1
|
Feng Z, Wei W, Wang S, Li X, Zhao L, Wan G, Hu R, Yu L. A novel selective FAK inhibitor E2 inhibits ovarian cancer metastasis and growth by inducing cytotoxic autophagy. Biochem Pharmacol 2024; 229:116461. [PMID: 39102992 DOI: 10.1016/j.bcp.2024.116461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Ovarian cancer (OC) is the deadliest form of the gynecologic malignancies and effective therapeutic drugs are urgently needed. Focal adhesion kinase (FAK) is overexpressed in various solid tumors, and could serve as a potential biomarker of ovarian cancer. However, there are no launched drugs targeting FAK. Hence, the development of the novel FAK inhibitors is an emerging approach for the treatment of ovarian cancer. In this work, we characterized a selective FAK inhibitor E2, with a high inhibitory potency toward FAK. Moreover, E2 had cytotoxic, anti-invasion and anti-migration activity on ovarian cancer cells. Mechanistically, after treatment with E2, FAK downstream signaling cascades (e.g., Src and AKT) were suppressed, thus resulting in the ovarian cancer cell arrest at G0/G1 phase and the induction of cytotoxic autophagy. In addition, E2 attenuated the tumor growth of PA-1 and ES-2 ovarian cancer subcutaneous xenografts, as well as suppressed peritoneal metastasis of OVCAR3-luc. Furthermore, E2 exhibited favorable pharmacokinetic properties. Altogether, these findings demonstrate that E2 is a selective FAK inhibitor with potent anti-ovarian cancer activities both in vivo and in vitro, offering new possibilities for OC treatment strategies.
Collapse
Affiliation(s)
- Zhanzhan Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Wei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shirui Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiao Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lifeng Zhao
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
| | - Guoquan Wan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rong Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Luoting Yu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Schreiber M, Macháček T, Vajs V, Šmídová B, Majer M, Hrdý J, Tolde O, Brábek J, Rösel D, Horák P. Suppression of the growth and metastasis of mouse melanoma by Taenia crassiceps and Mesocestoides corti tapeworms. Front Immunol 2024; 15:1376907. [PMID: 38571957 PMCID: PMC10987685 DOI: 10.3389/fimmu.2024.1376907] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Cancer is still one of the leading causes of death, with an estimated 19.3 million new cases every year. Our paper presents the tumor-suppressing effect of Taenia crassiceps and Mesocestoides corti on B16F10 melanoma, the intraperitoneal application of which followed the experimental infection with these tapeworms, resulting in varying degrees of effectiveness in two strains of mice. In the case of M. corti-infected ICR mice, a strong tumor growth suppression occurred, which was accompanied by a significant reduction in the formation of distant metastases in the liver and lung. Tapeworm-infected C57BL/6J mice also showed a suppression of tumor growth and, in addition, the overall survival of infected C57BL/6J mice was significantly improved. Experiments with potential cross-reaction of melanoma and tapeworm antigens with respective specific antibodies, restimulation of spleen T cells, or the direct effect of tapeworm excretory-secretory products on melanoma cells in vitro could not explain the phenomenon. However, infections with T. crassiceps and M. corti increased the number of leukocytes possibly involved in anti-tumor immunity in the peritoneal cavity of both ICR and C57BL/6J mice. This study unveils the complex interplay between tapeworm infections, immune responses, and melanoma progression, emphasizing the need for further exploration of the mechanisms driving observed tumor-suppressive effects.
Collapse
Affiliation(s)
- Manfred Schreiber
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Tomáš Macháček
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Vojtěch Vajs
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Barbora Šmídová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Martin Majer
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Jiří Hrdý
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Ondřej Tolde
- Department of Cell Biology, and Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), Charles University, Prague, Czechia
| | - Jan Brábek
- Department of Cell Biology, and Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), Charles University, Prague, Czechia
| | - Daniel Rösel
- Department of Cell Biology, and Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), Charles University, Prague, Czechia
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
3
|
Han S, Zhang M, Qu X, Wu Z, Huang Z, Hu Y, Li Y, Cui L, Si L, Liu J, Shao Y. SOX10 deficiency-mediated LAMB3 upregulation determines the invasiveness of MAPKi-resistant melanoma. Oncogene 2024; 43:434-446. [PMID: 38102338 DOI: 10.1038/s41388-023-02917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
Melanoma that develops adaptive resistance to MAPK inhibitors (MAPKi) through transcriptional reprograming-mediated phenotype switching is associated with enhanced metastatic potential, yet the underlying mechanism of this improved invasiveness has not been fully elucidated. In this study, we show that MAPKi-resistant melanoma cells are more motile and invasive than the parental cells. We further show that LAMB3, a β subunit of the extracellular matrix protein laminin-332 is upregulated in MAPKi-resistant melanoma cells and that the LAMB3-Integrin α3/α6 signaling mediates the motile and invasive phenotype of resistant cells. In addition, we demonstrate that SOX10 deficiency in MAPKi-resistant melanoma cells drives LAMB3 upregulation through TGF-β signaling. Transcriptome profiling and functional studies further reveal a FAK/MMPs axis mediates the pro-invasiveness effect of LAMB3. Using a mouse lung metastasis model, we demonstrate LAMB3 depletion inhibits the metastatic potential of MAPKi-resistant cells in vivo. In summary, this study identifies a SOX10low/TGF-β/LAMB3/FAK/MMPs signaling pathway that determines the migration and invasion properties of MAPKi-resistant melanoma cells and provide rationales for co-targeting LAMB3 to curb the metastasis of melanoma cells in targeted therapy.
Collapse
Affiliation(s)
- Shujun Han
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Mo Zhang
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaoyan Qu
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zihao Wu
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zongguan Huang
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yiming Hu
- Department of Dermatology, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ying Li
- Department of Dermatology, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lanlan Cui
- Department of Dermatology, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing, 100142, China
| | - Jiankang Liu
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| | - Yongping Shao
- Frontier Institute of Science and Technology, and Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Department of Dermatology, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
4
|
Neuendorf HM, Simmons JL, Boyle GM. Therapeutic targeting of anoikis resistance in cutaneous melanoma metastasis. Front Cell Dev Biol 2023; 11:1183328. [PMID: 37181747 PMCID: PMC10169659 DOI: 10.3389/fcell.2023.1183328] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023] Open
Abstract
The acquisition of resistance to anoikis, the cell death induced by loss of adhesion to the extracellular matrix, is an absolute requirement for the survival of disseminating and circulating tumour cells (CTCs), and for the seeding of metastatic lesions. In melanoma, a range of intracellular signalling cascades have been identified as potential drivers of anoikis resistance, however a full understanding of the process is yet to be attained. Mechanisms of anoikis resistance pose an attractive target for the therapeutic treatment of disseminating and circulating melanoma cells. This review explores the range of small molecule, peptide and antibody inhibitors targeting molecules involved in anoikis resistance in melanoma, and may be repurposed to prevent metastatic melanoma prior to its initiation, potentially improving the prognosis for patients.
Collapse
Affiliation(s)
- Hannah M. Neuendorf
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jacinta L. Simmons
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Glen M. Boyle
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Protein dynamics at invadopodia control invasion-migration transitions in melanoma cells. Cell Death Dis 2023; 14:190. [PMID: 36899008 PMCID: PMC10006204 DOI: 10.1038/s41419-023-05704-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023]
Abstract
Cell invasion is a highly complex process that requires the coordination of cell migration and degradation of the extracellular matrix. In melanoma cells, as in many highly invasive cancer cell types these processes are driven by the regulated formation of adhesives structures such as focal adhesions and invasive structures like invadopodia. Structurally, focal adhesion and invadopodia are quite distinct, yet they share many protein constituents. However, quantitative understanding of the interaction of invadopodia with focal adhesion is lacking, and how invadopodia turn-over is associated with invasion-migration transition cycles remains unknown. In this study, we investigated the role of Pyk2, cortactin and Tks5 in invadopodia turnover and their relation with focal adhesions. We found that active Pyk2 and cortactin are localised at both focal adhesions and invadopodia. At invadopodia, localisation of active Pyk2 is correlated with ECM degradation. During invadopodia disassembly, Pyk2 and cortactin but not Tks5 are often relocated at nearby nascent adhesions. We also show that during ECM degradation, cell migration is reduced which is likely related to the sharing of common molecules within the two structures. Finally, we found that the dual FAK/Pyk2 inhibitor PF-431396 inhibits both focal adhesion and invadopodia activities thereby reducing both migration and ECM degradation.
Collapse
|
6
|
Jafari M, Rahimi N, Jami MS, Hashemzadeh Chaleshtori M, Elahian F, Mirzaei SA. Silencing of α-N-acetylgalactosaminidase in the gastric cancer cells amplified cell death and attenuated migration, while the multidrug resistance remained unchanged. Cell Biol Int 2021; 46:255-264. [PMID: 34816536 DOI: 10.1002/cbin.11727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/24/2021] [Accepted: 11/13/2021] [Indexed: 11/12/2022]
Abstract
Although the elevated level of the α-N-acetylgalactosaminidase enzyme (encoded by the NAGA gene) is a well-recognized feature of cancer cells; little research works have been undertaken on the cancer malignancy mechanisms. The effects of NAGA gene downregulation on cancer cells' features such as drug resistance, impaired programmed cell death, and migration were analyzed in this study. The cells grew exponentially with a doubling time of 30 h in an optimal condition. Toxicity of daunorubicin chemotherapy drug on NAGA-transfected EPG85.257RDB cells was evaluated in comparison to control cells and no significant change was recorded. Quantitative transcript analyses and protein levels revealed that the MDR1 pump almost remained unchanged during the study. Moreover, the NAGA gene downregulation enhanced the late apoptosis rate in EPG85.257RDB cells at 24 h posttransfection. The investigated expression level of genes and proteins involved in the TNFR2 signaling pathway, related to cancer cell apoptosis, showed considerable alterations after NAGA silencing as well. MAP3K14 and CASP3 genes were downregulated while IL6, RELA, and TRAF2 experienced an upregulation. Also, NAGA silencing generally diminished the migration ability of EPG85.257RDB cells and the MMP1 gene (as a critical gene in metastasis) expression decreased significantly. The expression of the p-FAK protein, which is located in the downstream of the α2 β1 integrin signaling pathway, was reduced likewise. It could be concluded that despite drug resistance, NAGA silencing resulted in augmentative and regressive effects on cell death and migration.
Collapse
Affiliation(s)
- Mahbube Jafari
- Department of Medical Genetics, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nasibeh Rahimi
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Saeid Jami
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, California, USA.,Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Fatemeh Elahian
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
7
|
Linklater ES, Duncan ED, Han KJ, Kaupinis A, Valius M, Lyons TR, Prekeris R. Rab40-Cullin5 complex regulates EPLIN and actin cytoskeleton dynamics during cell migration. J Cell Biol 2021; 220:212111. [PMID: 33999101 PMCID: PMC8129794 DOI: 10.1083/jcb.202008060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/09/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Rab40b is a SOCS box–containing protein that regulates the secretion of MMPs to facilitate extracellular matrix remodeling during cell migration. Here, we show that Rab40b interacts with Cullin5 via the Rab40b SOCS domain. We demonstrate that loss of Rab40b–Cullin5 binding decreases cell motility and invasive potential and show that defective cell migration and invasion stem from alteration to the actin cytoskeleton, leading to decreased invadopodia formation, decreased actin dynamics at the leading edge, and an increase in stress fibers. We also show that these stress fibers anchor at less dynamic, more stable focal adhesions. Mechanistically, changes in the cytoskeleton and focal adhesion dynamics are mediated in part by EPLIN, which we demonstrate to be a binding partner of Rab40b and a target for Rab40b–Cullin5-dependent localized ubiquitylation and degradation. Thus, we propose a model where Rab40b–Cullin5-dependent ubiquitylation regulates EPLIN localization to promote cell migration and invasion by altering focal adhesion and cytoskeletal dynamics.
Collapse
Affiliation(s)
- Erik S Linklater
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Emily D Duncan
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ke-Jun Han
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Algirdas Kaupinis
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius, Lithuania
| | - Mindaugas Valius
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius, Lithuania
| | - Traci R Lyons
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO.,University of Colorado Cancer Center, Young Women's Breast Cancer Translational Program, Aurora, CO
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
8
|
Tilak M, Alural B, Wismer SE, Brasher MI, New LA, Sheridan SD, Perlis RH, Coppolino MG, Lalonde J, Jones N. Adaptor Protein ShcD/ SHC4 Interacts with Tie2 Receptor to Synergistically Promote Glioma Cell Invasion. Mol Cancer Res 2021; 19:757-770. [PMID: 33495401 DOI: 10.1158/1541-7786.mcr-20-0188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 11/26/2020] [Accepted: 01/14/2021] [Indexed: 11/16/2022]
Abstract
Gliomas are characterized by diffuse infiltration of tumor cells into surrounding brain tissue, and this highly invasive nature contributes to disease recurrence and poor patient outcomes. The molecular mechanisms underlying glioma cell invasion remain incompletely understood, limiting development of new targeted therapies. Here, we have identified phosphotyrosine adaptor protein ShcD as upregulated in malignant glioma and shown that it associates with receptor tyrosine kinase Tie2 to facilitate invasion. In human glioma cells, we find that expression of ShcD and Tie2 increases invasion, and this significant synergistic effect is disrupted with a ShcD mutant that cannot bind Tie2 or hyperphosphorylate the receptor. Expression of ShcD and/or Tie2 further increases invadopodia formation and matrix degradation in U87 glioma cells. In a coculture model, we show that U87-derived tumor spheroids expressing both ShcD and Tie2 display enhanced infiltration into cerebral organoids. Mechanistically, we identify changes in focal adhesion kinase phosphorylation in the presence of ShcD and/or Tie2 in U87 cells upon Tie2 activation. Finally, we identify a strong correlation between transcript levels of ShcD and Tie2 signaling components as well as N-cadherin in advanced gliomas and those with classical or mesenchymal subtypes, and we show that elevated expression of ShcD correlates with a significant reduction in patient survival in higher grade gliomas with mesenchymal signature. Altogether, our data highlight a novel Tie2-ShcD signaling axis in glioma cell invasion, which may be of clinical significance. IMPLICATIONS: ShcD cooperates with Tie2 to promote glioma cell invasion and its elevated expression correlates with poor patient outcome in advanced gliomas.
Collapse
Affiliation(s)
- Manali Tilak
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Begüm Alural
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Sarah E Wismer
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Megan I Brasher
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Laura A New
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Steven D Sheridan
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Roy H Perlis
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Marc G Coppolino
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Jasmin Lalonde
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
9
|
Mousson A, Legrand M, Steffan T, Vauchelles R, Carl P, Gies JP, Lehmann M, Zuber G, De Mey J, Dujardin D, Sick E, Rondé P. Inhibiting FAK-Paxillin Interaction Reduces Migration and Invadopodia-Mediated Matrix Degradation in Metastatic Melanoma Cells. Cancers (Basel) 2021; 13:cancers13081871. [PMID: 33919725 PMCID: PMC8070677 DOI: 10.3390/cancers13081871] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 01/09/2023] Open
Abstract
Simple Summary The focal adhesion kinase (FAK) is over-expressed in a variety of human tumors and is involved in many aspects of the metastatic process. This has led to the development of small inhibitors of FAK kinase function which are currently evaluated in clinical trials. We demonstrate here that this class of inhibitors, while decreasing melanoma cell migration, increases invadopodia activity in metastatic melanoma cells. Searching for an alternative strategy to inhibit the oncogenic activity of FAK, we show that inhibiting FAK scaffolding function using a small peptide altering FAK–paxillin interactions reduces both migration and invadopodia-mediated matrix degradation in metastatic melanoma cells. Abstract The nonreceptor tyrosine kinase FAK is a promising target for solid tumor treatment because it promotes invasion, tumor progression, and drug resistance when overexpressed. Investigating the role of FAK in human melanoma cells, we found that both in situ and metastatic melanoma cells strongly express FAK, where it controls tumor cells’ invasiveness by regulating focal adhesion-mediated cell motility. Inhibiting FAK in human metastatic melanoma cells with either siRNA or a small inhibitor targeting the kinase domain impaired migration but led to increased invadopodia formation and extracellular matrix degradation. Using FAK mutated at Y397, we found that this unexpected increase in invadopodia activity is due to the lack of phosphorylation at this residue. To preserve FAK–Src interaction while inhibiting pro-migratory functions of FAK, we found that altering FAK–paxillin interaction, with either FAK mutation in the focal adhesion targeting (FAT) domain or a competitive inhibitor peptide mimicking paxillin LD domains drastically reduces cell migration and matrix degradation by preserving FAK activity in the cytoplasm. In conclusion, our data show that targeting FAK–paxillin interactions could be a potential therapeutic strategy to prevent metastasis formation, and molecules targeting this interface could be alternative to inhibitors of FAK kinase activity which display unexpected effects.
Collapse
Affiliation(s)
- Antoine Mousson
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Marlène Legrand
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Tania Steffan
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Romain Vauchelles
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Plateforme PIQ, Faculté de Pharmacie, 67401 Illkirch, France;
| | - Philippe Carl
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Jean-Pierre Gies
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Maxime Lehmann
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Guy Zuber
- Université de Strasbourg, CNRS UMR7242, Intervention Chémobiologique, ESBS, 67412 Illkirch, France;
| | - Jan De Mey
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Denis Dujardin
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Emilie Sick
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
| | - Philippe Rondé
- Université de Strasbourg, CNRS UMR7021, Laboratoire de Bioimagerie et Pathologies, Migration, Invasion et Microenvironnement, Faculté de Pharmacie, 67401 Illkirch, France; (A.M.); (M.L.); (T.S.); (P.C.); (J.-P.G.); (M.L.); (J.D.M.); (D.D.); (E.S.)
- Correspondence: ; Tel.: +33-3-6885-4184
| |
Collapse
|
10
|
Chanez B, Ostacolo K, Badache A, Thuault S. EB1 Restricts Breast Cancer Cell Invadopodia Formation and Matrix Proteolysis via FAK. Cells 2021; 10:cells10020388. [PMID: 33668531 PMCID: PMC7918453 DOI: 10.3390/cells10020388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/07/2023] Open
Abstract
Regulation of microtubule dynamics by plus-end tracking proteins (+TIPs) plays an essential role in cancer cell migration. However, the role of +TIPs in cancer cell invasion has been poorly addressed. Invadopodia, actin-rich protrusions specialized in extracellular matrix degradation, are essential for cancer cell invasion and metastasis, the leading cause of death in breast cancer. We, therefore, investigated the role of the End Binding protein, EB1, a major hub of the +TIP network, in invadopodia functions. EB1 silencing increased matrix degradation by breast cancer cells. This was recapitulated by depletion of two additional +TIPs and EB1 partners, APC and ACF7, but not by the knockdown of other +TIPs, such as CLASP1/2 or CLIP170. The knockdown of Focal Adhesion Kinase (FAK) was previously proposed to similarly promote invadopodia formation as a consequence of a switch of the Src kinase from focal adhesions to invadopodia. Interestingly, EB1-, APC-, or ACF7-depleted cells had decreased expression/activation of FAK. Remarkably, overexpression of wild type FAK, but not of FAK mutated to prevent Src recruitment, prevented the increased degradative activity induced by EB1 depletion. Overall, we propose that EB1 restricts invadopodia formation through the control of FAK and, consequently, the spatial regulation of Src activity.
Collapse
Affiliation(s)
| | | | - Ali Badache
- Correspondence: (A.B.); (S.T.); Tel.: +33-(0)4-8697-7352 (S.T.)
| | - Sylvie Thuault
- Correspondence: (A.B.); (S.T.); Tel.: +33-(0)4-8697-7352 (S.T.)
| |
Collapse
|
11
|
Marcellus KA, Crawford Parks TE, Almasi S, Jasmin BJ. Distinct roles for the RNA-binding protein Staufen1 in prostate cancer. BMC Cancer 2021; 21:120. [PMID: 33541283 PMCID: PMC7863451 DOI: 10.1186/s12885-021-07844-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Prostate cancer is one of the most common malignant cancers with the second highest global rate of mortality in men. During the early stages of disease progression, tumour growth is local and androgen-dependent. Despite treatment, a large percentage of patients develop androgen-independent prostate cancer, which often results in metastases, a leading cause of mortality in these patients. Our previous work on the RNA-binding protein Staufen1 demonstrated its novel role in cancer biology, and in particular rhabdomyosarcoma tumorigenesis. To build upon this work, we have focused on the role of Staufen1 in other forms of cancer and describe here the novel and differential roles of Staufen1 in prostate cancer. METHODS Using a cell-based approach, three independent prostate cancer cell lines with different characteristics were used to evaluate the expression of Staufen1 in human prostate cancer relative to control prostate cells. The functional impact of Staufen1 on several key oncogenic features of prostate cancer cells including proliferation, apoptosis, migration and invasion were systematically investigated. RESULTS We show that Staufen1 levels are increased in all human prostate cancer cells examined in comparison to normal prostate epithelial cells. Furthermore, Staufen1 differentially regulates growth, migration, and invasion in the various prostate cancer cells assessed. In LNCaP prostate cancer cells, Staufen1 regulates cell proliferation through mTOR activation. Conversely, Staufen1 regulates migration and invasion of the highly invasive, bone metastatic-derived, PC3 prostate cells via the activation of focal adhesion kinase. CONCLUSIONS Collectively, these results show that Staufen1 has a direct impact in prostate cancer development and further demonstrate that its functions vary amongst the prostate cancer cell types. Accordingly, Staufen1 represents a novel target for the development of much-needed therapeutic strategies for prostate cancer.
Collapse
Affiliation(s)
- Kristen A Marcellus
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H8M5, Canada.,The Eric J. Poulin Centre for Neuromuscular Diseases, Ottawa, Ontario, Canada
| | - Tara E Crawford Parks
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H8M5, Canada.,The Eric J. Poulin Centre for Neuromuscular Diseases, Ottawa, Ontario, Canada
| | - Shekoufeh Almasi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H8M5, Canada.,The Eric J. Poulin Centre for Neuromuscular Diseases, Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H8M5, Canada. .,The Eric J. Poulin Centre for Neuromuscular Diseases, Ottawa, Ontario, Canada.
| |
Collapse
|
12
|
SERINE-910 Phosphorylated Focal Adhesion Kinase Expression Predicts Better Overall and Disease-free Survival in Melanoma. Appl Immunohistochem Mol Morphol 2020; 28:130-138. [PMID: 32044881 DOI: 10.1097/pai.0000000000000744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that mediates multiple cellular functions such as survival, invasion, and migration. FAK has been found to be over-expressed in various human cancers, including melanoma. FAK molecule has several tyrosine, serine, and threonine phosphorylation sites which have an important regulatory role. Tyrosine phosphorylation of FAK has been extensively studied, however little is known about the role of serine phosphorylation. We sought to examine the frequency and extent of serine-910 phosphorylated FAK (P-FAKSer910) expression in a spectrum of melanocytic proliferations as well as it's correlation with other histopathologic predictors and its effect on patient's survival. Clinicopathologic features and immunohistochemical expression of P-FAKSer910 were evaluated in 147 melanocytic proliferations: 73 primary melanoma (PM), 19 metastatic melanoma (MetM), 2 melanoma in situ, and 53 melanocytic nevi (MN). Higher cytoplasmic intensity predicted better overall survival (OS) in PM (χ=5.69; P=0.034) and was associated with 48% decrease in death risk (HR, 0.52; 95% CI, 0.28-0.95; P=0.036). In contrast, increased nuclear intensity was significantly associated with better disease-free survival (DFS) when stratified by tumor stage Log-rank test, trend of survival (χ=5.83, P=0.015) and independently on multivariate analysis when subcategorized into 3-tier categories (HR, 0.43; 95% CI, 0.18-0.98; P=0.045). Also, Clark's level and tumor-infiltrating lymphocytes (TILS) were independent predictors of DFS. Cytoplasmic intensity correlated inversely with American Joint Commission on Cancer stage in primary melanoma cases as well with vascularity in both primary and metastatic melanoma. Nuclear intensity independently correlated negatively with angioinvasion and TILS when subcategorized to 3 tier system. We found American Joint Commission on Cancer tumor stage, Clark's level, depth, ulceration, TILS, mitosis, angioinvasion, and tumor vascularity predictors of both DFS and OS. There was no significant difference in cytoplasmic or nuclear expression among the major categories of melanocytic proliferation. In this pilot immunohistochemistry-based study, we found P-FAKSer910 expression in melanoma by cytoplasmic intensity to correlate with better OS while nuclear intensity correlated with better DFS.
Collapse
|
13
|
Revach OY, Grosheva I, Geiger B. Biomechanical regulation of focal adhesion and invadopodia formation. J Cell Sci 2020; 133:133/20/jcs244848. [DOI: 10.1242/jcs.244848] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
ABSTRACT
Integrin adhesions are a structurally and functionally diverse family of transmembrane, multi-protein complexes that link the intracellular cytoskeleton to the extracellular matrix (ECM). The different members of this family, including focal adhesions (FAs), focal complexes, fibrillar adhesions, podosomes and invadopodia, contain many shared scaffolding and signaling ‘adhesome’ components, as well as distinct molecules that perform specific functions, unique to each adhesion form. In this Hypothesis, we address the pivotal roles of mechanical forces, generated by local actin polymerization or actomyosin-based contractility, in the formation, maturation and functionality of two members of the integrin adhesions family, namely FAs and invadopodia, which display distinct structures and functional properties. FAs are robust and stable ECM contacts, associated with contractile stress fibers, while invadopodia are invasive adhesions that degrade the underlying matrix and penetrate into it. We discuss here the mechanisms, whereby these two types of adhesion utilize a similar molecular machinery to drive very different – often opposing cellular activities, and hypothesize that early stages of FAs and invadopodia assembly use similar biomechanical principles, whereas maturation of the two structures, and their ‘adhesive’ and ‘invasive’ functionalities require distinct sources of biomechanical reinforcement.
Collapse
Affiliation(s)
- Or-Yam Revach
- Departments of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Inna Grosheva
- Departments of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
- Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Benjamin Geiger
- Departments of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
- Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
14
|
Nagano M, Hoshino D, Toshima J, Seiki M, Koshikawa N. NH 2 -terminal fragment of ZF21 protein suppresses tumor invasion via inhibiting the interaction of ZF21 with FAK. Cancer Sci 2020; 111:4393-4404. [PMID: 32976654 PMCID: PMC7734166 DOI: 10.1111/cas.14665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022] Open
Abstract
Cellular migration, coupled with the degradation of the extracellular matrix (ECM), is a key step in tumor invasion and represents a promising therapeutic target in malignant tumors. Focal adhesions (FAs) and invadopodia, which are distinct actin-based cellular structures, play key roles in cellular migration and ECM degradation, respectively. The molecular machinery coordinating the dynamics between FAs and invadopodia is not fully understood, although several lines of evidence suggest that the disassembly of FAs is an important step in triggering the formation of invadopodia. In a previous study, we identified the ZF21 protein as a regulator of both FA turnover and invadopodia-dependent ECM degradation. ZF21 interacts with multiple factors for FA turnover, including focal adhesion kinase (FAK), microtubules, m-Calpain, and Src homology region 2-containing protein tyrosine phosphatase 2 (SHP-2). In particular, the dephosphorylation of FAK by ZF21 is a key event in tumor invasion. However, the precise role of ZF21 binding to FAK remains unclear. We established a method to disrupt the interaction between ZF21 and FAK using the FAK-binding NH2 -terminal region of ZF21. Tumor cells expressing the ZF21-derived polypeptide had significantly decreased FA turnover, migration, invadopodia-dependent ECM degradation, and Matrigel invasion. Furthermore, the expression of the polypeptide inhibited an early step of experimental lung metastasis in mice. These findings indicate that the interaction of ZF21 with FAK is necessary for FA turnover as well as ECM degradation at the invadopodia. Thus, ZF21 is a potential regulator that coordinates the equilibrium between FA turnover and invadopodia activity by interacting with FAK.
Collapse
Affiliation(s)
- Makoto Nagano
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Daisuke Hoshino
- Division of Cancer Cell Research, Kanagawa Cancer Center Research Institute, Yokohama, Japan.,Organoid Biology Unit, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Jiro Toshima
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Motoharu Seiki
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, Japan
| | - Naohiko Koshikawa
- Division of Cancer Cell Research, Kanagawa Cancer Center Research Institute, Yokohama, Japan.,Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
15
|
Wei Q, Qian Y, Yu J, Wong CC. Metabolic rewiring in the promotion of cancer metastasis: mechanisms and therapeutic implications. Oncogene 2020; 39:6139-6156. [PMID: 32839493 PMCID: PMC7515827 DOI: 10.1038/s41388-020-01432-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/22/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022]
Abstract
Tumor metastasis is the major cause of mortality from cancer. Metabolic rewiring and the metastatic cascade are highly intertwined, co-operating to promote multiple steps of cancer metastasis. Metabolites generated by cancer cells influence the metastatic cascade, encompassing epithelial-mesenchymal transition (EMT), survival of cancer cells in circulation, and metastatic colonization at distant sites. A variety of molecular mechanisms underlie the prometastatic effect of tumor-derived metabolites, such as epigenetic deregulation, induction of matrix metalloproteinases (MMPs), promotion of cancer stemness, and alleviation of oxidative stress. Conversely, metastatic signaling regulates expression and activity of rate-limiting metabolic enzymes to generate prometastatic metabolites thereby reinforcing the metastasis cascade. Understanding the complex interplay between metabolism and metastasis could unravel novel molecular targets, whose intervention could lead to improvements in the treatment of cancer. In this review, we summarized the recent discoveries involving metabolism and tumor metastasis, and emphasized the promising molecular targets, with an update on the development of small molecule or biologic inhibitors against these aberrant situations in cancer.
Collapse
Affiliation(s)
- Qinyao Wei
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong, China
| | - Yun Qian
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong, China
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
16
|
Jin MH, Nam AR, Park JE, Bang JH, Bang YJ, Oh DY. Therapeutic Co-targeting of WEE1 and ATM Downregulates PD-L1 Expression in Pancreatic Cancer. Cancer Res Treat 2020; 52:149-166. [PMID: 31291716 PMCID: PMC6962488 DOI: 10.4143/crt.2019.183] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Pancreatic cancer (PC) is one of the most lethal cancers worldwide, but there are currently no effective treatments. The DNA damage response (DDR) is under investigation for the development of novel anti-cancer drugs. Since DNA repair pathway alterations have been found frequently in PC, the purpose of this study was to test the DDR-targeting strategy in PC using WEE1 and ATM inhibitors. MATERIALS AND METHODS We performed in vitro experiments using a total of ten human PC cell lines to evaluate antitumor effect of AZD1775 (WEE1 inhibitor) alone or combination with AZD0156 (ATM inhibitor). We established Capan-1-mouse model for in vivo experiments to confirm our findings. RESULTS In our research, we found that WEE1 inhibitor (AZD1775) as single agent showed anti-tumor effects in PC cells, however, targeting WEE1 upregulated p-ATM level. Here, we observed that co-targeting of WEE1 and ATM acted synergistically to reduce cell proliferation and migration, and to induce DNA damage in vitro. Notably, inhibition of WEE1 or WEE1/ATM downregulated programmed cell death ligand 1 expression by blocking glycogen synthase kinase-3β serine 9 phosphorylation and decrease of CMTM6 expression. In Capan-1 mouse xenograft model, AZD1775 plus AZD0156 (ATM inhibitor) treatment reduced tumor growth and downregulated tumor expression of programmed cell death ligand 1, CMTM6, CD163, and CXCR2, all of which contribute to tumor immune evasion. CONCLUSION Dual blockade of WEE1 and ATM might be a potential therapeutic strategy for PC. Taken toget.
Collapse
Affiliation(s)
- Mei Hua Jin
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ah-Rong Nam
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Eun Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ju-Hee Bang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yung-Jue Bang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Do-Youn Oh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
17
|
Simiczyjew A, Pietraszek-Gremplewicz K, Dratkiewicz E, Podgórska M, Matkowski R, Ziętek M, Nowak D. Combination of Selected MET and EGFR Inhibitors Decreases Melanoma Cells' Invasive Abilities. Front Pharmacol 2019; 10:1116. [PMID: 31649529 PMCID: PMC6792435 DOI: 10.3389/fphar.2019.01116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/30/2019] [Indexed: 12/15/2022] Open
Abstract
We have previously shown that combination of foretinib, an inhibitor of MET (hepatocyte growth factor receptor), with gefitinib or lapatinib, inhibitors of EGFR (epidermal growth factor receptor), has a synergistic cytotoxic effect on melanoma cells. However, there are cancer cells resistant to drugs’ treatment which are still able to invade. Thus, in this study, we examined the influence of these drugs on invasive abilities of melanoma cells. To investigate cell migration and invasion, Transwell inserts and wound healing assay were used. Cell viability was evaluated by XTT method, while invadopodia formation by immunocytochemistry. Level of phosphorylated Src kinase (pSrc) was verified by Western blot. Proteolytic activity of cells was analyzed using gelatin conjugated with fluorescein degradation assay and gelatin zymography. Combination of used inhibitors diminished cell movement, resulting in smaller distances covered by cells, and decreased the ratio of cells with ability to cross the Transwell inserts. These inhibitors induced changes in formation of invadopodia and actin cytoskeleton organization. Their application also decreased the level of pSrc kinase. Furthermore, used drugs led to reduction of proteolytic activity of examined cells. Our data support the idea that simultaneous targeting of EGFR and MET could be a promising therapeutic strategy inhibiting not only tumor cell growth but also its metastasis.
Collapse
Affiliation(s)
- Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | | - Ewelina Dratkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Marta Podgórska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Rafał Matkowski
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Wroclaw, Poland.,Lower Silesian Oncology Center, Wroclaw, Poland
| | - Marcin Ziętek
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Wroclaw, Poland.,Lower Silesian Oncology Center, Wroclaw, Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
18
|
Pan TJ, Li LX, Zhang JW, Yang ZS, Shi DM, Yang YK, Wu WZ. Antimetastatic Effect of Fucoidan-Sargassum against Liver Cancer Cell Invadopodia Formation via Targeting Integrin αVβ3 and Mediating αVβ3/Src/E2F1 Signaling. J Cancer 2019; 10:4777-4792. [PMID: 31598149 PMCID: PMC6775528 DOI: 10.7150/jca.26740] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/06/2019] [Indexed: 12/25/2022] Open
Abstract
Background: Fucoidan is a fucose-enriched, sulfated polysaccharide found in brown algae; in recent years, this polysaccharide has been found to exert several biological effects, including antitumor effects, such as antiproliferation, activating apoptosis, and anti-angiogenesis of cancer cells. However, the antimetastatic effect of fucoidan and the related targeting receptors remain unknown. In the present study, we examined the inhibition of invadopodia formation and underlying mechanism of fucoidan on human liver cancer cells. Methods: We used 98% purified fucoidan from Sargassum species to treat the hepatocellular carcinoma (HCC) cells SMMC-7721, Huh7 and HCCLM3 in vitro and the HCCLM3 cell line in vivo. The HCC cells were cultured with various concentrations of Fucoidan-Sargassum (0-30 mg/mL). Migration, invasion and wound healing assays were performed to determine the antimetastatic effect of fucoidan on the HCC cells. Western blot analysis and immunofluorescence staining were conducted to determine the expression levels of invadopodia formation-regulating proteins and the targeting membrane receptor proteins. Results: Fucoidan-Sargassum inhibited the migration and invasion of HCC SMMC-7721, Huh7 and HCCLM3 cells in a dose-dependent manner. In the HCCLM3 cells, Fucoidan-Sargassum also decreased the expression levels of invadopodia-related proteins including Src, Cortactin, N-WASP, ARP3, CDC42, MMP2, MT1-MMP, and the targeting receptors integrin αV and β3 in a dose-dependent manner. Fucoidan-Sargassum also increased the levels of endoplasmic reticulum-related proteins, including GRP78, IRE1, SPARC, and the type IV collagen receptor proteins integrin α1 and β1. In vivo, Fucoidan-Sargassum reduced the size of liver tumors and decreased the number of lung metastatic foci in nude mice with hepatocellular carcinoma xenografts. Conclusion: These findings indicate that Fucoidan-Sargassum has an antimetastatic effect on SMMC-7721, Huh7 and HCCLM3 liver cancer cells, and the underlying mechanism involves targeting ITGαVβ3 and mediating the ITGαVβ3/SRC/E2F1 signaling pathway. These results suggest that Fucoidan-Sargassum may be a promising therapeutic antimetastatic compound in the development of a metastasis-preventive drug for treating liver cancer.
Collapse
Affiliation(s)
- Ting-Jia Pan
- Department of Traditional Chinese Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai 200032, China
| | - Li-Xin Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Jia-Wei Zhang
- Department of Traditional Chinese Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai 200032, China
| | - Zhao-Shuo Yang
- Department of Traditional Chinese Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai 200032, China
| | - Dong-Min Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Yun-Ke Yang
- Department of Traditional Chinese Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai 200032, China
| | - Wei-Zhong Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| |
Collapse
|
19
|
Al-Ghabkari A, Qasrawi DO, Alshehri M, Narendran A. Focal adhesion kinase (FAK) phosphorylation is a key regulator of embryonal rhabdomyosarcoma (ERMS) cell viability and migration. J Cancer Res Clin Oncol 2019; 145:1461-1469. [PMID: 31006845 DOI: 10.1007/s00432-019-02913-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma in children. Pathogenesis of RMS is associated with aggressive growth pattern and increased risk of morbidity and mortality. There are two main subtypes or RMS: embryonal and alveolar. The embryonal type is characterized by distinct molecular aberrations, including alterations in the activity of certain protein kinases. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that plays a vital role in focal adhesion (FA) assembly to promote cytoskeleton dynamics and regulation of cell motility. It is regulated by multiple phosphorylation sites: tyrosine 397, Tyr 576/577, and Tyr 925. Tyrosine 397 is the autophosphorylation site that regulates FAK localization at the cell periphery to facilitate the assembly and formation of the FA complex. The kinase activity of FAK is mediated by the phosphorylation of Tyr 576/577 within the kinase domain activation loop. Aberrations of FAK phosphorylation have been linked to the pathogenesis of different types of cancers. In this regard, pY397 upregulation is linked to increase ERMS cell motility, invasion, and tumorigenesis. METHODS In this study, we have used an established human embryonal muscle rhabdomyosarcoma cell line RD as a model to examine FAK phosphorylation profiles to characterize its role in the pathogenies of RMS. RESULTS Our findings revealed a significant increase of FAK phosphorylation at pY397 in RD cells compared to control cells (hTERT). On the other hand, Tyr 576/577 phosphorylation levels in RD cells displayed a pronounced reduction. Our data showed that Y925 residue exhibited no detectable change. The in vitro analysis showed that the FAK inhibitor, PF-562271 led to G1 cell-cycle arrest induced cell death (IC50, ~ 12 µM) compared to controls. Importantly, immunostaining analyses displayed a noticeable reduction of Y397 phosphorylation following PF-562271 treatment. Our data also showed that PF-562271 suppressed RD cell migration in a dose-dependent manner associated with a reduction in Y397 phosphorylation. CONCLUSIONS The data presented herein indicate that targeting FAK phosphorylation at distinct sites is a promising strategy in future treatment approaches for defined subgroups of rhabdomyosarcoma.
Collapse
Affiliation(s)
- Abdulhameed Al-Ghabkari
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.
| | - Deema O Qasrawi
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Mana Alshehri
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Aru Narendran
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| |
Collapse
|
20
|
Krajnović T, Drača D, Kaluđerović GN, Dunđerović D, Mirkov I, Wessjohann LA, Maksimović-Ivanić D, Mijatović S. The hop-derived prenylflavonoid isoxanthohumol inhibits the formation of lung metastasis in B16-F10 murine melanoma model. Food Chem Toxicol 2019; 129:257-268. [PMID: 31034931 DOI: 10.1016/j.fct.2019.04.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/13/2019] [Accepted: 04/25/2019] [Indexed: 12/22/2022]
Abstract
Isoxanthohumol (IXN), a prenylflavonoid from hops and beer, gained increasing attention as a potential chemopreventive agent. In the present study, IXN antimetastatic potential in vitro against the highly invasive melanoma cell line B16-F10 and in vivo in a murine metastatic model was investigated. Melanoma cell viability was diminished in a dose-dependent manner following the treatment with IXN. This decrease was a consequence of autophagy and caspase-dependent apoptosis. Additionally, the dividing potential of highly proliferative melanoma cells was dramatically affected by this isoflavanone, which was in correlation with an abrogated cell colony forming potential, indicating changes in their metastatic features. Concordantly, IXN promoted strong suppression of the processes that define metastasis- cell adhesion, invasion, and migration. Further investigation at the molecular level revealed that the abolished metastatic potential of a melanoma subclone was due to disrupted integrin signaling. Importantly, these results were reaffirmed in vivo where IXN inhibited the development of lung metastatic foci in tumor-challenged animals. The results of the present study may highlight the beneficial effects of IXN on melanoma as the most aggressive type of skin cancer and will hopefully shed a light on the possible use of this prenylflavonoid in the treatment of metastatic malignancies.
Collapse
Affiliation(s)
- Tamara Krajnović
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Dijana Drača
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Goran N Kaluđerović
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Weinberg 3, D 06120, Halle (Saale), Germany.
| | - Duško Dunđerović
- Institute of Pathology, School of Medicine, University of Belgrade, dr Subotića 1, 11000, Belgrade, Serbia.
| | - Ivana Mirkov
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Weinberg 3, D 06120, Halle (Saale), Germany.
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| |
Collapse
|
21
|
Krishnan H, Miller WT, Blanco FJ, Goldberg GS. Src and podoplanin forge a path to destruction. Drug Discov Today 2019; 24:241-249. [DOI: 10.1016/j.drudis.2018.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/18/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022]
|
22
|
Rožanc J, Sakellaropoulos T, Antoranz A, Guttà C, Podder B, Vetma V, Rufo N, Agostinis P, Pliaka V, Sauter T, Kulms D, Rehm M, Alexopoulos LG. Phosphoprotein patterns predict trametinib responsiveness and optimal trametinib sensitisation strategies in melanoma. Cell Death Differ 2018; 26:1365-1378. [PMID: 30323272 DOI: 10.1038/s41418-018-0210-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/19/2018] [Accepted: 09/10/2018] [Indexed: 01/02/2023] Open
Abstract
Malignant melanoma is a highly aggressive form of skin cancer responsible for the majority of skin cancer-related deaths. Recent insight into the heterogeneous nature of melanoma suggests more personalised treatments may be necessary to overcome drug resistance and improve patient care. To this end, reliable molecular signatures that can accurately predict treatment responsiveness need to be identified. In this study, we applied multiplex phosphoproteomic profiling across a panel of 24 melanoma cell lines with different disease-relevant mutations, to predict responsiveness to MEK inhibitor trametinib. Supported by multivariate statistical analysis and multidimensional pattern recognition algorithms, the responsiveness of individual cell lines to trametinib could be predicted with high accuracy (83% correct predictions), independent of mutation status. We also successfully employed this approach to case specifically predict whether individual melanoma cell lines could be sensitised to trametinib. Our predictions identified that combining MEK inhibition with selective targeting of c-JUN and/or FAK, using siRNA-based depletion or pharmacological inhibitors, sensitised resistant cell lines and significantly enhanced treatment efficacy. Our study indicates that multiplex proteomic analyses coupled with pattern recognition approaches could assist in personalising trametinib-based treatment decisions in the future.
Collapse
Affiliation(s)
- Jan Rožanc
- Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg.,ProtATonce Ltd, Science Park Demokritos, Athens, Greece
| | | | - Asier Antoranz
- ProtATonce Ltd, Science Park Demokritos, Athens, Greece.,Department of Mechanical Engineering, National Technical University of Athens, Athens, Greece
| | - Cristiano Guttà
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Biswajit Podder
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Vesna Vetma
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Nicole Rufo
- Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Vaia Pliaka
- ProtATonce Ltd, Science Park Demokritos, Athens, Greece
| | - Thomas Sauter
- Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Dagmar Kulms
- Experimental Dermatology, Department of Dermatology, Technical University Dresden, Dresden, Germany.,Center for Regenerative Therapies, Technical University Dresden, Dresden, Germany
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany.,Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Leonidas G Alexopoulos
- ProtATonce Ltd, Science Park Demokritos, Athens, Greece. .,Department of Mechanical Engineering, National Technical University of Athens, Athens, Greece.
| |
Collapse
|
23
|
Targeting Focal Adhesion Kinase Using Inhibitors of Protein-Protein Interactions. Cancers (Basel) 2018; 10:cancers10090278. [PMID: 30134553 PMCID: PMC6162372 DOI: 10.3390/cancers10090278] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022] Open
Abstract
Focal adhesion kinase (FAK) is a cytoplasmic non-receptor protein tyrosine kinase that is overexpressed and activated in many human cancers. FAK transmits signals to a wide range of targets through both kinase-dependant and independent mechanism thereby playing essential roles in cell survival, proliferation, migration and invasion. In the past years, small molecules that inhibit FAK kinase function have been developed and show reduced cancer progression and metastasis in several preclinical models. Clinical trials have been conducted and these molecules display limited adverse effect in patients. FAK contain multiple functional domains and thus exhibit both important scaffolding functions. In this review, we describe the major FAK interactions relevant in cancer signalling and discuss how such knowledge provide rational for the development of Protein-Protein Interactions (PPI) inhibitors.
Collapse
|
24
|
Garcia J, Lizcano F. Kdm4c is Recruited to Mitotic Chromosomes and Is Relevant for Chromosomal Stability, Cell Migration and Invasion of Triple Negative Breast Cancer Cells. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2018; 12:1178223418773075. [PMID: 30083054 PMCID: PMC6073829 DOI: 10.1177/1178223418773075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/04/2018] [Indexed: 01/23/2023]
Abstract
Members of the jumonji-containing lysine demethylase protein family have been associated with cancer development, although their specific roles in the evolution of tumor cells remain unknown. This work examines the effects of lysine demethylase 4C (KDM4C) knockdown on the behavior of a triple-negative breast cancer cell line. KDM4C expression was knocked-down by siRNA and analyzed by Western blot and immunofluorescence. HCC38 cell proliferation was examined by MTT assay, while breast cancer cells’ migration and invasion were tested in Transwell format by chemotaxis. Immunofluorescence assays showed that KDM4C, which is a key protein for modulating histone demethylation and chromosome stability through the distribution of genetic information, is located at the chromosomes during mitosis. Proliferation assays demonstrated that KDM4C is important for cell survival, while Transwell migration and invasion assays indicated that this protein is relevant for cancer progression. These data indicate that KDM4C is relevant for breast cancer progression and highlight its importance as a potential therapeutic target.
Collapse
Affiliation(s)
- Jeison Garcia
- Doctorate in Biociences, Center of Biomedical Research Universidad de La Sabana-CIBUS, School of Medicine, Universidad de La Sabana, Chía, Colombia
| | - Fernando Lizcano
- Doctorate in Biociences, Center of Biomedical Research Universidad de La Sabana-CIBUS, School of Medicine, Universidad de La Sabana, Chía, Colombia
| |
Collapse
|
25
|
Liu AD, Xu H, Gao YN, Luo DN, Li ZF, Voss C, Li SSC, Cao X. (Arg) 9-SH2 superbinder: a novel promising anticancer therapy to melanoma by blocking phosphotyrosine signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:138. [PMID: 29976230 PMCID: PMC6034221 DOI: 10.1186/s13046-018-0812-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/02/2018] [Indexed: 01/22/2023]
Abstract
Background Melanoma is a malignant tumor with high misdiagnosis rate and poor prognosis. The bio-targeted therapy is a prevailing method in the treatment of melanoma; however, the accompanying drug resistance is inevitable. SH2 superbinder, a triple-mutant of the Src Homology 2 (SH2) domain, shows potent antitumor ability by replacing natural SH2-containing proteins and blocking multiple pY-based signaling pathways. Polyarginine (Arg)9, a powerful vector for intracellular delivery of large molecules, could transport therapeutic agents across cell membrane. The purpose of this study is to construct (Arg)9-SH2 superbinder and investigate its effects on melanoma cells, expecting to provide potential new approaches for anti-cancer therapy and overcoming the unavoidable drug resistance of single-targeted antitumor agents. Methods (Arg)9 and SH2 superbinder were fused to form (Arg)9-SH2 superbinder via genetic engineering. Pull down assay was performed to identify that (Arg)9-SH2 superbinder could capture a wide variety of pY proteins. Immunofluorescence was used to detect the efficiency of (Arg)9-SH2 superbinder entering cells. The proliferation ability was assessed by MTT and colony formation assay. In addition, wound healing and transwell assay were performed to evaluate migration of B16F10, A375 and A375/DDP cells. Moreover, apoptosis caused by (Arg)9-SH2 superbinder was analyzed by flow cytometry-based Annexin V/PI. Furthermore, western blot revealed that (Arg)9-SH2 superbinder influenced some pY-related signaling pathways. Finally, B16F10 xenograft model was established to confirm whether (Arg)9-SH2 superbinder could restrain the growth of tumor. Results Our data showed that (Arg)9-SH2 superbinder had the ability to enter melanoma cells effectively and displayed strong affinities for various pY proteins. Furthermore, (Arg)9-SH2 superbinder could repress proliferation, migration and induce apoptosis of melanoma cells by regulating PI3K/AKT, MAPK/ERK and JAK/STAT signaling pathways. Importantly, (Arg)9-SH2 superbinder could significantly inhibit the growth of tumor in mice. Conclusions (Arg)9-SH2 superbinder exhibited high affinities for pY proteins, which showed effective anticancer ability by replacing SH2-containing proteins and blocking diverse pY-based pathways. The remarkable ability of (Arg)9-SH2 superbinder to inhibit cancer cell proliferation and tumor growth might open the door to explore the SH2 superbinder as a therapeutic agent for cancer treatment. Electronic supplementary material The online version of this article (10.1186/s13046-018-0812-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- An-Dong Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui Xu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Ultrastructural Pathology Laboratory, Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ya-Nan Gao
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan-Ni Luo
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhao-Feng Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Courtney Voss
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Shawn S C Li
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Xuan Cao
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China.
| |
Collapse
|
26
|
Yu MH, Yang TY, Ho HH, Huang HP, Chan KC, Wang CJ. Mulberry Polyphenol Extract Inhibits FAK/Src/PI3K Complex and Related Signaling To Regulate the Migration in A7r5 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3860-3869. [PMID: 29606008 DOI: 10.1021/acs.jafc.8b00958] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Atherosclerosis is characterized by the buildup of plaque inside arteries. Our recent studies demonstrated that polyphenolic natural products can reduce oxidative stress, inflammation, angiogenesis, hyperlipidemia, and hyperglycemia. A previous study also showed that mulberry water extract (MWE) can inhibit atherosclerosis and contains considerable amounts of polyphenols. Therefore, in the present study, we investigated whether mulberry polyphenol extract (MPE) containing high levels of polyphenolic compounds could affect vascular smooth muscle cell (VSMC; A7r5 cell) motility. We found that MPE inhibited expression of FAK, Src, PI3K, Akt, c-Raf, and suppressed FAK/Src/PI3K interaction. Further investigations showed that MPE reduced expression of small GTPases (RhoA, Cdc42, and Rac1) to affect F-actin cytoskeleton rearrangement, down-regulated expression of MMP2 and vascular endothelial growth factor (VEGF) mRNA through NFκB signaling, and thereby inhibited A7r5 cell migration. Taken together, these findings highlight MPE inhibited migration in VSMC through FAK/Src/PI3K signaling pathway.
Collapse
|
27
|
The soy-derived peptide Lunasin inhibits invasive potential of melanoma initiating cells. Oncotarget 2018; 8:25525-25541. [PMID: 28424421 PMCID: PMC5421948 DOI: 10.18632/oncotarget.16066] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/07/2017] [Indexed: 12/13/2022] Open
Abstract
Lunasin is a 44 amino acid peptide with multiple functional domains including an aspartic acid tail, an RGD domain, and a chromatin-binding helical domain. We recently showed that Lunasin induced a phenotype switch of cancer initiating cells (CIC) out of the stem compartment by inducing melanocyte-associated differentiation markers while simultaneously reducing stem-cell-associated transcription factors. In the present study, we advance the hypothesis that Lunasin can reduce pools of melanoma cells with stem cell-like properties, and demonstrate that Lunasin treatment effectively inhibits the invasive potential of CICs in vitro as well as in vivo in a mouse experimental metastasis model. Mice receiving Lunasin treatment had significantly reduced pulmonary colonization after injection of highly metastatic B16-F10 melanoma cells compared to mice in the control group. Mechanistic studies demonstrate that Lunasin reduced activating phosphorylations of the intracellular kinases FAK and AKT as well as reduced histone acetylation of lysine residues in H3 and H4 histones. Using peptides with mutated activity domains, we functionally demonstrated that the RGD domain is necessary for Lunasin uptake and its ability to inhibit oncosphere formation by CICs, thus confirming that Lunasin's ability to affect CICs is at least in part due to the suppression of integrin signaling. Our studies suggest that Lunasin represents a unique anticancer agent that could be developed to help prevent metastasis and patient relapse by reducing the activity of CICs which are known to be resistant to current chemotherapies.
Collapse
|
28
|
Bao Y, Guo H, Lu Y, Feng W, Sun X, Tang C, Wang X, Shen M. Blocking hepatic metastases of colon cancer cells using an shRNA against Rac1 delivered by activatable cell-penetrating peptide. Oncotarget 2018; 7:77183-77195. [PMID: 27791203 PMCID: PMC5363579 DOI: 10.18632/oncotarget.12854] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/14/2016] [Indexed: 12/27/2022] Open
Abstract
Hepatic metastasis is one of the critical progressions of colon cancer. Blocking this process is key to prolonging survival time in cancer patients. Studies on activatable cell-penetrating peptides (dtACPPs) have demonstrated their potential as gene carriers. It showed high tumor cell-targeting specificity and transfection efficiency and low cytotoxicity in the in vitro settings of drug delivery. However, using this system to silence target genes to inhibit metastasis in colorectal cancer cells has not been widely reported and requires further investigation. In this study, we observed that expression of Rac1, a key molecule for cytoskeletal reorganization, was higher in hepatic metastatic tumor tissue compared with prime colon cancer tissue and that patients with high Rac1-expressing colon cancer showed shorter survival time. Base on these findings, we created dtACPP-PEG-DGL (dtACPPD)/shRac1 nanoparticles and demonstrated that they downregulated Rac1 expression in colon cancer cells. Moreover, we observed inhibitory effects on migration, invasion and adhesion in HCT116 colorectal cancer cells in vitro, and our results showed that Rac1 regulated colon cancer cell matrix adhesion through the regulation of cytofilament dynamics. Moreover, mechanically, repression of Rac1 inhibiting cells migration and invasion by enhancing cell to cell adhesion and reducing cell to extracellular matrix adhesion. Furthermore, when atCDPPD/shRac1 nanoparticles were administered intravenously to a HCT116 xenograft model, significant tumor metastasis to the liver was inhibited. Our results suggest that atCDPP/shRac1 nanoparticles may enable the blockade of hepatic metastasis in colon cancer.
Collapse
Affiliation(s)
- Ying Bao
- Department of Surgery, First Affiliated Hospital, Huzhou University, The First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Huihui Guo
- Department of Surgery, First Affiliated Hospital, Huzhou University, The First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Yongliang Lu
- Department of Medicine, Huzhou University, Huzhou, 313000, China
| | - Wenming Feng
- Department of Surgery, First Affiliated Hospital, Huzhou University, The First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Xinrong Sun
- Department of Surgery, First Affiliated Hospital, Huzhou University, The First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Chengwu Tang
- Department of Surgery, First Affiliated Hospital, Huzhou University, The First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Xiang Wang
- Department of Surgery, First Affiliated Hospital, Huzhou University, The First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Mo Shen
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University,Wenzhou, 325000, China
| |
Collapse
|
29
|
de Melo Maia B, Rodrigues IS, Akagi EM, Soares do Amaral N, Ling H, Monroig P, Soares FA, Calin GA, Rocha RM. MiR-223-5p works as an oncomiR in vulvar carcinoma by TP63 suppression. Oncotarget 2018; 7:49217-49231. [PMID: 27359057 PMCID: PMC5226502 DOI: 10.18632/oncotarget.10247] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/08/2016] [Indexed: 01/21/2023] Open
Abstract
MiR-223-5p has been previously mentioned to be associated with tumor metastasis in HPV negative vulvar carcinomas, such as in several other tumor types. In the present study, we hypothesized that this microRNA would be important in vulvar cancer carcinogenesis and progression. To investigate this, we artificially mimicked miR-223-5p expression in a cell line derived from lymph node metastasis of vulvar carcinoma (SW962) and performed in vitro assays. As results, lower cell proliferation (p < 0.01) and migration (p < 0.001) were observed when miR-223-5p was overexpressed. In contrast, increased invasive potential of these cells was verified (p < 0.004). In silico search indicated that miR-223-5p targets TP63, member of the TP53 family of proteins, largely described with importance in vulvar cancer. We experimentally demonstrated that this microRNA is capable to decrease levels of p63 at both mRNA and protein levels (p < 0.001, and p < 0.0001; respectively). Also, a significant inverse correlation was observed between miR-223-5p and p63 expressions in tumors from patients (p = 0.0365). Furthermore, low p63 protein expression was correlated with deeper tumor invasion (p = 0.0491) and lower patient overall survival (p = 0.0494). Our study points out miR-223-5p overexpression as a putative pathological mechanism of tumor invasion and a promising therapeutic target and highlights the importance of both miR-223-5p and p63 as prognostic factors in vulvar cancer. Also, it is plausible that the evaluation of p63 expression in vulvar cancer at the biopsy level may bring important contribution on prognostic establishment and in elaborating better surgical approaches for vulvar cancer patients.
Collapse
Affiliation(s)
- Beatriz de Melo Maia
- Molecular Morphology Laboratory, Anatomic Pathology Department, AC Camargo Cancer Center, São Paulo, Brazil.,Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Iara Santana Rodrigues
- Molecular Morphology Laboratory, Anatomic Pathology Department, AC Camargo Cancer Center, São Paulo, Brazil
| | - Erica Mie Akagi
- Molecular Morphology Laboratory, Anatomic Pathology Department, AC Camargo Cancer Center, São Paulo, Brazil
| | - Nayra Soares do Amaral
- Molecular Morphology Laboratory, Anatomic Pathology Department, AC Camargo Cancer Center, São Paulo, Brazil
| | - Hui Ling
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Paloma Monroig
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Fernando Augusto Soares
- Molecular Morphology Laboratory, Anatomic Pathology Department, AC Camargo Cancer Center, São Paulo, Brazil
| | - George Adrian Calin
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.,The Center for RNA Interference and Non-Coding RNAs, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Rafael Malagoli Rocha
- Gynecology Laboratory, Gynecologic Department Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Liu Y, Cui H, Huang X, Zhu B, Guan S, Cheng W, Lai Y, Zhang X, Hua ZC. MiR-7a is an important mediator in Fas-associated protein with death domain (FADD)-regulated expression of focal adhesion kinase (FAK). Oncotarget 2018; 7:51393-51407. [PMID: 27286445 PMCID: PMC5239483 DOI: 10.18632/oncotarget.9838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/08/2016] [Indexed: 11/29/2022] Open
Abstract
Fas-associated protein with death domain (FADD), a classical adaptor protein mediating apoptotic stimuli-induced cell death, has been reported to engage in several non-apoptotic processes such as T cell and cardiac development and tumorigenesis. Recently, there are several reports about the FADD's involvement in cell migration, however the underlying mechanism remains elusive. Here, we present a new finding that FADD could regulate the expression of FAK, a non-receptor protein tyrosine kinase overexpressed in many cancers, and played an important role in cell migration in murine MEF and melanoma cells with different metastatic potential, B16F10 and B16F1. Moreover, miR-7a, a tumor suppressor which prohibits cell migration and invasion, was up-regulated in FADD-deficient cells. And FAK was verified to be the direct target gene of miR-7a in B16F10 cells. Furthermore, we demonstrate that miR-7a was a necessary mediator in FADD-regulated FAK expression. In contrast to its classical apoptotic role, FADD interference could reduce the rate of cell migration, which could be rescued by inhibiting miR-7a expression. Taken together, our data provide a novel explanation regarding how FADD regulates cell migration in murine melanoma cells.
Collapse
Affiliation(s)
- Yingting Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, 210032, China
| | - Hongen Cui
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, 210032, China
| | - Xianjie Huang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, 210032, China
| | - Bo Zhu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, 210032, China
| | - Shengwen Guan
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, China
| | - Wei Cheng
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, 210032, China
| | - Yueyang Lai
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, 210032, China
| | - Xiaoxin Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, 210032, China
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, 210032, China.,The State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210017, China.,The State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210008, China
| |
Collapse
|
31
|
Ruggiero C, Grossi M, Fragassi G, Di Campli A, Di Ilio C, Luini A, Sallese M. The KDEL receptor signalling cascade targets focal adhesion kinase on focal adhesions and invadopodia. Oncotarget 2017. [PMID: 29535802 PMCID: PMC5828207 DOI: 10.18632/oncotarget.23421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Membrane trafficking via the Golgi-localised KDEL receptor activates signalling cascades that coordinate both trafficking and other cellular functions, including autophagy and extracellular matrix degradation. In this study, we provide evidence that membrane trafficking activates KDEL receptor and the Src family kinases at focal adhesions of HeLa cells, where this phosphorylates ADP-ribosylation factor GTPase-activating protein with SH3 domain, ankyrin repeat and PH domain (ASAP)1 and focal adhesion kinase (FAK). Previous studies have reported extracellular matrix degradation at focal adhesions. Here, matrix degradation was not seen at focal adhesions, although it occurred at invadopodia, where it was increased by KDEL receptor activation. This activation of KDEL receptor at invadopodia of A375 cells promoted recruitment and phosphorylation of FAK on tyrosines 397 and 861. From the functional standpoint, FAK overexpression inhibited steady-state and KDEL-receptor-stimulated extracellular matrix degradation, whereas overexpression of the FAK-Y397F mutant only inhibited KDEL-receptor-stimulated matrix degradation. Finally, we show that the Src and FAK activated downstream of KDEL receptor are part of parallel signalling pathways. In conclusion, membrane-traffic-generated signalling via KDEL receptor activates Src not only at the Golgi complex, but also at focal adhesions. By acting on Src and FAK, KDEL receptor increases invadopodia-mediated matrix degradation.
Collapse
Affiliation(s)
- Carmen Ruggiero
- CNRS, NEOGENEX CNRS International Associated Laboratory, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Sophia Antipolis, Valbonne, France
| | - Mauro Grossi
- CNRS, NEOGENEX CNRS International Associated Laboratory, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Sophia Antipolis, Valbonne, France
| | - Giorgia Fragassi
- Department of Medicine and Agency Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Regional Health Care Agency of Abruzzo, Pescara, Italy
| | | | - Carmine Di Ilio
- Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Michele Sallese
- Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy.,Centre for Research on Ageing and Translational Medicine (CeSI-MeT), 'G. d'Annunzio' University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
32
|
Genna A, Lapetina S, Lukic N, Twafra S, Meirson T, Sharma VP, Condeelis JS, Gil-Henn H. Pyk2 and FAK differentially regulate invadopodia formation and function in breast cancer cells. J Cell Biol 2017; 217:375-395. [PMID: 29133485 PMCID: PMC5748976 DOI: 10.1083/jcb.201702184] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/13/2017] [Accepted: 09/27/2017] [Indexed: 12/11/2022] Open
Abstract
The nonreceptor tyrosine kinase Pyk2 is highly expressed in invasive breast cancer, but how it potentiates tumor cell invasiveness is unclear. Genna et al. find that Pyk2 and the closely related kinase FAK modulate breast cancer cell invasiveness by distinct mechanisms and coordinate the balance between focal adhesion–mediated migration and invadopodia-dependent extracellular matrix invasion. The nonreceptor tyrosine kinase Pyk2 is highly expressed in invasive breast cancer, but the mechanism by which it potentiates tumor cell invasiveness is unclear at present. Using high-throughput protein array screening and bioinformatic analysis, we identified cortactin as a novel substrate and interactor of proline-rich tyrosine kinase 2 (Pyk2). Pyk2 colocalizes with cortactin to invadopodia of invasive breast cancer cells, where it mediates epidermal growth factor–induced cortactin tyrosine phosphorylation both directly and indirectly via Src-mediated Abl-related gene (Arg) activation, leading to actin polymerization in invadopodia, extracellular matrix degradation, and tumor cell invasion. Both Pyk2 and the closely related focal adhesion kinase (FAK) regulate tumor cell invasion, albeit via distinct mechanisms. Although Pyk2 regulates tumor cell invasion by controlling invadopodium-mediated functions, FAK controls invasiveness of tumor cells by regulating focal adhesion–mediated motility. Collectively, our findings identify Pyk2 as a unique mediator of invadopodium formation and function and also provide a novel insight into the mechanisms by which Pyk2 mediates tumor cell invasion.
Collapse
Affiliation(s)
- Alessandro Genna
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | - Nikola Lukic
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Shams Twafra
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Tomer Meirson
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ved P Sharma
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY.,Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY.,Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY
| | - Hava Gil-Henn
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
33
|
Shi J, Guo B, Hui Q, Chang P, Tao K. Fangchinoline suppresses growth and metastasis of melanoma cells by inhibiting the phosphorylation of FAK. Oncol Rep 2017; 38:63-70. [PMID: 28560386 PMCID: PMC5492563 DOI: 10.3892/or.2017.5678] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/22/2017] [Indexed: 11/07/2022] Open
Abstract
Melanoma is a malignant tumor with high degree of malignancy, metastasis and high mortality. The etiology of melanoma has not been fully elucidated, and there is no effective drug for the complete treatment of melanoma. In recent years, many traditional Chinese herbal medicines have played an important role in clinical treatment and experimental research on cancer. As a natural product, fangchinoline has the characteristics of enhancing immune function, low toxicity and good liver protection features, so it is considered to be a new type of anticancer drug. In the present study, we found that fangchinoline has inhibitory effects on the proliferation and metastasis of A375 and A875 cells in a concentration-dependent manner. Fangchinoline inhibited the proliferation of A375 and A875 cell activity with IC50 values of 12.41 and 16.20 µM. We also found that fangchinoline could significantly reduce the phosphorylation of Focal adhesion kinase (FAK). In summary, we demonstrated that fangchinoline inhibits the proliferation and metastasis of melanoma cells by suppressing FAK and its downstream signaling pathway. More importantly, we provide a novel mechanism that fangchinoline could be an effective candidate for the treatment of melanoma.
Collapse
Affiliation(s)
- Jie Shi
- Department of Reconstructive and Plastic Surgery, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110840, P.R. China
| | - Bingyu Guo
- Department of Reconstructive and Plastic Surgery, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110840, P.R. China
| | - Qiang Hui
- Department of Reconstructive and Plastic Surgery, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110840, P.R. China
| | - Peng Chang
- Department of Reconstructive and Plastic Surgery, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110840, P.R. China
| | - Kai Tao
- Department of Reconstructive and Plastic Surgery, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110840, P.R. China
| |
Collapse
|
34
|
Eckert MA, Santiago-Medina M, Lwin TM, Kim J, Courtneidge SA, Yang J. ADAM12 induction by Twist1 promotes tumor invasion and metastasis via regulation of invadopodia and focal adhesions. J Cell Sci 2017; 130:2036-2048. [PMID: 28468988 DOI: 10.1242/jcs.198200] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/28/2017] [Indexed: 01/07/2023] Open
Abstract
The Twist1 transcription factor promotes tumor invasion and metastasis by inducing epithelial-mesenchymal transition (EMT) and invadopodia-mediated extracellular matrix (ECM) degradation. The critical transcription targets of Twist1 for mediating these events remain to be uncovered. Here, we report that Twist1 strongly induces expression of a disintegrin and metalloproteinase 12 (ADAM12). We observed that the expression levels of Twist1 mRNA and ADAM12 mRNA are tightly correlated in human breast tumors. Knocking down ADAM12 blocked cell invasion in a 3D mammary organoid culture. Suppression of ADAM12 also inhibited Twist1-induced tumor invasion and metastasis in human breast tumor xenografts, without affecting primary tumor formation. Mechanistically, knockdown of ADAM12 in breast cancer cells significantly reduced invadopodia formation and matrix degradation, and simultaneously increased overall cell adhesion to the ECM. Live-imaging analysis showed that knockdown of ADAM12 significantly inhibited focal adhesion turnover. Mechanistically, both the disintegrin and metalloproteinase domains of ADAM12 are required for its function at invadopodia, whereas the metalloproteinase domain is dispensable for its function at focal adhesions. Taken together, these data suggest that ADAM12 plays a crucial role in tumor invasion and metastasis by regulating both invadopodia and focal adhesions.
Collapse
Affiliation(s)
- Mark A Eckert
- Department of Pharmacology, University of California, San Diego, Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, CA, 92093-0819, USA.,The Molecular Pathology Graduate Program, University of California, San Diego, Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, CA 92093-0819, USA
| | - Miguel Santiago-Medina
- Department of Pharmacology, University of California, San Diego, Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, CA, 92093-0819, USA
| | - Thinzar M Lwin
- Department of Pharmacology, University of California, San Diego, Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, CA, 92093-0819, USA
| | - Jihoon Kim
- Division of Biomedical Informatics, University of California, San Diego, Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, CA 92093-0819, USA
| | - Sara A Courtneidge
- Departments of Cell, Developmental & Cancer Biology and Biomedical Engineering, Knight Cancer Institute, Oregon Health and Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Jing Yang
- Department of Pharmacology, University of California, San Diego, Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, CA, 92093-0819, USA .,Department of Pediatrics, University of California, San Diego, Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, CA, 92093-0819, USA
| |
Collapse
|
35
|
Jiang Q, Li Q, Han J, Gou M, Zheng Y, Li B, Xiao R, Wang J. rLj-RGD3 induces apoptosis via the mitochondrial-dependent pathway and inhibits adhesion, migration and invasion of human HeyA8 cells via FAK pathway. Int J Biol Macromol 2017; 96:652-668. [DOI: 10.1016/j.ijbiomac.2016.12.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 12/23/2016] [Accepted: 12/26/2016] [Indexed: 01/09/2023]
|
36
|
Potential therapeutic targets of epithelial-mesenchymal transition in melanoma. Cancer Lett 2017; 391:125-140. [PMID: 28131904 DOI: 10.1016/j.canlet.2017.01.029] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/02/2017] [Accepted: 01/18/2017] [Indexed: 12/16/2022]
Abstract
Melanoma is a cutaneous neoplastic growth of melanocytes with great potential to invade and metastasize, especially when not treated early and effectively. Epithelial-mesenchymal transition (EMT) is the process by which melanocytes lose their epithelial characteristics and acquire mesenchymal phenotypes. Mesenchymal protein expression increases the motility, invasiveness, and metastatic potential of melanoma. Many pathways play a role in promotion of mesenchymal protein expression including RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, Wnt/β-catenin, and several others. Downstream effectors of these pathways induce expression of EMT transcription factors including Snail, Slug, Twist, and Zeb that promote repression of epithelial and induction of mesenchymal character. Emerging research has demonstrated that a variety of small molecule inhibitors as well as phytochemicals can influence the progression of EMT and may even reverse the process, inducing re-expression of epithelial markers. Phytochemicals are of particular interest as supplementary treatment options because of their relatively low toxicities and anti-EMT properties. Modulation of EMT signaling pathways using synthetic small molecules and phytochemicals is a potential therapeutic strategy for reducing the aggressive progression of metastatic melanoma. In this review, we discuss the emerging pathways and transcription factor targets that regulate EMT and evaluate potential synthetic small molecules and naturally occurring compounds that may reduce metastatic melanoma progression.
Collapse
|
37
|
Ren K, Lu X, Yao N, Chen Y, Yang A, Chen H, Zhang J, Wu S, Shi X, Wang C, Sun X. Focal adhesion kinase overexpression and its impact on human osteosarcoma. Oncotarget 2016; 6:31085-103. [PMID: 26393679 PMCID: PMC4741590 DOI: 10.18632/oncotarget.5044] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 08/24/2015] [Indexed: 11/25/2022] Open
Abstract
Focal adhesion kinase (FAK) has been implicated in tumorigenesis in various malignancies. We sought to examine the expression patterns of FAK and the activated form, phosphorylated FAK (pFAK), in human osteosarcoma and to investigate the correlation of FAK expression with clinicopathologic parameters and prognosis. In addition, the functional consequence of manipulating the FAK protein level was investigated in human osteosarcoma cell lines. Immunohistochemical staining was used to detect FAK and pFAK in pathologic archived materials from 113 patients with primary osteosarcoma. Kaplan-Meier survival and Cox regression analyses were performed to evaluate the prognoses. The role of FAK in the cytological behavior of MG63 and 143B human osteosarcoma cell lines was studied via FAK protein knock down with siRNA. Cell proliferation, migration, invasiveness and apoptosis were assessed using the CCK8, Transwell and Annexin V/PI staining methods. Both FAK and pFAK were overexpressed in osteosarcoma. There were significant differences in overall survival between the FAK-/pFAK- and FAK+/pFAK- groups (P = 0.016), the FAK+/pFAK- and FAK+/pFAK+ groups (P = 0.012) and the FAK-/pFAK- and FAK+/pFAK+ groups (P < 0.001). There were similar differences in metastasis-free survival between groups. The Cox proportional hazards analysis showed that the FAK expression profile was an independent indicator of both overall and metastasis-free survival. SiRNA-based knockdown of FAK not only dramatically reduced the migration and invasion of MG63 and 143B cells, but also had a distinct effect on osteosarcoma cell proliferation and apoptosis. These results collectively suggest that FAK overexpression and phosphorylation might predict more aggressive biologic behavior in osteosarcoma and may be an independent predictor of poor prognosis.
Collapse
Affiliation(s)
- Ke Ren
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, Jiangsu Province, P.R.China.,Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, P.R.China
| | - Xiao Lu
- Center Laboratory of Cancer Center, The Jingdu Hospital of Nanjing, Nanjing 210002, Jiangsu Province, P.R.China
| | - Nan Yao
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, P.R.China
| | - Yong Chen
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Nanjing 210002, Jiangsu Province, P.R.China
| | - Aizhen Yang
- Center Laboratory of Cancer Center, The Jingdu Hospital of Nanjing, Nanjing 210002, Jiangsu Province, P.R.China
| | - Hui Chen
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, P.R.China
| | - Jian Zhang
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu Province, P.R.China
| | - Sujia Wu
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Nanjing 210002, Jiangsu Province, P.R.China
| | - Xin Shi
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Nanjing 210002, Jiangsu Province, P.R.China
| | - Chen Wang
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, P.R.China
| | - Xiaoliang Sun
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, Jiangsu Province, P.R.China
| |
Collapse
|
38
|
Kessler BE, Sharma V, Zhou Q, Jing X, Pike LA, Kerege AA, Sams SB, Schweppe RE. FAK Expression, Not Kinase Activity, Is a Key Mediator of Thyroid Tumorigenesis and Protumorigenic Processes. Mol Cancer Res 2016; 14:869-82. [PMID: 27259715 DOI: 10.1158/1541-7786.mcr-16-0007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/20/2016] [Indexed: 01/09/2023]
Abstract
UNLABELLED There are limited therapy options for advanced thyroid cancer, including papillary and anaplastic thyroid cancer (PTC and ATC). Focal adhesion kinase (FAK) regulates cell signaling by functioning as a scaffold and kinase. Previously, we demonstrated that FAK is overexpressed and activated in thyroid cancer cells and human PTC clinical specimens. However, it remains unclear whether patients with advanced thyroid cancer will benefit from FAK inhibition. Therefore, the dual functions of FAK in mediating protumorigenic processes and thyroid tumorigenesis were investigated. Evidence here shows that FAK expression predominantly regulates thyroid cancer cell growth, viability, and anchorage-independent growth. FAK inhibition, with PF-562,271 treatment, modestly reduced tumor volumes, while FAK depletion, through shRNA knockdown, significantly reduced tumor volumes in vivo A role for FAK expression in tumor establishment was demonstrated in a model of PTC, where FAK knockdown tumors did not develop. FAK depletion also led to a significant decrease in overall metastatic burden. Interestingly, pretreatment with a FAK inhibitor resulted in a paradoxical increase in metastasis in a model of ATC, but decreased metastasis in a model of PTC. These data provide the first evidence that FAK expression is critical for the regulation of thyroid tumorigenic functions. IMPLICATIONS This study demonstrates that FAK expression, but not kinase activity alone, predominantly mediates thyroid tumor growth and metastasis, indicating that targeting the scaffolding function(s) of FAK may be an important therapeutic strategy for advanced thyroid cancer, as well as other FAK-dependent tumors. Mol Cancer Res; 14(9); 869-82. ©2016 AACR.
Collapse
Affiliation(s)
- Brittelle E Kessler
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Vibha Sharma
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Qiong Zhou
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Xia Jing
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Laura A Pike
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Anna A Kerege
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Sharon B Sams
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado. University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Rebecca E Schweppe
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado. Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado. University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado.
| |
Collapse
|
39
|
Bianchi-Smiraglia A, Wawrzyniak JA, Bagati A, Marvin EK, Ackroyd J, Moparthy S, Bshara W, Fink EE, Foley CE, Morozevich GE, Berman AE, Shewach DS, Nikiforov MA. Pharmacological targeting of guanosine monophosphate synthase suppresses melanoma cell invasion and tumorigenicity. Cell Death Differ 2015; 22:1858-64. [PMID: 25909885 PMCID: PMC4648332 DOI: 10.1038/cdd.2015.47] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/12/2015] [Accepted: 03/16/2015] [Indexed: 12/20/2022] Open
Abstract
Malignant melanoma possesses one of the highest metastatic potentials among human cancers. Acquisition of invasive phenotypes is a prerequisite for melanoma metastases. Elucidation of the molecular mechanisms underlying melanoma invasion will greatly enhance the design of novel agents for melanoma therapeutic intervention. Here, we report that guanosine monophosphate synthase (GMPS), an enzyme required for the de novo biosynthesis of GMP, has a major role in invasion and tumorigenicity of cells derived from either BRAF(V600E) or NRAS(Q61R) human metastatic melanomas. Moreover, GMPS levels are increased in metastatic human melanoma specimens compared with primary melanomas arguing that GMPS is an attractive candidate for anti-melanoma therapy. Accordingly, for the first time we demonstrate that angustmycin A, a nucleoside-analog inhibitor of GMPS produced by Streptomyces hygroscopius efficiently suppresses melanoma cell invasion in vitro and tumorigenicity in immunocompromised mice. Our data identify GMPS as a powerful driver of melanoma cell invasion and warrant further investigation of angustmycin A as a novel anti-melanoma agent.
Collapse
Affiliation(s)
- A Bianchi-Smiraglia
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - J A Wawrzyniak
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - A Bagati
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - E K Marvin
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - J Ackroyd
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - S Moparthy
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - W Bshara
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - E E Fink
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - C E Foley
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - G E Morozevich
- Orekhovich Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - A E Berman
- Orekhovich Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - D S Shewach
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - M A Nikiforov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
40
|
Krifa M, El Meshri SE, Bentouati N, Pizzi A, Sick E, Chekir-Ghedira L, Rondé P. In Vitro and In Vivo Anti-Melanoma Effects of Pituranthos tortuosus Essential Oil Via Inhibition of FAK and Src Activities. J Cell Biochem 2015; 117:1167-75. [PMID: 26477879 DOI: 10.1002/jcb.25400] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/06/2015] [Indexed: 01/12/2023]
Abstract
A large number of plants used in traditional medicines have been shown to possess antitumor activities. The aims of this study were to evaluate any anticancer effect of the essential oil (EO) extracted from P. tortuosus against B16F10 melanoma cancer cells in vitro as well as in vivo. In vitro, EO was shown to induce apoptosis and to inhibit migration and invasion processes. Further investigation revealed that EO decreased focal adhesion and invadopodia formation which was accompanied by a drastic downregulation of FAK, Src, ERK, p130Cas and paxillin. Moreover, EO treatment decreased the expression level of p190RhoGAP, and Grb2, which impair cell migration and actin assembly. Mice bearing the melanoma cells were used to confirm any in vivo effectiveness of the EO as an anti-tumor promoting agent. In mice dosed with 100 mg EO/kg/d (for 27 days), tumor weight was inhibited by 98% compared to that in mice that did not receive the product. In conclusion, these data suggested to us that an EO of P. tortuosus could evolve to be a potential medicinal resource for use in the treatment of cancers.
Collapse
Affiliation(s)
- Mounira Krifa
- Unité de substances naturelles bioactives et biotechnologie UR12ES12, Faculté de pharmacie de Monastir, Tunisie.,UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch, France.,ENSTIB/LERMAB, Epinal France
| | - Salah Edin El Meshri
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch, France
| | - Nawel Bentouati
- Unité de substances naturelles bioactives et biotechnologie UR12ES12, Faculté de pharmacie de Monastir, Tunisie
| | | | - Emilie Sick
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch, France
| | - Leila Chekir-Ghedira
- Laboratory Cellular and Molecular Biology, Faculty of Dental Medicine at Monastir, Rue Avicenne, 5000, Monastir, Tunisia
| | - Philippe Rondé
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch, France
| |
Collapse
|
41
|
Zhao S, Li H, Wang Q, Su C, Wang G, Song H, Zhao L, Luan Z, Su R. The role of c-Src in the invasion and metastasis of hepatocellular carcinoma cells induced by association of cell surface GRP78 with activated α2M. BMC Cancer 2015; 15:389. [PMID: 25958313 PMCID: PMC4455704 DOI: 10.1186/s12885-015-1401-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 04/29/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Emerging data have suggested that cell surface GRP78 is a multifunctional receptor and has been linked to proliferative and antiapoptotic signaling cascades. Activated α2-macroglobin (α2M*) is a natural circulating ligand of cell surface GRP78. Association of cell surface GRP78 with α2M* is involved in the regulation of cell proliferation, survival and apoptosis in human cancers. METHODS The invasion and metastasis of HCC cells were examined using transwell and wound healing assay; Cell surface expression of GRP78 was detected by in cell western assay. Translocation of GRP78 from cytosol to cell surface was observed by transfection of GRP78-EGFP plus TRIRC-WGA staining. The levels of Src, phosphor-Src, FAK, phospho-FAK, EGFR, phospho-EGFR, phospho-Cortactin, phospho-Paxillin were determined by western blot. Cell surface expression of GRP78 in HCC tissue samples was observed by immunofluorescence. The distribution of Paxillin and Cortactin in HCC cells was also observed by immunofluorescence. The interaction between GRP78 and Src were detected by far-western blot, co-immunoprecipitation and GST pulldown. GRP78 mRNA was detected by RT-PCR. RESULTS In the current study, we showed that association of cell surface GRP78 with α2M* stimulated the invasion and metastasis of HCC. Cell surface GRP78 could interact directly with c-Src, promoted the phosphorylation of c-Src at Y416. Inhibition of the tyrosine kinase activity of c-Src with PP2 reverted the stimulatory effect caused by association of cell surface GRP78 with α2M*. Moreover, association of cell surface GRP78 with α2M* facilitates the interaction between EGFR and c-Src and consequently phosphorylated EGFR at Y1101 and Y845, promoting the invasion and metastasis of HCCs. However, inhibition of the tyrosine kinase of c-Src do not affect the interaction between EGFR and Src. CONCLUSION c-Src plays a critical role in the invasion and metastasis of HCC induced by association of cell surface GRP78 with α2M*. Cell surface GRP78 directly binds and phosphorylates c-Src. As a consequence, c-Src phosphorylated EGFR, promoting the invasion and metastasis of HCCs.
Collapse
Affiliation(s)
- Song Zhao
- Central laboratory, Liaoning Medical College, No 40 Songpo Road, Jinzhou, 121001, China.
| | - Hongdan Li
- Central laboratory, Liaoning Medical College, No 40 Songpo Road, Jinzhou, 121001, China.
| | - Qingjun Wang
- Oncology Department, the First Affiliated Hospital of Liaoning Medical College, No 40 Songpo Road, Jinzhou, 121001, China.
| | - Chang Su
- Veterinary Medicine Department, Liaoning Medical College, No 40 Songpo Road, Jinzhou, 121001, China.
| | - Guan Wang
- Central laboratory, Liaoning Medical College, No 40 Songpo Road, Jinzhou, 121001, China.
| | - Huijuan Song
- Central laboratory, Liaoning Medical College, No 40 Songpo Road, Jinzhou, 121001, China.
| | - Liang Zhao
- Pharmacy Department, Liaoning Medical College, No 40 Songpo Road, Jinzhou, 121000, China.
| | - Zhidong Luan
- Development Department, Liaoning Medical College, No 40 Songpo Road, Jinzhou, 121000, China.
| | - Rongjian Su
- Central laboratory, Liaoning Medical College, No 40 Songpo Road, Jinzhou, 121001, China. .,Cell Biology AND Genetic Department, Liaoning Medical College, No 40 Songpo Road, Jinzhou, 121000, China.
| |
Collapse
|