; 5:12820-934. [PMID: 25514460 PMCID: PMC4350352 DOI: 10.18632/oncotarget.2667] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 12/18/2022] Open
Abstract
Metabolic adaptation has emerged as a hallmark of cancer and a promising therapeutic target, as rapidly proliferating cancer cells adapt their metabolism increasing nutrient uptake and reorganizing metabolic fluxes to support biosynthesis. The transcription factor p73 belongs to the p53-family and regulates tumorigenesis via its two N-terminal isoforms, with (TAp73) or without (ΔNp73) a transactivation domain. TAp73 acts as tumor suppressor, at least partially through induction of cell cycle arrest and apoptosis and through regulation of genomic stability. Here, we sought to investigate whether TAp73 also affects metabolic profiling of cancer cells. Using high throughput metabolomics, we unveil a thorough and unexpected role for TAp73 in promoting Warburg effect and cellular metabolism. TAp73-expressing cells show increased rate of glycolysis, higher amino acid uptake and increased levels and biosynthesis of acetyl-CoA. Moreover, we report an extensive TAp73-mediated upregulation of several anabolic pathways including polyamine and synthesis of membrane phospholipids. TAp73 expression also increases cellular methyl-donor S-adenosylmethionine (SAM), possibly influencing methylation and epigenetics, and promotes arginine metabolism, suggestive of a role in extracellular matrix (ECM) modeling. In summary, our data indicate that TAp73 regulates multiple metabolic pathways that impinge on numerous cellular functions, but that, overall, converge to sustain cell growth and proliferation.
Collapse
Affiliation(s)
- Ivano Amelio
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - Alexey A Antonov
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - Maria Valeria Catani
- Biochemistry Laboratory, IDI-IRCCS, University of Rome Tor Vergata, Rome 00133, Italy
| | - Renato Massoud
- Biochemistry Laboratory, IDI-IRCCS, University of Rome Tor Vergata, Rome 00133, Italy
| | - Francesca Bernassola
- Biochemistry Laboratory, IDI-IRCCS, University of Rome Tor Vergata, Rome 00133, Italy
| | - Richard A Knight
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - Gerry Melino
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK. Biochemistry Laboratory, IDI-IRCCS, University of Rome Tor Vergata, Rome 00133, Italy. Molecular Pharmacology Laboratory, Technological University, St-Petersburg, Russia
| | - Alessandro Rufini
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK. Department of Cancer Studies, Cancer Research UK, Leicester Centre, University of Leicester, Leicester, LE1 7RH, UK
| |
Collapse
|
29
|
Niklison-Chirou MV, Killick R, Knight RA, Nicotera P, Melino G, Agostini M. How Does p73 Cause Neuronal Defects? Mol Neurobiol 2015; 53:4509-20. [PMID: 26266644 DOI: 10.1007/s12035-015-9381-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/27/2015] [Indexed: 11/25/2022]
Abstract
The p53-family member, p73, plays a key role in the development of the central nervous system (CNS), in senescence, and in tumor formation. The role of p73 in neuronal differentiation is complex and involves several downstream pathways. Indeed, in the last few years, we have learnt that TAp73 directly or indirectly regulates several genes involved in neural biology. In particular, TAp73 is involved in the maintenance of neural stem/progenitor cell self-renewal and differentiation throughout the regulation of SOX-2, Hey-2, TRIM32 and Notch. In addition, TAp73 is also implicated in the regulation of the differentiation and function of postmitotic neurons by regulating the expression of p75NTR and GLS2 (glutamine metabolism). Further still, the regulation of miR-34a by TAp73 indicates that microRNAs can also participate in this multifunctional role of p73 in adult brain physiology. However, contradictory results still exist in the relationship between p73 and brain disorders, and this remains an important area for further investigation.
Collapse
Affiliation(s)
- Maria Victoria Niklison-Chirou
- Toxicology Unit, Medical Research Council, Leicester, LE1 9HN, UK
- Blizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Richard Killick
- The Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, London, SE5 8AF, UK
| | - Richard A Knight
- Toxicology Unit, Medical Research Council, Leicester, LE1 9HN, UK
| | | | - Gerry Melino
- Toxicology Unit, Medical Research Council, Leicester, LE1 9HN, UK.
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133, Rome, Italy.
| | - Massimiliano Agostini
- Toxicology Unit, Medical Research Council, Leicester, LE1 9HN, UK.
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", 00133, Rome, Italy.
| |
Collapse
|
30
|
Samal R, Ameling S, Dhople V, Sappa PK, Wenzel K, Völker U, Felix SB, Hammer E, Könemann S. Brain derived neurotrophic factor contributes to the cardiogenic potential of adult resident progenitor cells in failing murine heart. PLoS One 2015; 10:e0120360. [PMID: 25799225 PMCID: PMC4370398 DOI: 10.1371/journal.pone.0120360] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/05/2015] [Indexed: 12/22/2022] Open
Abstract
Aims Resident cardiac progenitor cells show homing properties when injected into the injured but not to the healthy myocardium. The molecular background behind this difference in behavior needs to be studied to elucidate how adult progenitor cells can restore cardiac function of the damaged myocardium. Since the brain derived neurotrophic factor (BDNF) moderates cardioprotection in injured hearts, we focused on delineating its regulatory role in the damaged myocardium. Methods and Results Comparative gene expression profiling of freshly isolated undifferentiated Sca-1 progenitor cells derived either from heart failure transgenic αMHC-CyclinT1/Gαq overexpressing mice or wildtype littermates revealed transcriptional variations. Bdnf expression was up regulated 5-fold during heart failure which was verified by qRT-PCR and confirmed at protein level. The migratory capacity of Sca-1 cells from transgenic hearts was improved by 15% in the presence of 25ng/ml BDNF. Furthermore, BDNF-mediated effects on Sca-1 cells were studied via pulsed Stable Isotope Labeling of Amino acids in Cell Culture (pSILAC) proteomics approach. After BDNF treatment significant differences between newly synthesized proteins in Sca-1 cells from control and transgenic hearts were observed for CDK1, SRRT, HDGF, and MAP2K3 which are known to regulate cell cycle, survival and differentiation. Moreover BDNF repressed the proliferation of Sca-1 cells from transgenic hearts. Conclusion Comparative profiling of resident Sca-1 cells revealed elevated BDNF levels in the failing heart. Exogenous BDNF (i) stimulated migration, which might improve the homing ability of Sca-1 cells derived from the failing heart and (ii) repressed the cell cycle progression suggesting its potency to ameliorate heart failure.
Collapse
Affiliation(s)
- Rasmita Samal
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Sabine Ameling
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Vishnu Dhople
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Praveen Kumar Sappa
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Kristin Wenzel
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research) partner site, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research) partner site, Greifswald, Germany
| | - Stephan B. Felix
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research) partner site, Greifswald, Germany
| | - Elke Hammer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research) partner site, Greifswald, Germany
- * E-mail: (EH); (SK)
| | - Stephanie Könemann
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research) partner site, Greifswald, Germany
- * E-mail: (EH); (SK)
| |
Collapse
|
31
|
Choi SC, Lee H, Choi JH, Kim JH, Park CY, Joo HJ, Park JH, Hong SJ, Yu CW, Lim DS. Cyclosporin A induces cardiac differentiation but inhibits hemato-endothelial differentiation of P19 cells. PLoS One 2015; 10:e0117410. [PMID: 25629977 PMCID: PMC4309530 DOI: 10.1371/journal.pone.0117410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/22/2014] [Indexed: 01/11/2023] Open
Abstract
Little is known about the mechanisms underlying the effects of Cyclosporin A (CsA) on the fate of stem cells, including cardiomyogenic differentiation. Therefore, we investigated the effects and the molecular mechanisms behind the actions of CsA on cell lineage determination of P19 cells. CsA induced cardiomyocyte-specific differentiation of P19 cells, with the highest efficiency at a concentration of 0.32 μM during embryoid body (EB) formation via activation of the Wnt signaling pathway molecules, Wnt3a, Wnt5a, and Wnt8a, and the cardiac mesoderm markers, Mixl1, Mesp1, and Mesp2. Interestingly, cotreatment of P19 cells with CsA plus dimethyl sulfoxide (DMSO) during EB formation significantly increases cardiac differentiation. In contrast, mRNA expression levels of hematopoietic and endothelial lineage markers, including Flk1 and Er71, were severely reduced in CsA-treated P19 cells. Furthermore, expression of Flk1 protein and the percentage of Flk1+ cells were severely reduced in 0.32 μM CsA-treated P19 cells compared to control cells. CsA significantly modulated mRNA expression levels of the cell cycle molecules, p53 and Cyclins D1, D2, and E2 in P19 cells during EB formation. Moreover, CsA significantly increased cell death and reduced cell number in P19 cells during EB formation. These results demonstrate that CsA induces cardiac differentiation but inhibits hemato-endothelial differentiation via activation of the Wnt signaling pathway, followed by modulation of cell lineage-determining genes in P19 cells during EB formation.
Collapse
Affiliation(s)
- Seung-Cheol Choi
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Hyunjoo Lee
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Ji-Hyun Choi
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Jong-Ho Kim
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Chi-Yeon Park
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Hyung-Joon Joo
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Jae-Hyoung Park
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Soon-Jun Hong
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Cheol-Woong Yu
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| | - Do-Sun Lim
- Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital, Seoul, Korea
| |
Collapse
|
32
|
Gene Expression Profile of NF-κB, Nrf2, Glycolytic, and p53 Pathways During the SH-SY5Y Neuronal Differentiation Mediated by Retinoic Acid. Mol Neurobiol 2014; 53:423-435. [PMID: 25465239 DOI: 10.1007/s12035-014-8998-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/12/2014] [Indexed: 01/17/2023]
Abstract
SH-SY5Y cells, a neuroblastoma cell line that is a well-established model system to study the initial phases of neuronal differentiation, have been used in studies to elucidate the mechanisms of neuronal differentiation. In the present study, we investigated alterations of gene expression in SH-SY5Y cells during neuronal differentiation mediated by retinoic acid (RA) treatment. We evaluated important pathways involving nuclear factor kappa B (NF-κB), nuclear E2-related factor 2 (Nrf2), glycolytic, and p53 during neuronal differentiation. We also investigated the involvement of reactive oxygen species (ROS) in modulating the gene expression profile of those pathways by antioxidant co-treatment with Trolox®, a hydrophilic analogue of α-tocopherol. We found that RA treatment increases levels of gene expression of NF-κB, glycolytic, and antioxidant pathway genes during neuronal differentiation of SH-SY5Y cells. We also found that ROS production induced by RA treatment in SH-SY5Y cells is involved in gene expression profile alterations, chiefly in NF-κB, and glycolytic pathways. Antioxidant co-treatment with Trolox® reversed the effects mediated by RA NF-κB, and glycolytic pathways gene expression. Interestingly, co-treatment with Trolox® did not reverse the effects in antioxidant gene expression mediated by RA in SH-SY5Y. To confirm neuronal differentiation, we quantified endogenous levels of tyrosine hydroxylase, a recognized marker of neuronal differentiation. Our data suggest that during neuronal differentiation mediated by RA, changes in profile gene expression of important pathways occur. These alterations are in part mediated by ROS production. Therefore, our results reinforce the importance in understanding the mechanism by which RA induces neuronal differentiation in SH-SY5Y cells, principally due this model being commonly used as a neuronal cell model in studies of neuronal pathologies.
Collapse
|