1
|
Rocco S, Maglione A, Schiavo V, Ferrando A, Fava C, Cilloni D, Pergolizzi B, Panuzzo C. Tyrosine Kinase Inhibitor Therapy Enhances Stem Cells Profile and May Contribute to Survival of Chronic Myeloid Leukemiastem Cells. J Clin Med 2025; 14:392. [PMID: 39860398 PMCID: PMC11765529 DOI: 10.3390/jcm14020392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/28/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Treatment with tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML) has revolutionized disease management and has transformed CML from a life-threatening disease to a chronic condition for many patients. However, overcoming resistance, particularly related to leukemic stem cells (LSC) that can persist even when the bulk of the leukemic cells are eliminated, remains a significant challenge. Methods: K562 and KU812 cell lines were treated in vitro with the TKI Imatinib (IM). Gene expression, protein analysis, and metabolomic screening were conducted to investigate the ability of the drug to enhance stem cell (SC) features. Moreover, a gene ontology analysis was performed on different available datasets, to further consolidate our data. Results: 48 h of IM treatment can significantly increase the expression of genes related to SC self-renewal, particularly SOX2 and OCT 3/4. Interestingly, these modulations occur in cells that remain alive after drug treatment and that displayed features consistent with leukemia stem-like CML cells, suggesting that SC genes levels are crucial even in cell population survived upon TKI treatment. Moreover, after in silico analysis of available data, we observed an enrichment of SOX2/NANOG and OCT 3/4 signatures after TKI treatment, thus strengthening our results. Conclusions: Our results confirmed the relevance of LSC features after TKI treatment, highlighting the need for more effective and potentially curative strategies targeting LSCs to overcome resistance in CML.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, 10124 Orbassano, Italy; (S.R.); (A.M.); (V.S.); (A.F.); (C.F.); (D.C.); (B.P.)
| |
Collapse
|
2
|
Gong W, Zhang N, Sun X, Zhang Y, Wang Y, Lv D, Luo H, Liu Y, Chen Z, Lei Q, Zhao G, Bai L, Jiao Q. Cardioprotective effects of polydatin against myocardial injury in HFD/stz and high glucose-induced diabetes via a Caveolin 1-dependent mechanism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156055. [PMID: 39326140 DOI: 10.1016/j.phymed.2024.156055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/04/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is defined as cardiac dysfunction involving changes in structure, function, and metabolism in the absence of coronary artery disease, which eventually developed into heart failure. There is still a lack of effective drugs for the treatment of DCM, while the ameliorative effects of traditional herbs on DCM have been commonly reported. Polydatin (PD) is a glucoside derivative of traditional herbs of resveratrol, which has been shown to ameliorate the pathological development of DCM. However, the cardioprotective effect and mechanism of PD in the improvement of myocardial injury are still unclear. AIM OF STUDY This study aimed to investigate the cardio-protective role of PD on DCM and reveal the critical effect of Cav1 in PD' regulation of DCM. MATERIALS AND METHODS The Cav1-/- and Cav1+/+mice and H9C2 cells were used to induce DCM models and then given PD treatment (150 mg/kg) or not. The cardiac functions of all mice were checked via echocardiography, and myocardial histological changes were measured by H&E, periodic acid-schiff (PAS) and Masson staining. The markers expression of heart fibrosis and inflammation, and hypertrophic factors were detected using western blotting. The NF-κB signaling activation was performed by confocal, immunohistochemical, Electrophoretic mobility shift assay (EMSA) and western blotting. RESULTS Here, we found that PD significantly improved the cardiac function and injury of diabetic Cav1+/+ mice, and enhanced the expression of Cav1 in the cardiac tissues of diabetic Cav1+/+ mice and HG-induced H9C2 cells. Further investigation showed that when Cav1 was knocked down, PD no longer plays the cardioprotective effect and inhibits the NF-κB signaling pathway activation in HFD/stz-treated diabetic mice and HG-induced H9C2 cells. CONCLUSION These results demonstrated that PD inhibited the hyperglycemia-induced myocardial injury and inflammatory fibrosis of DCM models in vivo and in vitro, and targeting Cav1 may provide a novel understanding the mechanism of the treatment of PD in DCM.
Collapse
Affiliation(s)
- Wenyan Gong
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 310000, PR China.
| | - Ningzhi Zhang
- Department of Cardiology, Shanghai Geriatric Medical Center, Shanghai, PR China
| | - Xiaohong Sun
- Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen, 518026, PR China
| | - Yuanyuan Zhang
- Department of Cardiovascular Ultrasonic Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, PR China
| | - Yu Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Dongxin Lv
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| | - Hui Luo
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 310000, PR China.
| | - Yingying Liu
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 310000, PR China.
| | - Zhen Chen
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 310000, PR China
| | - Qingqing Lei
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 310000, PR China.
| | - Gangfeng Zhao
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 310000, PR China.
| | - Lin Bai
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, Beijing, 100021, PR China
| | - Qibin Jiao
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 310000, PR China.
| |
Collapse
|
3
|
Stephen TKL, Cofresi LA, Quiroz E, Owusu-Ansah K, Ibrahim Y, Qualls E, Marshall J, Li W, Shetti A, Bonds JA, Minshall RD, Cologna SM, Lazarov O. Caveolin-1 Autonomously Regulates Hippocampal Neurogenesis Via Mitochondrial Dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.558792. [PMID: 37790360 PMCID: PMC10542167 DOI: 10.1101/2023.09.23.558792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The mechanisms underlying adult hippocampal neurogenesis (AHN) are not fully understood. AHN plays instrumental roles in learning and memory. Understanding the signals that regulate AHN has implications for brain function and therapy. Here we show that Caveolin-1 (Cav-1), a protein that is highly enriched in endothelial cells and the principal component of caveolae, autonomously regulates AHN. Conditional deletion of Cav-1 in adult neural progenitor cells (nestin +) led to increased neurogenesis and enhanced performance of mice in contextual discrimination. Proteomic analysis revealed that Cav-1 plays a role in mitochondrial pathways in neural progenitor cells. Importantly, Cav-1 was localized to the mitochondria in neural progenitor cells and modulated mitochondrial fission-fusion, a critical process in neurogenesis. These results suggest that Cav-1 is a novel regulator of AHN and underscore the impact of AHN on cognition.
Collapse
Affiliation(s)
- Terilyn K. L. Stephen
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Luis Aponte Cofresi
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Elvis Quiroz
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Kofi Owusu-Ansah
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Yomna Ibrahim
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Ellis Qualls
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Jeffery Marshall
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Wenping Li
- Department of Chemistry, University of Illinois at Chicago, IL, USA
| | - Aashutosh Shetti
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Jacqueline A Bonds
- Departmet of Anesthesiology, University of California San Diego, CA, USA
| | - Richard D. Minshall
- Deparment of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, IL,USA
- Department of Anesthesiology, University of Illinois at Chicago, IL USA
| | | | - Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
- Lead Contact
| |
Collapse
|
4
|
Gong W, Jiao Q, Yuan J, Luo H, Liu Y, Zhang Y, Chen Z, Xu X, Bai L, Zhang X. Cardioprotective and anti-inflammatory effects of Caveolin 1 in experimental diabetic cardiomyopathy. Clin Sci (Lond) 2023; 137:511-525. [PMID: 36929208 DOI: 10.1042/cs20220874] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 03/18/2023]
Abstract
Previous studies of the Caveolin 1 (Cav1) protein and caveolae, which are lipid raft structures found on the plasma membranes of certain cells, are associated with fat metabolism disorders, inflammation, diabetes, and cardiovascular disease. However, there have been no reports linking Cav1 to diabetic cardiomyopathy (DCM). In the present study, we established a relationship between Cav1 and the development of DCM. We found that compared with Cav1+/+ mice, Cav1-/- diabetic mice exhibited more severe cardiac injury, increased activation of NF-κB signaling, and up-regulation of downstream genes, including hypertrophic factors and inflammatory fibrosis factors in heart tissues. Additionally, in vitro results showed that knocking down Cav1 further activated HG-induced NF-κB signaling, increased the expression of downstream target genes, and decreased the expression of inhibitor α of NF-κB (iκBα), all of which have been linked to DCM pathogenesis. In contrast, Cav1 overexpression resulted in the opposite effects. Our study suggests that Cav1 knockdown promotes cardiac injury in DCM by activating the NF-κB signaling pathway, and targeting Cav1 may lead to the development of novel treatments for DCM.
Collapse
Affiliation(s)
- Wenyan Gong
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 310000, China
- Hangzhou Institute of Cardiovascular Disease, Hangzhou 310000, China
| | - Qibin Jiao
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 310000, China
| | - Jinghua Yuan
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 310000, China
- Hangzhou Institute of Cardiovascular Disease, Hangzhou 310000, China
| | - Hui Luo
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 310000, China
- Hangzhou Institute of Cardiovascular Disease, Hangzhou 310000, China
| | - Yingying Liu
- Hangzhou Institute of Cardiovascular Disease, Hangzhou 310000, China
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou 310000, China
| | - Yuanyuan Zhang
- Department of Cardiovascular Ultrasonic Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhen Chen
- Hangzhou Institute of Cardiovascular Disease, Hangzhou 310000, China
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou 310000, China
| | - Xiaoling Xu
- Hangzhou Institute of Cardiovascular Disease, Hangzhou 310000, China
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medicine, Hangzhou Normal University, Hangzhou 311121, China
| | - Lin Bai
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, Beijing 100021, China
| | - Xingwei Zhang
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 310000, China
- Hangzhou Institute of Cardiovascular Disease, Hangzhou 310000, China
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou 310000, China
| |
Collapse
|
5
|
Caiado F, Kovtonyuk LV, Gonullu NG, Fullin J, Boettcher S, Manz MG. Aging drives Tet2+/- clonal hematopoiesis via IL-1 signaling. Blood 2023; 141:886-903. [PMID: 36379023 PMCID: PMC10651783 DOI: 10.1182/blood.2022016835] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/19/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP), also referred to as aging-related clonal hematopoiesis, is defined as an asymptomatic clonal expansion of mutant mature hematopoietic cells in ≥4% of blood leukocytes. CHIP associates with advanced age and increased risk for hematological malignancy, cardiovascular disease, and all-cause mortality. Loss-of-function somatic mutations in TET2 are frequent drivers of CHIP. However, the contribution of aging-associated cooperating cell-extrinsic drivers, like inflammation, remains underexplored. Using bone marrow (BM) transplantation and newly developed genetic mosaicism (HSC-SCL-Cre-ERT; Tet2+/flox; R26+/tm6[CAG-ZsGreen1]Hze) mouse models of Tet2+/-driven CHIP, we observed an association between increased Tet2+/- clonal expansion and higher BM levels of the inflammatory cytokine interleukin-1 (IL-1) upon aging. Administration of IL-1 to mice carrying CHIP led to an IL-1 receptor 1 (IL-1R1)-dependent expansion of Tet2+/- hematopoietic stem and progenitor cells (HSPCs) and mature blood cells. This expansion was caused by increased Tet2+/- HSPC cell cycle progression, increased multilineage differentiation, and higher repopulation capacity compared with their wild-type counterparts. In agreement, IL-1α-treated Tet2+/- hematopoietic stem cells showed increased DNA replication and repair transcriptomic signatures and reduced susceptibility to IL-1α-mediated downregulation of self-renewal genes. More important, genetic deletion of IL-1R1 in Tet2+/- HPSCs or pharmacologic inhibition of IL-1 signaling impaired Tet2+/- clonal expansion, establishing the IL-1 pathway as a relevant and therapeutically targetable driver of Tet2+/- CHIP progression during aging.
Collapse
Affiliation(s)
- Francisco Caiado
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Larisa V. Kovtonyuk
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Nagihan G. Gonullu
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Jonas Fullin
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Steffen Boettcher
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Markus G. Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Chen Z, Wang Z, Liu D, Zhao X, Ning S, Liu X, Wang G, Zhang F, Luo F, Yao J, Tian X. Critical role of caveolin-1 in intestinal ischemia reperfusion by inhibiting protein kinase C βII. Free Radic Biol Med 2023; 194:62-70. [PMID: 36410585 DOI: 10.1016/j.freeradbiomed.2022.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/24/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
Abstract
Intestinal ischemia reperfusion (I/R) is a common clinical pathological process. We previously reported that pharmacological inhibition of protein kinase C (PKC) βII with a specific inhibitor attenuated gut I/R injury. However, the endogenous regulatory mechanism of PKCβII inactivation is still unclear. Here, we explored the critical role of caveolin-1 (Cav1) in protecting against intestinal I/R injury by regulating PKCβII inactivation. PKCβII translocated to caveolae and bound with Cav1 after intestinal I/R. Cav1 was highly expressed in the intestine of mice with I/R and IEC-6 cells stimulated with hypoxia/reoxygenation (H/R). Cav1-knockout (KO) mice suffered from worse intestinal injury after I/R than wild-type (WT) mice and showed extremely low survival due to exacerbated systemic inflammatory response syndrome (SIRS) and remote organ (lung and liver) injury. Cav1 deficiency resulted in excessive PKCβII activation and increased oxidative stress and apoptosis after intestinal I/R. Full-length Cav1 scaffolding domain peptide (CSP) suppressed excessive PKCβII activation and protected the gut against oxidative stress and apoptosis due to I/R injury. In summary, Cav1 could regulate PKCβII endogenous inactivation to alleviate intestinal I/R injury. This finding may represent a novel therapeutic strategy for the prevention and treatment of intestinal I/R injury.
Collapse
Affiliation(s)
- Zhao Chen
- Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, 116023, Dalian, China
| | - Zhecheng Wang
- Department of Pharmacology, Dalian Medical University, 116044, Dalian, China
| | - Deshun Liu
- Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, 116023, Dalian, China
| | - Xuzi Zhao
- Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, 116023, Dalian, China
| | - Shili Ning
- Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, 116023, Dalian, China
| | - Xingming Liu
- Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, 116023, Dalian, China
| | - Guangzhi Wang
- Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, 116023, Dalian, China
| | - Feng Zhang
- Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, 116023, Dalian, China
| | - Fuwen Luo
- Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, 116023, Dalian, China
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, 116044, Dalian, China
| | - Xiaofeng Tian
- Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, 116023, Dalian, China.
| |
Collapse
|
7
|
Shi G, Li X, Li K, Huang Y, Lei X, Bai L, Qin C. Heterozygous lipoprotein lipase knockout mice exhibit impaired hematopoietic stem/progenitor cell compartment. Animal Model Exp Med 2021; 4:418-425. [PMID: 34977493 PMCID: PMC8690995 DOI: 10.1002/ame2.12195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/07/2021] [Accepted: 11/11/2021] [Indexed: 12/03/2022] Open
Abstract
Background Hematopoietic stem cells (HSC) maintain the hematopoietic system homeostasis through self-renewal and multilineage differentiation potential. HSC are regulated by the microenvironment, cytokine signaling, and transcription factors. Recent results have shown that lipid pathways play a key role in the regulation of HSC quiescence, proliferation, and division. However, the mechanism by which lipid metabolism regulates HSC proliferation and differentiation remains to be clarified. Lipoprotein lipase (LPL) is an essential enzyme in the anabolism and catabolism of very low-density lipoprotein, chylomicrons, and triglyceride-rich lipoproteins. Methods The percentage of hematopoietic stem/progenitor cells and immune cells were determined by fluorescence-activated cell sorting (FACS). The function and the mechanism of HSCs were analyzed by cell colony forming assay and qPCR analysis. The changes in LPL+/- HSC microenvironment were detected by transplantation assays using red fluorescent protein (RFP) transgenic mice. Results To explore the function of LPL in HSC regulation, heterozygous LPL-knockout mice (LPL+/-) were established and analyzed by FACS. LPL+/- mice displayed decreased hematopoietic stem/progenitor cell compartments. In vitro single-cell clonogenic assays and cell-cycle assays using FACS promoted the cell cycle and increased proliferation ability. qPCR analysis showed the expression of p57KIP2 and p21WAF1/CIP1 in LPL+/- mice was upregulated. Conclusions LPL+/- mice exhibited HSC compartment impairment due to promotion of HSC proliferation, without any effects on the bone marrow (BM) microenvironment.
Collapse
Affiliation(s)
- Guiying Shi
- The Institute of Laboratory Animal SciencesCAMS & PUMCBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingP.R. China
| | - Xinyue Li
- The Institute of Laboratory Animal SciencesCAMS & PUMCBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingP.R. China
| | - Keya Li
- The Institute of Laboratory Animal SciencesCAMS & PUMCBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingP.R. China
| | - Yiying Huang
- The Institute of Laboratory Animal SciencesCAMS & PUMCBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingP.R. China
| | - Xuepei Lei
- The Institute of Laboratory Animal SciencesCAMS & PUMCBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingP.R. China
| | - Lin Bai
- The Institute of Laboratory Animal SciencesCAMS & PUMCBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingP.R. China
| | - Chuan Qin
- The Institute of Laboratory Animal SciencesCAMS & PUMCBeijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingP.R. China
| |
Collapse
|
8
|
Lai X, Guo Y, Chen M, Wei Y, Yi W, Shi Y, Xiong L. Caveolin1: its roles in normal and cancer stem cells. J Cancer Res Clin Oncol 2021; 147:3459-3475. [PMID: 34498146 DOI: 10.1007/s00432-021-03793-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/03/2021] [Indexed: 12/09/2022]
Abstract
PURPOSE Stem cells are characterized by the capability of self-renewal and multi-differentiation. Normal stem cells, which are important for tissue repair and tissue regeneration, can be divided into embryonic stem cells (ESCs) and somatic stem cells (SSCs) depending on their origin. As a subpopulation of cells within cancer, cancer stem cells (CSCs) are at the root of therapeutic resistance. Tumor-initiating cells (TICs) are necessary for tumor initiation. Caveolin1 (Cav1), a membrane protein located at the caveolae, participates in cell lipid transport, cell migration, cell proliferation, and cell signal transduction. The purpose of this review was to explore the relationship between Cav1 and stem cells. RESULTS In ESCs, Cav1 is beneficial for self-renewal, proliferation, and migration. In SSCs, Cav1 exhibits positive or/and negative effects on stem cell self-renewal, differentiation, proliferation, migration, and angiogenic capacity. Cav1 deficiency impairs normal stem cell-based tissue repair. In CSCs, Cav1 inhibits or/and promotes CSC self-renewal, differentiation, invasion, migration, tumorigenicity ability, and CSC formation. And suppressing Cav1 promotes chemo-sensitivity in CSCs and TICs. CONCLUSION Cav1 shows dual roles in stem cell biology. Targeting the Cav1-stem cell axis would be a new way for tissue repair and cancer drug resistance.
Collapse
Affiliation(s)
- Xingning Lai
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiling Guo
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Miaomiao Chen
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Yuxuan Wei
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang, 330006, China
| | - Wanting Yi
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,First Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Yubo Shi
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China.,Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang, 330006, China
| | - Lixia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang, China. .,Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang, 330006, China.
| |
Collapse
|
9
|
Zhang CJ, Zhu N, Wang YX, Liu LP, Zhao TJ, Wu HT, Liao DF, Qin L. Celastrol Attenuates Lipid Accumulation and Stemness of Clear Cell Renal Cell Carcinoma via CAV-1/LOX-1 Pathway. Front Pharmacol 2021; 12:658092. [PMID: 33935779 PMCID: PMC8085775 DOI: 10.3389/fphar.2021.658092] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/26/2021] [Indexed: 01/22/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by abnormal lipid accumulation. Celastrol is a pentacyclic triterpene extracted from Tripterygium wilfordii Hook F with anti-cancer activity. In the present study, the anticancer effects of celastrol on ccRCC and the underlying mechanisms were studied. Patients with reduced high density lipoprotein (HDL) and elevated levels of triglyceride (TG), total cholesterol (TC), low density lipoprotein (LDL) was found to have higher risk of ccRCC. In ccRCC clinical samples and cell lines, caveolin-1 (CAV-1) was highly expressed. CAV-1 was identified as a potential prognostic biomarker for ccRCC. Celastrol inhibited tumor growth and decreased lipid deposition promoted by high-fat diet in vivo. Celastrol reduced lipid accumulation and caveolae abundance, inhibited the binding of CAV-1 and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in ccRCC cells. Furthermore, celastrol attenuated stemness through blocking Wnt/β-catenin pathway after knockdown of CAV-1 and LOX-1. Therefore, the findings suggest that celastrol may be a promising active ingredient from traditional Chinese medicine for anti-cancer therapy.
Collapse
Affiliation(s)
- Chan-Juan Zhang
- Division of Stem Cell Regulation and Application, Department of Pharmacology, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yu-Xiang Wang
- Division of Stem Cell Regulation and Application, Department of Pharmacology, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Le-Ping Liu
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Tan-Jun Zhao
- Division of Stem Cell Regulation and Application, Department of Pharmacology, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Hong-Tao Wu
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, Department of Pharmacology, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Li Qin
- Division of Stem Cell Regulation and Application, Department of Pharmacology, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
10
|
Han C, Wang YJ, Wang YC, Guan X, Wang L, Shen LM, Zou W, Liu J. Caveolin-1 downregulation promotes the dopaminergic neuron-like differentiation of human adipose-derived mesenchymal stem cells. Neural Regen Res 2021; 16:714-720. [PMID: 33063733 PMCID: PMC8067921 DOI: 10.4103/1673-5374.295342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Previous studies have shown that caveolin-1 is involved in regulating the differentiation of mesenchymal stem cells. However, its role in the differentiation of human adipose mesenchymal stem cells into dopaminergic neurons remains unclear. The aim of this study was to investigate whether caveolin-1 regulates the differentiation of human adipose mesenchymal stem cells into dopaminergic-like neurons. We also examined whether the expression of caveolin-1 could be modulated by RNA interference technology to promote the differentiation of human adipose mesenchymal stem cells into dopaminergic-like neurons. The differentiation of human adipose mesenchymal stem cells into dopaminergic neurons was evaluated morphologically and by examining expression of the markers tyrosine hydroxylase, Lmx1a and Nurr1. The analyses revealed that during the differentiation of human adipose mesenchymal stem cells into dopaminergic neurons, the expression of caveolin-1 is decreased. Notably, the downregulation of caveolin-1 promoted the differentiation of human adipose mesenchymal stem cells into dopaminergic-like neurons, and it increased the expression of tyrosine hydroxylase, Lmx1a and Nurr1. Together, our findings suggest that caveolin-1 plays a negative regulatory role in the differentiation of dopaminergic-like neurons from stem cells, and it may therefore be a potential molecular target for strategies for regulating the differentiation of these cells. This study was approved by the Medical Ethics Committee of the First Affiliated Hospital of Dalian Medical University of China (approval No. PJ-KS-KY-2020-54) on March 7, 2017.
Collapse
Affiliation(s)
- Chao Han
- Stem Cell Clinical Research Center, Regenerative Medicine Center; National Joint Engineering Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Ya-Jun Wang
- College of Life Science, Liaoning Normal University, Dalian, Liaoning Province, China
| | - Ya-Chen Wang
- Stem Cell Clinical Research Center, Regenerative Medicine Center; National Joint Engineering Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Xin Guan
- Stem Cell Clinical Research Center, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Liang Wang
- Stem Cell Clinical Research Center, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Li-Ming Shen
- Stem Cell Clinical Research Center, Regenerative Medicine Center, First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Wei Zou
- College of Life Science, Liaoning Normal University, Dalian, Liaoning Province, China
| | - Jing Liu
- Stem Cell Clinical Research Center, Regenerative Medicine Center; National Joint Engineering Laboratory, First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| |
Collapse
|
11
|
Lala-Tabbert N, AlSudais H, Marchildon F, Fu D, Wiper-Bergeron N. CCAAT/enhancer-binding protein beta promotes muscle stem cell quiescence through regulation of quiescence-associated genes. Stem Cells 2020; 39:345-357. [PMID: 33326659 DOI: 10.1002/stem.3319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022]
Abstract
Regeneration of skeletal muscle depends on resident muscle stem cells called satellite cells that in healthy, uninjured muscle remain quiescent (noncycling). After activation and expansion of satellite cells postinjury, satellite cell numbers return to uninjured levels and return to mitotic quiescence. Here, we show that the transcription factor CCAAT/enhancer-binding protein beta (C/EBPβ) is required to maintain quiescence of satellite cells in uninjured muscle. We show that C/EBPβ is expressed in quiescent satellite cells in vivo and upregulated in noncycling myoblasts in vitro. Loss of C/EBPβ in satellite cells promotes their premature exit from quiescence resulting in spontaneous activation and differentiation of the stem cell pool. Forced expression of C/EBPβ in myoblasts inhibits proliferation by upregulation of 28 quiescence-associated genes. Furthermore, we find that caveolin-1 is a direct transcriptional target of C/EBPβ and is required for cell cycle exit in muscle satellite cells expressing C/EBPβ. The induction of mitotic quiescence is considered necessary for the long-term maintenance of adult stem cell populations with dysregulation driving increased differentiation of progenitors and depletion of the stem cell pool. Our findings place C/EBPβ as an important transcriptional regulator of muscle satellite cell quiescence.
Collapse
Affiliation(s)
- Neena Lala-Tabbert
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Hamood AlSudais
- Graduate Program in Cellular and Molecular Medicine, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - François Marchildon
- Graduate Program in Cellular and Molecular Medicine, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Laboratory of Molecular Metabolism, The Rockefeller University, New York, New York, USA
| | - Dechen Fu
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio, USA
| | - Nadine Wiper-Bergeron
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Sahay B, Mergia A. The Potential Contribution of Caveolin 1 to HIV Latent Infection. Pathogens 2020; 9:pathogens9110896. [PMID: 33121153 PMCID: PMC7692328 DOI: 10.3390/pathogens9110896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/25/2022] Open
Abstract
Combinatorial antiretroviral therapy (cART) suppresses HIV replication to undetectable levels and has been effective in prolonging the lives of HIV infected individuals. However, cART is not capable of eradicating HIV from infected individuals mainly due to HIV’s persistence in small reservoirs of latently infected resting cells. Latent infection occurs when the HIV-1 provirus becomes transcriptionally inactive and several mechanisms that contribute to the silencing of HIV transcription have been described. Despite these advances, latent infection remains a major hurdle to cure HIV infected individuals. Therefore, there is a need for more understanding of novel mechanisms that are associated with latent infection to purge HIV from infected individuals thoroughly. Caveolin 1(Cav-1) is a multifaceted functional protein expressed in many cell types. The expression of Cav-1 in lymphocytes has been controversial. Recent evidence, however, convincingly established the expression of Cav-1 in lymphocytes. In lieu of this finding, the current review examines the potential role of Cav-1 in HIV latent infection and provides a perspective that helps uncover new insights to understand HIV latent infection.
Collapse
Affiliation(s)
| | - Ayalew Mergia
- Correspondence: ; Tel.: +352-294-4139; Fax: +352-392-9704
| |
Collapse
|
13
|
Bai L, Lyu Y, Shi G, Li K, Huang Y, Ma Y, Cong YS, Zhang L, Qin C. Polymerase I and transcript release factor transgenic mice show impaired function of hematopoietic stem cells. Aging (Albany NY) 2020; 12:20152-20162. [PMID: 33087586 PMCID: PMC7655181 DOI: 10.18632/aging.103729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
The age-dependent decline in stem cell function plays a critical role in aging, although the molecular mechanisms remain unclear. PTRF/Cavin-1 is an essential component in the biogenesis and function of caveolae, which regulates cell proliferation, endocytosis, signal transduction and senescence. This study aimed to analyze the role of PTRF in hematopoietic stem cells (HSCs) senescence using PTRF transgenic mice. Flow cytometry was used to detect the frequency of immune cells and hematopoietic stem/progenitor cells (HSCs and HPCs). The results showed than the HSC compartment was significantly expanded in the bone marrow of PTRF transgenic mice compared to age-matched wild-type (WT) mice, and exhibited the senescent phenotype characterized by G1 cell cycle arrest, increased SA-β-Gal activity and high levels of reactive oxygen species (ROS). The PTRF-overexpressing HSCs also showed significantly lower self-renewal and ability to reconstitute hematopoiesis in vitro and in vivo. Real-time PCR was performed to analyze the expression levels of senescence-related genes. PTRF induced HSCs senescence via the ROS-p38-p16 and caveolin-1-p53-p21 pathways. Furthermore, the PTRF+cav-1-/- mice showed similar HSCs function as WT mice, indicating that PTRF induces senescence in HSCs partly through caveolin-1. Thus PTRF impaired HSCs aging partly via caveolin-1.
Collapse
Affiliation(s)
- Lin Bai
- NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing 100021, China
| | - Ying Lyu
- NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing 100021, China
| | - Guiying Shi
- NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing 100021, China
| | - Keya Li
- NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing 100021, China
| | - Yiying Huang
- NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing 100021, China
| | - Yuanwu Ma
- NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing 100021, China
| | - Yu-Sheng Cong
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou 310036, China
| | - Lianfeng Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing 100021, China
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing 100021, China
| |
Collapse
|
14
|
Horton PD, Dumbali S, Wenzel PL. Mechanoregulation in hematopoiesis and hematologic disorders. CURRENT STEM CELL REPORTS 2020; 6:86-95. [PMID: 33094091 PMCID: PMC7577202 DOI: 10.1007/s40778-020-00172-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Hematopoietic stem cells (HSCs) are reliant on intrinsic and extrinsic factors for tight control of self-renewal, quiescence, differentiation, and homing. Given the intimate relationship between HSCs and their niche, increasing numbers of studies are examining how biophysical cues in the hematopoietic microenvironment impact HSC functions. RECENT FINDINGS Numerous mechanosensors are present on hematopoietic cells, including integrins, mechanosensitive ion channels, and primary cilia. Integrin-ligand adhesion, in particular, has been found to be critical for homing and anchoring of HSCs and progenitors in the bone marrow. Integrin-mediated interactions with ligands present on extracellular matrix and endothelial cells are key to establishing long-term engraftment and quiescence of HSCs. Importantly, disruption in the architecture and cellular composition of the bone marrow associated with conditioning regimens and primary myelofibrosis exposes HSCs to a profoundly distinct mechanical environment, with potential implications for progression of hematologic dysfunction and pathologies. SUMMARY Study of the mechanobiological signals that govern hematopoiesis represents an important future step toward understanding HSC biology in homeostasis, aging, and cancer.
Collapse
Affiliation(s)
- Paulina D. Horton
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, TX, 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, TX, 77030, USA
| | - Sandeep Dumbali
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, TX, 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, TX, 77030, USA
| | - Pamela L. Wenzel
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, TX, 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, TX, 77030, USA
| |
Collapse
|
15
|
Saha S, Murmu KC, Biswas M, Chakraborty S, Basu J, Madhulika S, Kolapalli SP, Chauhan S, Sengupta A, Prasad P. Transcriptomic Analysis Identifies RNA Binding Proteins as Putative Regulators of Myelopoiesis and Leukemia. Front Oncol 2019; 9:692. [PMID: 31448224 PMCID: PMC6691814 DOI: 10.3389/fonc.2019.00692] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/12/2019] [Indexed: 12/26/2022] Open
Abstract
Acute myeloid leukemia (AML) is a common and aggressive hematological malignancy. Acquisition of heterogeneous genetic aberrations and epigenetic dysregulation lead to the transformation of hematopoietic stem cells (HSC) into leukemic stem cells (LSC), which subsequently gives rise to immature blast cells and a leukemic phenotype. LSCs are responsible for disease relapse as current chemotherapeutic regimens are not able to completely eradicate these cellular sub-populations. Therefore, it is critical to improve upon the existing knowledge of LSC specific markers, which would allow for specific targeting of these cells more effectively allowing for their sustained eradication from the cellular milieu. Although significant milestones in decoding the aberrant transcriptional network of various cancers, including leukemia, have been achieved, studies on the involvement of post-transcriptional gene regulation (PTGR) in disease progression are beginning to unfold. RNA binding proteins (RBPs) are key players in mediating PTGR and they regulate the intracellular fate of individual transcripts, from their biogenesis to RNA metabolism, via interactions with RNA binding domains (RBDs). In this study, we have used an integrative approach to systematically profile RBP expression and identify key regulatory RBPs involved in normal myeloid development and AML. We have analyzed RNA-seq datasets (GSE74246) of HSCs, common myeloid progenitors (CMPs), granulocyte-macrophage progenitors (GMPs), monocytes, LSCs, and blasts. We observed that normal and leukemic cells can be distinguished on the basis of RBP expression, which is indicative of their ability to define cellular identity, similar to transcription factors. We identified that distinctly co-expressing modules of RBPs and their subclasses were enriched in hematopoietic stem/progenitor (HSPCs) and differentiated monocytes. We detected expression of DZIP3, an E3 ubiquitin ligase, in HSPCs, knockdown of which promotes monocytic differentiation in cell line model. We identified co-expression modules of RBP genes in LSCs and among these, distinct modules of RBP genes with high and low expression. The expression of several AML-specific RBPs were also validated by quantitative polymerase chain reaction. Network analysis identified densely connected hubs of ribosomal RBP genes (rRBPs) with low expression in LSCs, suggesting the dependency of LSCs on altered ribosome dynamics. In conclusion, our systematic analysis elucidates the RBP transcriptomic landscape in normal and malignant myelopoiesis, and highlights the functional consequences that may result from perturbation of RBP gene expression in these cellular landscapes.
Collapse
Affiliation(s)
- Subha Saha
- Epigenetic and Chromatin Biology Unit, Institute of Life Sciences, Bhubaneswar, India
| | - Krushna Chandra Murmu
- Epigenetic and Chromatin Biology Unit, Institute of Life Sciences, Bhubaneswar, India
| | - Mayukh Biswas
- Translational Research Unit of Excellence (TRUE), Stem Cell and Leukemia Laboratory, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata, India
| | - Sohini Chakraborty
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Jhinuk Basu
- Epigenetic and Chromatin Biology Unit, Institute of Life Sciences, Bhubaneswar, India
| | - Swati Madhulika
- Epigenetic and Chromatin Biology Unit, Institute of Life Sciences, Bhubaneswar, India
| | | | - Santosh Chauhan
- Cell Biology and Infectious Disease Unit, Institute of Life Sciences, Bhubaneswar, India
| | - Amitava Sengupta
- Translational Research Unit of Excellence (TRUE), Stem Cell and Leukemia Laboratory, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata, India
| | - Punit Prasad
- Epigenetic and Chromatin Biology Unit, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
16
|
Yoon HJ, Kim DH, Kim SJ, Jang JH, Surh YJ. Src-mediated phosphorylation, ubiquitination and degradation of Caveolin-1 promotes breast cancer cell stemness. Cancer Lett 2019; 449:8-19. [DOI: 10.1016/j.canlet.2019.01.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/02/2019] [Accepted: 01/14/2019] [Indexed: 12/19/2022]
|
17
|
Herek TA, Robinson JE, Heavican TB, Amador C, Iqbal J, Cutucache CE. Caveolin-1 is dispensable for early lymphoid development, but plays a role in the maintenance of the mature splenic microenvironment. BMC Res Notes 2018; 11:470. [PMID: 30005686 PMCID: PMC6043983 DOI: 10.1186/s13104-018-3583-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 07/06/2018] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE Caveolin-1 (CAV1) is known for its role as both a tumor suppressor and an oncogene, harboring a highly context-dependent role within a myriad of malignancies and cell types. In an immunological context, dysregulation of CAV1 expression has been shown to alter immunological signaling functions and suggests a pivotal role for CAV1 in the facilitation of proper immune responses. Nonetheless, it is still unknown how Cav1-deficiency and heterozygosity would impact the development and composition of lymphoid organs in mice. Herein, we investigated the impacts of Cav1-dysregulation on the lymphoid organs in young (12 weeks) and aged (36 weeks) Cav1+/+, Cav1+/-, and Cav1-/- mice. RESULTS We observed that only Cav1-deficiency is associated with persistent splenomegaly at all timepoints. Furthermore, no differences in overall body weight were detected (and without sexual dimorphisms). Both aged Cav1+/- and Cav1-/- mice present with decreased CD19+CD22+ B cells and secondary-follicle atrophy, specifically in the spleen, compared with wild-type controls and irrespective of splenomegaly status. Consequently, the demonstrated effects on B cell homeostasis and secondary follicle characteristics prompted our investigation into follicle-derived human B-cell lymphomas. Our investigation points toward CAV1 as a dysregulated protein in follicle-derived B-cell malignancies without harboring a differential expression between more aggressive and indolent hematological malignancies.
Collapse
Affiliation(s)
- Tyler A Herek
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jacob E Robinson
- Department of Biology, University of Nebraska at Omaha, 6001 Dodge St, Omaha, NE, 68182, USA
| | - Tayla B Heavican
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Catalina Amador
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Christine E Cutucache
- Department of Biology, University of Nebraska at Omaha, 6001 Dodge St, Omaha, NE, 68182, USA.
| |
Collapse
|
18
|
Vangapandu HV, Chen H, Wierda WG, Keating MJ, Korkut A, Gandhi V. Proteomics profiling identifies induction of caveolin-1 in chronic lymphocytic leukemia cells by bone marrow stromal cells. Leuk Lymphoma 2017; 59:1427-1438. [PMID: 28971726 DOI: 10.1080/10428194.2017.1376747] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is an indolent B-cell malignancy in which cells reside in bone marrow, lymph nodes, and peripheral blood, each of which provides a unique microenvironment. Although the levels of certain proteins are reported to induce, changes in the CLL cell proteome in the presence of bone marrow stromal cells have not been elucidated. Reverse-phase protein array analysis of CLL cells before and 24 h after stromal cell interaction revealed changed levels of proteins that regulate cell cycle, gene transcription, and protein translation. The most hit with respect to both the extent of change in expression level and statistical significance was caveolin-1, which was confirmed with immunoblotting. Caveolin-1 mRNA levels were also upregulated in CLL cells after stromal cell interaction. The induction of caveolin-1 levels was rapid and occurred as early as 1 h. Studies to determine the significance of upregulated caveolin-1 levels in CLL lymphocytes are warranted.
Collapse
Affiliation(s)
- Hima V Vangapandu
- a Department of Experimental Therapeutics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA.,b MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences , Houston , TX , USA
| | - Huiqin Chen
- c Department of Biostatistics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - William G Wierda
- d Department of Leukemia , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Michael J Keating
- d Department of Leukemia , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Anil Korkut
- e Department of Bioinformatics and Computer Biology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Varsha Gandhi
- a Department of Experimental Therapeutics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA.,b MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences , Houston , TX , USA.,c Department of Biostatistics , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
19
|
Bone marrow transplantation prevents right ventricle disease in the caveolin-1-deficient mouse model of pulmonary hypertension. Blood Adv 2017; 1:526-534. [PMID: 29296972 DOI: 10.1182/bloodadvances.2016002691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/22/2017] [Indexed: 01/08/2023] Open
Abstract
Accumulating evidence shows a causative role for the bone marrow (BM) in the genesis and progression of pulmonary hypertension (PH). Engraftment of BM hematopoietic stem cells from PH patients to mice reproduces the cardiopulmonary pathology of PH. However, it is unknown whether healthy BM can prevent the development of right heart disease. Caveolin-1-deficient (CAV-1 KO) mice develop cardiopulmonary disease with manifestations resembling PH, including elevated right ventricular (RV) systolic pressure (RVSP), RV hypertrophy, and pulmonary endothelial proliferative disease. Here, we hypothesize that engraftment of healthy BM to CAV-1 KO mice will prevent pulmonary vascular remodeling and development of the cardiopulmonary disease. CAV-1 KO mice and wild-type (WT) mice underwent transplantation with WT or CAV-1 KO BM. Hematopoietic differentiation was analyzed by flow cytometry. Pulmonary endothelial remodeling was quantified by CD31 image analysis. RVSP and RV cardiomyocyte area or Fulton's index were used to analyze RV hypertrophy. Maladaptive RV hypertrophy was determined by quantification of RV fibrosis. Transplantation of CAV-1 KO BM into healthy recipient WT mice led to elevation of RVSP, RV hypertrophy, and pulmonary endothelial remodeling. Reconstitution of CAV-1 KO with WT BM prevented spontaneous development of PH, including elevation of RVSP and maladaptive RV hypertrophy, but not pulmonary endothelial remodeling. Healthy BM has a protective role in the right ventricle independent of pulmonary vascular disease.
Collapse
|
20
|
Gasco S, Rando A, Zaragoza P, García-Redondo A, Calvo AC, Osta R. Hematopoietic stem and progenitor cells as novel prognostic biomarkers of longevity in a murine model for amyotrophic lateral sclerosis. Am J Physiol Cell Physiol 2016; 311:C910-C919. [PMID: 27681176 DOI: 10.1152/ajpcell.00081.2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/21/2016] [Indexed: 11/22/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a difficult diagnosis and prognosis. In this regard, new and more reliable biomarkers for the disease are needed. We propose peripheral blood, and, more specifically, the hematopoietic stem and progenitor cells (HSPCs) as potential prognostic biomarkers in the SOD1G93A murine model of ALS. We accurately and serially studied three HSPCs-hematopoietic stem cells (HSCs), common lymphoid progenitors (CLPs), and common myeloid progenitors (CMPs)-in both control and SOD1G93A mice along the disease's progression by RT-PCR and flow cytometry analysis. We found interesting differences for every HSPC type in the transgenic mice compared with the control mice at every time point selected, as well as differences along the disease course. The results showed a maintained compensatory increase of HSCs along disease progression. However, the downregulated levels of CLPs and CMPs suggested an exit of these cell populations to the peripheral tissues, probably due to their supporting role to the damaged tissues. In addition, a positive correlation of the percentage of CLPs and CMPs with the longevity was found, as well as a positive correlation of HSCs and CMPs with motor function and weight, thus reinforcing the idea that HSPCs play a relevant role in the longevity of the SOD1G93A mice. On the basis of these results, both CLPs and CMPs could be considered prognostic biomarkers of longevity in this animal model, opening the door to future studies in human patients for their potential clinical use.
Collapse
Affiliation(s)
- Samanta Gasco
- Laboratorio de Genética Bioquímica, Veterinary Faculty of Zaragoza, Instituto Agroalimentario de Aragón, Health Research Institute of Aragon, University of Zaragoza, Zaragoza, Spain; and
| | - Amaya Rando
- Laboratorio de Genética Bioquímica, Veterinary Faculty of Zaragoza, Instituto Agroalimentario de Aragón, Health Research Institute of Aragon, University of Zaragoza, Zaragoza, Spain; and
| | - Pilar Zaragoza
- Laboratorio de Genética Bioquímica, Veterinary Faculty of Zaragoza, Instituto Agroalimentario de Aragón, Health Research Institute of Aragon, University of Zaragoza, Zaragoza, Spain; and
| | - Alberto García-Redondo
- Biochemistry Department, Centre for Biomedical Network Research on Rare Diseases, Health Research Institute, October 12th Hospital, Madrid, Spain
| | - Ana Cristina Calvo
- Laboratorio de Genética Bioquímica, Veterinary Faculty of Zaragoza, Instituto Agroalimentario de Aragón, Health Research Institute of Aragon, University of Zaragoza, Zaragoza, Spain; and
| | - Rosario Osta
- Laboratorio de Genética Bioquímica, Veterinary Faculty of Zaragoza, Instituto Agroalimentario de Aragón, Health Research Institute of Aragon, University of Zaragoza, Zaragoza, Spain; and
| |
Collapse
|
21
|
Bai L, Shi G, Yang Y, Chen W, Zhang L. Anti-Aging Effect of Siraitia grosuenorii by Enhancement of Hematopoietic Stem Cell Function. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:803-15. [DOI: 10.1142/s0192415x16500440] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Anti-aging has always been a popular topic, and there are many claims about the existence of factors that can slow, stop, or even reverse the aging process. Siraitia grosuenorii, a local fruit in china, has been used for the treatment of gastritis, sore throats, and whooping cough in traditional Chinese medicine. The individuals who took the juice of Siraitia grosuenorii regularly had increased longevity in the Guangxi Province, which is located in the Southern part of China. In this paper, we fed mice with Siraitia grosuenorii for 10 months to identify the role of Siraitia grosuenorii in anti-aging and to investigate its corresponding mechanism. The results showed that mice fed with Siraitia grosuenorii displayed a slower aging process. The extension of the aging process was due to the enhanced function of HSCs. FACS analysis showed that the number of LSKs, LT-HSCs, ST-HSCs and MPPs from Siraitia grosuenorii mice was decreased. In vitro, a clonigenic assay showed that LT-HSCs from Siraitia grosuenorii mice increased the ability of self-renewal. Moreover, Siraitia grosuenorii mice maintained the quiescence of LSKs, decreased the level of ROS and reduced the amount of senescence associated β-gal positive cells. Furthermore, Siraitia grosuenorii mice decreased the expression of senescence-associated proteins. Siraitia grosuenorii maintained quiescence, decreased senescence and enhanced the function of HSCs, slowing the aging process of mice.
Collapse
Affiliation(s)
- Lin Bai
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Guiying Shi
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yajun Yang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Wei Chen
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| |
Collapse
|
22
|
Shukla A, Cutucache CE, Sutton GL, Pitner MA, Rai K, Rai S, Opavsky R, Swanson PC, Joshi SS. Absence of caveolin-1 leads to delayed development of chronic lymphocytic leukemia in Eμ-TCL1 mouse model. Exp Hematol 2015; 44:30-7.e1. [PMID: 26435347 DOI: 10.1016/j.exphem.2015.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 11/19/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the United States. The tissue microenvironment, specifically the lymph nodes, influences the biological and clinical behavior of CLL cells. Gene expression profiling of CLL cells from peripheral blood, bone marrow, and lymph nodes revealed Cav-1 as one of the genes that might be involved in the pathogenesis of CLL. We have previously reported that the knockdown of Cav-1 in primary CLL cells exhibits a significant decrease in cell migration and immune synapse formation. However, the precise role of Cav-1 in CLL initiation and progression in vivo is not known. Therefore, we decreased the expression of Cav-1 in vivo by breeding Eμ-TCL1 with cav-1 knockout mice. We observed a significant decrease in the number of CLL cells and rate of proliferation of CLL cells in spleen, liver, and bone marrow from Eμ-TCL1-Cav1(-/+) and Eμ-TCL1-Cav1(-/-) mice as compared with Eμ-TCL1 mice. In addition, there was a significant increase in survival of Eμ-TCL1-Cav1(-/+) and Eμ-TCL1-Cav1(-/-) compared with Eμ-TCL1 mice. Mechanistically, we observed a decrease in MAPK-Erk signaling measured by p-Erk levels in Eμ-TCL1-Cav1(-/+) mice when compared with Eμ-TCL1-Cav(wt/wt). Together these results indicate that decreased Cav-1 in Eμ-TCL1 mice significantly delays the onset of CLL and decreases leukemic progression by inhibiting MAPK-Erk signaling, suggesting a role for Cav-1 in the proliferation and progression of CLL.
Collapse
Affiliation(s)
- Ashima Shukla
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE
| | | | - Garrett L Sutton
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE
| | - Michael A Pitner
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE
| | - Karan Rai
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE
| | - Siddharth Rai
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE
| | - Rene Opavsky
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE
| | - Patrick C Swanson
- Department of Medical Microbiology and Immunology, Creighton University Medical Center, Omaha, NE
| | - Shantaram S Joshi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE.
| |
Collapse
|
23
|
Wong TY, Solis MA, Chen YH, Huang LLH. Molecular mechanism of extrinsic factors affecting anti-aging of stem cells. World J Stem Cells 2015; 7:512-520. [PMID: 25815136 PMCID: PMC4369508 DOI: 10.4252/wjsc.v7.i2.512] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/02/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
Scientific evidence suggests that stem cells possess the anti-aging ability to self-renew and maintain differentiation potentials, and quiescent state. The objective of this review is to discuss the micro-environment where stem cells reside in vivo, the secreted factors to which stem cells are exposed, the hypoxic environment, and intracellular factors including genome stability, mitochondria integrity, epigenetic regulators, calorie restrictions, nutrients, and vitamin D. Secreted tumor growth factor-β and fibroblast growth factor-2 are reported to play a role in stem cell quiescence. Extracellular matrices may interact with caveolin-1, the lipid raft on cell membrane to regulate quiescence. N-cadherin, the adhesive protein on niche cells provides support for stem cells. The hypoxic micro-environment turns on hypoxia-inducible factor-1 to prevent mesenchymal stem cells aging through p16 and p21 down-regulation. Mitochondria express glucosephosphate isomerase to undergo glycolysis and prevent cellular aging. Epigenetic regulators such as p300, protein inhibitors of activated Stats and H19 help maintain stem cell quiescence. In addition, calorie restriction may lead to secretion of paracrines cyclic ADP-ribose by intestinal niche cells, which help maintain intestinal stem cells. In conclusion, it is crucial to understand the anti-aging phenomena of stem cells at the molecular level so that the key to solving the aging mystery may be unlocked.
Collapse
|