1
|
Chandra Jena B, Flaherty DP, O'Brien VP, Watts VJ. Biochemical pharmacology of adenylyl cyclases in cancer. Biochem Pharmacol 2024; 228:116160. [PMID: 38522554 PMCID: PMC11410551 DOI: 10.1016/j.bcp.2024.116160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Globally, despite extensive research and pharmacological advancement, cancer remains one of the most common causes of mortality. Understanding the signaling pathways involved in cancer progression is essential for the discovery of new drug targets. The adenylyl cyclase (AC) superfamily comprises glycoproteins that regulate intracellular signaling and convert ATP into cyclic AMP, an important second messenger. The present review highlights the involvement of ACs in cancer progression and suppression, broken down for each specific mammalian AC isoform. The precise mechanisms by which ACs contribute to cancer cell proliferation and invasion are not well understood and are variable among cancer types; however, AC overactivation, along with that of downstream regulators, presents a potential target for novel anticancer therapies. The expression patterns of ACs in numerous cancers are discussed. In addition, we highlight inhibitors of AC-related signaling that are currently under investigation, with a focus on possible anti-cancer strategies. Recent discoveries with small molecules regarding more direct modulation AC activity are also discussed in detail. A more comprehensive understanding of different components in AC-related signaling could potentially lead to the development of novel therapeutic strategies for personalized oncology and might enhance the efficacy of chemoimmunotherapy in the treatment of various cancers.
Collapse
Affiliation(s)
- Bikash Chandra Jena
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Daniel P Flaherty
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Valerie P O'Brien
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Val J Watts
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
2
|
Zhang H, Liu Y, Liu J, Chen J, Wang J, Hua H, Jiang Y. cAMP-PKA/EPAC signaling and cancer: the interplay in tumor microenvironment. J Hematol Oncol 2024; 17:5. [PMID: 38233872 PMCID: PMC10792844 DOI: 10.1186/s13045-024-01524-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Cancer is a complex disease resulting from abnormal cell growth that is induced by a number of genetic and environmental factors. The tumor microenvironment (TME), which involves extracellular matrix, cancer-associated fibroblasts (CAF), tumor-infiltrating immune cells and angiogenesis, plays a critical role in tumor progression. Cyclic adenosine monophosphate (cAMP) is a second messenger that has pleiotropic effects on the TME. The downstream effectors of cAMP include cAMP-dependent protein kinase (PKA), exchange protein activated by cAMP (EPAC) and ion channels. While cAMP can activate PKA or EPAC and promote cancer cell growth, it can also inhibit cell proliferation and survival in context- and cancer type-dependent manner. Tumor-associated stromal cells, such as CAF and immune cells, can release cytokines and growth factors that either stimulate or inhibit cAMP production within the TME. Recent studies have shown that targeting cAMP signaling in the TME has therapeutic benefits in cancer. Small-molecule agents that inhibit adenylate cyclase and PKA have been shown to inhibit tumor growth. In addition, cAMP-elevating agents, such as forskolin, can not only induce cancer cell death, but also directly inhibit cell proliferation in some cancer types. In this review, we summarize current understanding of cAMP signaling in cancer biology and immunology and discuss the basis for its context-dependent dual role in oncogenesis. Understanding the precise mechanisms by which cAMP and the TME interact in cancer will be critical for the development of effective therapies. Future studies aimed at investigating the cAMP-cancer axis and its regulation in the TME may provide new insights into the underlying mechanisms of tumorigenesis and lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Hongying Zhang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongliang Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jieya Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinzhu Chen
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yangfu Jiang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Kranert K, Woźny M, Podlasz P, Wąsowicz K, Brzuzan P. MiR92b-3p synthetic analogue impairs zebrafish embryonic development, leading to ocular defects, decreased movement and hatching rate, and increased mortality. J Appl Genet 2023; 64:145-157. [PMID: 36274083 PMCID: PMC9837005 DOI: 10.1007/s13353-022-00732-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/04/2022] [Accepted: 10/12/2022] [Indexed: 01/17/2023]
Abstract
The aim of this study was to examine the effect of microRNA 92b-3p (MiR92b-3p) overexpression on the embryonic development of zebrafish. A synthetic MiR92b-3p analogue (mirVana™ mimic, in vivo-ready) was injected at doses up to 5 ng/embryo into the yolk sac of embryos (2-16 cell stage). At 24 h post fertilization (hpf), the locomotor activity of the embryos was measured, and after hatching (72 hpf), the rates of malformation occurrence, hatching, and mortality were determined. Next, the larvae were fixed for histological and molecular examinations. Exposure to the MiR92b-3p mimic impaired embryonic development, leading to increased occurrence of malformations (i.e., pericardial edema, spine curvature, smaller eyes), decreased locomotor activity and hatching rate, and increased mortality. Importantly, the mimic affected retinal differentiation and lens formation during zebrafish embryogenesis, which suggests that MiR92b-3p could be an important factor in the regulation of fish embryogenesis and ocular development. The expression level of MiR92b-3p was substantially higher in the exposed larvae than in the untreated larvae, indicating that the mimic was successfully delivered to the zebrafish. Although screening of potential MiR92b-3p target genes suggested some changes in their expression levels, these results were inconclusive. Together, this study indicates that MiR92b-3p mimic impairs zebrafish embryonic development, and further research is necessary to identify the MiR92b-3p-regulated cell pathways involved in the impairment of the fish's development.
Collapse
Affiliation(s)
- Kilian Kranert
- grid.412607.60000 0001 2149 6795Department of Environmental Biotechnology, Institute of Engineering and Environment Protection, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45G, 10-709 Olsztyn, Poland
| | - Maciej Woźny
- grid.412607.60000 0001 2149 6795Department of Environmental Biotechnology, Institute of Engineering and Environment Protection, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45G, 10-709 Olsztyn, Poland
| | - Piotr Podlasz
- grid.412607.60000 0001 2149 6795Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 13, 10-718 Olsztyn, Poland
| | - Krzysztof Wąsowicz
- grid.412607.60000 0001 2149 6795Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 13, 10-718 Olsztyn, Poland
| | - Paweł Brzuzan
- grid.412607.60000 0001 2149 6795Department of Environmental Biotechnology, Institute of Engineering and Environment Protection, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 45G, 10-709 Olsztyn, Poland
| |
Collapse
|
4
|
Guo R, Liu T, Shasaltaneh MD, Wang X, Imani S, Wen Q. Targeting Adenylate Cyclase Family: New Concept of Targeted Cancer Therapy. Front Oncol 2022; 12:829212. [PMID: 35832555 PMCID: PMC9271773 DOI: 10.3389/fonc.2022.829212] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 05/26/2022] [Indexed: 12/18/2022] Open
Abstract
The adenylate cyclase (ADCY) superfamily is a group of glycoproteins regulating intracellular signaling. ADCYs act as key regulators in the cyclic adenosine monophosphate (cAMP) signaling pathway and are related to cell sensitivity to chemotherapy and ionizing radiation. Many members of the superfamily are detectable in most chemoresistance cases despite the complexity and unknownness of the specific mechanism underlying the role of ADCYs in the proliferation and invasion of cancer cells. The overactivation of ADCY, as well as its upstream and downstream regulators, is implicated as a major potential target of novel anticancer therapies and markers of exceptional responders to chemotherapy. The present review focuses on the oncogenic functions of the ADCY family and emphasizes the possibility of the mediating roles of deleterious nonsynonymous single nucleotide polymorphisms (nsSNPs) in ADCY as a prognostic therapeutic target in modulating resistance to chemotherapy and immunotherapy. It assesses the mediating roles of ADCY and its counterparts as stress regulators in reprogramming cancer cell metabolism and the tumor microenvironment. Additionally, the well-evaluated inhibitors of ADCY-related signaling, which are under clinical investigation, are highlighted. A better understanding of ADCY-induced signaling and deleterious nsSNPs (p.E1003K and p.R1116C) in ADCY6 provides new opportunities for developing novel therapeutic strategies in personalized oncology and new approaches to enhance chemoimmunotherapy efficacy in treating various cancers.
Collapse
Affiliation(s)
- Rui Guo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tian Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | | | - Xuan Wang
- China Regional Research Center, International Centre for Genetic Engineering and Biotechnology Taizhou, Jiangsu, China
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- China Regional Research Center, International Centre for Genetic Engineering and Biotechnology Taizhou, Jiangsu, China
- *Correspondence: Saber Imani, ; QingLian Wen,
| | - QingLian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Saber Imani, ; QingLian Wen,
| |
Collapse
|
5
|
Ostrom KF, LaVigne JE, Brust TF, Seifert R, Dessauer CW, Watts VJ, Ostrom RS. Physiological roles of mammalian transmembrane adenylyl cyclase isoforms. Physiol Rev 2022; 102:815-857. [PMID: 34698552 PMCID: PMC8759965 DOI: 10.1152/physrev.00013.2021] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/20/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Adenylyl cyclases (ACs) catalyze the conversion of ATP to the ubiquitous second messenger cAMP. Mammals possess nine isoforms of transmembrane ACs, dubbed AC1-9, that serve as major effector enzymes of G protein-coupled receptors (GPCRs). The transmembrane ACs display varying expression patterns across tissues, giving the potential for them to have a wide array of physiological roles. Cells express multiple AC isoforms, implying that ACs have redundant functions. Furthermore, all transmembrane ACs are activated by Gαs, so it was long assumed that all ACs are activated by Gαs-coupled GPCRs. AC isoforms partition to different microdomains of the plasma membrane and form prearranged signaling complexes with specific GPCRs that contribute to cAMP signaling compartments. This compartmentation allows for a diversity of cellular and physiological responses by enabling unique signaling events to be triggered by different pools of cAMP. Isoform-specific pharmacological activators or inhibitors are lacking for most ACs, making knockdown and overexpression the primary tools for examining the physiological roles of a given isoform. Much progress has been made in understanding the physiological effects mediated through individual transmembrane ACs. GPCR-AC-cAMP signaling pathways play significant roles in regulating functions of every cell and tissue, so understanding each AC isoform's role holds potential for uncovering new approaches for treating a vast array of pathophysiological conditions.
Collapse
Affiliation(s)
| | - Justin E LaVigne
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Tarsis F Brust
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana
| | - Rennolds S Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| |
Collapse
|
6
|
Fu Y, Xin Z, Ling Z, Xie H, Xiao T, Shen X, Lin J, Xu L, Jiang H. A CREB1-miR-181a-5p loop regulates the pathophysiologic features of bone marrow stromal cells in fibrous dysplasia of bone. Mol Med 2021; 27:81. [PMID: 34294046 PMCID: PMC8296714 DOI: 10.1186/s10020-021-00341-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/06/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Fibrous dysplasia (FD) is a bone marrow stromal cell (BMSC) disease caused by activating mutations of guanine nucleotide-binding protein alpha-stimulating activity polypeptide (GNAS) and is characterized by increased proliferative activity and disrupted osteogenesis of BMSCs. However, the molecular mechanisms regulating the pathophysiologic features of BMSCs in FD remain unknown. This study aimed to identify and verify the roles of the CREB1-miR-181a-5p regulatory loop in FD pathophysiology. METHODS MicroRNA (miRNA) sequencing analysis was used to identify the possible miRNAs implicated in FD. The proliferation, apoptosis, and osteogenic differentiation of BMSCs, as well as the osteoclast-induced phenotype, were measured and compared after exogenous miR-181a-5p transfection into FD BMSCs or miR-181a-5p inhibitor transfection into normal BMSCs. Chromatin immunoprecipitation and luciferase reporter assays were performed to verify the interactions between CREB1 and miR-181a-5p and their effects on the FD pathological phenotype. RESULTS Compared to normal BMSCs, FD BMSCs showed decreased miR-181a-5p levels and exhibited increased proliferative activity, decreased apoptotic capacity, and impaired osteogenesis. FD BMSCs also showed a stronger osteoclast activation effect. miR-181a-5p overexpression reversed the pathophysiologic features of FD BMSCs, whereas miR-181a-5p suppression induced an FD-like phenotype in normal BMSCs. Mechanistically, miR-181a-5p was the downstream target of CREB1, and CREB1 was posttranscriptionally regulated by miR-181a-5p. CONCLUSIONS Our study identifies that the interaction loop between CREB1 and miR-181a-5p plays a crucial role in regulating the pathophysiologic features of FD BMSCs. MiR-181a-5p may be a potential therapeutic target for the treatment of FD.
Collapse
Affiliation(s)
- Yu Fu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, No.136, Hanzhong Road, Nanjing, 210029, Jiangsu Province, China. .,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China. .,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China.
| | - Zhili Xin
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, No.136, Hanzhong Road, Nanjing, 210029, Jiangsu Province, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Ziji Ling
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, No.136, Hanzhong Road, Nanjing, 210029, Jiangsu Province, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Hanyu Xie
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, No.136, Hanzhong Road, Nanjing, 210029, Jiangsu Province, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Tao Xiao
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, No.136, Hanzhong Road, Nanjing, 210029, Jiangsu Province, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China.,Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Xin Shen
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, No.136, Hanzhong Road, Nanjing, 210029, Jiangsu Province, China.,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Jialin Lin
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, No.136, Hanzhong Road, Nanjing, 210029, Jiangsu Province, China
| | - Ling Xu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, No.136, Hanzhong Road, Nanjing, 210029, Jiangsu Province, China
| | - Hongbing Jiang
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, No.136, Hanzhong Road, Nanjing, 210029, Jiangsu Province, China. .,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China. .,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
7
|
Sabo AA, Dudau M, Constantin GL, Pop TC, Geilfus CM, Naccarati A, Dragomir MP. Two Worlds Colliding: The Interplay Between Natural Compounds and Non-Coding Transcripts in Cancer Therapy. Front Pharmacol 2021; 12:652074. [PMID: 34295245 PMCID: PMC8290364 DOI: 10.3389/fphar.2021.652074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
Cancer is a devastating disease and has recently become the leading cause of death in western countries, representing an immense public health burden. When it comes to cancer treatment, chemotherapy is one of the main pillars, especially for advanced stage tumors. Over the years, natural compounds have emerged as one of the most valuable resources for new chemotherapies. It is estimated that more than half of the currently used chemotherapeutic agents are derived from natural compounds. Usually, natural compounds are discovered empirically and an important limitation of introducing new anti-cancer natural products is lack of knowledge with regard to their mechanism of action. Recent data has proven that several natural compounds may function via modulating the expression and function of non-coding RNAs (ncRNAs). NcRNAs are a heterogenous class of RNA molecules which are usually not translated into proteins but have an important role in gene expression regulation and are involved in multiple tumorigenic processes, including response/resistance to pharmacotherapy. In this review, we will discuss how natural compounds function via ncRNAs while summarizing the available data regarding their effects on over 15 types of cancer. Moreover, we will critically analyze the current advances and limitations in understanding the way natural compounds exert these health-promoting effects by acting on ncRNAs. Finally, we will propose several hypotheses that may open new avenues and perspectives regarding the interaction between natural compounds and ncRNAs, which could lead to improved natural compound-based therapeutic strategies in cancer.
Collapse
Affiliation(s)
- Alexandru A. Sabo
- Pediatrics 2 (General and Special Pediatrics), Klinikum Stuttgart, Olgahospital, Zentrum für Kinder, Jugend- und Frauenmedizin, Stuttgart, Germany
| | - Maria Dudau
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, Bucharest, Romania
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - George L. Constantin
- Division of Soil Science and Site Science, Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tudor C. Pop
- Department of Pediatrics, Marie Curie Emergency Clinical Hospital for Children, Bucharest, Romania
| | - Christoph-M. Geilfus
- Division of Controlled Environment Horticulture, Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alessio Naccarati
- IIGM Italian Institute for Genomic Medicine, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Mihnea P. Dragomir
- Department of Surgery, Fundeni Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
8
|
Zheng M, Wu Y. Piceatannol suppresses proliferation and induces apoptosis by regulation of the microRNA‑21/phosphatase and tensin homolog/protein kinase B signaling pathway in osteosarcoma cells. Mol Med Rep 2020; 22:3985-3993. [PMID: 32901863 PMCID: PMC7533446 DOI: 10.3892/mmr.2020.11484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 08/22/2019] [Indexed: 12/13/2022] Open
Abstract
Piceatannol (Pice), a natural analog of resveratrol, has been identified as an anticancer agent in various cancers by modulating the expression of microRNAs (miRNAs/miRs). However, the molecular mechanisms underlying the anticancer effects of Pice in osteosarcoma (OS) cells remain unclear. Thus, we hypothesized that Pice exerts anticancer effects on OS cells via the regulation of miRNA expression. Herein, we performed a MTT assay and flow cytometric analysis to determine cell viability and apoptosis in OS cells treated with Pice, respectively. Our results showed that Pice inhibits proliferation in a dose-dependent manner induces the apoptosis of OS cells. More importantly, miRNA microarray analysis identified that Pice alters miRNA expression profiles in human OS cells after treatment with Pice, and miR-21 was the most significantly downregulated. In addition, the therapeutic effects of Pice on OS cells were weakened by restoration of miR-21. In addition, we further verified that phosphatase and tensin homolog (PTEN), a tumor suppressor gene, is the functional target of miR-21 and Pice blocks the PTEN/AKT signaling pathway through inhibiting miR-21 expression in OS cells. Our findings suggested that Pice may exert anticancer effects on OS cells via mediating the miR-21/PTEN/AKT signaling pathway and could be considered to be a potential anticancer agent for treating OS.
Collapse
Affiliation(s)
- Mingyue Zheng
- Department of Acu‑mox and Tuina, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Yaochi Wu
- Department of Acu‑mox and Tuina, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| |
Collapse
|
9
|
Wang D, Chen J, Ding Y, Kong H, You H, Zhao Y, Wei H, Liu Y. miR-188-5p Promotes Tumor Growth by Targeting CD2AP Through PI3K/AKT/mTOR Signaling in Children with Acute Promyelocytic Leukemia. Onco Targets Ther 2020; 13:6681-6697. [PMID: 32764959 PMCID: PMC7369302 DOI: 10.2147/ott.s244813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/02/2020] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Pediatric acute promyelocytic leukemia (APL) accounts for 10% of pediatric acute myelogenous leukemia (AML) case and is accompanied by a tendency to hemorrhage. miR-188-5p plays an important role in adult AML. Therefore, the purpose of this study was to explore the effects of miR-188-5p on cell proliferation and apoptosis and tumor growth, and its mechanism in pediatric APL patients. MATERIALS AND METHODS Survival-associated miRNAs or mRNAs from TCGA database associated with AML were identified via using the "survival R" package in R language. CCK8, clone formation, flow cytometry, RT-PCR, immunohistochemistry and Western blot assays were used to detect the viability, proliferation, apoptosis, cell cycle, and related gene expression in APL cell lines. The prognostic value of miR-188-5p was evaluated using a ROC curve. The tumorigenic ability of APL cell lines was determined using a nude mouse transplantation tumor experiment. Tumor cell apoptosis was determined by TUNEL assay in vivo. The target genes of miR-188-5p were predicted using the miRDB, miRTarBase, and TargetScan databases. A PPI network was constructed using STRING database and the hub gene was identified using the MCODE plug-in of the Cytoscape software. The DAVID database was used to perform GO and KEGG pathway enrichment analyses. A luciferase reporter assay was used to demonstrate the binding of miR-188-5p to CD2AP. RESULTS miR-188-5p overexpression or CD2 associated protein (CD2AP) inhibition was significantly associated with poor survival in pediatric APL patients. Upregulation of miR-188-5p was identified in the blood of pediatric APL patients and cell lines. Increased expression of miR-188-5p also promoted the viability, proliferation, and cell cycle progression, and reduced the apoptosis of APL cells. Additionally, upregulation of miR-188-5p regulated the expressions of cyclinD1, p53, Bax, Bcl-2 and cleaved caspase-3. The area under the ROC curve (AUC) of miR-188-5p was 0.661. miR-188-5p overexpression increased the tumorigenic ability of APL and Ki67 expression, and reduced cell apoptosis in vivo. CD2AP was identified as the only overlapping gene from the list of miR-188-5p target genes and survival-related mRNAs of the TCGA database. It was mainly enriched in the "biological process (BP)" and "cellular component (CC)" terms, and was downregulated in the blood of pediatric APL patients and cell lines. The luciferase reporter, RT-PCR, and Western blot assays demonstrated that the binding of miR-188-5p to CD2AP. CD2AP inhibition promoted the proliferation and inhibited the apoptosis of APL cells. Rescue experiments showed that inhibition of miR-188-5p inhibited cell proliferation, activated the PI3K/AKT/mTOR signaling pathway, induced G0/G1 phase arrest, regulated gene expression, and promoted cell apoptosis, which were reversed by CD2AP inhibition. CONCLUSION miR-188-5p, an oncogene, promoted tumor growth and progression of pediatric APL in vitro and in vivo via targeting CD2AP and activating the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Dao Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan, People’s Republic of China
| | - Jiao Chen
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan, People’s Republic of China
| | - Yanjie Ding
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan, People’s Republic of China
| | - Huimin Kong
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan, People’s Republic of China
| | - Hongliang You
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan, People’s Republic of China
| | - Yanting Zhao
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan, People’s Republic of China
| | - Huixia Wei
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan, People’s Republic of China
| | - Yufeng Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou450052, Henan, People’s Republic of China
| |
Collapse
|
10
|
Abstract
Retinoic acid (RA), the biologically active metabolite of vitamin A, regulates a vast spectrum of biological processes, such as cell differentiation, proliferation, apoptosis, and morphogenesis. microRNAs (miRNAs) play a crucial role in regulating gene expression by binding to messenger RNA (mRNA) which leads to mRNA degradation and/or translational repression. Like RA, miRNAs regulate multiple biological processes, including proliferation, differentiation, apoptosis, neurogenesis, tumorigenesis, and immunity. In fact, RA regulates the expression of many miRNAs to exert its biological functions. miRNA and RA regulatory networks have been studied in recent years. In this manuscript, we summarize literature that highlights the impact of miRNAs in RA-regulated molecular networks included in the PubMed.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, United States
| | - Atharva Piyush Rohatgi
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, United States
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, United States.
| |
Collapse
|
11
|
The chilling of adenylyl cyclase 9 and its translational potential. Cell Signal 2020; 70:109589. [PMID: 32105777 DOI: 10.1016/j.cellsig.2020.109589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 12/26/2022]
Abstract
A recent break-through paper has revealed for the first time the high-resolution, three-dimensional structure of a mammalian trans-membrane adenylyl cyclase (tmAC) obtained by cryo-electronmicroscopy (cryo-EM). Reporting the structure of adenylyl cyclase 9 (AC9) in complex with activated Gsα, the cryo-EM study revealed that AC9 has three functionally interlinked, yet structurally distinct domains. The array of the twelve transmembrane helices is connected to the cytosolic catalytic core by two helical segments that are stabilized through the formation of a parallel coiled-coil. Surprisingly, in the presence of Gsα, the isoform-specific carboxyl-terminal tail of AC9 occludes the forskolin- as well as the active substrate-sites, resulting in marked autoinhibition of the enzyme. As AC9 has the lowest primary sequence homology with the eight further mammalian tmAC paralogues, it appears to be the best candidate for selective pharmacologic targeting. This is now closer to reality as the structural insight provided by the cryo-EM study indicates that all of the three structural domains are potential targets for bioactive agents. The present paper summarizes for molecular physiologists and pharmacologists what is known about the biological role of AC9, considers the potential modes of physiologic regulation, as well as pharmacologic targeting on the basis of the high-resolution cryo-EM structure. The translational potential of AC9 is considered upon highlighting the current state of genome-wide association screens, and the corresponding experimental evidence. Overall, whilst the high- resolution structure presents unique opportunities for the full understanding of the control of AC9, the data on the biological role of the enzyme and its translational potential are far from complete, and require extensive further study.
Collapse
|
12
|
Gholikhani-Darbroud R. MicroRNA and retinoic acid. Clin Chim Acta 2019; 502:15-24. [PMID: 31812758 DOI: 10.1016/j.cca.2019.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Retinoic acid is a metabolite of vitamin A that is necessary to maintain health in human and most of the other vertebrates. MicroRNAs (miR or miRNAs) are small, non-coding RNA particles that diminish mRNA translation of various genes and so can regulate critical cell processes including cell death, proliferation, development, etc. The aim of this review is to study interrelations between retinoic acid with miRNAs. METHODS We reviewed and summarized all published articles in PubMed, Europe PMC, and Embase databases with any relationship between retinoic acid and miRNAs from Jun 2003 to Dec 2018 that includes 126 articles. RESULTS Results showed direct and indirect relationships between retinoic acid and miRNAs in various levels including effects of retinoic acid on expression of various miRNAs and miRNA-biogenesis enzymes, and effect of miRNAs on metabolism of retinoic acid. DISCUTION AND CONCLUSION This review indicates that retinoic acid has inter-correlations with various miRNA members and their metabolism in health and disease may require implications of the other.
Collapse
Affiliation(s)
- Reza Gholikhani-Darbroud
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran.
| |
Collapse
|
13
|
Braicu C, Gulei D, Raduly L, Harangus A, Rusu A, Berindan-Neagoe I. Altered expression of miR-181 affects cell fate and targets drug resistance-related mechanisms. Mol Aspects Med 2019; 70:90-105. [PMID: 31703947 DOI: 10.1016/j.mam.2019.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are non-coding transcripts which regulate genetic and epigenetic events by interfering with mRNA translation. miRNAs are involved in regulation of cell fate due to their ability of interfering with physiological or pathological processes. In this review paper, we evaluate the role of miR-181 family members as prognostic or diagnostic markers or therapeutic targets in malignant pathologies in connection with the main hallmarks of cancer that are modulated by the family. Also, we take over the dual role of this family in dependency with the tumour suppressor and oncogenic features presented in cell and cancer type specific manner. Restoration of the altered expression levels contributes to the activation of cell death pathways or to a reduction in the invasion and migration mechanism; moreover, the mechanism of drug resistance is also modulated by miR-181 sequences with important applications in therapeutic strategies for malignant cells sensitisation. Overall, the main miR-181 family regulatory mechanisms are presented in a cancer specific context, emphasizing the possible clinical application of this family in terms of novel diagnosis and therapy approaches.
Collapse
Affiliation(s)
- Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | - Diana Gulei
- MedFuture Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Antonia Harangus
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania; "Leon Daniello" Pneumophtisiology Clinic, 6 Bogdan Petriceicu Hasdeu Street, 400332, Cluj-Napoca, Romania.
| | | | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania; MedFuture Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania.
| |
Collapse
|
14
|
Lima L, de Melo TCT, Marques D, de Araújo JNG, Leite ISF, Alves CX, Genre J, Silbiger VN. Modulation of all-trans retinoic acid-induced MiRNA expression in neoplastic cell lines: a systematic review. BMC Cancer 2019; 19:866. [PMID: 31470825 PMCID: PMC6717326 DOI: 10.1186/s12885-019-6081-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022] Open
Abstract
Background Cancer is a genetic and epigenetic disease that involves inactivation of tumor suppressor genes and activation of proto-oncogenes. All-trans retinoic acid (ATRA) is an isomer of retinoic acid involved in the onset of differentiation and apoptosis of a number of normal and cancer cells, functioning as an anti-cancer agent in several neoplasms. Ectopic changes in the expression of certain microRNAs (miRNAs) occur in response to ATRA, leading to phenotypic alterations in neoplastic cell lines. Moreover, the modulation of miRNA patterns upon ATRA-treatment may represent an effective chemopreventive and anti-cancer therapy strategy. The present systematic review was performed to provide an overview of the modulation of ATRA-induced miRNA expression in different types of neoplastic cells and identify the efficacy of intervention factors (i.e., concentration and duration of treatment) and how they influence expression profiles of oncogenesis-targeting miRNAs. Methods A systematic search was conducted according to the PRISMA statement via the US National Library of Medicine MEDLINE/PubMed bibliographic search engine. Results The search identified 31 experimental studies involving human cell lines from nine different cancer types (neuroblastoma, acute myeloid leukemia, breast cancer, lung cancer, pancreatic cancer, glioma, glioblastoma, embryonal carcinoma, and colorectal cancer) treated with ATRA at concentrations ranging from 10− 3 μmol/L to 102 μmol mol/L for 24 h to 21 days. Conclusion The concentrations used and the duration of treatment of cancer cells with ATRA varied widely. The presence of ATRA in the culture medium of cancer cells was able to modulate the expression of more than 300 miRNAs, and inhibit invasive behavior and deregulated growth of cancer cells, resulting in total tumor remission in some cases. ATRA may thus be broadly effective for neoplasm treatment and prevention, although these studies may not accurately represent in vivo conditions. Additional studies are required to elucidate ATRA-induced miRNA modulation during neoplasm treatment.
Collapse
Affiliation(s)
- Lara Lima
- Postgraduate Program in Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil.,Laboratory of Bioanalysis and Molecular Biotechnology, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Diego Marques
- Laboratory of Bioanalysis and Molecular Biotechnology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jéssica Nayara Góes de Araújo
- Laboratory of Bioanalysis and Molecular Biotechnology, Federal University of Rio Grande do Norte, Natal, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Camila Xavier Alves
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Julieta Genre
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Vivian Nogueira Silbiger
- Postgraduate Program in Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil. .,Laboratory of Bioanalysis and Molecular Biotechnology, Federal University of Rio Grande do Norte, Natal, Brazil. .,Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal, Brazil. .,Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Av. General Gustavo Cordeiro de Faria S/N, Petrópolis, Natal - RN, 59012-570, Brazil.
| |
Collapse
|
15
|
Guo L, Bai Y, Ji S, Ma H. MicroRNA‑98 suppresses cell growth and invasion of retinoblastoma via targeting the IGF1R/k‑Ras/Raf/MEK/ERK signaling pathway. Int J Oncol 2019; 54:807-820. [PMID: 30664191 PMCID: PMC6365030 DOI: 10.3892/ijo.2019.4689] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/16/2018] [Indexed: 12/27/2022] Open
Abstract
Accumulating evidence has indicated that the dysregulation of microRNAs (miRNAs) is involved in the pathogenesis o retinoblastoma (RB); however, the potential role of miR-98 in RB remains elusive. In the present study, it was demonstrated that miR-98 is downregulated in RB tissues and cell lines, and its expression significantly associated with clinicopathological features, including differentiation, N classification and largest tumor base; patients with low miR-98 expression levels exhibited significantly poorer overall survival. Overexpression of miR-98 was suggested to suppress RB cell growth, migration and invasion. In addition, insulin-like growth factor-1 receptor (IGF1R), a well-reported oncogene, was identified as a potential target of miR-98 via a luciferase assay, reverse transcription-quantitative polymerase chain reaction and western blotting. Correlation analysis revealed a significantly negative correlation between miR-98 and IGF1R expression in tumor tissues (n=60). In addition, the results of the present study demonstrated that IGF1R function as an oncogene by promoting RB cell viability, migration and invasion. Furthermore, restoration of IGF1R was observed to reverse the anticancer effects of miR-98 on RB cell viability, migration and invasion. Importantly, the findings of the present study indicated that miR-98 suppressed RB cell growth and metastasis by inhibiting the IGF1R/k-Ras/Raf/mitogen activated protein kinase kinase/extracellular signal-regulated kinase signaling pathway. Collectively, the present study proposed that miR-98 may serve as a novel prognostic biomarker and therapeutic target in the treatment of RB.
Collapse
Affiliation(s)
- Long Guo
- Department of Ophthalmology, The First People's Hospital of Shangqiu, Shangqiu, Henan 476100, P.R. China
| | - Yu Bai
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Shuzhe Ji
- Department of Ophthalmology, The First People's Hospital of Shangqiu, Shangqiu, Henan 476100, P.R. China
| | - Hong Ma
- Department of Ophthalmology, The First People's Hospital of Shangqiu, Shangqiu, Henan 476100, P.R. China
| |
Collapse
|
16
|
Zhang F, Cao H. MicroRNA‑143‑3p suppresses cell growth and invasion in laryngeal squamous cell carcinoma via targeting the k‑Ras/Raf/MEK/ERK signaling pathway. Int J Oncol 2018; 54:689-701. [PMID: 30535502 DOI: 10.3892/ijo.2018.4655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 07/02/2018] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) have been identified as an important regulator in carcinogenesis and other pathological processes. However, the molecular mechanism underlying the function of miRNAs in the progression and development of laryngeal squamous cell carcinoma (LSCC) remains to be fully elucidated. In the present study, the miRNA expression pattern in LSCC tissues was profiled using miRNA microarray analysis. It was found that a large set of miRNAs are aberrantly expressed in LSCC tissues and that miR‑143‑3p was the most markedly downregulated compared with normal tissues. The low expression of miR‑143‑3p was associated with poor prognosis in LSCC. The overexpression of miR‑143‑3p repressed cellular proliferation and induced apoptosis in vitro, and inhibited tumor growth in vivo. The upregulation of miR‑143‑3p suppressed cell migration and invasion through inhibiting the epithelial‑mesenchymal transition cascade. In addition, it was verified that the oncogene k‑Ras is a target of miR‑143‑3p in LSCC cells, and the suppressive effects of miR‑143‑3p on LSCC cells were abrogated by the overexpression of k‑Ras. It was also revealed that miR‑143‑3p may inhibit cell growth and metastasis through targeting the k‑Ras/Raf/mitogen‑activated protein kinase kinase (MEK)/extracellular signal‑regulated kinase (ERK) signaling pathway. Taken together, the data indicated that the miR‑143‑3p/k‑Ras/Raf/MEK/ERK axis serves a key regulator in the development and progression of LSCC, suggesting that miR‑143‑3p may be a potential prognostic biomarker and therapeutic target in the treatment of LSCC.
Collapse
Affiliation(s)
- Feng Zhang
- Ear Nose and Throat Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hua Cao
- Ear Nose and Throat Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
17
|
He B, Chang Y, Yang C, Zhang Z, Xu G, Feng X, Zhuang L. Adenylate cyclase 7 regulated by miR-192 promotes ATRA-induced differentiation of acute promyelocytic leukemia cells. Biochem Biophys Res Commun 2018; 506:543-547. [PMID: 30366671 DOI: 10.1016/j.bbrc.2018.10.125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/20/2018] [Indexed: 12/25/2022]
Abstract
Adenylate cyclase 7 (AC7) has been reported to participate in various biological processes during cancer progression. However, the roles of AC7 in all-trans retinoic acid (ATRA)-induced differentiation of acute promyelocytic leukemia (APL) cells are still unknown. In this study, firstly, our results showed that AC7 affected intracellular cAMP level and influenced ATRA-induced differentiation of APL cells. Secondly, we revealed that miR-192 could directly target AC7 expression and knockdown of miR-192 promoted ATRA-induced APL cell differentiation by regulating AC7 expression. Furthermore, we found that AC7 expression was lower in patients with relapsed APL than that in patients with newly diagnosed APL, while miR-192 expression was relatively higher in patients with relapsed APL. Taken together, our results show that miR-192-mediated AC7 could play important roles in differentiation of APL cells, AC7 and miR-192 might be new biomarkers and therapeutic targets for patients with relapsed APL.
Collapse
Affiliation(s)
- Bing He
- Department of General Surgery, The First People's Hospital of Tianmen City, Tianmen, 431700, China
| | - Yanyan Chang
- Department of Haematology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Chao Yang
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Zhanglin Zhang
- Department of Laboratorial Examination, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, China
| | - Guiping Xu
- Transfusion Department, The Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China
| | - Xianqi Feng
- Department of Haematology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Likun Zhuang
- Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
18
|
Tan X, Banerjee P, Liu X, Yu J, Gibbons DL, Wu P, Scott KL, Diao L, Zheng X, Wang J, Jalali A, Suraokar M, Fujimoto J, Behrens C, Liu X, Liu CG, Creighton CJ, Wistuba II, Kurie JM. The epithelial-to-mesenchymal transition activator ZEB1 initiates a prometastatic competing endogenous RNA network. J Clin Invest 2018; 128:1267-1282. [PMID: 29324442 DOI: 10.1172/jci97225] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/09/2018] [Indexed: 12/23/2022] Open
Abstract
Epithelial tumor cells undergo epithelial-to-mesenchymal transition (EMT) to gain metastatic activity. Competing endogenous RNAs (ceRNAs) have binding sites for a common set of microRNAs (miRs) and regulate each other's expression by sponging miRs. Here, we address whether ceRNAs govern metastasis driven by the EMT-activating transcription factor ZEB1. High miR-181b levels were correlated with an improved prognosis in human lung adenocarcinomas, and metastatic tumor cell lines derived from a murine lung adenocarcinoma model in which metastasis is ZEB1-driven were enriched in miR-181b targets. ZEB1 relieved a strong basal repression of α1 integrin (ITGA1) mRNA, which in turn upregulated adenylyl cyclase 9 mRNA (ADCY9) by sponging miR181b. Ectopic expression of the ITGA1 3'-untranslated region reversed miR-181b-mediated metastasis suppression and increased the levels of adenylyl cyclase 9 protein (AC9), which promoted tumor cell migration and metastasis. In human lung adenocarcinomas, ITGA1 and ADCY9 levels were positively correlated, and an AC9-activated transcriptomic signature had poor-prognostic value. Thus, ZEB1 initiates a miR-181b-regulated ceRNA network to drive metastasis.
Collapse
Affiliation(s)
- Xiaochao Tan
- Department of Thoracic/Head and Neck Medical Oncology and
| | | | - Xin Liu
- Department of Thoracic/Head and Neck Medical Oncology and
| | - Jiang Yu
- Department of Thoracic/Head and Neck Medical Oncology and
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology and.,Department of Molecular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ping Wu
- Department of Molecular and Human Genetics and.,Department of Medicine and Dan L. Duncan Cancer Center, Baylor College of Medicine, Texas, USA
| | - Kenneth L Scott
- Department of Molecular and Human Genetics and.,Department of Medicine and Dan L. Duncan Cancer Center, Baylor College of Medicine, Texas, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ali Jalali
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Milind Suraokar
- Department of Translational Molecular Pathology, Division of Pathology and Laboratory Medicine, and
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, Division of Pathology and Laboratory Medicine, and
| | - Carmen Behrens
- Department of Thoracic/Head and Neck Medical Oncology and.,Department of Translational Molecular Pathology, Division of Pathology and Laboratory Medicine, and
| | - Xiuping Liu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chang-Gong Liu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chad J Creighton
- Department of Medicine and Dan L. Duncan Cancer Center, Baylor College of Medicine, Texas, USA.,Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ignacio I Wistuba
- Department of Thoracic/Head and Neck Medical Oncology and.,Department of Translational Molecular Pathology, Division of Pathology and Laboratory Medicine, and
| | | |
Collapse
|
19
|
Wang J, Cao L, Wu J, Wang Q. Long non-coding RNA SNHG1 regulates NOB1 expression by sponging miR-326 and promotes tumorigenesis in osteosarcoma. Int J Oncol 2017; 52:77-88. [PMID: 29115574 PMCID: PMC5743365 DOI: 10.3892/ijo.2017.4187] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 10/08/2017] [Indexed: 01/17/2023] Open
Abstract
The long non-coding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) has been demonstrated to participate in the deterioration of many types of cancer. However, the underlying mechanisms of SNHG1-mediating functions in osteosarcoma (OS) have yet to be elucidated. In the present study, our results showed that SNHG1 was upregulated in OS tissues and cell lines, and high SNHG1 expression predicts poor overall survival of OS patients. Knockdown of SNHG1 inhibited cell growth and metastasis of OS in vitro and in vivo. Furthermore, our data demonstrated that there was reciprocal repression between SNHG1 and miR-326 which act as a tumor suppressor in OS cells, and exhibiting a strong negative relationship between SNHG1 and miR-326 expression in OS tissues. Additionally, we identified that SNHG1 increased human nin one binding protein (NOB1), an oncogene, through sponging miR-326 as competing endogenous RNA (ceRNA), finally prompting cell growth, migration and invasion in OS. Collectively, these findings not only uncovered that the SNHG1/miR-326/NOB1 signaling axis has a key role in OS progression but also suggested the potential application of SNHG1 and miR-326 as biomarkers in the OS diagnosis and treatment.
Collapse
Affiliation(s)
- Jiandong Wang
- Department of Trauma and Orthopedics, Trauma Emergency Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Lei Cao
- Department of Trauma and Orthopedics, Trauma Emergency Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Jianhong Wu
- Department of Trauma and Orthopedics, Trauma Emergency Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Qiugen Wang
- Department of Trauma and Orthopedics, Trauma Emergency Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| |
Collapse
|
20
|
Lou YJ, Jin J. Insert restriction enzyme cutting-free cloning strategy for expression plasmid construction. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1351310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Ye-jiang Lou
- Key Laboratory of Hematologic Malignancies of Zhejiang Province, The First Affilicated Hospital of Zhejiang University, Hangzhou, Zhejiang, PR China
- Department of Hematology, Institute of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Jie Jin
- Key Laboratory of Hematologic Malignancies of Zhejiang Province, The First Affilicated Hospital of Zhejiang University, Hangzhou, Zhejiang, PR China
- Department of Hematology, Institute of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, PR China
| |
Collapse
|
21
|
Dessauer CW, Watts VJ, Ostrom RS, Conti M, Dove S, Seifert R. International Union of Basic and Clinical Pharmacology. CI. Structures and Small Molecule Modulators of Mammalian Adenylyl Cyclases. Pharmacol Rev 2017; 69:93-139. [PMID: 28255005 PMCID: PMC5394921 DOI: 10.1124/pr.116.013078] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adenylyl cyclases (ACs) generate the second messenger cAMP from ATP. Mammalian cells express nine transmembrane AC (mAC) isoforms (AC1-9) and a soluble AC (sAC, also referred to as AC10). This review will largely focus on mACs. mACs are activated by the G-protein Gαs and regulated by multiple mechanisms. mACs are differentially expressed in tissues and regulate numerous and diverse cell functions. mACs localize in distinct membrane compartments and form signaling complexes. sAC is activated by bicarbonate with physiologic roles first described in testis. Crystal structures of the catalytic core of a hybrid mAC and sAC are available. These structures provide detailed insights into the catalytic mechanism and constitute the basis for the development of isoform-selective activators and inhibitors. Although potent competitive and noncompetitive mAC inhibitors are available, it is challenging to obtain compounds with high isoform selectivity due to the conservation of the catalytic core. Accordingly, caution must be exerted with the interpretation of intact-cell studies. The development of isoform-selective activators, the plant diterpene forskolin being the starting compound, has been equally challenging. There is no known endogenous ligand for the forskolin binding site. Recently, development of selective sAC inhibitors was reported. An emerging field is the association of AC gene polymorphisms with human diseases. For example, mutations in the AC5 gene (ADCY5) cause hyperkinetic extrapyramidal motor disorders. Overall, in contrast to the guanylyl cyclase field, our understanding of the (patho)physiology of AC isoforms and the development of clinically useful drugs targeting ACs is still in its infancy.
Collapse
Affiliation(s)
- Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Val J Watts
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Rennolds S Ostrom
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Marco Conti
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Stefan Dove
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Roland Seifert
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| |
Collapse
|
22
|
Hayes E, Kushnir V, Ma X, Biswas A, Prizant H, Gleicher N, Sen A. Intra-cellular mechanism of Anti-Müllerian hormone (AMH) in regulation of follicular development. Mol Cell Endocrinol 2016; 433:56-65. [PMID: 27235859 DOI: 10.1016/j.mce.2016.05.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/24/2016] [Accepted: 05/24/2016] [Indexed: 11/21/2022]
Abstract
Anti-Müllerian hormone (AMH) is a member of the transforming growth factor-β superfamily and plays a crucial role in testicular and ovarian functions. In clinical practice, AMH is used as a diagnostic and/or prognostic marker in women in association with ovulation induction and in various pathophysiological conditions. Despite widespread clinical use of AMH, our mechanistic understanding of AMH actions in regulating follicular development is limited. Using a mouse model, we in this study report that in vivo AMH treatment while stalls follicular development and inhibits ovulation, also prevents follicular atresia. We further show that these AMH actions are mediated through induction of two miRNAs, miR-181a and miR-181b, which regulate various aspects of FSH signaling and follicular growth, ultimately affecting downstream gene expression and folliculogenesis. We also report that in this mouse model AMH pre-treatment prior to superovulation improves oocyte yield. These studies, therefore, offer new mechanistic insight into AMH actions in folliculogenesis and point toward potential utilization of AMH as a therapeutic agent.
Collapse
Affiliation(s)
- Emily Hayes
- Division of Endocrinology & Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Vitaly Kushnir
- Center for Human Reproduction, New York, NY 10021, USA; Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Xiaoting Ma
- Division of Endocrinology & Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Anindita Biswas
- Division of Endocrinology & Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Hen Prizant
- Division of Endocrinology & Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Norbert Gleicher
- Center for Human Reproduction, New York, NY 10021, USA; The Rockefeller University, New York, NY 10065, USA
| | - Aritro Sen
- Division of Endocrinology & Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Center for Human Reproduction, New York, NY 10021, USA.
| |
Collapse
|
23
|
Zhuang LK, Yang YT, Ma X, Han B, Wang ZS, Zhao QY, Wu LQ, Qu ZQ. MicroRNA-92b promotes hepatocellular carcinoma progression by targeting Smad7 and is mediated by long non-coding RNA XIST. Cell Death Dis 2016; 7:e2203. [PMID: 27100897 PMCID: PMC4855645 DOI: 10.1038/cddis.2016.100] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 01/17/2023]
Abstract
MicroRNA (miRNA) and long non-coding RNA (lncRNA) have been demonstrated to participate in the progression of many cancers. Hepatocellular carcinoma (HCC) is one of the most common and aggressive malignant tumors worldwide, while the molecular mechanisms underlying HCC tumorigenesis are not completely clear. In this study, we showed that miR-92b was significantly upregulated in tumor tissue and plasma of HCC patients, and its expression level was highly correlated with gender and microvascular invasion. Functionally, miR-92b could promote cell proliferation and metastasis of HCC in vitro and in vivo. Mechanistic investigations suggested that Smad7, which exhibited an inverse relationship with miR-92b expression in HCC, was a direct target of miR-92b and could reverse its effects on HCC tumorigenesis. Furthermore, long non-coding RNA (lncRNA) X-inactive specific transcript (XIST) and miR-92b could directly interact with and repress each other, and XIST could inhibit HCC cell proliferation and metastasis by targeting miR-92b. Taken together, our study not only revealed for the first time the importance of XIST/miR-92b/Smad7 signaling axis in HCC progression but also suggested the potential value of miR-92b as a biomarker in the clinical diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- L K Zhuang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.,Center for Medical Research, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Y T Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - X Ma
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - B Han
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Z S Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Q Y Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - L Q Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Z Q Qu
- Center for Medical Research, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
24
|
Liu X, Liao W, Peng H, Luo X, Luo Z, Jiang H, Xu L. miR-181a promotes G1/S transition and cell proliferation in pediatric acute myeloid leukemia by targeting ATM. J Cancer Res Clin Oncol 2016; 142:77-87. [PMID: 26113450 DOI: 10.1007/s00432-015-1995-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/07/2015] [Indexed: 01/07/2023]
Abstract
PURPOSE Abnormal expression of miRNAs is intimately related to a variety of human cancers. The purpose of this study is to confirm the expression of miR-181a and elucidate its physiological function and mechanism in pediatric acute myeloid leukemia (AML). METHODS Pediatric AML patients and healthy controls were enrolled, and the expression of miR-181a and ataxia telangiectasia mutated (ATM) in tissues were examined using quantitative PCR. Moreover, cell proliferation and cell cycle were evaluated in several cell lines (HL60, NB4 and K562) by using flow cytometry after transfected with miR-181a mimics and inhibitors, or ATM siRNA and control siRNA. Finally, ATM as the potential target protein of miR-181a was examined. RESULTS We found that miR-181a was significantly increased in pediatric AML, which showed an inverse association with ATM expression. Overexpressed miR-181a in cell lines significantly enhanced cell proliferation, as well as increased the ratio of S-phase cells by miR-181a mimics transfection in vitro. Luciferase activity of the reporter construct identified ATM as the direct molecular target of miR-181a. ATM siRNA transfection significantly enhanced cell proliferation and increased the ratio of S-phase cells in vitro. CONCLUSION The results revealed novel mechanism through which miR-181a regulates G1/S transition and cell proliferation in pediatric AML by regulating the tumor suppressor ATM, providing insights into the molecular mechanism in pediatric AML.
Collapse
Affiliation(s)
- Xiaodan Liu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wang Liao
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hongxia Peng
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xuequn Luo
- Department of Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ziyan Luo
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hua Jiang
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong Province, China
| | - Ling Xu
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong Province, China.
| |
Collapse
|
25
|
Ranganath P. MicroRNA-155 and Its Role in Malignant Hematopoiesis. Biomark Insights 2015; 10:95-102. [PMID: 26523117 PMCID: PMC4620936 DOI: 10.4137/bmi.s27676] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 12/22/2022] Open
Abstract
MicroRNA-155 (miR-155) is a multifunctional molecule involved in both normal and malignant hematopoiesis. It has been found to be involved in the pathogenesis of many different hematological malignancies with either an oncogenic or a tumor-repressor effect, depending on the nature of the cell and the type of malignancy. In particular, it has been strongly implicated in the causation of diffuse large B-cell lymphomas. This review focuses on the molecular interactions of miR-155, its oncogenic mechanisms, and its potential as an effective therapeutic target for the associated malignancies.
Collapse
Affiliation(s)
- Prajnya Ranganath
- Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India. ; Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| |
Collapse
|